

TRUSTWORTHY, COGNITIVE AND AI-DRIVEN

COLLABORATIVE ASSOCIATIONS OF IOT DEVICES AND

EDGE RESOURCES FOR DATA PROCESSING

Grant Agreement no. 101136024

Deliverable D2.2

Initial Release of EMPYREAN Architecture

Programme: HORIZON-CL4-2023-DATA-01-04

Project number: 101136024

Project acronym: EMPYREAN

Start/End date: 01/02/2024 – 31/01/2027

Deliverable type: Report

Related WP: WP2

Responsible Editor: ICCS

Due date: 31/08/2024

Actual submission date: 30/09/2024

Dissemination level: Public

Revision: FINAL

This project has received funding from the European Union’s Horizon
Europe research and innovation programme under grant agreement
No 101136024

Ref. Ares(2024)6946075 - 01/10/2024

D2.2 – Initial release of EMPYREAN architecture

empyrean-horizon.eu 2/91

 Revision History

Date Editor Status Version Changes

18.03.24 Aristotelis Kretsis Draft 0.1 Initial ToC

25.05.24 Aristotelis Kretsis
Draft 0.2

Merge initial contributions in Sections

3,4, and 7

10.06.24 Panagiotis Kokkinos Draft 0.3 Update and finalize ToC

09.07.24 Panagiotis Kokkinos Draft 0.4
Integrate contributions by ICCS, UMU,

CC, NEC, NUBIS in Sections 3,4,5

23.08.24 Aristotelis Kretsis Draft 0.5

Integrate final contributions by ICCS,

NVIDIA, CC, UMU, ZSCALE, RYAX,

NUBIS, NEC in Sections 3,4,5,7

10.09.24 Aristotelis Kretsis Draft 0.6 Finalize sections 3,4,5,7,8

21.09.24 Panagiotis Kokkinos Draft 0.7
Integrate final contributions by

IDEKO, EV ILVO, TRAC in Section 6

26.09.24 Aristotelis Kretsis Draft 0.8 Revised version after internal review

30.09.24 ICCS Final 1.0

Author List

Organization Author

ICCS Aristotelis Kretsis, Panagiotis Kokkinos, Emmanouel Varvarigos

NVIDIA Dimitris Syrivelis

CC Marton Sipos, Marcell Feher, Daniel E. Lucani

UMU Eduardo Cánovas, Antonio Skarmeta

ZSCALE Ivan Paez

RYAX Pedro Velho, Yuqiang Ma, Michael, Mercier, Yiannis Georgiou

NUBIS Anastassios Nanos, Charalampos Mainas, Georgios Ntoutsos, Ilias Lagomatis,

Maria Goutha, Panagiotis Mavrikos, Anastassios Tsakas, Konstantinos

Papazafeiropoulos

IDEKO Aitor Fernández, Javier Martín

NEC Jaime Fúster, Roberto González

EV ILVO Jan Bauwens, Theodoros Chalazas, Panagiotis Ilias

TRAC Keshav Chintamani

Internal Reviewers

Dimitris Syrivelis, NVIDIA

Marton Sipos, CC

D2.2 – Initial release of EMPYREAN architecture

empyrean-horizon.eu 3/91

Abstract: This deliverable (D2.2) presents the outcomes of Task 2.3 “Architecture

Specification”, Work Package 2 “Requirements and System Design” of the EMPYREAN project,

during the first iteration of the incremental implementation plan. The deliverable presents the

initial architecture specifications of the EMPYREAN platform. It also provides a breakdown of

the platform’s key building blocks and describes their interactions. Moreover, the EMPYREAN

implementation and delivery plan is introduced.

Keywords: EMPYREAN Architecture, EMPYREAN Platform, Associations, Edge-Cloud

Continuum, Cognitive Orchestration, Trustworthy, AI-Driven Data Processing

D2.2 – Initial release of EMPYREAN architecture

empyrean-horizon.eu 4/91

Disclaimer: The information, documentation and figures available in this deliverable are written by the

EMPYREAN Consortium partners under EC co-financing (project HORIZON-CL4-2023-DATA-01-04-

101136024) and do not necessarily reflect the view of the European Commission. The information in

this document is provided “as is”, and no guarantee or warranty is given that the information is fit for

any particular purpose. The reader uses the information at his/her sole risk and liability.

Copyright © 2024 the EMPYREAN Consortium. All rights reserved. This document may not be copied,

reproduced or modified in whole or in part for any purpose without written permission from the

EMPYREAN Consortium. In addition to such written permission to copy, reproduce or modify this

document in whole or part, an acknowledgement of the authors of the document and all applicable

portions of the copyright notice must be clearly referenced.

D2.2 – Initial release of EMPYREAN architecture

empyrean-horizon.eu 5/91

Table of Contents

1 Executive Summary ... 11

2 Introduction ... 12

2.1 Purpose of this document ... 12

2.2 Document structure .. 13

2.3 Audience .. 13

3 EMPYREAN Technologies and Resources .. 14

3.1 EMPYREAN Hardware Resources .. 14

3.1.1 Hardware Accelerators ... 14

3.1.2 Smart NICS and Data Processing Units ... 15

3.1.3 Smart Boxes for CNC Machines .. 15

3.2 EMPYREAN Software Components .. 16

3.2.1 p-ABC C Library ... 16

3.2.2 Secure Execution Environment .. 17

3.2.3 Software-defined Edge Interconnect ... 18

3.2.4 Hardware Acceleration Abstractions ... 20

4 EMPYREAN Platform Components .. 23

4.1 Privacy and Security Manager ... 23

4.2 Edge Storage and Edge Storage Gateway ... 25

4.3 Decentralized and Distributed Data Manager ... 26

4.4 Local Orchestration and Autoscaling Optimizations ... 28

4.5 Analytics Engine ... 30

4.6 Cyber Threat Intelligence Engine ... 32

4.7 Decision Engine .. 34

4.8 Workflow Manager .. 37

4.9 Dataflow Programming Component ... 40

4.10 Lightweight Application Packaging .. 41

4.11 Application Builder for Unikernels .. 42

4.12 Analytics-friendly Distributed Storage .. 45

4.13 Service Orchestrator and EMPYREAN Controller .. 46

4.14 Telemetry Service .. 49

4.15 EMPYREAN Aggregator .. 53

4.16 EMPYREAN Registry ... 55

5 EMPYREAN Architecture .. 60

5.1 High-Level Architecture ... 60

5.2 Data Spaces and Architecture ... 67

5.3 Logical Architecture ... 71

6 EMPYREAN Platform Deployment View .. 73

6.1 Anomaly Detection in Robotic Machining Cells (UC1) .. 73

6.2 Proximal Sensing in Agriculture Fields (UC2)... 76

6.3 Robotic Semi-autonomous and Lights Out Logistics Order Picking (UC3) 78

D2.2 – Initial release of EMPYREAN architecture

empyrean-horizon.eu 6/91

7 Implementation and Delivery Plan .. 81

7.1 Software Engineering Approach .. 81

7.1.1 EMPYREAN Platform CI/CD .. 81

7.2 Implementation Schedule ... 84

8 Requirements Coverage .. 87

9 Conclusions .. 91

D2.2 – Initial release of EMPYREAN architecture

empyrean-horizon.eu 7/91

List of Figures

Figure 1: EMPYREAN edge node with wired backhaul and attached hardware sensors 19

Figure 2: vAccel software stack .. 21

Figure 3: Privacy and Security Manager interaction with other EMPYREN services 23

Figure 4: Edge Storage and Edge Storage Gateway components and dependencies 25

Figure 5: Distributed data query in automotive context ... 27

Figure 6: Local Orchestration and Autoscaling Optimizations dependencies 29

Figure 7: Analytics Engine core components and dependencies ... 31

Figure 8: EMPYREAN Cyber Threat Intelligence Engine ... 33

Figure 9: Decision Engine core components and dependencies ... 35

Figure 10: Workflow Manager components and dependencies .. 37

Figure 11: Representation of a distributed dataflow programming using ZenohFlow 40

Figure 12: NIX-based Environment Packaging components and dependencies 42

Figure 13: High-level overview of the Bunny workflow ... 43

Figure 14: Analytics-friendly Distributed Storage ... 45

Figure 15: Service Orchestrator and EMPYREAN Controller components and dependencies 47

Figure 16: EMPYREAN Telemetry Service components and dependencies 51

Figure 17: EMPYREAN Aggregator core components and dependencies 54

Figure 18: EMPYREAN Registry core components and dependencies 56

Figure 19: EMPYREAN Association-based IoT-Edge-Cloud continuum 60

Figure 20: EMPYREAN high-level architecture ... 61

Figure 21: EMPYREAN Aggregator and Associations’ management .. 63

Figure 22: Gaia-X Connecting Data & Infrastructure Ecosystems18 ... 69

Figure 23: Design principles for Data Spaces ... 70

Figure 24: EMPYREAN logical architecture .. 72

Figure 25: Possible breakdown of the current behavior into three workflows (WF) 75

Figure 26: Proximal sensing in agriculture fields use case deployment overview 77

Figure 27: UC3 preliminary deployment view – 1st workflow .. 79

Figure 28: UC3 preliminary deployment view – 2nd workflow ... 80

D2.2 – Initial release of EMPYREAN architecture

empyrean-horizon.eu 8/91

Figure 29: UC3 preliminary deployment view – 3rd workflow ... 80

Figure 30: CI/CD workflow ... 83

Figure 31: Overall technical development strategy and methodology 85

Figure 32: EMPYREAN development roadmap .. 85

List of Tables

Table 1: Description of p-ABC C Library components .. 16

Table 2: Description of Secure Execution Environment ... 18

Table 3: Description of software-defined edge interconnect components 19

Table 4: Description of vAccel component .. 22

Table 5: Description of Privacy and Security Manager core components 24

Table 6: Description of Edge Storage and Edge Storage Gateway components 25

Table 7: Description of Decentralized and Distributed Data Manager components 28

Table 8: Description of Local Orchestration and Autoscaling Optimizations components 29

Table 9: Description of Analytics Engine core components ... 31

Table 10: Description of Cyber Threat Intelligence .. 33

Table 11: Description of Decision Engine core components ... 35

Table 12: Description of Workflow Manager components .. 38

Table 13: Description of Dataflow programming component ... 41

Table 14: Description of NIX-based Environment Packaging ... 42

Table 15: Description of Application Builder for Unikernels components 43

Table 16: Description of Analytics-friendly Distributed Storage components 45

Table 17: Description of Service Orchestrator and EMPYREAN Controller core components 47

Table 18: Description of Telemetry Service core components .. 51

Table 19: Description of EMPYREAN Aggregator core components .. 54

Table 20: Description of EMPYREAN Registry core components ... 57

Table 21: Functional requirements covered by the initial release of the EMPYREAN

architecture .. 87

D2.2 – Initial release of EMPYREAN architecture

empyrean-horizon.eu 9/91

Abbreviations

ABC Attribute-based Credentials

ABE Attribute-Based-Encryption

AI Artificial Intelligence

AMQP Advanced Message Queuing Protocol

API Application Programming Interface

BDVA Big Data Value Association

ATR Autonomous Towing Robot

CD Continuous Delivery

CI Continuous Integration

CNC Computer Numerical Control

CP-ABE Ciphertext-Policy Attribute-Based-Encryption

CPU Central processing unit

CRI Container Runtime Interface

CTA Cyber Threat Alliance

CTI Cyber Threat Intelligence

D Deliverable

DAG Directed Acyclic Graph

DevOps Development and Operations

DDS Data Distribution Service

DID Decentralized Identifier

DLT Distributed Ledger Technologies

DRS Data Recording System

DSBA Data Space Business Alliance

EC Elliptic Curve

EDC Eclipse Data Space Connector

FCS Fingerprint Comparison System

FCS Fleet Control System

FGS Fingerprint Generation System

FPGA Field Programmable Gate Arrays

FTC FIWARE True Connector

GHCR GitHub Container Registry

GPU Graphics Processing Unit

HPC High Performance Computing

HW Hardware

I/O Input/Output

IaaS Infrastructure as a Service

IDSA International Data Spaces Association

IIoT Industrial Internet of Things

IoC Indicators of Compromise

IoT Internent of Things

IP Intellectual Property

JSON Javascript Object Notation

JWT JSON Web Token

K8s Kubernetes

KPI Key Performance Indicator

D2.2 – Initial release of EMPYREAN architecture

empyrean-horizon.eu 10/91

LAN Local Area Network

M Month

MAN Metropolitan Area Network

MISP Malware Information Sharing Platform

ML Machine Learning

MQTT Message Queuing Telemetry Transport

NDN Named-Data Networking

NIC Network Interface Card

OBU Onboard Unit

OCI Open Container Initiative

OPC-UA OPC Unified Architecture

OTA Over-the-Air

PaaS Platform as a Service

PMDS Persistent Monitoring Data Storage

PS-MS Pointcheval–Sanders Multi-Signatures

PSM Privacy and Security Manager

Pub/Sub Publish/Subscribe

RDMA Remote Direct Memory Access

REST Representational State Transfer

RTL Register Transfer Level

SaaS Software as a Service

SDK Service Development Kit

SO Service Orchestrator

SSI Self-Sovereign Identity

SW Software

TCP Transmission Control Protocol

TEE Trusted Execution Environment

TF Task Force

TPU Tensor Processing Unit

TSN Time-Sensitive Networking

UC Use Case

URI Unique Resource Identifier

VC Verifiable Credentials

VCS Version Control System

VM Virtual Machine

VP Verifiable Presentations

WAN Wide Area Network

WASM WebAssembly

WP Work Package

XACML Extensible Access Control Markup Language

ZKP Zero-Knowledge Proofs

D2.2 – Initial release of EMPYREAN architecture

empyrean-horizon.eu 11/91

1 Executive Summary

EMPYREAN envisions an IoT-edge-cloud continuum composed of collaborative collectives of

IoT devices, robots, and resources, seamlessly extending from the edge to the cloud.

EMPYREAN refers to this concept as the Association-based continuum, where multiple

Associations—each a collaborative collective of IoT devices, robots, and diverse resources—

operate concurrently across heterogeneous infrastructures, spanning different providers,

geographical locations, and connectivity types. These Associations collectively form a dynamic

and interconnected IoT-edge-cloud ecosystem.

In this Association-based continuum, EMPYREAN aims to autonomously balance computing

tasks and data both within individual Associations and between federated Associations,

optimizing resource utilization, performance, and resiliency. To achieve this, EMPYREAN is

developing a distributed and AI-enabled control and management plane across the IoT-edge-

cloud continuum. This infrastructure will facilitate the creation, management, and operation

of Associations, supporting the ubiquitous computing, storage, and communication needs of

current and future hyper-distributed, dynamic, and time-critical applications.

This deliverable introduces the initial reference architecture of the EMPYREAN platform,

derived from the consortium’s efforts to design a system that meets the requirements

identified in deliverable D2.1 - “State of the art, use cases analysis, platform requirements and

KPIs" (M6). The architecture is designed to provide the functionalities needed to achieve the

project’s objectives and address the specific needs of the use cases. Key innovations and

technological advancements are also highlighted, showcasing the novel ecosystem of

technologies that the EMPYREAN employs and develops.

The EMPYREAN platform features a multi-layer modular architecture that integrates distinct

functionalities and features necessary to enable the Association-based continuum. This

approach not only facilitates future extensions but also supports the independent use and

exploitation of platform components. The architecture is detailed at both the conceptual and

logical levels in this deliverable, with the logical architecture elaborating on all the

components developed within the project and illustrating their core interactions.

Furthermore, this deliverable provides an early overview of the EMPYREAN platform

deployments that will support the use cases (UCs), laying the groundwork for subsequent

implementation and evaluation phases. It also outlines the adopted implementation and

delivery plan, which includes the software engineering approach that will guide the

EMPYREAN platform development. This information serves as a framework for the technical

Work Packages (WPs), ensuring alignment and coherence across development activities.

As the project progresses, the architecture will be iteratively refined based on feedback from

ongoing development efforts. The final version of the architecture, including comprehensive

workflows and interface specifications, will be documented in Deliverable D2.3 – “Final

EMPYREAN Architecture, Use Cases Analysis, and KPIs,” scheduled for completion at M12. This

final deliverable will present the fully matured architecture, providing a detailed and

actionable blueprint for the platform's deployment and operation.

D2.2 – Initial release of EMPYREAN architecture

empyrean-horizon.eu 12/91

2 Introduction

2.1 Purpose of this document

This deliverable presents the preliminary outcomes of Task 2.3 – “Architecture Specification”

within Work Package 2 – “Use Cases Analysis, System Requirements and Overall Architecture”

during its initial phase (M1 – M7). Task 2.3 focuses on designing the overall EMPYREAN

architecture and defining the workflows and interfaces between the EMPYREAN components,

ensuring a structured and coherent system integration.

The primary objective of D2.2 is to build upon the initial contributions of Tasks 2.1 and 2.2, as

described in deliverable D2.1 (M6). It aims to provide a comprehensive description of

EMPYREAN’s components, along with the associated technical specifications that will guide

the project’s next phases. In this context, D2.2 outlines the initial high-level architecture of

the EMPYREAN platform, detailing the interactions among its key building blocks and offering

a preliminary detailed architecture. Additionally, it includes an early description of the

EMPYREAN platform deployments that will support the project’s use cases (UCs), laying the

groundwork for future implementation.

D2.2 will serve as a critical reference for the research and development activities within the

technical work packages (WP3-4) and will also support the development, evaluation, and

integration activities related to the project’s use cases (WP5-6). Each technical work package

will ensure that all project developments are in full alignment with the architecture and

specifications outlined in this deliverable, maintaining consistency across the project's various

activities. As the technical work progresses, the architecture will be iteratively refined and

expanded, incorporating more detailed technical specifications for the components,

interfaces, and workflows.

Furthermore, the forthcoming iteration of this deliverable will provide comprehensive

interface specifications for EMPYREAN platform components, alongside detailed workflow

descriptions that capture the interactions between these components, thereby ensuring a

seamless and integrated approach throughout the project. The final output of Task 2.3 will be

documented in D2.3 - “Final EMPYREAN architecture, use cases analysis and KPIs”, which is

scheduled for completion in M12 of the project, culminating the architectural development

efforts with a refined and fully specified system blueprint.

D2.2 – Initial release of EMPYREAN architecture

empyrean-horizon.eu 13/91

2.2 Document structure

The present deliverable is split into six major chapters:

• EMPYREAN Technologies and Resources

• EMPYREAN Platform Components

• EMPYREAN Architecture

• EMPYREAN Platform Deployment View

• Implementation and Deliverable Plan

• Requirements Coverage

2.3 Audience

This document is publicly available and should be useful to anyone interested in the initial

description of the EMPYREAN components and the specification of the initial release of the

EMPYREAN architecture. Moreover, this document can also help the general public better

understand the framework and scope of the EMPYREAN project.

D2.2 – Initial release of EMPYREAN architecture

empyrean-horizon.eu 14/91

3 EMPYREAN Technologies and Resources

EMPYREAN aims to develop an ecosystem of innovative technologies that enable a

collaborative, trustful, and cognitive IoT-edge-cloud continuum. This continuum efficiently

and autonomously integrates heterogeneous infrastructure resources from various

technological domains with diverse characteristics and capabilities. The key technologies

developed in EMPYREAN include: (i) lightweight, privacy-preserving solution for Attribute-

Based Credentials (ABCs) in decentralized environments, (ii) secure and trusted execution

environments with workload isolation across the IoT-edge-cloud continuum, (iii) software-

defined IoT-edge interconnects, and (iv) hardware acceleration abstractions for the flexible

execution of workloads that can benefit from hardware acceleration.

The following sections provide more information on the hardware resources considered

within the EMPYREAN platform and associated software technologies developed within the

EMPYREAN project.

3.1 EMPYREAN Hardware Resources

3.1.1 Hardware Accelerators

Hardware accelerators are specialized systems designed to enhance the efficiency of

computations performed by general-purpose processors, such as CPUs. Many computational

tasks that can be parallelized, while typically executable on a generic CPU, can also be

offloaded to custom-designed hardware for significantly faster performance. Hardware

accelerators are commonly employed in various domains, including machine learning (ML),

computer vision, video editing/rendering, digital signal processing, and cryptography,

However, the use of hardware acceleration is most beneficial when dealing with

computationally intensive algorithms that demand high throughput and performance. For

routine tasks or algorithms that are more serial in nature, a CPU may actually be more

efficient. This is because CPUs generally operate at higher clock frequencies than accelerator

cores and are optimized for handling serial tasks and branching logic.

Nevertheless, offloading performance-critical functions to specialized hardware can be a

highly effective strategy to reduce execution time and improve energy efficiency. Hardware

accelerators such as Graphics Processing Units (GPUs), Field-Programmable Gate Arrays

(FPGAs), and Application-Specific Integrated Circuits (ASICs) are commonly used for this

purpose. GPUs consist of a large number of specialized processing units designed to handle

massive parallel data streams, making them ideal for tasks such as matrix calculations in deep

learning and rendering in computer graphics. FPGAs and ASICs, on the other hand, implement

fixed-function algorithms directly in hardware. FPGAs offer the flexibility to be reprogrammed

for different tasks, while ASICs are highly efficient but custom-built for specific algorithms,

providing optimal performance in their respective domains.

D2.2 – Initial release of EMPYREAN architecture

empyrean-horizon.eu 15/91

These accelerators are often deployed in environments such as edge computing, where they

operate close to the data source in compact devices that integrate memory, CPU, I/O, and

acceleration capabilities. Alternatively, they can be found in cloud environments, typically

integrated into server systems where they handle large-scale, data-intensive workloads. By

harnessing the power of hardware accelerators, applications can achieve faster processing

speeds and greater energy efficiency, especially in scenarios requiring the parallel processing

of large datasets.

