BB Ref. Ares(2024)6946075 - 01/10/2024

N
(EIMPYREAN

TRUSTWORTHY, COGNITIVE AND AI-DRIVEN
COLLABORATIVE ASSOCIATIONS OF 10T DEVICES AND
EDGE RESOURCES FOR DATA PROCESSING

Grant Agreement no. 101136024

Deliverable D2.2
Initial Release of EMPYREAN Architecture

Programme: HORIZON-CL4-2023-DATA-01-04
Project number: 101136024

Project acronym: EMPYREAN

Start/End date: 01/02/2024 - 31/01/2027
Deliverable type: Report

Related WP: WP2

Responsible Editor: ICCS

Due date: 31/08/2024

Actual submission date: 30/09/2024
Dissemination level: Public

Revision: FINAL

This project has received funding from the European Union’s Horizon
Europe research and innovation programme under grant agreement
No 101136024

A
D2.2 — Initial release of EMPYREAN architecture @MPYREAN
~

Revision History

Date Editor Status | Version Changes
18.03.24 | Aristotelis Kretsis Draft 0.1 Initial ToC
25.05.24 | Aristotelis Kretsis Merge initial contributions in Sections
Draft 0.2
3,4,and 7
10.06.24 | Panagiotis Kokkinos Draft 0.3 Update and finalize ToC
Int t tributions by ICCS, UMU,
09.07.24 | Panagiotis Kokkinos Draft 0.4 ntegrate contnibutions by

CC, NEC, NUBIS in Sections 3,4,5

Integrate final contributions by ICCS,

23.08.24 | Aristotelis Kretsis Draft 0.5 NVIDIA, CC, UMU, ZSCALE, RYAX,
NUBIS, NEC in Sections 3,4,5,7
10.09.24 | Aristotelis Kretsis Draft 0.6 Finalize sections 3,4,5,7,8
Integrate final contributions b
21.09.24 | Panagiotis Kokkinos Draft 0.7 IDEKgO, EV ILVO, TRAC in Section 6 Y
26.09.24 | Aristotelis Kretsis Draft 0.8 Revised version after internal review
30.09.24 | ICCS Final 1.0

Author List

Organization Author

IcCS Aristotelis Kretsis, Panagiotis Kokkinos, Emmanouel Varvarigos

NVIDIA Dimitris Syrivelis

cc Marton Sipos, Marcell Feher, Daniel E. Lucani

umMu Eduardo Canovas, Antonio Skarmeta

ZSCALE Ivan Paez

RYAX Pedro Velho, Yugiang Ma, Michael, Mercier, Yiannis Georgiou

NUBIS Anastassios Nanos, Charalampos Mainas, Georgios Ntoutsos, llias Lagomatis,

Maria Goutha, Panagiotis Mavrikos, Anastassios Tsakas, Konstantinos
Papazafeiropoulos

IDEKO Aitor Ferndndez, Javier Martin

NEC Jaime Fuster, Roberto Gonzélez

EV ILVO Jan Bauwens, Theodoros Chalazas, Panagiotis Ilias
TRAC Keshav Chintamani

Internal Reviewers

Dimitris Syrivelis, NVIDIA
Marton Sipos, CC

empyrean-horizon.eu 2/91

A
D2.2 — Initial release of EMPYREAN architecture @MPYREAN
~

Abstract: This deliverable (D2.2) presents the outcomes of Task 2.3 “Architecture
Specification”, Work Package 2 “Requirements and System Design” of the EMPYREAN project,
during the first iteration of the incremental implementation plan. The deliverable presents the
initial architecture specifications of the EMPYREAN platform. It also provides a breakdown of
the platform’s key building blocks and describes their interactions. Moreover, the EMPYREAN
implementation and delivery plan is introduced.