3.1.2 Smart NICS and Data Processing Units

NVIDIA Mellanox ConnectX® SmartNICs utilize stateless offload engines, overlay networks,

and native hardware support for RoCE and GPUDirect™ technologies that reduce I/O latency

within and beyond the server boundaries and results in significantly improved application

performance. Developers can use ConnectX custom packet processing technologies to

accelerate server-based networking functions and offload datapath processing for compute-

intensive workloads, including transport, network virtualization, security, and storage

functionalities.

The NVIDIA® BlueField®-3 data processing unit (DPU) delivers a broad set of accelerated

software defined networking, storage, security, and management services with the ability to

offload, accelerate and isolate data center infrastructure. Sitting at the edge of every server,

BlueField-3 empowers agile, secured and high-performance cloud and artificial intelligence

(AI) workloads, all while reducing the total cost of ownership and increasing data center

efficiency. The NVIDIA DOCA™ software framework enables developers to rapidly create

applications and services for the DPU. NVIDIA DOCA makes it easy to leverage DPU hardware

accelerators, providing breakthrough data center performance, efficiency and security.

3.1.3 Smart Boxes for CNC Machines

IDEKO collaborates closely with Savvy Data Systems, a technological start-up specializing in

machine-monitoring and data analytics. Together, they developed the Smart Box, an industry-

ready device to collect machine data. The Smart Box serves as both a data collection tool and

a data gateway featuring an industrial PC setup. It is capable of connecting to the most

common CNC models (machines) and other data sources and sensors.

There are several models of the Smart Box, each with different price ranges and computational

power. Typically, the boxes are deployed to one-to-one basis, one box is deployed for each

CNC machine. This arrangement can result in some machines having more computational

power than others, depending on the model of the box attached to them. Despite these

differences, each Smart Box comes with the full set of connectivity options required to gather

data form the machine and send it to a private cloud for further analysis. It is designed to

capture machine performance indicators such as axis positions, oil pressure, and running

programs at a configurable frequency, usually every second. One of the key advantages of the

Smart Box is its ease of use, as it is nearly plug-and-play, with support for remote configuration

and software upgrades. Additionally, it is compatible with Docker containers, enabling users

D2.2 – Initial release of EMPYREAN architecture

empyrean-horizon.eu 16/91

to deploy edge computing solutions directly on the device. This is particularly useful for

scenarios where customers prefer to process data locally rather than sending it to the cloud,

either for privacy concerns or specific operational requirements.

3.2 EMPYREAN Software Components

3.2.1 p-ABC C Library

The p-ABC C Library is a lightweight, privacy-preserving solution designed to support Attribute-

Based Credentials (ABCs) in decentralized environments. It is optimized for IoT and low-

computation devices, enabling independent credential management. Utilizing advanced

cryptographic techniques like Pointcheval–Sanders (PS) multi-signatures (MS) and Zero-

Knowledge Proofs (ZKFs), the library ensures secure authentication. It enhances identity

management and access control across the EMPYREAN ecosystem through its integration with

the Privacy and Security Manager (Section 4.1).

Table 1: Description of p-ABC C Library components

Component ID WP3.1.2

Name p-ABC C Library

High level
description

The p-ABC library is a cutting-edge solution designed to facilitate distributed,
privacy-preserving Attribute-Based Credentials (ABCs) by leveraging PS Multi-
Signatures (MS), with a robust foundation in Elliptic Curve (EC) arithmetic. It
empowers developers to implement advanced cryptographic protocols, enabling
secure and private authentication mechanisms. The p-ABC library enables the
creation of derived, verifiable presentations that can be shared and validated
without compromising user privacy. By employing ZKFs, the module ensures that
sensitive information remains confidential, even in verification process. It is ideal
for applications requiring high levels of privacy and security, such as decentralized
identity systems, confidential transactions, and secure access control.

Moreover, the p-ABC module is designed with ease of use in mind, offering an
automated script to streamline the setup process. This feature simplifies its
deployment and integration into existing systems, making it accessible even for
those who may not have extensive expertise in cryptography. Overall, the p-ABC
module library represents the latest in privacy-preserving technology, providing
the tools necessary to build secure, privacy-centric solutions in a digital world that
increasingly demands robust data protection. It enhances the Privacy and Security
Manager by enabling the creation and management of privacy-preserving
Verifiable Credentials and Presentations, crucial for secure authentication in IoT
ecosystems. The library integrates advanced cryptographic techniques, such as
zero-knowledge proofs and selective disclosure, ensuring that IoT devices can
securely interact and authenticate without compromising user privacy.

Collaborators • Privacy and Security Manager (WP3.1.1)

Interfaces • C Library compiled as dependency

D2.2 – Initial release of EMPYREAN architecture

empyrean-horizon.eu 17/91

UCs
It will be used in all use cases as part of the secure and trust mechanisms within
the EMPYREAN platform.

3.2.2 Secure Execution Environment

This component establishes a secure and trusted execution environment across the IoT-edge-

cloud continuum, supporting deployment from resource-constrained edge devices to cloud

infrastructures. It integrates (i) unikernel-based architecture, (ii) secure boot mechanisms, (iii)

container image attestation, and (iv) secure over-the-air (OTA) updates, ensuring both security

and scalability. It leverages unikernels, which are minimal, application-specific operating

systems. By running only the necessary components for a single application, unikernels reduce

the attack surface and increase efficiency, making them well-suited for IoT and edge

environments with limited resources. Moreover, this component implements secure and

measured boot mechanisms, ensuring that only trusted and verified software is loaded during

the boot process. This tight security integration into the system boot process guarantees that

both the hardware and software stacks are validated, providing a root of trust from system

start-up.

To enhance security, the component includes attestation of all deployed workloads by

simplifying deployment using container images. We attest container images through

cryptographic signing, so before deploying or running applications across the IoT-edge-cloud

continuum, each container image is verified for authenticity and integrity. This approach

ensures that only trusted, tamper-free applications are deployed, minimizing risks of malicious

software or altered images entering the system. This functionality enables fully secure OTA

updates, allowing devices and systems to receive firmware and application updates remotely.

These updates are cryptographically signed and verified before installation, ensuring they

come from trusted sources. This capability is crucial for maintaining the security and reliability

of distributed IoT and edge systems, especially in environments where physical access to

devices is limited.

Additionally, applications can be deployed across micro and deep edge, far edge, and cloud

environments without modifying their deployment descriptors or application logic via pure

cloud-native for IoT devices. This transparent and scalable operation allows seamless

adaptation across different hardware platforms.

The component’s approach to secure over-the-air (OTA) updates embraces a cloud-native

architecture, ensuring that devices across the IoT-edge-cloud continuum can seamlessly

receive updates from a central management system. By leveraging cloud-native technologies,

updates are delivered in a highly automated and scalable manner, regardless of the number

of connected devices or their geographical distribution. The OTA updates are

cryptographically signed and verified as container images, ensuring that only trusted and

authorized updates are installed, thus protecting the system from potential attacks. This

cloud-native methodology allows updates to be managed dynamically, with minimal

downtime, enhancing the overall resilience and reliability of the system. Moreover,

integrating OTA updates within a cloud-native environment means that updates can be easily

D2.2 – Initial release of EMPYREAN architecture

empyrean-horizon.eu 18/91

customized and tailored based on specific device profiles or hardware capabilities. As new

software versions or security patches are released, they can be securely distributed across

various layers, from deep edge devices to central cloud servers, without manual intervention.

The central control plane in the cloud can manage update rollouts, monitor device health, and

initiate rollback mechanisms if needed, all while ensuring efficient use of resources and

minimizing the impact on operational workloads. This allows deploying critical updates in real-

time while maintaining a consistent and secure execution environment across the continuum.

Table 2: Description of Secure Execution Environment

Component ID WP3.1.3

Name Secure Execution Environment

High level
description

This component is focused on establishing a secure and trusted execution
environment across the IoT-edge-cloud continuum. This environment based on
unikernels will support secure and measured boot mechanisms that are tightly
coupled with the systems layer. This approach will ensure that applications can
be deployed with varying levels of security and trustworthiness across different
hardware, enabling scalable and transparent operation from the micro deep edge
to far edge and to cloud environments without altering the deployment descriptor
or application logic. Furthermore, it will address the trade-off between flexible
workload deployment and the single-tenant use of computing resources,
particularly in energy and resource-constrained edge platforms.

Collaborators
• Privacy and Security Manager (WP3.1.1)

• EMPYREAN Controller (WP4.4.4)

• Application Builder for Unikernels (WP4.3.2)

Interfaces Internal interfaces with the platform-level container orchestration mechanisms.

UCs
UC2 and UC3 will use this component as part of the EMPYREAN Security, Privacy,
and Trust layer.

3.2.3 Software-defined Edge Interconnect

This component aims to integrate Remote Direct Memory Access (RDMA) network transport

technology into the communication and interconnection layer of selected EMPYREAN

components. RDMA’s key value proposition lies in its ability to offload network transport

entirely to a dedicated hardware accelerator within the Network Interface Card (NIC). This

offloading process (Figure 1) dramatically reduces network I/O software overheads for the

communication endpoints, resulting in substantial improved performance in both latency and

bandwidth.

At EMPYREAN, we have identified two main use cases for leveraging this RDMA-based

support: (a) integration of hardware sensor equipment with wired network without any CPU

involvement using the FlexDriver FPGA IP, which enables seamless data transfer between

hardware sensors and the network, bypassing the CPU entirely for more efficient

communication, and (b) integration of edge nodes with a central AI cluster using a FlexDriver-

D2.2 – Initial release of EMPYREAN architecture

empyrean-horizon.eu 19/91

based publish/subscribe (Pub/Sub) frontend software service, facilitating high-performance

communication between distributed edge nodes and a central AI processing cluster.

The primary goal of RDMA support within EMPYREAN is to significantly accelerate small-sized

message performance across the platform, addressing a well-known limitation of standard

TCP-based Ethernet communication. TCP often struggles with the efficient handling of small

message, which hinders scalability in high-performance environments.

The EMPYREAN FlexDriver service aims to overcome this challenge by offering a software-

defined interface that allows a flexible definition of the communication descriptors. This

enables their fine-tuning to improve performance, particularly for small-sized messages,

thereby enhancing overall system efficiency and scalability.

Figure 1: EMPYREAN edge node with wired backhaul and attached hardware sensors

Table 3: Description of software-defined edge interconnect components

Component ID WP3.3.2

Name H/W RDMA Transport Service

High level
description

RDMA-based transport service in the form of Register Transfer Level (RTL)
Intellectual Property (IP) that can be directly integrated into an FPGA-based
design. The FPGA platform needs to be physically attached to a PCI-e bus of a
server host (typically, it should have a PCI-e card form factor). Using Xilinx FPGA
is also a hard requirement, as there are dependencies on vendor-specific RTL IPs.
The host server needs an additional PCI-e slot where an NVIDIA ConnectX-6Dx NIC
will be attached, which will offer the RDMA network function to the accelerator
of the described hardware transport service component. The accelerator can use
the transport service to directly communicate with another accelerator
(Accelerator2Accelerator) or a centralized software service

D2.2 – Initial release of EMPYREAN architecture

empyrean-horizon.eu 20/91

(Accelerator2Software) with very low latency and jitter without requiring the
accelerator to run any software.

Collaborators • Hardware Acceleration Abstraction (WP3.3.4)

Interfaces

Inputs:

• H/W accelerator description and available interfaces

• Netlist of the accelerator built by a Xilinx toolchain

Outputs:

• Integrated FPGA design that allows an accelerator to directly communicate
with other accelerators or the edge without the need for a host running any
software.

UCs
UC1 will use this component as part of the EMPYREAN Data Management and
Interconnection layer.

Component ID WP3.3.3

Name S/W RDMA-based Pub/Sub Transport Service

High level
description

It is a software-based Pub/Sub transport service that is brokerless and offers all
the benefits of RDMA (low jitter and low latency) to the applications that need to
communicate at the edge. The communication interface offered will be similar to
Pub/Sub but with reduced functionality with regards to what would have been
offered if a broker acted as a mediator. The broker functionality is traded for the
significantly lower latency and jitter, which is the foundation for guaranteeing
near real-time operation where required. The bring up of Pub/Sub
communications is offered by a software-defined rendezvous server.

Collaborators • Decentralized and Distributed Data Manager (WP3.2.3)

Interfaces

Inputs:

• Software application transport performance requirements and current
network I/O interface design

Outputs:

• Applications using the described transport for communication

UCs
UC1 will use this component as part of the EMPYREAN Data Management and
Interconnection layer.

3.2.4 Hardware Acceleration Abstractions

The vAccel1 framework is designed to accelerate workloads, particularly those that involve

AI/ML, using hardware accelerators like GPUs, TPUs, or FPGAs. It aims to abstract the

complexity of hardware accelerators from application developers, allowing them to easily

offload compute-heavy tasks to more powerful hardware. At its core, vAccel provides a

standardized API and abstraction layer, making hardware-accelerated computing more

accessible, especially in cloud-native and edge environments. Figure 2 shows the architecture

of the vAccel software stack.

1 https://docs.vaccel.org

D2.2 – Initial release of EMPYREAN architecture

empyrean-horizon.eu 21/91

The framework abstracts the specifics of different hardware accelerators, providing a unified

interface for developers. This design makes it easier to deploy applications that require

hardware acceleration without knowing the details of how the underlying accelerators work.

vAccel can interface with multiple hardware backends (e.g., GPUs, TPUs, FPGAs) and cloud

environments, allowing it to run on diverse platforms, including IoT edge devices, cloud

servers, and data centers. Backends (plugins in vAccel terminology) can also be extended to

support new accelerators or customized for specific applications. vAccel is designed with

security in mind. It can integrate with security frameworks like Confidential Computing (e.g.,

using Trusted Execution Environments—TEEs), allowing for secure execution of workloads,

even in shared environments like public clouds. The framework aligns well with containerized

applications and Kubernetes environments, offering cloud-native support.

Figure 2: vAccel software stack

Just like generic (hardware) plugins, the vAccel transport plugin enables the forwarding of an

API operation to a vAccel library instance that is executing on a different context (Host instead

of Guest VM, or even a remote Host). In particular, the vsock plugin allows for efficient and

secure communication between isolated environments (e.g., virtual machines, containers)

and the host system via a generic RPC protocol. It leverages virtio-vsock, which is a para-

virtualized socket that enables communication without needing traditional networking stacks

(e.g., TCP/IP). This makes vsock ideal for environments where you want low-overhead

communication between a guest and host, while maintaining isolation.

Additionally, the vsock plugin is compatible with generic sockets, making it ideal for remote

execution over the network. IoT and edge devices often have limited computational resources

but require real-time AI/ML inference for tasks like object detection, anomaly detection, or

predictive maintenance. The vAccel framework, with the vsock plugin, enables IoT and

D2.2 – Initial release of EMPYREAN architecture

empyrean-horizon.eu 22/91

lightweight edge devices to offload computationally expensive tasks to more powerful edge

nodes or nearby virtualized environments, which may host accelerators.

In EMPYREAN, we will enable this functionality, porting the existing gRPC protocol to an IoT

software framework (e.g., esp-idf) and, combined with the pure cloud-native support, already

existing for the vAccel framework, enable end-to-end, hardware-acceleration-enabled

execution across the whole continuum (IoT, Edge, Cloud nodes).

Table 4: Description of vAccel component

Component ID WP3.3.4

Name vAccel

High level
description

vAccel is an open-source framework designed to enable flexible execution by
mapping hardware-accelerate-able workloads to relevant hardware functions,
thus decoupling applications from hardware-specific code. It aims at enhancing
security by ensuring that consecutive executions on a hardware-accelerated
platform do not leak sensitive data. This framework is part of the EMPYREAN
project's initiative to facilitate the development and deployment of compute-
intensive functions across IoT devices and edge nodes, leveraging the concept of
remote hardware accelerators. IoT devices can use the vAccel API to request
compute-intensive tasks to be executed by an available neighbouring node within
the Association, integrating with established open-source solutions at the systems
level (e.g., Kubernetes, K3s, OpenFaaS) and including their high-level APIs in the
EMPYREAN SDK to simplify application development and deployment.

Collaborators

• Software-defined Edge Interconnect (WP3.3.1)

• EMPYREAN Controller (WP4.4.4)

• Decentralized and Distributed Data Manager (WP3.2.3)

Interfaces It provides for popular languages, such as C, Python, and Rust.

UCs
UC1 and UC2 will use this component as part of the EMPYREAN Resource
Management layer.

D2.2 – Initial release of EMPYREAN architecture

empyrean-horizon.eu 23/91

4 EMPYREAN Platform Components

EMPYREAN aims to deliver trustworthy, cognitive, and AI-driven collaborative associations of

IoT devices and edge resources for efficient data processing across the continuum. To this end,

EMPYREAN introduces and develops innovative technologies that bridge existing

technological gaps, enabling a cognitive computing continuum. The Association-based

continuum seamlessly integrates intelligence and automation, resulting in more efficient,

adaptive, and scalable data processing capabilities. EMPYREAN’s contributions focus on

several key factors for realising this continuum, including intelligence and automation,

trustworthiness and security, heterogeneous IoT-edge mesh connectivity, interoperability,

elasticity and energy efficiency.

In the sections that follow, we present an overview of the main components of the EMPYREAN

platform.

4.1 Privacy and Security Manager

The Privacy and Security Manager is a core component of the EMPYREAN architecture,

designed to ensure advanced privacy and security features across decentralized

environments, especially in IoT ecosystems. By leveraging Decentralized Identifiers (DIDs) and

Self-Sovereign Identity (SSI) systems, it manages Verifiable Credentials (VCs) and Verifiable

Presentations (VPs) using cryptographic techniques such as Zero-Knowledge Proofs (ZKPs) and

selective disclosure. This design enables privacy-preserving, secure interactions, while also

ensuring the integrity and authenticity of identities within the ecosystem.

Figure 3 and Table 5 present the Privacy and Security Manager components and their

dependencies with other components within the EMPYREAN platform.

Figure 3: Privacy and Security Manager interaction with other EMPYREN services

D2.2 – Initial release of EMPYREAN architecture

empyrean-horizon.eu 24/91

Table 5: Description of Privacy and Security Manager core components

Component ID WP3.1.1

Name Privacy and Security Manager

High level
description

This component enables and enforces privacy and security features within
decentralized ecosystems, particularly in environments involving IoT devices. It
provides comprehensive management of Self-Sovereign Identity (SSI) systems,
leveraging Decentralized Identifiers (DIDs) to enable secure, user-controlled
identity solutions.

Key functionalities include the management and authorization of Verifiable
Credentials (VCs) and the generation of Verifiable Presentations (VPs). Utilizing
the advanced cryptography of the p-ABC module (Section 3.2.1), the Privacy and
Security Manager supports the creation of verifiable presentations that employ
Zero-Knowledge Proofs (ZKPs) and selective disclosure. This ensures that only the
necessary attributes are revealed during interactions, preserving user privacy
without compromising the integrity of the data.

Additionally, the Privacy and Security Manager facilitates signing JSON Web
Tokens (JWTs) using DIDs, enabling secure and verifiable identity management.
This capability is particularly useful for creating fast access tokens for any entity
within the ecosystem, allowing swift and secure access to resources while
ensuring the authenticity and integrity of the identities involved.

To further enhance security, the Privacy and Security Manager integrates with
Distributed Ledger Technologies (DLTs) to verify credentials, ensuring
transparency and immutability in the authentication processes. It also employs
smart contracts to securely retrieve and store DIDs, automating these processes
to reduce manual intervention and potential security risks.

In summary, the Privacy and Security Manager is a powerful tool for enabling
secure, privacy-preserving interactions within decentralized environments. It
offers the EMPYREAN ecosystem advanced identity management, credential
verification, and transaction security, all while ensuring that user privacy is
maintained through state-of-the-art cryptographic techniques.

Collaborators
• P-ABC (WP3.1.1)

• Service Orchestrator (WP4.4.1)

Interfaces

• REST interface with methods to provide security

• /empyrean/psm/generateDID

• /empyrean/psm/doEnrolment

• /empyrean/psm/generateVP

• /empyrean/psm/verifyCredential

• /empyrean/psm/signJWTContent

• /empyrean/psm/verifyJWT

UCs

In UC2, Proximal Sensing in Agriculture Fields, it will provide DID’s, VCreds and
framework for verification through a Decentralized Ledger for edge devices. In
UC4, Security in Smart factories with S. Korea International Collaboration, it will
provide authN/authZ to enable a security level.

D2.2 – Initial release of EMPYREAN architecture

empyrean-horizon.eu 25/91

4.2 Edge Storage and Edge Storage Gateway

EMPYREAN will develop an S3-compatible distributed secure storage service for the

Associations that stretches across the edge-cloud continuum, using erasure coding to provide

redundancy. Figure 4 shows the key building blocks of this service and their interactions with

other EMPYREAN components, while Table 6 provides a detailed description of each

component.

 Figure 4: Edge Storage and Edge Storage Gateway components and dependencies

Table 6: Description of Edge Storage and Edge Storage Gateway components

Component ID WP3.2.1

Name Edge Storage Gateway

High level
description

It provides access to SkyFlok Object Storage, a secure distributed data storage
SaaS. EMPYREAN users can access their data through an industry-standard S3
interface. To improve performance, the Gateway should be deployed to the edge,
close to the users as well as to edge storage resources.

Users are given a choice of storage locations to which their data is distributed in
an erasure coded manner. They can select both cloud (through SkyFlok) and edge
(through Edge Storage) locations, as well as the level of redundancy needed.

Beyond the standard S3 interface, the Gateway also provides a specialized
interface and storage schema for IoT time series data. This feature is implemented
in the IoT Query Engine (T4.3), the Gateway proxies requests to this component.

Internally, the Gateway utilizes the SkyFlok backend for metadata storage, user
and team management as well as authentication. It stores and retrieves data
fragments to/from cloud storage providers and Edge Storages directly, performs
the erasure coding, encryption and compression. Potentially, it could be extended
to include an object cache as well.