Keywords: EMPYREAN Architecture, EMPYREAN Platform, Associations, Edge-Cloud
Continuum, Cognitive Orchestration, Trustworthy, Al-Driven Data Processing

empyrean-horizon.eu 3/91

A
D2.2 — Initial release of EMPYREAN architecture @MPYREAN
~

Disclaimer: The information, documentation and figures available in this deliverable are written by the
EMPYREAN Consortium partners under EC co-financing (project HORIZON-CL4-2023-DATA-01-04-
101136024) and do not necessarily reflect the view of the European Commission. The information in
this document is provided “as is”, and no guarantee or warranty is given that the information is fit for
any particular purpose. The reader uses the information at his/her sole risk and liability.

Copyright © 2024 the EMPYREAN Consortium. All rights reserved. This document may not be copied,
reproduced or modified in whole or in part for any purpose without written permission from the
EMPYREAN Consortium. In addition to such written permission to copy, reproduce or modify this
document in whole or part, an acknowledgement of the authors of the document and all applicable
portions of the copyright notice must be clearly referenced.

empyrean-horizon.eu 4/91

D2.2 — Initial release of EMPYREAN architecture r:/(@\MPYREAN
e

Table of Contents

1
2

3

4

5

6

EXECUTIVE SUMIMIAIY Luiiiiiii s 11
TaTd o T 1U o1 4 o o S UPRR 12
2.1 Purpose of this dOCUMENTccouiiiiiiceee e e e 12
2.2 DOCUMENT STIUCTUIE ... s 13
. T XU o [T ol <SPS 13
EMPYREAN Technologies and RESOUICESccovvviiieiiiiiieeeiiieeeseieee e esireeesssveee e ssiaeeeeenans 14
3.1 EMPYREAN Hardware RESOUICESc.uueeeiiiiiieeeiiiieeesiiieeessiieeeessnseeessssseessssssseeessnnns 14
3.1.1 Hardware ACCEIEIatorS. . ..ot e e e e e e e e e e e e eannes 14
3.1.2 Smart NICS and Data Processing UnitS.......cccceeeveiciiiiiieee e 15
3.1.3 Smart Boxes for CNC Machings..........oeeieiiieeiciiee e 15
3.2 EMPYREAN Software CoOmMPONENTS.....cccoevecuiiiiieeee e eeccnttrreee e e seeevvnree e e e e e e s snvaeneeas 16
3.2.1 [A = TG Gl] o =T VPSPPI 16
3.2.2 Secure Execution ENVIrONMENTcciiiiiiiiiiiiiiiiiiiiiiiieierereeereeeeeeeeeveeeveeereeeseeeeeneee 17
3.23 Software-defined Edge INtercoNNecCteeveieciiieeiciieee e 18
3.24 Hardware Acceleration AbStractionsccceeviveiiieeieiiiie e 20
EMPYREAN Platform COMPONENTSeeeiiiiiiieiciiiiee ettt et e et e e s tre e e e e eare e e e eenaaeeeenns 23
4.1 Privacy and SECUNitY IManageruuuieiei it e et e e e esrrer e e e e e e e e e enrreaeeas 23
4.2 Edge Storage and Edge Storage GateWayccveeeeeeeeeeciiiiieeee e e e 25
4.3 Decentralized and Distributed Data Manager......ccccoocccoiiiieeeeeeccccciieeeee e 26
4.4 Local Orchestration and Autoscaling Optimizationscccccceveeeeevcciiiieeee e, 28
R o - V4 d (ot = o V{1 o T RURURRRRP 30
4.6 Cyber Threat IntelligeNnce ENGINE....uueeiiiii ettt rrree e e e e e e nareaeees 32
4.7 DECISION ENZINE. it an 34
O T V1Y o T G Fo YA 1V, =T =T =T SRR 37
4.9 Dataflow Programming COMPONENTtccuueiiiiiiiee et e e e 40
4.10 Lightweight Application Packaging.......cccoccccuviiiiieii e 41
4.11 Application Builder for UniKErNelsooocceirieeiiee e 42
4.12 Analytics-friendly Distributed StOragecccoovveeeeiiiiiciiirieeee e 45
4.13 Service Orchestrator and EMPYREAN Controllerccoccuveeiviieee e 46
414 TelEMELIY SEIVICE ..ciitivieeieeeee ettt e e e eeeerree et e e e e e sebbreeeeeeeeeesssssssaereeeeessesnnrrenees 49
4,15 EMPYREAN AZEIregator..cccciiiiiiiiiiiiiie i sttt eertcss e e e e e e e aabbss s s e s eeeeaeabannssaaaaans 53
4.16 EMPYREAN REGISEIY ..ueiiiuiieiiuiieiiiiesiteeesitteesteeesteeesteeesiaeessaaesnsaeessaeesssaeesnseeesssessnsnes 55
EMPYREAN ArChitECtUI ..ottt ettt e e et e e e e e e e s aareae e e e e e e e eenanes 60
5.1 High-Level Archit@CtUre ... e e e 60
5.2 Data Spaces and ArChit@CUIEeeiiiiiiicciirieeeee et e e e arraeeeeee e 67
LT T oY= Tor- | I Vol o V1 (<ot U < TP 71
EMPYREAN Platform DeploymMent VIEWeeeeiiiiieiiciiieeiee e cecirreeeee e e eeesinrree e e e e e e eeanes 73
6.1 Anomaly Detection in Robotic Machining Cells (UC1)cccceveuieevciieencieeeriee e 73
6.2 Proximal Sensing in Agriculture Fields (UC2)......ccccouieriieeiiieieieeecieeeeee e 76
6.3 Robotic Semi-autonomous and Lights Out Logistics Order Picking (UC3) 78