Collaborators
• Edge Storage (WP3.2.2)

• IoT Query engine (W4.3.5)

• SkyFlok Backend (outside the scope of EMPYREAN)

Edge Storage Gateway (T3.2)

Edge Storage

(T3.2)

SkyFlok Backend

(external)

IoT Query

Engine (T4.3)

Edge Storage

(T3.2)

S3 S3

S3 interface

IoT Query

interface

D2.2 – Initial release of EMPYREAN architecture

empyrean-horizon.eu 26/91

Interfaces
• It exposes an S3-compatible object storage interface

• It exposes an SQL-like IoT Query interface (REST)

UCs

An S3-compatible storage service will be provided to all three use cases, tailored
using storage policies to the applications’ requirements. An indirect approach is
also possible, where this component acts as a data source and sink in a large scale
data flow. The UC applications would then interact indirectly with this component
through the data flow.

Component ID WP3.2.2

Name Edge Storage

High level
description

Manages an Edge Storage device, it is used by the Edge Storage Gateway. This is
a containerized application based on Min.io2. It makes it possible to take
advantage of edge storage resources, making them accessible to the platform’s
storage system. Any storage resource that can be mounted as a K8s or Docker
volume can thus be integrated into the storage system.

It is an internal component that, once set up, only offers its S3 interface to the
Gateway. It is not accessible as a storage location directly to platform users.

Collaborators • Edge Storage Gateway (WP3.2.1)

Interfaces
• It exposes an S3 interface for the Edge Storage Gateway.

• It exposes a Prometheus-compatible telemetry interface.

UCs
Potentially all three UCs, depending on whether they have storage resources at
the edge and the need to utilize them.

4.3 Decentralized and Distributed Data Manager

EMPYREAN Decentralised and Distributed Data Manager component is provided by ZSCALE

and it is based on the Eclipse Zenoh3 open source project. Eclipse Zenoh is a Pub/Sub/Query

protocol that provides a set of unified abstractions to deal with data in motion, data at rest,

and computations at the Internet scale. EMPYREAN leverages the capabilities of Zenoh, aiming

to enhance real-time safety data exchange and communication between vehicle’s Onboard

Units (OBUs), robotics, and basically any component deployed across the edge and cloud

infrastructure. Zenoh protocol is based on Named-Data Networking (NDN), where the data is

represented using Unique Resource Identifiers (URIs), where a name and a value identify each

resource, also known as the data model. Besides interoperability, resource naming has a key

role in facilitating and optimizing, routing, and querying data. Thus, it is very simple to submit

a distributed query that indicates the desired data.

2 MinIO – High performance object storage: https://github.com/minio/minio
3 https://github.com/eclipse-zenoh/zenoh

D2.2 – Initial release of EMPYREAN architecture

empyrean-horizon.eu 27/91

Figure 5 shows a data flow path for solving the distributed query use case in an automotive

context by submitting a get(“desired_data”) function, with the desired data passed as a

parameter. Zenoh supports the use of wildcards, single-start (i.e. *) to represent any given

string char within the same level structure or double-start (i.e. **) to navigate within the same

level and deeper levels of the data hierarchy.

Figure 5: Distributed data query in automotive context

EMPYREAN Decentralised and Distributed Data Manager can run on the same virtual or

physical computer, a separate computer on a heterogeneous network, or a remote computer

at the edge or in the cloud. Zenoh’s routing determines how to route such a request to where

the data is. This is a very powerful mechanism when the user must collect data from multiple

sources.

Adopting this communication middleware will enable EMPYREAN’s components and user

applications to exchange data across different communication technologies such as Ethernet,

time-sensitive networking (TSN), Wi-Fi, and 4G/5G. It can also be used at different

geographical locations, such as a Local Area Network (LAN), a metropolitan area network

(MAN), and a Wide Area Network (WAN), and in various topology configurations such as peer-

to-peer, mesh, brokered, and routed. Another benefit is Zenoh’s integration with other

messaging protocols such as Data Distribution Service (DDS), Message Queuing Telemetry

Transport (MQTT), OPC Unified Architecture (OPC-UA), and its support for different database

storages such as traditional SQL-based, non-SQL-based, time series storages (i.e. influxDB), in

memory storage, filesystem storage, or cloud storages (i.e. S3).

D2.2 – Initial release of EMPYREAN architecture

empyrean-horizon.eu 28/91

Table 7: Description of Decentralized and Distributed Data Manager components

Component ID WP3.2.3

Name Decentralised and Distributed Data Manager

High level
description

It manages data exchanges between any device in the network. It supports
Pub/Sub, Push/Pull, distributed queries, and computations. This component also
supports the creation of storage resources that can be mounted backend volumes
and can thus be integrated into the storage system and queried on demand. It is
an internal component that should be installed and configured by the application
developers, and it can operate under different models, allowing it to run over any
topology and anywhere across the continuum. It can run in (i) a peer-to-peer
fashion way, allowing the creation of clique or mesh topologies; (ii) a brokered
fashion way, where nodes have only a limited set of functionalities and rely on the
network to provide the full Zenoh capabilities; (iii) routed fashion way, where
nodes act as software routers that forward messages between nodes

Collaborators
• Dataflow Programming Component (WP4.2.5)

• EMPYREAN Aggregator (WP4.4.11)

Interfaces

Zenoh APIs are available for the most popular programming languages like RUST,
Python, and REST. It also includes Zenoh-Pico, which was developed in C to
support microcontrollers and embedded devices. The API instructions are fairly
simple and support efficient publish/subscribe primitives, supporting multiple
levels of reliability, dynamic discovery, fragmentation, and wire-level batching.

UCs
Potentially all three UCs, our technology is available and ready to be used. At the
time of writing the deliverable, it has been adopted by the UC3, Robotic Semi-
autonomous and Lights Out Logistics Order Picking.

4.4 Local Orchestration and Autoscaling Optimizations

Kubernetes (K8s) is the de-facto industry standard for cloud infrastructure resource

management and orchestration, and it has also been adopted as the main low-level

orchestration software for the edge-cloud continuum.

To bring intelligence to the low-level orchestrator in the edge-cloud continuum, we will

develop AI/ML-driven mechanisms to enable the autonomous and adaptive workload

autoscaling on the low-level Kubernetes platforms (Figure 6). A common workload autoscaling

technique is horizontal autoscaling, which already exists in Kubernetes and allows applications

to scale out or scale in the number of replicas. This powerful feature enables the system to

automatically adapt its resource allocation based on actual traffic. However, if the limits are

not set correctly, the average utilisation might grow the application in a non-optimal way.

Instead, we could keep more resources powered down and gain a lot in the system’s energy

consumption. Hence another technique to address the adaptation of workload is vertical auto

scaling, which enables the automated setting of limits for each replica4.

4 Minh-Ngoc Tran, Dinh-Dai Vu, and Younghan Kim. A Survey of Autoscaling in Kuber netes. In 2022 Thirteenth
International Conference on Ubiquitous and Future Networks (ICUFN), pages 263–265, Barcelona, Spain, July
2022. IEEE

D2.2 – Initial release of EMPYREAN architecture

empyrean-horizon.eu 29/91

These EMPYREAN components focus on applying AI/ML techniques to vertical autoscaling

(i.e., to implement an ML-based vertical autoscaler) in the Kubernetes cluster within the edge-

cloud continuum, based on telemetry data collected from the Kubernetes platform. The goal

is to recommend suitable container sizes for workloads, thus allowing better container bin-

packing on nodes and the saving on total number of nodes. This work will also allow us to

power off more resources, thus improving energy use.

In the edge-cloud continuum, besides traditional workloads that use CPU and RAM resources,

the emerging hyper-distributed AI applications also use GPU resources. However, there is

currently no mature technology to fraction GPU instances as the containers for CPU and RAM

in Kubernetes. Therefore, a possible extension of this work is to research state of-the-art GPU

fractioning methods, and apply vertical auto-scaling techniques to GPUs in the edge-cloud

continuum.

Figure 6: Local Orchestration and Autoscaling Optimizations dependencies

Table 8: Description of Local Orchestration and Autoscaling Optimizations components

Component ID WP3.4.1

Name Autoscaling Optimizations

High level
description

AI-enabled workload autoscaling mechanism that will be implemented based on
Kubernetes orchestrator enhanced with AI/ML techniques for intelligent resource
requests and limits allocation. In more detail, we will use AI/ML to perform
optimal workload autoscaling by setting the most adequate resource limits
configuration and performing dynamic adaptation based on historical data of
previous executions.

Collaborators

• Workflow Manager (WP4.2.1)

• Service Orchestrator (WP4.4.1)

• Telemetry Service (WP4.4.7)

• Kubernetes

Service Orchestrator

(Task 4.4)

Local Orchestration

Layers Locality Scheduler

AI-driven Autoscaling

Workflow Manager

(Task 4.1)

Telemetry Service

(Task 4.4) Kubernetes

D2.2 – Initial release of EMPYREAN architecture

empyrean-horizon.eu 30/91

Interfaces
The main interface to exchange information between the Autoscaling
optimizations engine and the local orchestrator, the telemetry engine and the
Workflow Manager will be based upon the standard Kubernetes API.

UCs

The autoscaling optimizations will be implemented to be lightweight and
adaptable to different workloads. They will optimize the resources usage of local
clusters. Hence, all 3 use cases will be possible to use them even those which
enable Kubernetes clusters with low-power edge hardware.

Component ID WP3.4.2

Name Local Kubernetes Scheduler - Container Layers Locality Scheduler

High level
description

Kubernetes scheduling algorithm to minimize the cold start delays favouring the
placement of tasks on nodes that have more Layers of Containers related to the
task to be deployed.

Collaborators
• Workflow Manager (WP4.2.1)

• Kubernetes

• Container Runtime Interface (CRI)

Interfaces
This scheduling plugin will mainly communicate with Kubernetes and the related
Container Runtime Interface (CRI-O or Containerd) through the Kubernetes API.

UCs All 3 use cases will have the ability to use the Layers Locality Scheduler.

4.5 Analytics Engine

Service assurance mechanisms for the self-driven adaptability of the IoT-edge-cloud

continuum are essential for maintaining optimal performance, reliability, and efficiency across

this complex and dynamic infrastructure. To achieve this, EMPYREAN aims to develop a highly

automated and intelligent IoT-edge-cloud continuum, empowered by AI-enabled distributed

management through its Service Assurance service. This will ensure optimal performance for

deployed applications through autonomous adaptations over an infinite time horizon control

loop.

EMPYREAN will integrate distributed service assurance mechanisms within each Association,

utilizing real-time telemetry data and a robust set of algorithms within the Analytics Engine.

This approach ensures that applications perform as intended while proactively or reactively

triggering any necessary re-optimizations. The algorithms within the Analytics Engine will

leverage continuous analysis techniques, such as machine learning, machine reasoning,

swarm intelligence, and robust adaptive optimization, that will drive orchestration

mechanisms to: (i) adapt resources within the Associations, (ii) provide dynamic load

balancing of processing workloads and data within and across Associations, (iii) migrate

workloads to optimize energy efficiency, and (iv) mitigate resource fragmentation and

connectivity issues.

Figure 7 shows the key building blocks of the EMPYREAN Analytics Engine and their

interactions with other EMPYREAN components, while Table 9 provides an initial description

of each component.

D2.2 – Initial release of EMPYREAN architecture

empyrean-horizon.eu 31/91

Figure 7: Analytics Engine core components and dependencies

Table 9: Description of Analytics Engine core components

Component ID WP3.4.3

Name Analytics Engine

High level
description

It implements the service assurance mechanisms within the EMPYREAN platform
to detect issues with the operation of the infrastructure resources and
Associations along with the performance of the deployed applications. It will be
designed as a distributed and scalable service to analyze the collected telemetry
data in order to trigger pro-actively and re-actively dynamic adjustments.

Collaborators

• Service Orchestrator (WP4.4.1)

• Telemetry Service (WP4.4.7)

• Decentralized and Distributed Data Manager (WP3.2.3)

Interfaces
• REST

• Asynchronous message-based

UCs
It will ensure that the applications perform as intended, while it will dynamically
trigger the necessary adjustments if the current deployments do not comply with
the requested SLA guarantees.

Component ID WP3.4.4

Name Data Connector

High level
description

It will handle the collected monitoring data and apply several transformations to
prepare them for the Event Detection Engine. It will support various data formats
(e.g., JSON, CSV, raw) and will be able to fetch data directly by querying the
monitoring solution (using a predefined interface) or consuming a stream directly
from a queuing service.

Collaborators

• Event Detection Engine (WP3.4.6)

• Data Manager (W3.4.5)

• Telemetry Service (WP4.4.7)

• Decentralized and Distributed Data Manager (WP3.2.3)

Interfaces REST, MQTT, AMQP, and other types supported by open-source connectors.

UCs
It will facilitate the operation of the Analytics Engine and the provision of service
assurance mechanisms within the EMPYREAN platform for all deployed
applications.

Service Orchestrator

(Task 4.4)

Telemetry Service

(Task 4.4)

Data Distributor

(T3.2)

Analytics Engine

Data Connector

Event Detection Engine

Data Manager

D2.2 – Initial release of EMPYREAN architecture

empyrean-horizon.eu 32/91

Component ID WP3.4.5

Name Data Manager

High level
description

It will provide local storage for process data, trained models, and results. It will
also facilitate the exchange of events and data with other external components,
such as the Data Distributor.

Collaborators
• Event Detection Engine (WP3.4.6)

• Data Connector (WP3.4.4)

Interfaces

• REST

• S3-compatible

• Asynchronous message-based

UCs
It is an internal component that will facilitate the operation of the Analytics
Engine.

Component ID WP3.4.6

Name Event Detection Engine

High level
description

It will implement the core functionality of the EMPYREAN distributed service
assurance mechanisms based on provided real-time telemetry data and
appropriate machine reasoning techniques. It will facilitate the execution of the
developed data-driven algorithms that will safeguard that deployed applications
and available Associations perform as intended.

Collaborators

• Data Connector (WP3.4.4)

• Data Manager (WP3.4.5)

• Decentralized and Distributed Data Manager (WP3.2.3)

• Service Orchestrator (WP4.4.1)

Interfaces
It will support both synchronous and asynchronous communication interfaces to
facilitate the interaction with the internal components (e.g., Data Manager) and
other EMPYREAN services (e.g., Data Distributor, Service Orchestrator).

UCs

It will provide service assurance and anomalous events detection capabilities,
including but not limited to hardware resources, performance, applications. The
provided analysis will be made available to service orchestration and deployment
mechanisms to assist the autonomous and efficient operation of the overall
EMPYREAN platform.

4.6 Cyber Threat Intelligence Engine

The increasing frequency and sophistication of cyber threats in recent years has kindled a

dramatic surge in the amount of Cyber Threat Intelligence (CTI) available to the general public

and companies. However, the sheer volume and diversity of this information have made

comprehensive analysis of CTI a daunting task. The Cyber Threat Intelligence Engine (Figure 8)

will try to address these issues by compiling and analysing CTI from various sources, including

the Cyber Threat Alliance (CTA) and the Malware Information Sharing Platform (MISP),

providing a user-friendly interface for security experts, and a REST API for integration with the

EMPYREAN orchestration mechanisms.

D2.2 – Initial release of EMPYREAN architecture

empyrean-horizon.eu 33/91

In addition, the CTI Engine will leverage advanced machine learning and data mining

algorithms to identify trends and patterns within the CTI data. These algorithms will be two-

fold: On the one hand, algorithms based on large language models will be used to extract

information from unstructured data sources. On the other hand, AI-based algorithms will be

developed to learn relevant facts from the complex CTI knowledge graph database. By

identifying emerging threats and trends, our system will enable proactive measures and

informed decision-making. This analytical capability will be crucial in understanding the

evolving tactics, techniques, and procedures of cyber adversaries, thereby enhancing the

overall cybersecurity posture of organizations.

Figure 8: EMPYREAN Cyber Threat Intelligence Engine

Table 10: Description of Cyber Threat Intelligence

Component ID WP4.1.1

Name CTI Engine

High level
description

Module that collects and analyses Cyber Threat Intelligence (CTI) from the Cyber
Threat Alliance (CTA) repository to extract trends and important information. By
integrating data from these prominent sources, the engine will compile a
comprehensive repository of Indicators of Compromise (IoCs), malicious IP
addresses, domain names, file hashes, URLs, and more. This extensive dataset will
serve as a foundation for thorough threat analysis and proactive defence
strategies. A user-friendly interface will streamline information retrieval, allowing
security professionals to quickly search, filter, and visualise relevant threat
information. The CTI Engine will also feature a REST API, enabling integration with
existing systems and tools, facilitating the automation of threat intelligence
workflows.

Collaborators
• Service Orchestrator (WP4.4.1)

• Telemetry Service (WP4.4.7)

Interfaces
• GUI for security experts

• REST API

UCs The engine will contribute to Anomaly Detection in Robotic Machining Cells (UC1).

D2.2 – Initial release of EMPYREAN architecture

empyrean-horizon.eu 34/91

4.7 Decision Engine

The proliferation of hyper-distributed applications and the integration of distributed data

processing across the IoT-edge-cloud continuum pose significant challenges in resource

allocation, task placement, load balancing, and data management within the computing

infrastructure. These challenges are further exacerbated by the dynamic and unpredictable

nature of IoT, edge and cloud multi-technology environments, as well as the variability of

workloads, resource availability, and infrastructure and application failures. Managing these

complexities requires decentralized decision-making and autonomous adaptations to ensure

efficient and reliable operation across this heterogeneous and evolving landscape.

EMPYREAN adopts a distributed speculative intelligent approach to orchestrate hyper-

distributed applications, balancing centralized and decentralized solutions by developing

novel algorithms. EMPYREAN will exploit multi-objective optimization, game theory, AI/ML

techniques, and heuristics to design a set of algorithms aiming to provide different trade-offs

between optimality and complexity. EMPYREAN will also incorporate environmental

considerations to support intelligent, energy-aware workload and data distribution.

Specifically, the developed algorithms will prioritize energy efficiency and adhere to relevant

limits and thresholds, such as consumption, carbon emissions, and energy budgets, in the

Associations’ operations. EMPYREAN will also take into account the energy sources powering

devices and resources (e.g., battery or renewable energy sources), their charge states, and

their overall sustainability (e.g., quality of energy-saving technology), focusing on prioritizing

green resources.

The Decision Engine will integrate these algorithms in the EMPYREAN platform, implementing

the decide part at the envisioned closed-loop control based on the principles of observe,

decide and act. It will provide to EMPYREAN Aggregator and Service Orchestrator the required

intelligence (i) to support the efficient operation of Associations, (ii) to orchestrate the hyper-

distributed applications and allocate their workloads considering the local resource state and

characteristics while trying to fulfil their own objectives, and (iii) to coordinate the efficient

load-balancing of data and workload within and across the available Associations.

The Decision Engine will be built upon the open-source Resource Optimization Toolkit (ROT)

framework, initially developed by ICCS during the H2020 SERRANO5 EU project. ROT facilitates

the integration and execution of various decision-making algorithms. Within the EMPYREAN

project, efforts will focus on extending the ROT into the cloud-native Decision Engine

component, which includes the development and evaluation of distributed decision-making

algorithms. In addition, EMPYREAN will enhance the Decision Engine to support sophisticated

resource optimization in a cloud-native environment. By doing so, the Decision Engine will

provide robust and efficient decisions for dynamic resource allocation, workload balancing,

and energy-efficient operations across the Association-based IoT-edge-cloud continuum.

5 https://ict-serrano.eu

D2.2 – Initial release of EMPYREAN architecture

empyrean-horizon.eu 35/91

Figure 9 illustrates the key building blocks of the Decision Engine and its interactions with

other EMPYREAN components, while Table 11 provides a high-level description of these

components. Task 4.1 will provide the development of distributed and AI-enable decision-

making algorithms, as well as the detailed design and implementation of the Decision Engine.

Figure 9: Decision Engine core components and dependencies

Table 11: Description of Decision Engine core components

Component ID WP4.1.2

Name Decision Engine

High level
description

This component provides the decision-making functionality to the Service
Orchestration. It prepares and manages the requested algorithm's execution to
provide suggestions for application deployment across the available Associations.

Collaborators

• Decision Engine Controller (WP4.1.3)

• Decision Engine Worker (WP4.1.4)

• Decision Algorithms (WP4.1.5)

• Service Orchestrator (WP4.4.1)

• Telemetry Service (WP4.4.7)

Interfaces

• REST interface to request execution of algorithms and retrieve the results.

• Asynchronous internal interface for interacting with the Decision Engine
Workers based on the AMQP protocol.

• Internal interface based on predefined JSON schema descriptions

UCs
It will provide the required high-level orchestration decisions to EMPYREAN
Service to assign and re-optimize the UC applications’ workloads.

Decision Engine

Service Orchestrator

(Task 4.4)

Telemetry Service

(Task 4.4)
Decision Engine Controller

Decision Engine Worker

Decision Algorithms

D2.2 – Initial release of EMPYREAN architecture

empyrean-horizon.eu 36/91

Component ID WP4.1.3

Name Decision Engine Controller

High level
description

It receives execution requests from the Service Orchestrator handles the
interaction with the multiple Decision Engine Workers. It also interacts with the
Telemetry Service to retrieve the required information.

Collaborators

• Service Orchestrator that requests the execution of some specific algorithms.

• Telemetry Service that provides details for the state of infrastructure
resources and available workloads.

• Decision Engine Worker that serves the requests.

Interfaces
• REST interface to request execution of algorithms and retrieve the results.

• Asynchronous internal interface for interacting with the Decision Engine
Workers based on the AMQP protocol.

UCs
It will provide the required high-level orchestration decisions to EMPYREAN
Service to assign and re-optimize the UC applications’ workloads.