empyrean-horizon.eu 5/91

s
D2.2 — Initial release of EMPYREAN architecture (/MPYREAN

7 Implementation and Delivery PIan ...t 81
7.1 Software Engineering APProachocueeeeeiiiiee it 81
7.1.1 EMPYREAN PIatform CI/CD ...ouviiiieeieeieesieetteste ettt 81

7.2 Implementation SChedule ... 84

8 ReqUIremMENTS COVEIAZE .uiiiriiiiiriiitiritettteteeeeteeeeeterereeeteeeeerererrtererrererereee.. 87
S B ©o) 0T [o ISR PPRRSPPRPPN 91

empyrean-horizon.eu 6/91

D2.2 — Initial

release of EMPYREAN architecture r:/(@\MPYREAN
e

List of Figures

Figure 1: EMPYREAN edge node with wired backhaul and attached hardware sensors......... 19
Figure 2: VACCEl SOftWAre StaCKcoiiiiiiii it 21
Figure 3: Privacy and Security Manager interaction with other EMPYREN services 23
Figure 4: Edge Storage and Edge Storage Gateway components and dependencies 25
Figure 5: Distributed data query in automotive contextceccevviiveieeiieicccceee e, 27
Figure 6: Local Orchestration and Autoscaling Optimizations dependenciesc...u....... 29
Figure 7: Analytics Engine core components and dependencies.......ccccoccueeeerciveeeercveeeeeennen 31
Figure 8: EMPYREAN Cyber Threat Intelligence ENgiNeccccuveeiiiiieeeiccieee e 33
Figure 9: Decision Engine core components and dependenciesccccceeveccvviereeeeeeeeeccnvvennnn. 35
Figure 10: Workflow Manager components and dependencies........cccceeeeveccvivereeeeeeeccccevvnnenn. 37
Figure 11: Representation of a distributed dataflow programming using ZenohFlow 40
Figure 12: NIX-based Environment Packaging components and dependencies..................... 42
Figure 13: High-level overview of the Bunny WOrkflow..........cccoeevvvieeieeiiiiiciiiieeeee e, 43
Figure 14: Analytics-friendly Distributed Storagecooceveei e, 45
Figure 15: Service Orchestrator and EMPYREAN Controller components and dependencies 47
Figure 16: EMPYREAN Telemetry Service components and dependencies........ccccceeecuunnneeeen. 51
Figure 17: EMPYREAN Aggregator core components and dependencies.........cccceeeeeeeennnnnnen. 54
Figure 18: EMPYREAN Registry core components and dependencies........c.ccccveeeercveeeeennen. 56
Figure 19: EMPYREAN Association-based loT-Edge-Cloud continuum..........ccccceeeeericnnnnneen. 60
Figure 20: EMPYREAN high-level architecture ..., 61
Figure 21: EMPYREAN Aggregator and Associations’ management.........ccccoovvveeeeiiicccnnnnneen. 63
Figure 22: Gaia-X Connecting Data & Infrastructure Ecosystems™®..........ccevvvvevveceieesnenne, 69
Figure 23: Design principles for Data SPacCEScoovecvurreeeeiieeeeiiireeeee e eeeecrreee e e e e esnrreeeees 70
Figure 24: EMPYREAN logical archit@CtUrecccoeiieciiiiiieee e 72
Figure 25: Possible breakdown of the current behavior into three workflows (WF) 75
Figure 26: Proximal sensing in agriculture fields use case deployment overview.................. 77
Figure 27: UC3 preliminary deployment view — 15t WOrkflow.........ccccoeeverievieeecieeciiieccveeene 79
Figure 28: UC3 preliminary deployment view — 2" WOrkflow........c.cccoeeveeivieeeiecieseeeeseene 80
empyrean-horizon.eu 7/91