Component ID WP4.1.4

Name Decision Engine Worker

High level
description

It implements the developed multi-objective optimization and orchestration
algorithms. It receives requests, for starting or terminating algorithm execution,
from the Decision Engine Controller and performs all the required actions,
including preparing the execution environment, monitoring progress, and
forwarding the results to Controller.

Collaborators
• Decision Engine Controller that orchestrates and handles the execution

requests

Interfaces
• Asynchronous internal interface for interacting with the Decision Engine

Controller based on the AMQP protocol.

UCs
It will provide the required high-level orchestration decisions to EMPYREAN
Service to assign and re-optimize the UC applications’ workloads.

Component ID WP4.1.5

Name Decision Algorithms

High level
description

The library of multi-objective optimization and orchestration algorithms. The
integrated algorithms will achieve different trade-offs between optimality and
complexity to efficiently satisfy the heterogeneous and strict applications’
requirements. There will be also algorithms to provide energy-aware workload
and data balancing, both within and between Associations.

Collaborators • Decision Engine Worker

Interfaces • Internal interface based on predefined JSON schema descriptions

UCs
It will provide the required high-level orchestration decisions to EMPYREAN
Service to assign and re-optimize the UC applications’ workloads.

D2.2 – Initial release of EMPYREAN architecture

empyrean-horizon.eu 37/91

4.8 Workflow Manager

The Workflow Manager component enables the user to design and execute a data analytics

application. In particular, it provides the means to create, deploy, update, execute, and

monitor the execution of data processing applications in the form of workflows upon hybrid

cloud, edge, and on-premises computing infrastructures. It allows users to create their data

automations and expose them with APIs through fully customizable workflows using a low-

code UI. The Workflow Manager in EMPYREAN (Figure 10) is based upon the open-source

platform Ryax, which will be sufficiently enhanced to cover the needs of project. It uses a

powerful custom runtime, abstracting completely the complexity of building and deploying

containers with their dependencies upon edge-cloud infrastructures.

Figure 10: Workflow Manager components and dependencies

The engine will be enhanced to provide the right abstractions and internal mechanisms to

efficiently support both long-duration microservices and short-duration serverless functions

in such a way in order to cover the requirements of most data analytics and AI applications. It

will use the Ryax abstractions, particularly the default YAML-based representation to define

actions and workflows.

One of the principal features that is needed in a workflow manager for the edge-cloud

continuum and which will be added on Ryax is the support of multiple sites, meaning the

possibility to execute parts of a workflow on one cluster at the edge and parts on another

cluster in the cloud. Besides the networking and storage, which need to be configured to

enable the exchanges in a multi-infrastructure setting, the platform needs to provide the

necessary hooks and abstractions to enable the user to add their hard constraints related to

their choice of infrastructure to use for each part of the workflow, connect to the decision

engine to perform the orchestration and control the selection by proposing the recommended

choice to the Local orchestrator. In this context the workflow manager Ryax will be also

Workflow Manager

Service Orchestrator

(Task 4.4)

Dataflow Support

Multi-site Support

Autoscaling & Local

Orchestration (Task 3.4)

Hybrid

Microservices/Serverless

Runtime

Application Packaging

(Task 4.3)

Decision Engine

(Task 4.1)

Dataflow Programming

(Task 4.2)

Aggregator

(Task 4.4)

D2.2 – Initial release of EMPYREAN architecture

empyrean-horizon.eu 38/91

enhanced to efficiently handle EMPYREAN Associations through its communication with the

Aggregator.

Finally, another important optimization integrated within the Ryax Workflow Manager, is its

support for a native dataflow programming framework such as ZenohFlow

(Section 4.9). The idea is to provide fine-grain support for how data communications take

place, which is not handled by default by most workflow managers like Ryax. The support of

dataflow within Ryax will enable users with increased real-time capabilities, which is ideal for

the IoT-based use cases of EMPYREAN.

Table 12: Description of Workflow Manager components

Component ID WP4.2.1

Name Ryax Workflow Manager Engine

High level
description

Ryax open-source workflow engine enables the design, deployment and
monitoring of workflows of data analytics upon Cloud, Edge, HPC infrastructures.
It makes use of Kubernetes orchestration, and it provides a custom runtime
environment for the deployment of components upon the related infrastructure.
This will be enhanced to provide a tight integration with EMPYREAN, among
others, through the support of associations and aggregators.

Collaborators

• Decision Engine (WP4.1.2) / Service Orchestrator (WP4.4.1)

• Autoscaling Optimizations (WP3.4.1) & Local Orchestration (WP3.4.2)

• Application Packaging (WP4.3.3)

• Dataflow Programming Component (WP4.2.5)

Interfaces
Different interfaces are available to exchange with Ryax: a CLI and a Web Interface
can be used by users while a REST-API can be used by the different services.

UCs
All 3 use cases will have the ability to use and benefit from the usage of the Ryax
workflow engine.

Component ID WP4.2.2

Name Ryax Workflow Engine’s Hybrid Microservices/Serverless Runtime

High level
description

Ryax hybrid microservices/serverless runtime is developed in a way to allow users
to specifically define through the YAML programming language and specific hooks
and abstractions the definition of actions to be participating in a workflow as
microservices or serverless functions. Currently in Ryax microservices can only be
defined as triggers of a workflow while only serverless functions can be continuing
in the middle or the end of the workflow logic. This will be enhanced to allow
microservices and serverless functions to be executed in all levels of the
workflows with no exceptions. This will provide a better support of the real-time
nature of IoT-based applications.

Collaborators
• Autoscaling Optimizations (WP3.4.1) & Local Orchestration (WP3.4.2)

• EMPYREAN Aggregator (WP4.4.11)

• Application Packaging (WP4.3.3)

Interfaces
The Ryax API will be the main communication interface between the runtime and
the other components.

UCs
All 3 use cases will have the ability to use and benefit from the usage of the Ryax
hybrid microservices/serverless runtime.

D2.2 – Initial release of EMPYREAN architecture

empyrean-horizon.eu 39/91

Component ID WP4.2.3

Name Ryax workflow engine’s multi-site support

High level
description

Ryax multi-site support will allow users to execute their workflows seamlessly
upon different infrastructures (e.g., cloud, edge, on-premise) by allowing them to
select during deployment time the site, site characteristics or specific node-pool
they need. The component will also provide the alternative to set execution
objectives, letting the system to choose the optimal resource matching based on
the application needs. This will be performed through the integration with the
Decision Engine and the Service Orchestrator components. The component will
provide a tight integration with EMPYREAN’s associations and aggregator in order
to enable the system to enable executions on one or multiple associations
addressing the needs of EMPYREAN’s standards through the aggregator.

Collaborators

• EMPYREAN Aggregator (WP4.4.11)

• Decision Engine (WP4.1.2) / Service Orchestration (WP4.4.1)

• Autoscaling Optimizations (WP3.4.1) / Local Orchestration (WP3.4.2)

Interfaces
The Ryax API will be the main communication interface between the multi-site
sub-component and the other components and services.

UCs
All 3 use cases will have the ability to use and benefit from the usage of the Ryax
workflow engine’s multi-site support.

Component ID WP4.2.4

Name Ryax workflow engine’s dataflow support

High level
description

Ryax dataflow support will be brought through a tight integration with the
Dataflow programming component based on Zenohflow. In particular the user will
get the ability to express the ways data should flow between the different actions
of the workflows, besides expressing which inputs and outputs should be
exchanged. In particular, the real-time communication from the different multi-
infrastructures will be handled by the dataflow programming component.

Collaborators
• Dataflow Programming Component (WP4.2.5)

• Networking and Storage components

Interfaces
The Ryax API will be the main communication interface between the dataflow
sub-component and the other components and services.

UCs
All 3 use cases will have the ability to use and benefit from the usage of the Ryax
workflow engine’s dataflow support.

D2.2 – Initial release of EMPYREAN architecture

empyrean-horizon.eu 40/91

4.9 Dataflow Programming Component

EMPYREAN Dataflow Programming Component is provided by ZSCALE and it is based on the

Eclipse ZenohFlow6 open-source project. ZenohFlow component facilitates the development

and deployment of data-intensive applications across the IoT-edge-cloud continuum. It

consists of a set of nodes interconnected with links. Thus, an application can be represented

as a Directed Acyclic Graph (DAG)7 . These graphs are described in human-readable descriptor

files that enforce by contract all the communications and possible data exchanges. Starting

from the base descriptor file, ZenohFlow instantiates the application components’ placement

across the available infrastructure. This declarative approach simplifies the development of

complex and constraint applications, as the developer simply needs to (a) create the different

nodes (i.e., source, operators, sinks) that compose the application, and (b) describe the

connection between them (i.e., data-type, timeout).

As illustrated in Figure 11, an application can consist of a source node (A), three operator

nodes (B, C, and D), and a sink node (E). ZenohFlow utilizes Eclipse Zenoh (as described in

Section 4.3) as its communication framework. This allows application developers using

ZenohFlow to deploy their application without needing prior knowledge of where the

individual nodes will be running. Zenoh seamlessly handles data routing based on key

expressions, ensuring efficient communication between nodes.

EMPYREAN will benefit from this technology. ZenohFlow assigns each instance of an

application a unique identifier, which is automatically incorporated into the communication

process. This ensures that even if the same application is deployed multiple times on the same

infrastructure, or if several applications share the same resources (i.e., topics), there are no

collisions or conflicts. Additionally, the same technique is used for each link, allowing multiple

nodes to safely expose the same key expressions without interference.

Figure 11: Representation of a distributed dataflow programming using ZenohFlow

6 https://github.com/eclipse-zenoh-flow/zenoh-flow
7 https://en.wikipedia.org/wiki/Directed_acyclic_graph

D2.2 – Initial release of EMPYREAN architecture

empyrean-horizon.eu 41/91

Table 13: Description of Dataflow programming component

Component ID WP4.2.5

Name Dataflow Programming Component

High level
description

It provides a declarative approach for developers to describe the application’s
structure precisely, what will be deployed, and how it will be connected. Its
human-readable format has the advantage of lowering the entry barrier for purely
technical application designers.

Collaborators
• Decentralised and Distributed Data Manager (WP3.2.3)

• EMPYREAN Aggregator (WP4.4.11)

Interfaces
ZenohFlow is built on top of Eclipse Zenoh, it supports all of Zenoh interfaces and
pub/sub mechanisms.

UCs
Potentially all three UCs, as previous usage in an Autonomous Driving System8
illustrates its capabilities, allowing for real-time control.

4.10 Lightweight Application Packaging

This particular component is essential for the application design process. It allows the system

to be modular and flexible to cover the definition of various types of applications since it

enables users to build their logic in small microservices or serverless functions in whichever

programming language they prefer while being agnostic to different types of architectures

(x86, ARM). Since each environment is built as a standard OCI container, this allows workflows

to be completely polyglot in a completely seamless and infrastructure-agnostic way.

The NIX-based Environment Packaging component is based on the NIX functional package

manager, providing a declarative way to build reproducible and lightweight environments. The

technique used to build the containers takes particular care in packaging the environments in

different structured layers, which can be an essential advantage during deployment. In the

context of EMPYREAN, this component will be enhanced to support unikernels and Web

Assembly in order to improve the security and overhead of typical container creation upon

different types of architectures.

8 https://www.youtube.com/watch?v=QajVWYshaHk&t=11s

D2.2 – Initial release of EMPYREAN architecture

empyrean-horizon.eu 42/91

Figure 12: NIX-based Environment Packaging components and dependencies

Table 14: Description of NIX-based Environment Packaging

Component ID WP4.3.1

Name NIX-based Environment Packaging

High level
description

Ryax workflow engine offers internally the mechanism of performing multi-arch
polyglot environment packaging to build the components to be used within the
workflows. This will be enhanced to support Web Assembly and unikernels.

Collaborators
• Workflow Manager (WP4.2.1)

• Application Builder for Unikernels (WP4.3.2)

• Local Orchestrator (WP3.4.2)

Interfaces
The main interface for this component will be its REST API. The communication
with the Local Orchestrator will be performed through the Kubernetes API.

UCs
All 3 use cases will have the ability to use and benefit from the usage of the
Lightweight Application Packaging.

4.11 Application Builder for Unikernels

EMPYREAN targets an end-to-end software stack for application deployment based on

unikernels. EMPYREAN develops Bunny, a set of systems software components that enable

deploying applications as unikernels in cloud-native environments. Bunny is designed to

streamline the process of creating, packaging, and deploying custom-made, single-tenant-

based applications. This toolchain (Figure 13) simplifies the development of highly efficient

and secure applications by automating the creation of unikernels or simple binaries and the

packaging process. Unikernels, being lightweight and specialized operating systems that run a

single application, offer improved performance and a reduced attack surface, making them

particularly suitable for IoT, edge, and cloud environments.

D2.2 – Initial release of EMPYREAN architecture

empyrean-horizon.eu 43/91

Figure 13: High-level overview of the Bunny workflow

Using Bunny as the underlying framework, the Application Builder can seamlessly integrate

the compilation of application code into a self-contained binary, or a unikernel, abstracting

away the complexity of manually configuring the operating system components. It provides a

cloud-native approach to packaging applications, ensuring that the binaries generated are

portable and can be deployed across the IoT-edge-cloud continuum. This packaging tool

(Figure 13) automates dependencies, builds, and configurations, allowing developers to focus

on application logic while the system ensures that the application runs efficiently within a

unikernel. This approach enhances security and performance, particularly in environments

where resource constraints and security are critical concerns.

Coupled with a custom container runtime (i.e., urunc9), able to spawn unikernels (or pre-

compiled, static binaries) packaged as OCI images, EMPYREAN fully embraces the cloud-native

concept.

Table 15: Description of Application Builder for Unikernels components

Component ID WP4.3.2

Name Application Builder for Unikernels

High level
description

This component addresses the deployment of applications in cloud-native
environments using unikernels. It aims to tackle two major challenges associated
with unikernels: (i) simplifying the building and deployment process and (ii)
minimizing the engineering overhead to resolve external software dependencies.

Collaborators

• Application Packaging (WP4.3.3)

• Container Runtime (WP4.3.4)

• EMPYREAN Registry (WP4.4.13)

• Workflow Manager (WP4.2.1)

Interfaces

Inputs:

• application description

• source/binary repository of the application

Outputs:

• binary artifact (unikernel, bootable using a hypervisor, or on bare metal)

UCs
At least one use case will use this component as part of the EMPYREAN
development and deployment stack.

9urunc - a container runtime for unikernels: https://github.com/nubificus/urunc

D2.2 – Initial release of EMPYREAN architecture

empyrean-horizon.eu 44/91

Component ID WP4.3.3

Name Application Packaging

High level
description

This component is designed to streamline the application packaging process
across diverse computing environments, focusing on creating OCI-compatible
container images. It aims to bundle binary artifacts along with their descriptors
into OCI container images, facilitating deployment across EMPYREAN's supported
execution modes, including containers, sandboxed containers, WebAssembly
(WASM), unikernels, and binary blobs for IoT devices.

This development is crucial for EMPYREAN’s overarching goal of enabling
seamless application deployment and execution across heterogeneous hardware
architectures and environments, enhancing interoperability, and ensuring
efficient, cloud-native deployment methodologies.

Collaborators
• Container Runtime (WP4.3.4)

• NIX-based Environment Packaging (WP4.3.1)

Interfaces

Inputs:

• application description (Dockerfile-like)

• source/binary repository of the application (combined with Application
Builder component), or unikernel binary

Outputs:

• OCI artifact bootable

UCs
At least one use case will use this component as part of the EMPYREAN
development and deployment stack.

Component ID WP4.3.4

Name Container Runtime

High level
description

The component within the EMPYREAN project aims at facilitating the deployment
of applications across various execution environments, including unikernels and
IoT devices. This component is based on urunc, a runtime capable of spawning
unikernels and seamlessly integrating them with generic container runtimes
compatible with Kubernetes and serverless architectures.

This component allows for the execution of applications built with the
"Application Builder" component within the existing container orchestration
ecosystems, providing the benefits of diverse building systems (e.g., unikernels
for improved security and performance) while maintaining compatibility with
widespread deployment models.

Collaborators
• Application Packaging (WP4.3.4)

• NIX-based Environment Packaging (WP4.3.1)

• EMPYREAN Controller (WP4.4.4)

Interfaces

Inputs:

• OCI artifact

• metadata

Outputs:

• successful execution of the binary artifact

UCs
At least one use case will use this component as part of the EMPYREAN
development and deployment stack.

D2.2 – Initial release of EMPYREAN architecture

empyrean-horizon.eu 45/91

4.12 Analytics-friendly Distributed Storage

EMPYREAN will offer a novel way to store and retrieve IoT data, distributed across edge and

cloud locations. By employing erasure coding and compression, storage costs are minimized.

By structuring data in a highly organized schema that provides different alignment

characteristics, queries can be evaluated directly on the erasure coded, compressed

representation. Without this approach, network egress costs charged by cloud providers

would make such a system unfeasible.

The IoT Query Engine will work either in close collaboration or as a submodule of the Edge

Storage Gateway. It will hide the complexities of data storage and retrieval behind simple,

easy to use interfaces.

Figure 14: Analytics-friendly Distributed Storage

Table 16: Description of Analytics-friendly Distributed Storage components

Component ID WP4.3.5

Name IoT Query Engine

High level
description

This component is in charge or providing an IoT analytics-friendly distributed
storage solution.

IoT time series data is ingested, processed and stored in an erasure-coded
manner, distributed to both cloud and edge locations. This is key to offering cost-
efficient, highly reliable and available data storage. To be able to run analytics
workloads efficiently, the component uses a novel data rearrangement and
erasure coding schema. The goal is to avoid having to reconstruct complete data
fragments when evaluating queries. Our solution will make it possible to access
individual bytes of data files with very little to no overhead, while maintaining the
benefits of erasure coding and allowing the use of the whole continuum for
distributed data storage.

This feature will be accessed through the Edge Storage Gateway. Data ingest will
include a description of the time series data next to the actual values. Data egress
will happen through the IoT Query interface. Users will be able specify using an
SQL-like syntax the parts of the time series data they are interested in (e.g. SELECT
‘temperature’ FROM ‘robot3_telemetry’ WHERE ‘cell_voltage_1’ < 3.0 AND
`timestamp` > 1712828555).

To further improve storage costs, we might be able to also support compression
through a novel technique called Generalized Deduplication.

Collaborators • Edge Storage Gateway (WP3.2.1)

Interfaces
It likely exposes some binary interface (e.g. direct TCP connection with protobuf,
ZeroMQ) to the Edge Storage Gateway.

UCs Hopefully at least one or two UCs.

IoT Query Engine (T4.3) Edge Storage Gateway (3.2)

D2.2 – Initial release of EMPYREAN architecture

empyrean-horizon.eu 46/91

4.13 Service Orchestrator and EMPYREAN Controller

EMPYREAN is dedicated to achieving the autonomous operation of the IoT-edge-cloud

continuum through an advanced cognitive platform that integrates decentralized decision-

making and self-adaptive capabilities. To realize this vision, EMPYREAN utilizes a distributed

speculative intelligence approach for orchestrating hyper-distributed applications, striking an

optimal balance between centralized and decentralized solutions. This methodology

empowers more localized decision-making while maintaining a collective logic that ensures

overall system-wide optimality. Consequently, the continuum will be well-equipped to

support the future of hyper-distributed, dynamic applications and the rapid expansion of IoT.

The orchestration process within EMPYREAN involves two primary stages, engaging two key

components of the platform: the Service Orchestrator and the EMPYREAN Controller. The

platform features multiple high-level orchestrators, the Service Orchestrators, operating at

the Association level, in conjunction with various Local Orchestrators managing the individual

edge and cloud platforms unified within the EMPYREAN framework. This orchestration model

ensures efficient and intelligent management of resources and tasks across the entire IoT-

edge-cloud continuum.

In the first stage, multiple Service Orchestrators acts as cognitive agents competing based on

their local knowledge for the efficient and rapid mapping of applications’ workloads. Thus,

individual parts of the overall application can be assigned to resources in an Association or in

different Associations according to the deployment requirements and available infrastructure

resources. In the second stage, each Service Orchestrator intelligently assigns the part of the

overall workflow that is responsible to the Associations it manages. For this operation,

EMPYREAN adopts a hierarchical orchestration approach, with high-level decisions taken, by

the Service Orchestrator, on the Association layer, and low-level scheduling (i.e., actual

assignment of workload to specific infrastructure resources) performed by each platform’s

(e.g., K8s, K3s) orchestration mechanisms (i.e., Local Orchestrator) to provide guarantees to

the platform specifications. This approach provides several degrees of freedom to Local

Orchestrator for serving in an optimal manner a job request, satisfying both the Aggregator

and the resource’s objectives. Moreover, the EMPYREAN Controller abstracts the

management and interaction with the individual devices, resources, and services. Its modular

design allows for seamless integration with resource-specific services, effectively handling

orchestration, deployment, and management requests from the Service Orchestrator.

Both the Service Orchestrator and the EMPYREAN Controller will build upon the Resource

Orchestrator service developed by ICCS during the H2020 SERRANO EU project. This high-level

orchestrator operates seamlessly across diverse cloud and HPC platforms. In EMPYREAN, the

original design and implementation of the Resource Orchestrator will be extended and

enhanced to support decentralized and cooperative operations. This will support the efficient

orchestration of edge-cloud resources and dynamic application deployment across the

Association-based continuum.

D2.2 – Initial release of EMPYREAN architecture

empyrean-horizon.eu 47/91

The core building blocks of the EMPYREAN Service Orchestrator and Controller along with

their interactions with other EMPYREAN components are presented in Figure 15, and Table 17

provides their high-level description.

Figure 15: Service Orchestrator and EMPYREAN Controller components and dependencies

Table 17: Description of Service Orchestrator and EMPYREAN Controller core components

Component ID WP4.4.1

Name Service Orchestrator

High level
description

It provides efficient service orchestration and resource management in the
disaggregated and heterogeneous EMPYREAN infrastructure. It initiates the
application deployment and automatically coordinates the necessary
supplemental actions (e.g., transfer of required data).