D2.2 — Initial release of EMPYREAN architecture i;MPYREAN

Figure 29: UC3 preliminary deployment view — 3™ WOrkflowccccoeeveveeeeeeeneeeeeevenene 80
Figure 30: CI/CD WOIKFIOWocviiiiieiiecee ettt ettt ettt et ste e aeeebeesaaeenreesnnaens 83
Figure 31: Overall technical development strategy and methodologyccccccveeeviivieeennnnen. 85
Figure 32: EMPYREAN development roadmapcoooecueiiiiiiiii e 85
List of Tables

Table 1: Description of p-ABC C Library COMpPONeNntscccueeeeeiiiieeeeciiieeeeciieeeeecveeeeesvveee e 16
Table 2: Description of Secure Execution Environment.........cccooecciveeiiniiiee e 18
Table 3: Description of software-defined edge interconnect components.........cccccceeeevvveennn. 19
Table 4: Description of VACCEl COMPONENLoiviiiiiiiieeee e 22
Table 5: Description of Privacy and Security Manager core components........ccccceeeeveccnvvvnnnn. 24
Table 6: Description of Edge Storage and Edge Storage Gateway components 25
Table 7: Description of Decentralized and Distributed Data Manager components............... 28

Table 8: Description of Local Orchestration and Autoscaling Optimizations components 29

Table 9: Description of Analytics Engine core components........cccoceveeveeiieiccciiieeeee e eccceeeen, 31
Table 10: Description of Cyber Threat Intelligence........uuvveeeeee e, 33
Table 11: Description of Decision Engine core COmponentscccceeveeeeeecciniieeeeeeeeseecnvveeeen 35
Table 12: Description of Workflow Manager components.........cccvvveeeeeeeeieciiineeeeeeeeeeecvveeeen. 38
Table 13: Description of Dataflow programming componentcccceeeeeveciiireeeeeeeeeecccvneeeen. 41
Table 14: Description of NIX-based Environment Packaging.......ccccccceveeeieiicciiiieeee e, 42
Table 15: Description of Application Builder for Unikernels componentsccccccceeeuunnneeeen. 43
Table 16: Description of Analytics-friendly Distributed Storage components 45

Table 17: Description of Service Orchestrator and EMPYREAN Controller core components 47

Table 18: Description of Telemetry Service core COMPONENTSeeeeveeeeeiiciinrreeeeeeeeeeninnreeen. 51
Table 19: Description of EMPYREAN Aggregator core components........coccccvvveeeeeeeeeeccnvvnnenn. 54
Table 20: Description of EMPYREAN Registry core components.......cccceeeeeecuviieeeeeeeeeeecnvvnnenn. 57

Table 21: Functional requirements covered by the initial release of the EMPYREAN
10 011 =Tt (U T PP OO UPRRUPPPPPN 87

empyrean-horizon.eu 8/91

D2.2 — Initial release of EMPYREAN architecture

N
@MPYREAN

Abbreviations
ABC Attribute-based Credentials
ABE Attribute-Based-Encryption
Al Artificial Intelligence
AMQP Advanced Message Queuing Protocol
API Application Programming Interface
BDVA Big Data Value Association
ATR Autonomous Towing Robot
cb Continuous Delivery
Cl Continuous Integration
CNC Computer Numerical Control
CP-ABE Ciphertext-Policy Attribute-Based-Encryption
CPU Central processing unit
CRI Container Runtime Interface
CTA Cyber Threat Alliance
CTI Cyber Threat Intelligence
D Deliverable
DAG Directed Acyclic Graph
DevOps Development and Operations
DDS Data Distribution Service
DID Decentralized Identifier
DLT Distributed Ledger Technologies
DRS Data Recording System
DSBA Data Space Business Alliance
EC Elliptic Curve
EDC Eclipse Data Space Connector
FCS Fingerprint Comparison System
FCS Fleet Control System
FGS Fingerprint Generation System
FPGA Field Programmable Gate Arrays
FTC FIWARE True Connector
GHCR GitHub Container Registry
GPU Graphics Processing Unit
HPC High Performance Computing
HW Hardware
1/0 Input/Output
laaS Infrastructure as a Service
IDSA International Data Spaces Association
lloT Industrial Internet of Things
loC Indicators of Compromise
loT Internent of Things
IP Intellectual Property
JSON Javascript Object Notation
JWT JSON Web Token
K8s Kubernetes
KPI Key Performance Indicator

empyrean-horizon.eu

9/91

D2.2 — Initial release of EMPYREAN architecture

@MPYREAN

LAN

M
MAN
MISP
ML
MQTT
NDN
NIC
OBU
OocCl
OPC-UA
OTA
Paas
PMDS
PS-MS
PSM
Pub/Sub
RDMA
REST
RTL
Saas
SDK
SO

SSI
SW
TCP
TEE

TF
TPU
TSN
ucC
URI
VC
VCS
VM
VP
WAN
WASM
WP
XACML
ZKP

Local Area Network

Month

Metropolitan Area Network
Malware Information Sharing Platform
Machine Learning

Message Queuing Telemetry Transport
Named-Data Networking

Network Interface Card

Onboard Unit

Open Container Initiative

OPC Unified Architecture
Over-the-Air

Platform as a Service

Persistent Monitoring Data Storage
Pointcheval-Sanders Multi-Signatures
Privacy and Security Manager
Publish/Subscribe

Remote Direct Memory Access
Representational State Transfer
Register Transfer Level

Software as a Service

Service Development Kit

Service Orchestrator
Self-Sovereign Identity

Software

Transmission Control Protocol
Trusted Execution Environment
Task Force

Tensor Processing Unit
Time-Sensitive Networking

Use Case

Unique Resource Identifier
Verifiable Credentials

Version Control System

Virtual Machine

Verifiable Presentations

Wide Area Network

WebAssembly

Work Package

Extensible Access Control Markup Language
Zero-Knowledge Proofs

empyrean-horizon.eu

10/91

D2.2 — Initial release of EMPYREAN architecture Z

'''''

1 Executive Summary

EMPYREAN envisions an loT-edge-cloud continuum composed of collaborative collectives of
loT devices, robots, and resources, seamlessly extending from the edge to the cloud.
EMPYREAN refers to this concept as the Association-based continuum, where multiple
Associations—each a collaborative collective of loT devices, robots, and diverse resources—
operate concurrently across heterogeneous infrastructures, spanning different providers,
geographical locations, and connectivity types. These Associations collectively form a dynamic
and interconnected loT-edge-cloud ecosystem.

In this Association-based continuum, EMPYREAN aims to autonomously balance computing
tasks and data both within individual Associations and between federated Associations,
optimizing resource utilization, performance, and resiliency. To achieve this, EMPYREAN is
developing a distributed and Al-enabled control and management plane across the loT-edge-
cloud continuum. This infrastructure will facilitate the creation, management, and operation
of Associations, supporting the ubiquitous computing, storage, and communication needs of
current and future hyper-distributed, dynamic, and time-critical applications.