Collaborators

• API Gateway (WP4.4.12)

• Decision Engine (WP4.1.2)

• Telemetry Service (WP4.4.7)

• EMPYREAN Controller (WP4.4.4)

• Analytics Engine (WP3.4.3)

Interfaces
• REST interface

• Asynchronous message-based interface for notifications

UCs
It will coordinate the resource allocation and workload deployment procedures
derived by analysing the use case preferences.

D2.2 – Initial release of EMPYREAN architecture

empyrean-horizon.eu 48/91

Component ID WP4.4.2

Name Orchestration API Server

High level
description

It acts as the single-entry point for the other components to EMPYREAN service
orchestration functionalities. Initially it validates the requests and then forwards
them to the Orchestration Manager

Collaborators
• Orchestration Manager (WP4.4.3)

• API Gateway (WP4.4.12)

• Analytics Engine (WP3.4.3)

Interfaces
• REST interface

• Asynchronous message-based interface for notifications

UCs
It will trigger the necessary internal procedures for the appropriate resource
allocation and initial deployment of workloads based on UCs preferences.

Component ID WP4.4.3

Name Orchestration Manager

High level
description

It implements the application logic, oversees the operation of the other internal
components and coordinates the resource allocation and application deployment
operations. It also interacts with the Decision Engine and Telemetry Service
components.

Collaborators

• EMPYREAN Controller/Orchestration Driver (WP4.4.4)

• Decision Engine (WP4.1.2)

• Telemetry Service (WP4.4.7)

Interfaces • REST interface

UCs
It will setup and coordinate the application deployment at the selected individual
edge and cloud platforms.

Component ID WP4.4.4

Name EMPYREAN Controller / Orchestration Driver

High level
description

It provides an abstraction layer for interacting with the specific edge and cloud
orchestration mechanisms at each EMPYREAN location. It receives by the Service
Orchestrator requests for deploying or adjusting already deployed applications.

Collaborators • Orchestration Manager (WP4.4.3)

Interfaces • REST interface

UCs
It will handle the requests from the Service Orchestrator regarding the initial
deployment and re-optimization of submitted applications.

D2.2 – Initial release of EMPYREAN architecture

empyrean-horizon.eu 49/91

Component ID WP4.4.5

Name Orchestration Interface

High level
description

It will provide at the Orchestration Manager and Orchestration Driver an
infrastructure agnostic interface for descripting the deployment description and
constraints to the heterogeneous local orchestration mechanisms.

Collaborators • Orchestration Manager (WP4.4.3)

Interfaces • REST interface

UCs
It will manage the seamless deployment and execution of submitted applications’
workloads at the specific part of the EMPYREAN infrastructure.

Component ID WP4.4.6

Name Orchestration Plug-ins

High level
description

It will map the generic instructions from the Orchestration Interface to specific
actions and procedures for the selected local orchestration mechanisms. The
interaction will be based on the APIs exposed by each local orchestration
component. There will be a specific plug-in for each supported local orchestration
mechanism.

Collaborators
• Orchestration Interface (WP4.4.5)

• Local Orchestrator (e.g., K8s, K3s)

Interfaces • REST interface

UCs
It will handle the actual seamless deployment and execution of applications’
workloads at the specific part of the EMPYREAN infrastructure.

4.14 Telemetry Service

As machine learning continues to drive advancements in continuum automation, the

significance of telemetry and observability across federated IoT-edge-cloud platforms has

become critical. Traditional localized monitoring methods are no longer sufficient to provide

the essential data required to ensure that all platform services operate in harmony, delivering

optimal performance, security, and efficiency throughout the entire system.

The EMPYREAN telemetry service is designed to address these challenges by incorporating

components that deliver robust observability and telemetry capabilities within the

Associations. Observability allows us to gain insights into a system from the outside, enabling

us to ask questions about its behaviour and performance without needing detailed knowledge

of its internal workings. This capability is crucial for effective troubleshooting and resolving

new, unforeseen issues, helping to answer the fundamental question, "Why is this

happening?". Telemetry, on the other hand, involves the real-time collection, measurement,

and transmission of data related to a system’s performance, status, and behaviour. This data

encompasses a wide range of metrics, including CPU usage, memory consumption, storage

D2.2 – Initial release of EMPYREAN architecture

empyrean-horizon.eu 50/91

capacity, and network traffic, providing a comprehensive view of the system's health and

operational state.

Together, observability and telemetry form the backbone of effective monitoring and

management in the EMPYREAN platform, ensuring that the complex, interconnected services

across IoT, edge, and cloud environments function seamlessly and respond dynamically to

evolving conditions. Furthermore, they facilitate additional key operations such as data-driven

decision making, enhanced security, automation and scalability, optimized resources

utilization, and end-to-end visibility.

The EMPYREAN platform employs a robust and distributed telemetry infrastructure that is

built around several key components, including several Telemetry Engines, Monitoring Probes,

and a Persistent Monitoring Data Storage (PMDS) system. Telemetry Engines serve as the

backbone of the EMPYREAN telemetry infrastructure. Each Telemetry Engine represents a

generic monitoring entity tasked with managing, collecting, and analyzing telemetry data from

a specific segment of the infrastructure. These engines operate independently yet cohesively

to provide a detailed and unified view of system performance and health. The Monitoring

Probes are specialized components, each dedicated to collecting telemetry data from a

specific resource type. They collect real-time performance data related to various aspects of

the infrastructure and deployed applications. To support long-term analysis and decision-

making, the telemetry service integrates the Persistent Monitoring Data Storage (PMDS)

system. The PMDS serves as a centralized repository for all collected telemetry data, storing

it in a timestamped format that facilitates historical analysis. This long-term data storage is

crucial for enabling advanced data analytics and supporting the EMPYREAN decision-making

processes, as it provides the necessary historical context to identify trends, predict future

issues, and optimize resource allocation.

Figure 16 illustrates the main building blocks of the EMPYREAN Telemetry Service, highlighting

how these components interact with other elements of the EMPYREAN platform. Table 18

provides a high-level description of each component, detailing their roles to the overall

telemetry infrastructure.

D2.2 – Initial release of EMPYREAN architecture

empyrean-horizon.eu 51/91

Figure 16: EMPYREAN Telemetry Service components and dependencies

Table 18: Description of Telemetry Service core components

Component ID WP4.4.7

Name Telemetry Service

High level
description

It provides the EMPYREAN distributed telemetry service, maintaining an overall
view of the state of the infrastructure resources and deployed applications. The
collected data will be supplied to the EMPYREAN orchestration, service assurance,
and security analysis mechanisms to enable efficient orchestration, improve
resilience, and detect threats and anomalies. It will also provide alerts and
notifications whenever abnormal values are detected to trigger the appropriate
actions. Finally, a dashboard based on web-based visualization tools will enable
quick access to real-time updates on the platform status.

Collaborators

• Telemetry Engine (WP4.4.8)

• Monitoring Probes (WP4.4.10)

• Persistent Monitoring Data Storage (WP4.4.9)

• p-ABC (WP3.1.2)

• Analytics Engine (WP3.4.3)

• CTI Engine (WP4.1.1)

• Decision Engine (WP4.1.2)

• Service Orchestrator (WP4.4.1)

• Autoscaling Optimizations (WP3.4.1) / Local Orchestrator (WP3.4.2)

Interfaces • REST interface

UCs
It will provide the required information for the EMPYREAN orchestration and
decision-making mechanisms. Thus, it will contribute to UC applications’ cognitive
orchestration and deployment in the EMPYREAN platform.

Service Orchestrator

(Task 4.4)

Telemetry Service

Persistent Monitoring

Data Storage

Monitoring Probes

Telemetry Engines

P-ABC

(Task 3.1)

Decision Engine

(Task 4.1)

Analytics Engine

(Task 3.4)

CTI Engine

(Task 4.1)
Autoscaling & Local

Orchestration (Task 3.4)

D2.2 – Initial release of EMPYREAN architecture

empyrean-horizon.eu 52/91

Component ID WP4.4.8

Name Telemetry Engine

High level
description

It coordinates the operation of a specific set of Monitoring Probes that are
responsible for monitoring the underlying platform resources and deployed
applications. The implementation will be based on well-established open-source
solutions such as Prometheus and Grafana. Prometheus will facilitate the data
collection through its reconfigurable pull-based model, data storage as time
series, provision of alerts based on specific rules, and automatic service discovery
within K8s and K3s platforms. Grafana will be used to visualize and analyze the
available telemetry data. It will also enable querying, visualizing, alerting, and
exploring metrics, logs, and traces. EMPYREAN will implement the required
extensions and improvements to glue together the different components.

Collaborators

• Telemetry Service (WP4.4.7)

• Persistent Monitoring Data Storage (WP4.4.9)

• Monitoring Probes (WP4.4.10)

• p-ABC (WP3.1.2)

Interfaces
• REST interface

• Web application, based on open-source Grafana

UCs
It will collect, store, and forward to Persistent Monitoring Data details about the
characteristics and current status of available resources and deployed services
under its administration domain.

Component ID WP4.4.9

Name Persistent Monitoring Data Storage

High level
description

It provides a central repository to retain historical telemetry data for the current
state of the heterogeneous resources and deployed applications. It is a
fundamental piece of EMPYREAN's effective orchestration pipeline that feeds the
various data-driven decision mechanisms within the EMPYREAN platform. The
implementation will be based on InfluxDB10, an open-source time-series database
that provides fast, highly available storage for time-series data and can also be
used as a data source for many other solutions, such as the Grafana.

Collaborators
• Telemetry Service (WP4.4.7)

• Telemetry Engine (WP4.4.8)

Interfaces • REST interface

UCs
It will provide historical telemetry data to enable their cognitive orchestration and
re-optimization.

10 InfluxDB: Open Source Time Series Database: https://www.influxdata.com/developers/

D2.2 – Initial release of EMPYREAN architecture

empyrean-horizon.eu 53/91

Component ID WP4.4.10

Name Monitoring Probes

High level
description

This component is responsible for the actual monitoring of resources and
deployed applications. It will provide the necessary telemetry data to the
telemetry framework. Some probes will be out of the shelf, while others will be
implemented in the context of EMPYREAN. By focusing on individual resource
types, Monitoring Probes ensure that telemetry data is both precise and relevant,
allowing for targeted monitoring and analysis.

Collaborators • Telemetry Engine (WP4.4.8)

Interfaces • REST interface

UCs
It will collect and forward to telemetry components information about the
characteristics and current status of available resources and deployed services.

4.15 EMPYREAN Aggregator

The management fabric of the EMPYREAN continuum will be implemented through

EMPYREAN Aggregators. Multiple self-managed and interacting Aggregators, that cooperate

in a multi-agent manner, transforms the IoT-edge-cloud continuum into an autonomous,

collaborative, composable, and self-organized ecosystem. These Aggregators are pivotal

entities responsible for the seamless and dynamic creation, maintenance, and management

of Associations. Operating autonomously and in a distributed manner, Aggregators employ an

internal hierarchical two-level system to effectively oversee the resources within an

Association. To establish a robust and collaborative management fabric, Aggregators will

communicate not only among themselves but also with edge computing infrastructures and

(multi) cloud providers. This interconnectivity ensures a comprehensive and cohesive

management framework across the continuum.

Moreover, the EMPYREAN Aggregator will facilitate the Associations capability to function

independently. In scenarios where connectivity to remote cloud resources is either unfeasible

or undesirable, Associations can maintain operational continuity without relying on external

cloud connectivity. This independence underscores the flexibility and resilience of the

EMPYREAN continuum’s management architecture, enabling it to adapt to a variety of

network conditions and operational requirements.

An Aggregator is a logical component that consolidates multiple components and services to

deliver the necessary intelligence and orchestration logic for managing an Association. It also

facilitates the deployment of applications, ensures secure and trusted execution of workloads,

and oversees data storage across Associations within the continuum. These include

functionalities, such as resource and workload orchestration (Service Orchestrator), intelligent

decision-making (Decision Engine), distributed, hybrid and encrypted data storage (Edge

Storage Gateway), decentralized interconnection and seamless data distribution (Data

Distributor), distributed trust and identity management (Security and Privacy Manager),

monitoring of heterogeneous resources and deployed applications (Telemetry Engine), and

D2.2 – Initial release of EMPYREAN architecture

empyrean-horizon.eu 54/91

service assurance mechanisms (Analytics Engine). These components are platform-agnostic,

leveraging open and standardized APIs and frameworks to operate independently of the

underlying platforms in the lower layers.

Figure 17 illustrates the key building blocks of the EMPYREAN Aggregator and its interactions

with other EMPYREAN components. Table 19 provides a high-level description of its

components that are not described in the previous sections. The EMPYREAN Aggregator

design promotes the composability of infrastructures and services across the continuum.

Figure 17: EMPYREAN Aggregator core components and dependencies

Table 19: Description of EMPYREAN Aggregator core components

Component ID WP4.4.11

Name EMPYREAN Aggregator

High level
description

It manages and coordinates the operation of an EMPYREAN Association. Each
Aggregator includes several core services that provide the required intelligence
and orchestration logic to operation an Association, deploy workloads, and
manage data access and storage. An Aggregator orchestrates its own Associations
that include separate or shared computational and storage resources.

Collaborators

• API Gateway (WP4.4.12)

• EMPYREAN Registry (WP4.4.13)

• Service Orchestrator (WP4.4.1)

• Security and Trust Manager (W3.1.1)

• Decentralize and Distributed Data Manager (WP3.2.3)

• Telemetry Engine (WP4.4.8)

• Decision Engine (WP4.1.2)

EMPYREAN Aggregator

EMPYREAN Registry

(Task 4.4)
Aggregator(s)

EMPYREAN Controller

(Task 4.4)

API Gateway

Generic Cloud

Platforms

Telemetry Engine

(Task 4.4)

Edge Storage

Gateway (Task 3.2)

Analytics Engine

(Task 3.4)

Security & Trust

Manager (Task 3.1)

Service Orchestrator

(Task 4.4)

Decision Engine

(Task 4.1)

Data Distributor

(Task 3.2)

D2.2 – Initial release of EMPYREAN architecture

empyrean-horizon.eu 55/91

• Edge Storage Gateway (WP3.2.1)

• Analytics Engine (WP3.4.3)

• EMPYREAN Controller (WP4.4.4)

• Other EMPYREAN Aggregators

• Generic cloud platforms

Interfaces
• REST interface

• Asynchronous interface for notifications and events

UCs
It will provide and manage the Association-based IoT-edge-cloud continuum to
ensure the performance, security and energy efficiency for the use cases
workloads.

Component ID WP4.4.12

Name API Gateway

High level
description

It enables communication between Aggregators, general edge or (multi-) cloud
providers. It abstracts through its open and well-defined interfaces the
interactions between users and EMPYREAN’s core services.

Collaborators

• EMPYREAN Registry (WP4.4.13)

• Service Orchestrator (WP4.4.1)

• Security and Trust Manager (WP3.1.1)

• Decentralized and Distributed Data Manager (WP3.2.3)

• Telemetry Service (WP4.4.7)

• Other EMPYREAN Aggregators

Interfaces
• REST interface

• Asynchronous interface for notifications and events

UCs
It will abstract the inter-Association interactions and facilitate their collaborative
operation.

4.16 EMPYREAN Registry

Within the Association-based continuum, the EMPYREAN Registry (Figure 18) serves as a

crucial component for discovering, cataloging, and advertising Associations and services

across diverse environments, including IoT devices, edge devices and nodes, and central cloud

platforms. It provides a unified entry point for both core platform services and third-party

entities, enabling access to the functionalities offered by the EMPYREAN components.

The EMPYREAN Registry supports application developers in managing, maintaining, and

updating application and deployment blueprints. It offers a centralized repository for

exploring and accessing all available software, container images, services, and datasets,

thereby enhancing the composability of deployed services and applications within the

EMPYREAN platform. The Registry will be dynamically updated with new information as

infrastructure resources are registered or new applications and services are published.

D2.2 – Initial release of EMPYREAN architecture

empyrean-horizon.eu 56/91

Furthermore, the Registry will store information and metadata about the available

Associations, including their resources, the available services, and deployed applications. It

will list all the available services, applications, and EMPYREAN-compliant artifacts along with

their capabilities, requirements, and dependencies. All metadata and datasets from the

individual platforms and data sources will be shared across multiple Associations, according

to the selected privacy settings. The Registry will also interact also with other catalogues,

providing a starting point for the interconnection with the Gaia-X service catalogue11

composition model and architecture to ensure compliance and broader usage. The

orchestration and deployment mechanisms of the EMPYREAN control and management plane

will utilize this data to facilitate the efficient management of Associations and the deployment

of hyper-distributed applications within and across them.

Figure 18: EMPYREAN Registry core components and dependencies

11Gaia-X Architecture Document - 24.04 Release - https://docs.gaia-x.eu/technical-committee/architecture-
document/latest/enabling_services/#federated-catalogues

Workflow Manager

(Task 4.2)

EMPYREAN

Aggregator (Task 4.4)

EMPYREAN SDK

(Task 5.1)

EMPYREAN Registry

Lightweight

Packaging (Task 4.3)

API Gateway Service Catalogue

Container Image

Repository

Association

Metadata Store

Data Connectors

Security & Trust

Manager (Task 3.1)

Data Sources, Data

Catalogue, Data Stores

D2.2 – Initial release of EMPYREAN architecture

empyrean-horizon.eu 57/91

Table 20: Description of EMPYREAN Registry core components

Component ID WP4.4.13

Name EMPYREAN Registry

High level
description

It manages the registration of IoT devices, edge, and cloud resources in
Associations. It also abstracts to the Workflow Manager the interaction with the
available Associations. The EMPYREAN registry will keep track of the available
Associations and services, the mapping of the infrastructure resources to
Associations, and the relation between users and Associations.

Collaborators

• API Gateway (WP4.4.14)

• Service Catalogue (WP4.4.15)

• Container Image Repository (WP4.4.16)

• Association Metadata Store (WP4.4.17)

• EMPYREAN Aggregator (WP4.4.11)

• Workflow Manager (WP4.2.1)

• Application Packaging (WP4.3.3)

• EMPYREAN SDK

Interfaces
• REST interface

• Asynchronous interface for notifications and events

UCs

It will facilitate the seamless deployment of EMPYREAN use case applications
across an Association-based IoT-edge-cloud continuum. It will handle along with
the Workflow Manager the initial steps of the applications’ lifecycle workflow
within the EMPYREAN platform.

Component ID WP4.4.14

Name API Gateway

High level
description

It is a lightweight version of the corresponding component in the EMPYREAN
Aggregator. It facilitates the interaction and exchange of events between the
EMPYREAN services and the Registry core components.

Collaborators

• Association Metadata Store (WP4.4.17)

• Service Catalogue (WP4.4.15)

• Container Image Repository (WP4.4.16)

• Workflow Manager (WP4.2.1)

• Application Packaging (WP4.3.3)

• EMPYREAN Aggregator (WP4.4.11)

• EMPYREAN SDK

Interfaces
• REST interface

• Asynchronous interface for notifications and events

UCs
It will be used in all use cases as a core component of the EMPYREAN Registry that
is essential for the operation of the EMPYREAN platform.

D2.2 – Initial release of EMPYREAN architecture

empyrean-horizon.eu 58/91

Component ID WP4.4.15

Name Service Catalogue

High level
description

It will keep track of ownership and metadata for all the available software in the
EMPYREAN platform such as, services, containers, and data pipelines. The Service
Catalogue will store and manage the descriptors of hyper-distributed applications
and services that are available for deployment on the EMPYREAN infrastructure.
The catalogue will provide information about the software packages, container
images, service descriptors, and other metadata that are required for service
deployment and management.

Collaborators
• API Gateway (WP4.4.14)

• Association Metadata Store (WP4.4.17)

Interfaces
• REST interface

• Asynchronous interface for notifications and events

UCs
It will be used in all use cases as a core component of the EMPYREAN Registry that
is essential for the operation of the EMPYREAN platform.

Component ID WP4.4.16

Name Container Image Repository

High level
description

This component will be part of the EMPYREAN services that focus on building and
storing EMPYREAN-enhanced lightweight container images. Once a hyper-
distributed application is created through the EMPYREAN building and packaging
mechanisms, its OCI-compatible images contain will be stored in the Container
Image Repository.

Collaborators
• API Gateway (WP4.4.14)

• Service Catalogue (WP4.4.15)

Interfaces
• REST interface

• Asynchronous interface for notifications and events

UCs
It will be used in all use cases as a core component of the EMPYREAN Registry that
is essential for the operation of the EMPYREAN platform.

Component ID WP4.4.17

Name Association Metadata Store

High level
description

It will store high-level information and metadata concerning the formation of
available Associations, including details about participating resources, their
owners, and sharing policies. This information will be continuously updated
during the registration of new resources and their decommissioning.
Furthermore, the stored information will support the orchestration and load-
balancing decisions of distributed decision-making mechanisms, ensuring
efficient and balanced resource management across the continuum.

Collaborators

• API Gateway (WP4.4.14)

• Service Catalogue (WP4.4.15)

• EMPYREAN Aggregator (WP4.4.11)

Interfaces
• REST interface

• Asynchronous interface for notifications and events

UCs
It will be used in all use cases as a core component of the EMPYREAN Registry that
is essential for the operation of the EMPYREAN platform.

D2.2 – Initial release of EMPYREAN architecture

empyrean-horizon.eu 59/91

Component ID WP4.4.18

Name Data Connectors

High level
description

It will collect metadata and information from various systems, including data
stores, external catalogues, data pipelines, any other relevant data source. It will
rely on connector interfaces for each specific data. By adding new connectors or
expanding the graph model, the system can be extended to collect any required
metadata.

Collaborators

• API Gateway (WP4.4.14)

• Service Catalogue (WP4.4.15)

• Association Metadata Store (WP4.4.17)

• Data Catalogues, Data Sources, Data Stores

Interfaces
• REST interface

• Asynchronous interface for notifications and events

• Data-specific interfaces

UCs
It will be used in all use cases as a core component of the EMPYREAN Registry that
is essential for the operation of the EMPYREAN platform.

D2.2 – Initial release of EMPYREAN architecture

empyrean-horizon.eu 60/91

5 EMPYREAN Architecture

5.1 High-Level Architecture

EMPYREAN envisions an IoT-edge-cloud continuum composed of collaborative collectives of

IoT devices, robots, and resources that extend from the edge to the cloud. EMPYREAN refers

to this concept as the Association-based continuum (Figure 19). In this paradigm, multiple

Associations—each a collaborative collective of IoT devices, robots, and resources—operate

simultaneously across different locations, collectively forming the IoT-edge-cloud continuum.

Figure 19: EMPYREAN Association-based IoT-Edge-Cloud continuum

An Association consists of a diverse array of IoT devices, robots, edge computing and storage

resources, which can vary in size and purpose, encompassing both general-purpose and

specialized units. Through an Association, resources from different owners are shared

between the participant users and seamlessly and cognitively combined to create a unified

virtual execution environment. These Associations are dynamically formed and updated,

depending on the participation of resource owners. While the system primarily relies on edge

resources, it can leverage central cloud resources whenever necessary.

EMPYREAN platform promotes the composability of infrastructures and services across the

IoT-edge-cloud continuum. Associations facilitate the collaborative operation and

management of virtual execution environments by pooling computational, storage,

networking, and other infrastructure and service resources. This flexible and adaptive

structure ensures efficient resource utilization and enhances the overall functionality of the

IoT-edge-cloud ecosystem. Moreover, the EMPYREAN AI-enabled distributed control and

EMPYREAN
AssociationEMPYREAN

Association

EMPYREAN
Association

EMPYREAN
Registry

CLOUD

on-premise/micro edge

deep edge

 far edge

EMPYREAN
Association

D2.2 – Initial release of EMPYREAN architecture

empyrean-horizon.eu 61/91

management plane provides robust anomaly mitigation, adaptability, and self-driven

recovery, ensuring resilient and efficient operations in the face of unforeseen issues across

the infrastructure. The EMPYREAN platform provides a loosely coupled continuum

implementation that enables more local decisions and a collective logic that leads to system-

wide welfare optimality to serve dynamic and hyper-distributed applications more efficiently.

We employed a top-down, iterative approach to define the EMPYREAN architecture. We

began by drafting the high-level architecture, which outlines the conceptual design of the

EMPYREAN platform, emphasizing the main components and functionalities without delving

into implementation details. Following this, we developed the logical architecture, detailed in

Section 5.3, which describes the logical components comprising the EMPYREAN platform and

aligns closely with the developed technological solutions. This comprehensive design process

integrates the analysis and functional requirements from tasks T2.1 “State-of-the-Art

Analysis” and T2.2 “Concept, Use Cases and Requirements Analysis,” as documented in

deliverable D2.1 (M6).

EMPYREAN adopts a layered architecture, where each layer consists of a set of discrete

components that use well-defined and open interfaces to interact horizontally and vertically

to form the EMPYREAN platform. Figure 20 illustrates the EMPYREAN high-level architecture.

Figure 20: EMPYREAN high-level architecture

D2.2 – Initial release of EMPYREAN architecture

empyrean-horizon.eu 62/91

Moreover, the architecture is aligned with the current version of the European reference

architecture for the continuum, provided by the Task Force (TF) 3 “Architecture” of the

EUCloudEdgeIoT12 initiative. The reference architecture13 defines eight main categories of

building blocks corresponding to the technical processes to operate applications along the

continuum: Security & Privacy, Trust & Reputation, Data Management, Resource

Management, Orchestration, Network, Monitoring & Observability, and Artificial Intelligence.

The Service Layer encompasses components designed to enhance the development of

Association-native applications, offering robust support for application-level adaptations,

interoperability, elasticity, and scalability across the IoT-edge-cloud continuum. This layer

addresses, among others, the following key aspects: (a) workflow design and management of

hyper-distributed applications, (b) cloud-native unikernel application development, and (c)

data-flow description.

The Workflow Manager provides tools for the high-level design, development, and remote

debugging of cloud-native applications. It allows these applications to be seamlessly deployed

across the Association-based IoT-edge-cloud continuum. The Unikernels Application Builder

facilitates the development and deployment of applications as unikernels in cloud-native

environments. It reduces engineering overhead by simplifying the building process.

Unikernels are highly efficient, lightweight, and secure, making them ideal for edge and cloud

environments where performance and security are critical. The Dataflow Programming

complements the workflow-based application management by focusing on a data-centric,

decentralized, and highly dynamic data interconnection. It supports the declarative definition

of data flow requirements through unified abstractions and location-transparent descriptions.

This enables more responsive and adaptable data management, particularly in highly

distributed and heterogeneous environments. Additionally, the EMPYREAN SDK empowers

developers by providing a comprehensive toolkit for the development and deployment of

hyper-distributed applications that fully leverage the EMPYREAN platform functionalities.

The Association Management Layer is responsible for the dynamic and transparent creation

and management of Associations that integrate heterogeneous resources across multiple

providers, connectivity types, and segments of the IoT-edge-cloud continuum. It incorporates

components that intelligently and dynamically form resource federations, facilitating

collaboration, resource sharing, workload and data distribution, and interoperability across

diverse administrative domains within the IoT and edge-cloud environment. Alongside the

Multi-Cluster Orchestration Layer, it forms the core of EMPYREAN’s novel, distributed, and

autonomous control and management plane, realizing the concept of an Association-based

continuum.

12 https://eucloudedgeiot.eu
13 Task Force 3: Architecture. (2023). Developing a Reference Architecture for the Continuum - Concept,
Taxonomy and Building Blocks. Zenodo. https://doi.org/10.5281/zenodo.8403593

D2.2 – Initial release of EMPYREAN architecture

empyrean-horizon.eu 63/91

At the heart of this layer is the EMPYREAN Aggregator, a key component that enables the

formation, coordination, and management of Associations, while also facilitating the

discovery of available resources. An Aggregator (Figure 21) can manage multiple Associations,

within each it enables IoT devices and computational resources, potentially spanning multiple

clusters, to cooperate dynamically and autonomously. Moreover, it interfaces with other

Aggregators and edge or (multi) cloud providers, enabling services and data to be processed

seamlessly across various providers. Multiple self-managed and interacting Aggregators

constitute the distributed and data-driven management plane for the EMPYREAN platform.

This setup abstracts the underlying complexity and heterogeneity of diverse IoT devices and

edge resources, while providing resiliency, fault-tolerance, and elasticity for users and

applications. Additionally, the EMPYREAN Registry plays a critical role in managing the

registration of IoT devices, edge, and cloud resources within Associations, while also tracking

available services and resources. It registers all data within the system, making it accessible

and providing EMPYREAN developers and platform services with a unified view of all available

software, services, machine learning models, and datasets. This unified view enhances

operational efficiency and simplifies the development and deployment of applications within

the EMPYREAN platform.

Figure 21: EMPYREAN Aggregator and Associations’ management

The Multi-Cluster Orchestration Layer provides efficient service orchestration and resource

management across the disaggregated and heterogeneous EMPYREAN infrastructure. This

layer includes distributed, cognitive, and autonomous decision-making mechanisms designed

to efficiently orchestrate emerging, highly dynamic, hyper-distributed applications, while also

supporting their autonomous and self-driven adaptations. Multiple instances of this layer

components underpin the decentralized and multi-agent operation of the EMPYREAN control

and management plane, optimizing resource utilization and providing scalability, resiliency,

energy efficiency, and high quality of service.

D2.2 – Initial release of EMPYREAN architecture

empyrean-horizon.eu 64/91

The EMPYREAN Orchestrator and Decision Engine are key components responsible for service

orchestration and resource management. The EMPYREAN Orchestrator oversees the efficient

deployment of applications and coordinates the necessary actions for resource management.

Workload assignment decisions are delegated to the Decision Engine, which enables

decentralized, speculative, and multi-objective resource orchestration. The Decision Engine

integrates various distributed optimization and orchestration algorithms to balance

computing tasks and data both locally within an Association and across federated

Associations. It also considers environmental factors, enabling intelligent and energy-efficient

workload and data distribution. These components operate at the Association level, managing

multiple clusters within the EMPYREAN platform. Additionally, the Container Layers Locality

Scheduler, implemented as a scheduling plugin for the local orchestrator in each platform,

optimizes workload scheduling at the cluster level. It enhances the native decision-making

capabilities of Kubernetes and K3s by implementing advanced scheduling algorithms that

minimize cold start delays and optimize workload placement based on container layer locality.

The Resource Management Layer abstracts the complexity of managing and interacting with

orchestration and deployment mechanisms across IoT, edge, and cloud platforms, all of which

are unified under the EMPYREAN platform. To this end, it integrates a wide range of novel

software mechanisms that span the entire system stack from platform-level scheduling

mechanisms (e.g., EMPYREAN Controller, AI-enabled Workload Autoscaling) to low-level

mechanisms (e.g., Unikernel Deployment, Container Runtime). The components within this

layer operate within a specific Kubernetes or K3s cluster, providing targeted management and

optimization of resources. Additionally, the layer’s modular design offers flexibility to the

EMPYREAN platform, allowing for seamless extension and the quick integration of new

hardware and software platforms at the Infrastructure Layer. This modularity ensures that the

platform remains adaptable and scalable, capable of evolving with emerging technologies and

diverse deployment environments.

The EMPYREAN Controller serves as a bridge for integrating individual IoT, edge, and cloud

platforms. It incorporates platform-specific logic and interfaces to enable efficient and

seamless deployment of cloud-native applications and serverless workloads. It translates

assignment decisions from the multi-cluster orchestration layer’s decision-making

mechanisms into platform-specific deployment objectives. These objectives are then

conveyed as declarative descriptions to low-level deployment mechanisms, ensuring smooth

and consistent deployment across heterogeneous environments. The AI-enabled Workload

Autoscaling component enhances the Kubernetes orchestrator by incorporating AI/ML

techniques for intelligent workload autoscaling. By analysing historical data, this component

ensures optimized resource allocation, dynamic application-level adaptations, and efficient

utilization of resources, providing a more responsive and adaptive environment for workloads.

The Application Packaging and NIX-based Environment Packaging components support multi-

environment and multi-architecture packaging for cloud-native applications, improving the

interoperability and adaptability of workloads within the EMPYREAN platform. They

streamline the packaging process by creating OCI-compatible container images, supporting

multiple architectures and programming languages, and ensuring deployment flexibility

D2.2 – Initial release of EMPYREAN architecture

empyrean-horizon.eu 65/91

across different execution environments. The Hardware Acceleration Abstractions

component, based on the open-source vAccel14 framework, enables the offloading of

compute-intensive tasks to hardware accelerators on neighbouring nodes. This offloading is

performed while ensuring data security and integrity, thereby enhancing performance for

resource-heavy workloads without compromising on safety. Additionally, the Unikernel

Deployment and Container Runtime components provide a versatile container runtime

integration for the deployment of cloud-native applications across various execution

environments. These components facilitate the spawning of unikernels and their integration

with generic container runtimes that are compatible with Kubernetes and serverless

architectures.

The Data Management and Interconnection Layer is responsible for managing secure data

storage and ensuring dynamic interconnection and communication between IoT devices and

computing and storage resources. This layer’s components operate both at cluster and

Association levels, enabling flexible and scalable data management across the EMPYREAN

platform. They facilitate the seamless integration of IoT devices with edge and cloud

resources, enabling data-driven applications to operate effectively in highly distributed and

heterogeneous environments.

The Edge Storage, Edge Storage Gateway, and IoT Query Engine are the core elements of

EMPYREAN’s secure and hybrid cloud-edge storage and efficient time series data storage

management. They are designed to manage storage resources across cloud and edge

environments, supporting hybrid policies for data distribution, redundancy, and security. They

also enhance the storage and retrieval of IoT time series data, employing erasure coding

techniques to ensure secure and reliable data management. This approach provides robust

support for efficient and scalable time series data storage, which is critical for applications

requiring high-performance data access and analytics. Additionally, the Decentralized and

Distributed Data Manager implements decentralized and distributed communication

mechanisms with efficient publish/subscribe and data querying capabilities. It facilitates

communication between IoT devices and edge computing and storage resources across

various providers/administrative domains, connectivity types (e.g., extremely constrained

networks), technologies, and network zones. Moreover, the Software-Defined Edge

Interconnect provides a high-performance data transport service that integrates remote I/O

operations into large computational pipelines, such as AI training workflows. It optimally

overlaps computation with network I/O, improving the efficiency of data-intensive tasks

across distributed environments and thereby supporting real-time processing and analytics.

The Infrastructure Layer consists of heterogeneous resources from various administrative and

technology domains including, (i) IoT/IIoT devices, robots, and on-premise, micro edge

resources, where data is produced and service requests are generated, (ii) deep and far edges,

close and further from the end users/devices, for real-time processing and as aggregator

nodes, and (iii) multiple clouds (federated operation) to increase robustness and reduce cost

and dependencies on a single cloud provider, for data storage and replication. This layer also

14 https://docs.vaccel.org

D2.2 – Initial release of EMPYREAN architecture

empyrean-horizon.eu 66/91

includes the EMPYREAN-enhanced software resources (Section 3.2). Moreover, EMPYREAN

will not only accommodate container-based application development and deployment, but

also the serverless paradigm allowing users to optimize the execution of their functions. That

exceptional unification of highly diverse resources and deployment modes provides the

EMPYREAN platform the ability to cater for application and user constraints, while calibrating

the configuration of available resources.

The architecture is complemented by the Security, Trust, and Privacy Layer and the Monitoring

and Observability Layer, which are across the other layers, providing critical functionalities for

the overall platform.

The Security, Trust, and Privacy Layer integrates components that are designed to ensure

secure access to resources while addressing privacy concerns and enabling trusted execution.

These components are distributed across EMPYREAN platform, functioning at both cluster and

Association levels. They ensure that Associations operate as secure and trusted execution

environments, where trust between data-generating and data-processing entities is

continuously validated using distributed trust services. In parallel, identity and data access

management components ensure controlled access and data confidentiality among different

entities.

The Privacy and Security Manager component and P-ABC library provide robust identity and

access management alongside attribute-based credential management. The Privacy and

Security Manager ensures secure and private identity management, data verification, and a

strong cryptographic foundation for managing privacy-preserving attribute-based credentials

across the platform. The P-ABC library complements this by offering a distributed privacy-

preserving attribute-based credential system based on PS multi-signatures. The Secure and

Trusted Execution Environment establishes secure and trusted execution across the IoT-edge-

cloud continuum, supporting secure and measured boot mechanisms. It enables applications

to be deployed seamlessly with varying levels of security and trustworthiness across different

hardware platforms. This allows for scalable and transparent operation, from micro deep edge

devices to the far edge and cloud environments, ensuring that security requirements are met

at all levels. Furthermore, the Cyber Threat Intelligence (CTI) Engine facilitates automated

cyber threat analysis, providing valuable insights into past cyber threat events observed

globally. By quantifying system risks, it enables proactive adaptations within and across

EMPYREAN Associations, significantly enhancing overall platform security.

Finally, the Monitoring and Observability Layer integrates real-time monitoring,

observability, and service assurance components to provide comprehensive visibility and

control over the EMPYREAN platform. This layer incorporates distributed and automated

telemetry mechanisms that dynamically collect a wide range of metrics from heterogeneous

infrastructures and deployed applications. These mechanisms continuously track the health,

performance, and availability of IoT devices, edge/cloud infrastructures, platform services,

and applications, facilitating data-driven decision-making and enabling advanced automation

capabilities.

D2.2 – Initial release of EMPYREAN architecture

empyrean-horizon.eu 67/91

At the core of this telemetry infrastructure are the Telemetry Engine, Monitoring Probes, and

Persistent Monitoring Data Storage (PMDS). The Telemetry Engine also provides smart

observability, offering an initial analysis of telemetry data to deliver real-time insights into

system performance and security. This enables rapid anomaly detection, efficient resource

utilization, and prompt response to emerging issues. Moreover, the Analytics Engine provides

service assurance by using AI-driven analytics on top of monitoring and observability data.

This approach ensures that applications perform as intended by dynamically adjusting

deployments based on changing conditions and requirements. Components within this layer

operate both at cluster and at the Association level, the latter covering multiple clusters to

ensure a cohesive and scalable monitoring and observability framework across the entire

EMPYREAN platform.

5.2 Data Spaces and Architecture

The increasing importance of data has led to the creation and development of Data Spaces,

which are ecosystems where organizations can share data from different sources and

collaborate to achieve a goal. Data Spaces are essential in today's data-driven world,

promoting innovation, collaboration, and value creation by enabling trusted and secure data

sharing across industries and sectors. They are designed to break down traditional data silos

by providing a common framework where participants can maintain control over their own

data while sharing it with others under mutually agreed-upon terms. Data spaces bring

together relevant data infrastructures and governance frameworks to facilitate data pooling

and sharing. The emergence of Data Spaces entails a shift in the way that companies and

organizations share and manage data.

From a technical point of view, Data Spaces are a concept of data management: they put

technology systems and rules in place to integrate and exchange data. What emerges is a

federated data ecosystem based on shared policies and rules. Data is distributed across

storage points and integrated on the basis of what is needed. Tools are provided to discover,

access, and analyse data that is distributed across industries, companies and entities.

Data Spaces are designed with a focus on robust architecture, emphasizing interoperability

and security. To this end, Data Spaces incorporate several key roles:

• Data Owners: Entities that hold the rights to access and use the data, maintaining

control over how their data is shared and utilized within the Data Space.

• Data Providers: Entities that make data available within the Data Space, managing

data offerings through a catalogue that ensures data discoverability and accessibility.

• Data Consumers: Participants who access and utilize the data offered in the Data

Space, leveraging shared data to drive insights, innovation, and decision-making.

• Data Intermediaries: Entities that provide services that facilitate data access and

sharing within the Data Space. They preserve the catalogue of organized data, enforce

data quality, and ensure operational control through various application tools.

D2.2 – Initial release of EMPYREAN architecture

empyrean-horizon.eu 68/91

• Technology Providers: Entities that supply the necessary technologies to enable the

functionality and utility of the Data Space, including infrastructure, software, and

platform services.

• Operators: Responsible for the definition, management, and maintenance of the Data

Space, ensuring that it operates smoothly, securely, and in accordance with agreed-

upon standards and protocols.

A standard reference technological framework is employed for implementing the Data Spaces,

incorporating key elements such as the Data Space Registry, federated services of the Data

Space, and the connector. The connector serves as the primary hardware and software agent

that enable secure and interoperable data sharing within Data Spaces ecosystems. It allows

participants in the Data Space to function as data providers, consumers, or both, ensuring

interoperability and compliance to predefined standards for each transaction within the Data

Space. There is available a reference implementation supported by the Data Space Business

Alliance15 (DSBA), a coalition that promotes a robust data economy and include several key

organizations such as the International Data Spaces Association16 (IDSA), FIWARE17, Gaia-X18,

and Big Data Value Association19 (BDVA). Additional implementations include the Eclipse Data

Space Connector20 (EDC), an open-source and extensible connector developed under the

Eclipse Foundation, and the FIWARE True Connector21 (FTC) for the IDS ecosystem that

promotes a standardized approach to connecting and interacting within Data Spaces,

facilitating trusted data sharing and compliance with the IDS reference architecture.

The EMPYREAN architecture is designed to facilitate seamless operation within multi-instance,

multi-domain configurations in federated frameworks, supporting advanced edge/cloud

services and Data Spaces. EMPYREAN aligns with the concepts defined by Gaia-X, which

emphasizes secure, cross-border data sharing and the establishment of a federated data

infrastructure. In the Gaia-X framework, various infrastructure ecosystems and data

ecosystems are interconnected to foster the data economy. This framework defines three

pillars (Figure 22) that must be addressed to integrate infrastructure and data ecosystems

effectively:

• Compliance: Ensuring that all participants adhere to the common set of rules and

standards defined by the ecosystem. This includes data protection regulations, security

protocols, and usage policies that govern how data can be shared and used within the

Data Space.

15 Data Space Business Alliance: https://data-spaces-business-alliance.eu
16 International Data Spaces Association: https://internationaldataspaces.org/
17 FIWARE Foundation: https://www.fiware.org/
18 Gaia-X: https://www.gaia-x.eu/
19 Big Data Value Association: https://www.bdva.eu/
20 Eclipse Dataspace Components: https://projects.eclipse.org/projects/technology.edc
21 FIWARE TRUsted Engineering Connector: https://fiware-true-connector.readthedocs.io/en/latest/

D2.2 – Initial release of EMPYREAN architecture

empyrean-horizon.eu 69/91

• Federation: Facilitating the interconnection of different data and service providers

through a federated model. This allows for the seamless integration of resources from

multiple domains, enhancing the scalability and flexibility of the Data Space.

• Data Exchange: Enabling the efficient and secure exchange of data between

participants, supported by a standardized set of protocols and interfaces. This pillar

focuses on maintaining data integrity, ensuring traceability, and providing mechanisms

for consent and data usage management.

Figure 22: Gaia-X Connecting Data & Infrastructure Ecosystems18

The EMPYREAN architecture is inherently designed to address the federation pillar, supporting

a hyper-distributed computing paradigm that relies on federations of collaborative and

heterogeneous IoT devices, multilayer edge, and cloud resources across different providers

and networks. This architecture promotes a highly adaptable and scalable framework,

facilitating the seamless integration and cooperation of diverse resources, regardless of their

geographical or administrative boundaries. EMPYREAN incorporates distributed and AI-

enabled decision-making mechanisms that dynamically balance computing tasks and data

both within individual Associations and across multiple federated Associations. This approach

brings services closer to the edge, leveraging trustworthy IoT devices and edge resources for

efficient data processing. By doing so, EMPYREAN ensures that data sovereignty is maintained,

providing stakeholders with control over their data.

Additionally, the EMPYREAN platform can function as a Data Provider. Data generated from

IoT resources is collected, stored, and analysed through developed extreme scale analytics

mechanisms. This processed data can then be offered as valuable data services, enhancing the

platform's role within data-centric ecosystems. The platform’s ability to provide data services

makes it an integral part of the data economy, where data becomes a key asset for innovation

and decision-making. Through components like the EMPYREAN Registry and EMPYREAN

Aggregator, the platform operates effectively as both an Infrastructure Service Provider and

Data Provider within the Gaia-X ecosystem. These components enable seamless registration,

management, and discovery of resources, facilitating interoperability and promoting a

federated model where data and resources are shared across multiple domains.

D2.2 – Initial release of EMPYREAN architecture

empyrean-horizon.eu 70/91

Moreover, EMPYREAN fosters the development of a dynamic open-edge ecosystem by

enabling a marketplace where infrastructure and service providers, developers, and end-users

can interact. This collaborative platform integrates diverse stakeholders from across the value

chain, encouraging innovation and the development of new services and applications.

EMPYREAN’s components support the advertisement of data, edge resources, and services to

third-party marketplaces through standardized APIs, enhancing market accessibility and

fostering a competitive environment.

Another key concept in defining a Data Space is the trust framework (Figure 23), which

includes all agreements and decisions necessary to establish a functional Data Economy within

the ecosystem. This framework integrates elements that ensure interoperability, trust, data

sovereignty, and empowerment among participants. It also employs mechanisms that protect

and preserve privacy, utilizing privacy-preserving enablers to keep data secure. Enhanced

privacy and confidentiality are crucial in identity (trust) management within data connectors,

as compromising sensitive identity information can result to significant data breaches. The

Gaia-X Trust Framework22 envisions the use of verifiable credentials and linked data

representations. EMPYREAN’s architecture aligns with Gaia-X principles, emphasizing secure,

federated data sharing and infrastructure cooperation, thereby contributing to a robust and

scalable data economy.

Figure 23: Design principles for Data Spaces23

EMPYREAN will offer secure identity and access management, alongside attribute-based

credential management mechanisms, to support privacy-preserving attribute-based

credentials across the Association-based continuum. These mechanisms will enhance data

sovereignty by establishing trust between stakeholders, making data and services searchable,

discoverable, and consumable in a secure manner.

22 Gaia-X Trust Framework: https://docs.gaia-x.eu/policy-rules-committee/trust-framework/22.10/
23 Data Spaces Business Alliance, Technical Convergence: https://data-spaces-business-alliance.eu/wp-
content/uploads/dlm_uploads/Data-Spaces-Business-Alliance-Technical-Convergence-V2.pdf

https://docs.gaia-x.eu/policy-rules-committee/trust-framework/22.10/
https://data-spaces-business-alliance.eu/wp-content/uploads/dlm_uploads/Data-Spaces-Business-Alliance-Technical-Convergence-V2.pdf
https://data-spaces-business-alliance.eu/wp-content/uploads/dlm_uploads/Data-Spaces-Business-Alliance-Technical-Convergence-V2.pdf

D2.2 – Initial release of EMPYREAN architecture

empyrean-horizon.eu 71/91

A privacy-preserving Self-Sovereign Identity (SSI) approach empowers end-users with control

over their personal data without relying on a central authority, involving three main

participants: the holder of Verifiable Credentials (VCs) with a digital wallet, the issuer of VCs,

and the verifier of VCs, supported by a decentralized Data Registry like Blockchain. To

strengthen the basic SSI model, EMPYREAN incorporates a cryptographic module that includes

distributed attribute-based credentials leveraging Pointcheval-Sanders multisignatures (dp-

ABC) and Zero-Knowledge Proofs (ZKP). This robust and comprehensive approach to privacy-

preserving identity management allows users to disclose only the necessary attributes

required for specific transactions through Selective Disclosure, ensuring sensitive information

remains protected and that users have greater control over their personal data. ZKP further

enhance security by allowing the prover to demonstrate to the verifier that specific attributes

are met without revealing the underlying data. This cryptographic module significantly

enhances the security and privacy of the SSI mechanisms, granting users greater control over

their personal information.

Access control is another crucial mechanism that ensures data is accessible only to authorized

entities while maintaining privacy and compliance with security policies. Sticky policies serve

as a form of data policy management that persists with the data as it moves across different

systems and environments, offering fine-grained access control via Ciphertext-Policy

Attribute-Based-Encryption (CP-ABE). These policies ensure data privacy by restricting access

to authorized members. Data producers encrypt their data based on attribute-based policies

(CP-ABE), and once access is granted, the consumer must decrypt the data. The decryption

process relies on a key associated with the consumer's identity attributes, ensuring that data

can only be decrypted if the attributes align with the sticky policy.

Additionally, a policy enforcement model based on the XACML framework will be employed.

This model, combined with sticky policies and ABE, creates a secure resource access

authorization layer, integrating identity attributes with user preferences, permissions, and

consent choices. Beyond basic access control, EMPYREAN also addresses usage control by

enabling more dynamic and context-aware control over the usage of the assets. Policies are

defined as a set of rules consisting of conditions and associated decisions (e.g., permit, deny),

allowing for refined control over how data and resources are utilized within the ecosystem.

5.3 Logical Architecture

A more detailed and elaborate design for the overall architecture of the EMPYREAN platform

after the first iteration of the requirements analysis and design (M01-M07) is presented in

Figure 24. It includes all the components that will be developed by the project technical work

packages (WP3-5), previously presented in Sections 3 and 4. Additionally, the diagram

illustrates the core interactions and required information exchanges. According to the project

implementation plan, the final version of the EMPYREAN architecture will be reported in

deliverable D2.3 “Final EMPYREAN architecture, use cases analysis and KPI” (M12), including

all the required revisions, detailed workflows, and interfaces specifications.

Figure 24: EMPYREAN logical architecture

6 EMPYREAN Platform Deployment View

EMPYREAN seeks to demonstrate the innovative capabilities of its platform by showcasing

how it can enable trustworthy, cognitive, and AI-driven collaborative Associations of IoT

devices and edge resources for efficient data processing. This will be achieved through three

carefully selected use cases (UCs) that span diverse domains characterized by device- and

data-intensive applications. These use cases correspond to diverse, dynamic, hyper-

distributed, safety-critical, and high-performance demanding applications that impose diverse

and heterogeneous requirements.

The EMPYREAN UCs correspond to high-impact applications in (i) advanced manufacturing

with a focus on enabling real-time anomaly detection in robotic machining cells, (ii) smart

agriculture with a focus on enabling proximal sensing in agriculture fields, and (iii) warehouse

automation with a focus on robotic semi-autonomous and lights out logistics order picking.

Each of these UCs involves robots and other devices equipped with cameras and sensors,

operating in diverse environments such as industrial settings, warehouses, and agricultural

fields. These environments demand significant computational power and intelligence at the

edge due to the continuous data streams, the unpredictable and ad hoc nature of

computational loads, and the distinct processing, data, and latency requirements. Deliverable

D2.1 (M6) provides a comprehensive specification of the EMPYREAN use cases, detailing their

current and envisioned future states with the implementation of EMPYREAN, identifying key

challenges, and outlining an initial validation and testing methodology.

Next, we provide an initial high-level overview of the individual deployments that will be

established for the evaluation of each UC. In the second and third years of the projects,

activities within WP6 “Use Cases Demonstrator and EMPYREAN Evaluation” will refine this

description by detailing the evaluation methodology, defining a comprehensive set of

evaluation Key Performance Indicators (KPIs), setting up testbeds for demonstrators, and

specifying detailed demonstration and evaluation scenarios for each use case. These efforts

will ensure that the EMPYREAN platform is rigorously tested and validated against the diverse

and demanding requirements of its targeted applications.

6.1 Anomaly Detection in Robotic Machining Cells (UC1)

Based on the EMPYREAN architecture design (Section 5) and the analysis of this use case, as

elaborated in deliverable D2.1 (M6), we present an initial deployment architecture. The

specificities of this advanced manufacturing use case, namely the purely on-premise setup (no

Cloud interaction), the online, real-time operations and relatively low compute power at the

deep-edge dictate a particular setup. In this setup, complex and compute-intensive processing

occurs at the far-edge, while the deep-edge primarily collects data from sensors and forwards

it to the far-edge for processing. The deep-edge may also perform some basic pre-processing

tasks.

D2.2 – Initial release of EMPYREAN architecture

empyrean-horizon.eu 74/91

Multiple Kubernetes clusters (with possibly different distributions to adjust to the lower

compute power) will enable the orchestration of containerized workloads across the

respective layers (far-edge, deep edge, etc.). This will be then combined with a higher multi-

cluster scheduling, offered by EMPYREAN components, enabling efficient execution across the

different infrastructure layers based on application requirements.

The far-edge, which comprising the most computationally powerful hardware, will be

equipped with at least 16 or 32GB of RAM to host the majority of EMPYREAN components. It

may also include a GPU pool of nodes to execute the training of models needed for the

“Fingerprint Generation System” process (see D2.1 - section 4.1.3). The deep-edge, composed

mainly by the “Edge Smart Boxes - 8GB of RAM” (see D2.1 - section 4.1.5), will host a

lightweight Kubernetes distribution along with distributed EMPYREAN components, such as

the Ryax Workflow Engine Worker to control executions and connect with the main Ryax

server on the main cluster along with ZenoFlow daemon to perform the necessary dataflow

and real-time communication medium with the far-edge. While, some pre-processing may

occur at the deep-edge, this layer’s primary role is to transfer data to the far-edge for online

operations. Finally, the low-power hardware at the on-premises edge, such as the “Edge Smart

Boxes - 2/4GB of RAM” (see D2.1 - section 4.1.5) will probably only run light executables

orchestrated by the deep-edge microservices. These will primarily handle data collection and

transfer from the robots’ sensors.

Following the previous setup, the project will first explore the deployment of a single

EMPYREAN association for one robot that will be managed by one Aggregator. Towards the

end of the project, more complex scenarios will be investigated, such as a robot participating

in multiple associations and having multiple robots per association. Key EMPYREAN features

essential for the success of this deployment include (non-exhaustive list): (i) the multi-

clustering support within Ryax Workflow Engine, along with the scheduling optimizations at

both the multi-cluster and local cluster levels, (ii) the integration of Dataflow programming

framework within the Ryax Workflow Engine to support real-time data communication, (iii)

the application builder for unikernels, which will enable the deployment of binaries remote

controlled execution for IoT devices, (iv) the EMPYREAN telemetry service, (v) the analytics-

friendly distributed storage, (vi) and the privacy and security manager to ensure the secure

interactions in the highly distributed environment.

Concerning the workflow architecture, the initial approach will involve adapting the existing

production workflows (see D2.1 - section 4.1.3, figure 9) to the EMPYREAN distributed

architecture by leveraging the different components and added functionalities brought by

EMPYREAN. Hence, a possible direction is to decompose the current processes into the

following Ryax workflows (Figure 25):

1st workflow: This workflow will operate between the deep-edge and the far-edge, involving

the on-premises edge layer. The Data Recording System (DRS) will be executed at the deep-

edge, retrieving high-frequency data from on-premises edge devices and IoT sensors, and

compute some indicators for a first-level processing. It will then feed the data to a MongoDB-

based message queue system at the far-edge.

D2.2 – Initial release of EMPYREAN architecture

empyrean-horizon.eu 75/91

2nd workflow: Executed primarily at the far-edge, this workflow will be triggered by the data

stored in the MongoDB-based message queue. It will execute the Fingerprint Comparison

System (FCS) (initially using statistical simulations, later involving to ML inference), trigger

online alerts, and store necessary data on the database.

3rd workflow: Periodically executed on the most powerful computational units at the far-edge,

this workflow will retrieve data from the database and execute the Fingerprint Generation

System (FGS) to automatically generate patterns (ML training). These models will be stored in

the database for use in the 2nd workflow’s inference processes.

The first two workflows will be our focus during the first years of the project while the 3d one

will be developed towards the end.

Figure 25: Possible breakdown of the current behavior into three workflows (WF)

D2.2 – Initial release of EMPYREAN architecture

empyrean-horizon.eu 76/91

6.2 Proximal Sensing in Agriculture Fields (UC2)

This section presents an initial analysis of the smart agriculture use case in combination with

the EMPYREAN architecture, to propose a preliminary deployment setup. The use case is

characterised by remote, battery-powered field units (drones, robots) with 4G network

connection. The deep-edge infrastructure consists of drones or robots, collecting data from

different on-board sensors, offering basic computational capabilities. The far-edge

infrastructure has a more typical power supply, with WiFi or cabled network connections and

more powerful computational units, potentially including GPUs for ML inference.

A key objective of this use case is to perform data processing as close as possible to the sources

in order to transition to a near real-time assessment of soil health. To achieve this efficiently,

besides the real-time data processing nature of operations, spanning from edge to cloud, we

also need to manage the power consumption of the battery-powered field units (drones,

robots), ensuring their tasks are executed optimally within the limited time before they need

recharging. EMPYREAN components will provide key features to facilitate this operation.

The initial computing infrastructure setup will be composed by: (a) drones and robots

equipped with on-board computational units with around 8GB of RAM (such as Raspberry Pi

5), representing the deep-edge. The drones and robots will also feature various on-board

sensors, such as RGB or multispectral/hyperspectral cameras, (b) intermediate servers near

the fields, consisting of PC’s and laptops or GPU units (such as Nvidia Jetson) with around 32GB

of RAM, representing the far-edge, and (c) connection to the cloud, which will offer more

powerful computation, utilizing a variety of hardware resources and access to GPU node

pools.

Initially, the deployment will explore a single EMPYREAN association and aggregator to enable

the execution of tasks from the deep-edge to the far-edge up to the cloud. In the second half

of the project, we will investigate more complex scenarios involving multiple associations,

where each association may be dedicated to different soil fields and different organisations,

featuring different deep-edge setups but sharing far-edge and cloud resources.

Several key EMPYREAN features critical to the success of this deployment include: (i) power

consumption monitoring and its integration with the telemetry service, (ii) the privacy and

security manager along with the cyber-threat intelligence engine to guarantee that operation

will remain secure even in highly vulnerable contexts (such in 4G networks), (iii) the support

for intermittent connectivity, (iv) the provision and control of secure and distributed edge

storage, (v) the multi-clustering support, and (vi) the energy-efficient orchestration, among

the others.

D2.2 – Initial release of EMPYREAN architecture

empyrean-horizon.eu 77/91

Figure 26: Proximal sensing in agriculture fields use case deployment overview

Regarding the workflow architecture, Figure 26 presents an initial design of the workflows to

be explored. This design not only highlights the task separation and the way they will be

deployed on the hybrid computing infrastructure but also illustrates the use of various key

EMPYREAN components and how they will be utilised to efficiently address the needs of the

workflows. In particular, the following workflows are anticipated:

1st workflow – Management Zone Creation: This workflow will be deployed on the drones

computing infrastructure, enabling the collection of images at the deep-edge. The prediction

phase will take place either at the far-edge or directly at the deep-edge, depending on the

resource availability. The collected data will then be stored at the far-edge for insights

collection and future reference or training purposes.

D2.2 – Initial release of EMPYREAN architecture

empyrean-horizon.eu 78/91

2nd workflow – Soil Organic Carbon Inference: This workflow will be deployed on the robots

computing infrastructure, using data from the robot’s spectrometer and moisture related

sensors at the deep-edge. The prediction phase will primarily take place at the far-edge,

although lightweight ML models could be executed at the deep-edge. The processed data will

then be stored at the far-edge, and the soil organic carbon assessments will be used as inputs

for creating prescription maps.

3rd workflow - Battery Consumption Monitoring: This workflow tracks the battery

consumption of drones and robots, providing different soft and hard thresholds and triggering

alerts when necessary. Alerts may need human intervention or trigger other specific actions,

such as stopping data collection or offloading computation to nearby computing units.

6.3 Robotic Semi-autonomous and Lights Out Logistics Order

Picking (UC3)

The particular use case centers around a robotic warehouse automation application, where a

fleet of Autonomous Towing Robots (ATRs) performs order-picking based on incoming orders.

Warehouse operators utilize a specialized software named the Fleet Control System (FCS),

which enables then to submit order-picking tasks to the ATRs. In this use case, the ATRs will

be equipped with on-board computational capabilities along with a variety of sensors (such as

lidars and radars), enabling them to perform the needed computations directly upon the

robots at the deep-edge. The Fleet Control System is installed and operates mainly at the far-

edge, where more substantial computational resources are available, including GPU node

pools that can offload ML inference tasks and potentially perform ML training. Additionally,

public or private cloud resources can be also used to offload even more compute-intensive

operations.

A key challenge of this use case is the collaboration and data exchange between robots, which

besides the adaptations needed on the Fleet Control System itself it requires efficient data

transfer among robots and with the FCS. This setup also demands increased computational

power across the different layers of the continuum. Moreover, the possible intermittent

connectivity of the ATRs within the warehouse needs also to be taken into account. To address

these needs, the use case leverages novel functionalities from the EMPYREAN platform.

EMPYREAN’s ability to enable seamless executions on different layers of the edge-cloud

computing infrastructure to facilitate the operation of the robots, while ensuring secure data

transfers even under intermittent networking connectivity, will significantly enhance the

robot fleet’s operation.

The initial computing infrastructure setup for this use case will include: a) the ATR robots
equipped with onboard industrial PC units featuring Intel i5 CPUs and 16GB of RAM,
representing the deep-edge part. The robots will have various onboard sensors (such as lidars,
radars) to facilitate navigation and order-picking within the warehouse; b) intermediate
servers located in the warehouse office, consisting of PC’s, laptops, or GPU-equipped units

D2.2 – Initial release of EMPYREAN architecture

empyrean-horizon.eu 79/91

with around 32GB of RAM, representing the far-edge; and optionally c) a distant data-center
or cloud resources for offloading more demanding computations, offering more powerful
computation resources and diverse hardware sources along with access to GPU node pools.

Based on this infrastructure setup, one EMPYREAN association and aggregator will be
explored initially to enable the execution of tasks from deep-edge to far-edge up-to the cloud.
Each ATR robot will be an independent cluster in the association, possibly using lightweight
Kubernetes distributions such as K3S. Initially, one robot will participate in the association
while afterwards multiple robots will participate. By the end of the project, we will validate
the functionality of defining multiple associations for different aspects where robots may
participate in more than one association.

Critical EMPYREAN features for the successful execution of this particular deployment include:
(i) the integration of the dataflow programming (ZenohFlow) within the workflow
management system (Ryax), (ii) the cyber-threat intelligence engine and the privacy and
security manager to guarantee that operation will remain secure even in highly vulnerable
contexts (such in 4G networks), (iii) the support of unikernels for lightweight, secure, and
reproducible deployment at the edge, (iv) the support for intermittent connectivity, (v) the
edge distributed storage, (vi) the multi-clustering execution, and (vii) optimized offloading for
GPU-based ML inference..

At this initial stage of the project the following use case workflows are anticipated:

1st workflow: The FCS is connected to the EMPYREAN platform, and when a certain order is
submitted on the FCS, the workflow demands the collection of data at the deep-edge on the
computing cluster of the ATR while performing an initial pre-processing on-board and
transferring data to the far-edge for further data treatment while enabling storage of insights
and results on the FCS triggering specific alerts or observability functions. This workflow can
be duplicated and used for each different ATR.

Figure 27: UC3 preliminary deployment view – 1st workflow

D2.2 – Initial release of EMPYREAN architecture

empyrean-horizon.eu 80/91

2nd workflow: The ATR retrieves data, and depending on the task’s computational demands,

it may offload the more compute intensive tasks to the far-edge (or the cloud) featuring a

GPU. The processed data is then transferred back to the ATR to use it accordingly.

Figure 28: UC3 preliminary deployment view – 2nd workflow

3rd workflow: The FCS operator submits a request for robot collaboration between two ATR
robots, such as jointly picking up a particular (heavier) cart. Based on that, the two robots will
receive the operation order, and data will be transferred to both for preprocessing. This
particular preprocessing process will be started on both robots simultaneously. This may be
managed by a single workflow executing across both robots and waiting to aggregate insights
from both or by two workflows coordinating with each other.

Figure 29: UC3 preliminary deployment view – 3rd workflow

The focus in the initial years of the project will be on the first two workflows, while the third
workflow will be further developed in the later stages.

D2.2 – Initial release of EMPYREAN architecture

empyrean-horizon.eu 81/91

7 Implementation and Delivery Plan

7.1 Software Engineering Approach

7.1.1 EMPYREAN Platform CI/CD

This section outlines the components and software tools chosen for the EMPYREAN project,

detailing their roles in the Continuous Integration (CI) and Continuous Delivery (CD) process.

The EMPYREAN environment comprises various software elements designed to work

cohesively for integrating, testing, and deploying the platform efficiently.

In Task 5.1, our focus is on integrating, testing, and refining the EMPYREAN platform using a

streamlined, lightweight approach that promotes quick deployment and ease of use across

diverse environments. Given the collaborative nature of the project, involving numerous

partners with varying methodologies, this approach ensures a unified CI/CD framework that

can be readily adopted by all. This scenario minimizes installation and maintenance needs,

allowing partners to focus on development and innovation.

7.1.1.1 CI/CD Components

To satisfy the project’s need for a CI/CD procedure that guarantees all components are

interconnected and tested, four key components are essential.

Version Control System (VCS)

Version control, also known as source control, is the practice of tracking and managing

changes to the software code. Version Control Systems (VCS) are software tools that help

software teams manage changes to source code over time. VCS keeps track of every

modification to the code in a special kind of database. It consists of a remote repository of

files that comprise the source code of a software application. If a mistake is made, developers

can compare earlier versions of the code to fix the mistake while minimizing disruption to all

team members. This component must be integrated with CI tools to monitor the VCS and

trigger automated builds, tests, and deployments when it detects changes.

Continuous Integration / Continuous Delivery (CI/CD)

Continuous integration (CI) is a primary DevOps practice that allows for automation of the

integration of code changes from multiple contributors to a single software project.

Developers regularly commit code into a centralized repository where builds and tests then

run, thus asserting the new code’s correctness before integration.

The steps in a CI procedure include:

• Developers get copies of the source code and apply changes to their local system.

• The changes are then committed to the centralized, common repository.

• The server is immediately notified upon any incoming change.

D2.2 – Initial release of EMPYREAN architecture

empyrean-horizon.eu 82/91

• The server initiates the following actions:

o Pulls the latest code version, including the new changes.

o Builds the application and reports any potential problems.

o Runs unit and integration tests, reporting any issues if they exist.

o Releases any artifacts to be deployed for testing.

o Assigns a build tag to the software version that was built.

Test Logs and Report

A mechanism to display results related to unitary and integration tests performed after

producing testing builds of the software. A build refers to the process of compiling the source

code, linking it with libraries and dependencies, and generating an executable or deployable

artifact. Using this mechanism, the different log files generated during program execution and

the information about the program's status will be shown and easily checked. These reports

are fundamental in the CI/CD procedure as they provide insight into the status and results of

different tests executed during the development cycle. The reports generated are structured

in legible files containing relevant information, such as software dependencies.

Container Registry

A stateless, highly scalable central space for storing and distributing container images.

Container registries provide secure image management and a fast way to pull and push images

with the right permissions. The images stored in these containers are preconfigured snapshots

of applications and are configured to run in various environments. Container registries are

essential in CI/CD because they allow the DevOps team to manage different versions

efficiently and simultaneously.

7.1.1.2 CI/CD Workflow

Once all the components needed for the deployment of the CI/CD are revisited, a CI/CD
preliminary scenario composed of different tools is proposed, and the suggested workflow is
described in Figure 30 and detailed next:

1. Developers commit their code to the project code repository in GitHub.
2. A webhook is triggered (Commit trigger).
3. A Build is prepared in a GitHub Actions Runner.
4. Unit testing is conducted and results are displayed directly in GitHub with GA Test

Reporter.
5. Integration testing is performed, if necessary (in this case example of 2 components

for concept), involving components such as the Privacy and Security Manager (PSM)
and Service Orchestration (SO)

6. Based on the results:
a. If the Build and tests pass successfully, it will be published in the GitHub

Container Registry (GHCR).
b. If the Build or any of the tests fail, the artifact is not ready to publish, and the

issues must be resolved before proceeding.

D2.2 – Initial release of EMPYREAN architecture

empyrean-horizon.eu 83/91

This streamlined approach ensures that all partners can efficiently work together, leveraging
a common CI/CD framework that supports the collective goals of the EMPYREAN project.

Figure 30: CI/CD workflow

7.1.1.3 CI/CD Possible tool selection

These components were selected due to their lightweight and agile nature, which eliminates

the need for installation on our own servers and additional infrastructure. This plug-and-play

scenario effectively meets the CI/CD requirements of the EMPYREAN project, ensuring a

seamless and scalable integration process.

This streamlined approach ensures that all partners can efficiently work together, leveraging

a common CI/CD framework that supports the collective goals of the EMPYREAN project.

Version Control System: GitHub

GitHub could be selected as the VCS. GitHub is an ideal fit due to its multiple advantages, such

as security, integration tools, and cost-effectiveness. GitHub incorporates security features

like vulnerability scanning, dependency tracking, and code scanning, helping teams identify

and address security issues in their code. Additionally, GitHub natively integrates with various

development tools, CI/CD platforms, and third-party services, offering a wide range of variety.

Finally, GitHub offers a free plan that allows users access to a variety of resources and

functionalities, including unlimited collaborators for public repositories.

Continuous Integration: GitHub Actions

GitHub Actions is a continuous integration and continuous delivery (CI/CD) platform that

allows the automation of building, testing, and deployment of pipelines. Workflows can be

created to build and test every pull request to a repository or deploy merged pull requests to

production. Beyond DevOps, GitHub Actions allows workflows to be triggered when events

D2.2 – Initial release of EMPYREAN architecture

empyrean-horizon.eu 84/91

happen in other repositories. GitHub provides Linux, Windows, and macOS virtual machines

to run workflows, or can be self-hosted runners in an own data center or cloud infrastructure

(e.g. runners in a own k8s cluster). GitHub has no restrictions for free Organizations that have

public repositories and offers 2000 free minutes of build time per month. If these limits are

exceeded, hosting running is advisable to prevent any decrease in efficiency.

Logs and Report: Test Reporter (GitHub Action)

Test Reporter is a GitHub Action that displays test results from testing frameworks directly in

GitHub. It is used mainly for:

• Parsing test results in XML or JSON format to generate a visually appealing report
within a GitHub Check Run.

• Automatically annotating code sections where failures occur, leveraging captured
messages and stack traces from test executions.

• Offering a comprehensive evaluation of test results, including counts for passed,
failed, and skipped tests.

Container Registry: Docker Hub (Public Registry)

Docker Hub is the standard registry for Docker and Kubernetes. It is a highly scalable central

space for storing and distributing container images, providing secure image management and

a fast way to pull and push images with the right permissions and without either

administration overhead or resource costs. The only limitation with public registries is the lack

of full control over their actions and the potential expense if multiple private images are

needed.

7.2 Implementation Schedule

The overall work within the EMPYREAN project is organized based on a series of well-defined

and complementary phases (Figure 31) that start with the definition of the use cases and the

requirement analysis (Phase 1). Next, EMPYREAN adopts an iterative approach for the

definition of the architecture (Phase 2), the implementation and evaluation of the individual

technological developments (Phase 3), and the overall platform integration (Phase 4). The

design and implementation activities will be implemented according to a spiral model with

two iterations (M01-M18, M18-M36), each of which will include a series of activities that

bridge the gap between requirement analysis, technology, and innovation. The developed

components and services will be continuously integrated, according to the integration plan

(Section 7.1), with the defined interfaces and communication protocols as set in the

EMPYREAN architecture specification. The project will conclude with the demonstration of the

UCs (Phase 5) and the exploitation of the results.

D2.2 – Initial release of EMPYREAN architecture

empyrean-horizon.eu 85/91

Figure 31: Overall technical development strategy and methodology

Based on the above development strategy, the three main releases (Figure 32) for the

integrated EMPYREAN platform are:

• Initial platform release in M18

• Full platform release in M30

• Final platform release in M36

Figure 32: EMPYREAN development roadmap

D2.2 – Initial release of EMPYREAN architecture

empyrean-horizon.eu 86/91

The initial platform release will be the outcome of the first project development iteration (M4-

M15) and will provide the partial implementation of EMPYREAN components. In this version,

each component will implement a subset of the envisioned features along with the primary

inter-component communication interfaces. The initial release aims to provide a basic

functional prototype that will support the core functionalities of the project use cases.

Deliverable D5.2 “Initial release of EMPYREAN integrated platform” (M18) will provide its

description and documentation. Moreover, the initial platform prototype will provide critical

feedback for the second development iteration (M18-M36).

The EMPYREAN full platform release will be based on the initial release, and will provide the

remaining functionality, which has not been included in the early prototype. As the

development in technical work packages (WP3, WP4) conclude by M26, this release will be

provided in M30. The intention is to achieve a fully functional platform that integrates all

project components and provides a prototype suitable for the pilots’ experimentation.

For the final release of the EMPYREAN platform, delivered at the end of the project, the

consortium will focus on implementing the feedback from the final evaluation of the

EMPYREAN platform (Phase 5) through the demonstration of the three project use cases. The

outcomes from the demonstrators will be collected and documented, and videos will be

prepared and uploaded to project communication and dissemination channels. This version

will be fully integrated and documented as part of deliverables D5.4 “Final release of

EMPYREAN integrated platform” (M36) and D6.2 “Demonstrators’ deployment and

EMPYREAN evaluation” (M36). Moreover, it will be used to identify the critical and high-

impact components to create the final exploitation plans.

D2.2 – Initial release of EMPYREAN architecture

empyrean-horizon.eu 87/91

8 Requirements Coverage

Next, we outline how the initial set of functional requirements, which were meticulously

gathered, described, and categorized in deliverable D2.1 “State of the art, use cases analysis,

platform requirements and KPIs” (M6), are addressed by the various components of the

EMPYREAN architecture. Throughout the design phase of the initial release version of the

EMPYREAN architecture, all partners closely collaborated. This collaborative effort involved

iterative discussions and reviews among the technical and UC partners of the project, with the

primary objective of ensuring that the EMPYREAN platform would be fully capable of

delivering the specified functionalities.

The forthcoming deliverable D2.3 “Final EMPYREAN architecture, use cases analysis and KPIs”

(M12) will provide a comprehensive update, including the refined analysis of use cases and

platform requirements. The updated insights and evaluations will be incorporated into the

final version of the EMPYREAN architecture, also detailed in D2.3, to ensure the platform’s

robustness and alignment with project objectives.

Table 21: Functional requirements covered by the initial release of the EMPYREAN architecture

ID Short Description Priority Components

F_GR.1
Federate heterogeneous and
distributed IoT, edge and cloud
resources.

Must-
have

EMPYREAN Aggregator, EMPYREAN Registry,
Service Orchestrator, Privacy and Security
Manager, Telemetry Engine, EMPYREAN
Controller, Decentralized and Distributed
Data Manager, Edge Storage Gateway

F_GR.2
Enable collaborative autonomy in the
IoT-edge-cloud continuum.

Must-
have

EMPYREAN Aggregator, EMPYREAN Registry,
Service Orchestrator, Decision Engine,
Telemetry Engine, Decentralized and
Distributed Data Manager, Privacy and
Security Manager

F_GR.3
Encompass autonomous and
continuous control loops.

Must-
have

Service Orchestrator, Decision Engine,
Analytics Engine, Telemetry Engine,
Persistent Monitoring Data Storage,
EMPYREAN Controller

F_GR.4

Provide seamless deployment of
hyper-distributed cloud-native
applications across a collaborative
IoT-edge-cloud continuum.

Must-
have

Workflow Manager, Dataflow Programming
Component, Service Orchestrator, NIX-based
Environment Packaging, Application
Packaging, Container Runtime, Edge Storage
Gateway, Decentralized and Distributed Data
Manager

F_GR.5
Support hyper-distributed, highly-
demanding, and dynamic applications
from diverse domains.

Must-
have

Workflow Manager, Dataflow Programming
Component, Software-Defined Edge
Interconnect, Decentralized & Distributed
Data Manager, Workload Autoscaling,
Hardware Acceleration Abstractions,
Application Packaging

D2.2 – Initial release of EMPYREAN architecture

empyrean-horizon.eu 88/91

F_GR.6
Provide monitoring for cloud-native
applications and heterogeneous
infrastructure resources.

Must-
have

Monitoring Probes, Telemetry Engine,
Persistent Monitoring Data Storage,
Container Runtime

F_GR.7

Energy and power aware operation
for optimal power management,
energy efficiency and ecological
sustainability.

Must-
have

Monitoring Probes, Telemetry Engine,
Decision Engine, Workload Autoscaling,
Container Layers Locality Scheduler

F_ASSOC.1
Combine heterogeneous
computational and storage resources
and different connectivity resources.

Must-
have

EMPYREAN Registry, EMPYREAN Aggregator,
EMPYREAN Controller, Edge Storage
Gateway, Decentralized and Distributed Data
Manager

F_ASSOC.2

Facilitate secure onboarding of new
IoT devices, robots and edge/cloud
resources within the EMPYREAN
control and management plane.

Must-
have

EMPYREAN Registry, Secure and Trusted
Execution Environment, Privacy and Security
Manager

F_ASSOC.3
Constitute a secure and trustworthy
execution environment.

Must-
have

Privacy and Security Manager, CTI Engine,
Secure and Trusted Execution Environment,
Edge Storage Gateway

F_ASSOC.4
Support autonomous operation and
enhance resiliency across the
continuum.

Must-
have

Workflow Manager, Analytics Engine,
Decentralized and Distributed Data
Manager, Decision Engine, Workload
Autoscaling, EMPYREAN Controller,
Software-Defined Edge Interconnect

F_ASSOC.5
Provide low and predictable latency
for hyper-distributed applications.

Should-
have

EMPYREAN Aggregator, Software-Defined
Edge Interconnect, Decentralized and
Distributed Data Manager

F_ASSOC.6
Provide inter-Association
communication and exchange of
events.

Must-
have

EMPYREAN Aggregator, Decentralized and
Distributed Data Manager

F_ASSOC.7
Data-driven seamless workload and
data migration across the
Associations.

Must-
have

Telemetry Engine, Monitoring Probes,
Analytics Engine, Service Orchestrator, Edge
Storage Gateway

F_ASSOC.8
Aggregators must maintain a
catalogue of the Association
resources.

Must-
have

EMPYREAN Registry, EMPYREAN Controller,
Telemetry Engine

F_ASSOC.9

Aggregators must dynamically
discover resources within the
registered infrastructures and detect
events.

Must-
have

EMPYREAN Registry, EMPYREAN Aggregator,
EMPYREAN Controller Telemetry Engine,
Monitoring Probes

F_ASSOC.10
Aggregators must maintain the state
of the Association.

Must-
have

EMPYREAN Registry, EMPYREAN Aggregator,
Telemetry Engine, Persistent Monitoring
Data Storage

F_ST.1 Decentralized identity management.
Must-
have

p-ABC Library, Privacy and Security Manager

F_ST.2
Privacy-Preserving authentication and
authorization.

Must-
have

p-ABC Library, Privacy and Security Manager,
Secure and Trusted Execution Environment

F_ST.3 Policy-Based Encryption.
Must-
have

p-ABC Library, Privacy and Security Manager

D2.2 – Initial release of EMPYREAN architecture

empyrean-horizon.eu 89/91

F_ST.4 Automated Cyber Threat Analysis.
Must-
have

CTI Engine, Telemetry Engine, Persistent
Monitoring Data Storage

F_ST.5
ML for Anomaly Detection and
Cybersecurity.

Must-
have

CTI Engine, Telemetry Engine, Persistent
Monitoring Data Storage

F_ST.6 Secure and Trusted Execution.
Must-
have

Secure and Trusted Execution Environment,
Privacy and Security Manager, Container
Runtime, Unikernel Deployment

F_DCM.1
Provide S3-compatible storage service
that encompasses edge-cloud
continuum.

Must-
have

Edge Storage, Edge Storage Gateway

F_DCM.2
Provide an analytics-friendly erasure-
coded IoT storage platform.

Must-
have

IoT Query Engine, Edge Storage, Edge
Storage Gateway

F_DI.1
Decentralized decision-making,
speculative and multi-objective
resource orchestration.

Must-
have

EMPYREAN Registry, EMPYREAN Aggregator,
Decision Engine, Service Orchestrator,
EMPYREAN Controller

F_DI.2
Multi-agent speculative intelligent
resource orchestration across
EMPYREAN Associations.

Must-
have

Decision Engine, Service Orchestrator,
EMPYREAN Controller, Container Layers
Locality Scheduler

F_DI.3

Hierarchical orchestration and multi-
objective optimization for cognitive
resource orchestration within
Associations.

Must-
have

Decision Engine, Service Orchestrator,
EMPYREAN Controller, Container Layers
Locality Scheduler

F_DI.4
AI-enhanced data orchestration and
storage resource management within
and across Associations.

Must-
have

Decision Engine, Service Orchestrator, Edge
Storage Gateway, Edge Storage,
Decentralized and Distributed Data Manager

F_DI.5
Energy-aware workload and data
distribution mechanisms.

Must-
have

Decision Engine, Service Orchestrator,
EMPYREAN Controller, Container Layers
Locality Scheduler

F_DI.6
Monitoring and managing power and
energy consumption in IoT devices
and edge nodes.

Must-
have

Monitoring Probes, Telemetry Engine,
Analytics Engine

F_DI.7
Decentralized and AI-enabled service
assurance mechanisms.

Must-
have

Analytics Engine, Service Orchestrator,
Telemetry Engine, Persistent Monitoring
Data Storage

F_DI.8
AI-enhanced self-healing for
enhanced resiliency, adaptability, and
autonomous operation.

Must-
have

Workload Autoscaling, Analytics Engine, CTI
Engine, Service Orchestrator, EMPYREAN
Controller, Telemetry Engine, Persistent
Monitoring Data Storage

F_DI.9
Autonomous and adaptive workload
autoscaling.

Must-
have

Workload Autoscaling, Analytics Engine,
Container Layers Locality Scheduling,
EMPYREAN Controller, Telemetry Engine,
Persistent Monitoring Data Storage

F_SO.1

Continuum-native workflow-based
application design considering
dataflow programming and low-code
techniques.

Must-
have

Workflow Manager, Dataflow Programming
Component, NIX-based Environment
Packaging, Application Packaging

D2.2 – Initial release of EMPYREAN architecture

empyrean-horizon.eu 90/91

F_SO.2
Deployment objectives (SLOs)
definition for continuum-native
applications

Must-
have

Workflow Manager, EMPYREAN Registry,
Service Orchestrator, Decision Engine

F_SO.3
Seamless and declarative
orchestration of self-organized
distributed orchestration systems.

Must-
have

EMPYREAN Registry, Service Orchestrator,
Decision Engine, EMPYREAN Controller,
Container Layers Locality Scheduler

F_SO.4
Policy-based orchestration and
efficient resource allocation.

Must-
have

Workflow Manager, EMPYREAN Registry,
Service Orchestrator, Decision Engine,
EMPYREAN Controller, Telemetry Engine

F_SO.5
Context awareness and autonomous
adaptive response.

Must-
have

Workflow Manager, EMPYREAN Registry,
Analytics Engine, Workload Autoscaling

F_SO.6
Transparent lifecycle management of
hyper-distributed application
components.

Must-
have

Workflow Manager, Dataflow Programming,
Service Orchestrator, EMPYREAN Controller,
Container Runtime

F_SO.7
Coordinate workload migration within
and across Associations.

Must-
have

EMPYREAN Aggregator, Service
Orchestrator, Decision Engine, Analytics
Engine, EMPYREAN Controller

F_SO.8
Support automatic data migration
operations within and across
Associations.

Must-
have

EMPYREAN Aggregator, Service
Orchestrator, Decision Engine, Analytics
Engine, EMPYREAN Controller, Edge Storage
Gateway, Decentralized & Distributed Data
Manager

F_SO.9
Implementation and integration of
custom scheduling policies.

Must-
have

Decision Engine, Container Layers Locality
Scheduler

F_SO.10
Seamless orchestration and
management of both container-based
and serverless workloads.

Must-
have

Workflow Manager, Service Orchestrator,
EMPYREAN Controller, NIX-based
Environment Packaging, Container Runtime

F_SO.11
Flexible Hardware-accelerated
execution.

Must-
have

Hardware Acceleration Abstractions,
Container Runtime, Application Packaging,
EMPYREAN Controller

F_SO.12
Offload acceleration to nearby
devices.

Must-
have

Hardware Acceleration Abstractions,
Container Runtime, EMPYREAN Controller,
Software-Defined Edge Interconnect

F_SO.13 OCI-compatible container images.
Must-
have

Unikernel Application Builder, NIX-based
Environment Packaging, Unikernel
Deployment, Container Runtime

F_SO.14
Support diverse execution
environments.

Must-
have

Unikernel Application Builder, NIX-based
Environment Packaging, Unikernel
Deployment, Container Runtime, EMPYREAN
Controller

F_SO.15 Reproducible Environment Packaging
Must-
have

Unikernel Application Builder, NIX-based
Environment Packaging, Unikernel
Deployment

D2.2 – Initial release of EMPYREAN architecture

empyrean-horizon.eu 91/91

9 Conclusions

This deliverable provides a detailed report on the work performed in WP2, specifically within

Task 2.3, which focuses on defining the initial architecture of the EMPYREAN platform. The

architecture design was a collaborative effort involving all project partners, following a well-

defined methodology. The goal of the architecture is to establish an IoT-edge-cloud continuum

consisting of collaborative collectives of IoT devices, robots, and resources, extending

seamlessly from the edge to the cloud.

The deliverable presents both the conceptual and logical architecture of the multi-layered

EMPYREAN platform. Each layer is thoroughly analysed, detailing its internal decomposition

into functional components and their interrelationships. This early identification of the main

integration points between components is crucial, as it facilitates the overall design process

and sets the foundation for subsequent implementation phases. The document also

elaborates on the core functional components and provides an overview of the EMPYREAN

platform deployments that will support the project’s use cases. Furthermore, it introduces the

development roadmap for the EMPYREAN platform, and presents how the proposed

architecture addresses the challenging technical and use cases requirements outlined in D2.1

(M6).

This deliverable will serve as a guiding framework for the technical activities in WP3 and WP4,

which involve the development of the key building blocks of the EMPYREAN platform. It will

also support WP5 and WP6 in the development, integration, and evaluation of the project use

cases, ensuring that the outcomes of WP3-6 remain relevant and aligned with the EMPYREAN

objectives.

The architecture detailed in this deliverable is intended to be a living document that will evolve

throughout the project. It will be refined and enhanced based on insights from ongoing WP2

activities, as well as feedback from the technological developments in WP3 and WP4. The final

version of the EMPYREAN platform architecture, including detailed workflows between its

components and comprehensive interface descriptions, will be reported in D2.3 “Final

EMPYREAN Architecture, Use Cases Analysis, and KPIs” (M12). This final deliverable will

encapsulate the complete architectural vision of EMPYREAN, ensuring a cohesive and robust

framework that supports the project's ambitious goals and provides clear guidance for future

developments.