This deliverable introduces the initial reference architecture of the EMPYREAN platform,
derived from the consortium’s efforts to design a system that meets the requirements
identified in deliverable D2.1 - “State of the art, use cases analysis, platform requirements and
KPIs" (M6). The architecture is designed to provide the functionalities needed to achieve the
project’s objectives and address the specific needs of the use cases. Key innovations and
technological advancements are also highlighted, showcasing the novel ecosystem of
technologies that the EMPYREAN employs and develops.

The EMPYREAN platform features a multi-layer modular architecture that integrates distinct
functionalities and features necessary to enable the Association-based continuum. This
approach not only facilitates future extensions but also supports the independent use and
exploitation of platform components. The architecture is detailed at both the conceptual and
logical levels in this deliverable, with the logical architecture elaborating on all the
components developed within the project and illustrating their core interactions.
Furthermore, this deliverable provides an early overview of the EMPYREAN platform
deployments that will support the use cases (UCs), laying the groundwork for subsequent
implementation and evaluation phases. It also outlines the adopted implementation and
delivery plan, which includes the software engineering approach that will guide the
EMPYREAN platform development. This information serves as a framework for the technical
Work Packages (WPs), ensuring alignment and coherence across development activities.

As the project progresses, the architecture will be iteratively refined based on feedback from
ongoing development efforts. The final version of the architecture, including comprehensive
workflows and interface specifications, will be documented in Deliverable D2.3 — “Final
EMPYREAN Architecture, Use Cases Analysis, and KPIs,” scheduled for completion at M12. This
final deliverable will present the fully matured architecture, providing a detailed and
actionable blueprint for the platform's deployment and operation.

empyrean-horizon.eu 11/91

D2.2 —Initial release of EMPYREAN architecture (\,MPYREAN

Q

N

2 Introduction

2.1 Purpose of this document

This deliverable presents the preliminary outcomes of Task 2.3 — “Architecture Specification”
within Work Package 2 — “Use Cases Analysis, System Requirements and Overall Architecture”
during its initial phase (M1 — M7). Task 2.3 focuses on designing the overall EMPYREAN
architecture and defining the workflows and interfaces between the EMPYREAN components,
ensuring a structured and coherent system integration.

The primary objective of D2.2 is to build upon the initial contributions of Tasks 2.1 and 2.2, as
described in deliverable D2.1 (M6). It aims to provide a comprehensive description of
EMPYREAN’s components, along with the associated technical specifications that will guide
the project’s next phases. In this context, D2.2 outlines the initial high-level architecture of
the EMPYREAN platform, detailing the interactions among its key building blocks and offering
a preliminary detailed architecture. Additionally, it includes an early description of the
EMPYREAN platform deployments that will support the project’s use cases (UCs), laying the
groundwork for future implementation.

D2.2 will serve as a critical reference for the research and development activities within the
technical work packages (WP3-4) and will also support the development, evaluation, and
integration activities related to the project’s use cases (WP5-6). Each technical work package
will ensure that all project developments are in full alignment with the architecture and
specifications outlined in this deliverable, maintaining consistency across the project's various
activities. As the technical work progresses, the architecture will be iteratively refined and
expanded, incorporating more detailed technical specifications for the components,
interfaces, and workflows.

Furthermore, the forthcoming iteration of this deliverable will provide comprehensive
interface specifications for EMPYREAN platform components, alongside detailed workflow
descriptions that capture the interactions between these components, thereby ensuring a
seamless and integrated approach throughout the project. The final output of Task 2.3 will be
documented in D2.3 - “Final EMPYREAN architecture, use cases analysis and KPIs”, which is
scheduled for completion in M12 of the project, culminating the architectural development
efforts with a refined and fully specified system blueprint.

empyrean-horizon.eu 12/91

D2.2 — Initial release of EMPYREAN architecture r:/(@\MPYREAN
e

2.2 Document structure

The present deliverable is split into six major chapters:

e EMPYREAN Technologies and Resources
e EMPYREAN Platform Components

e EMPYREAN Architecture

e EMPYREAN Platform Deployment View
e Implementation and Deliverable Plan

e Requirements Coverage

2.3 Audience

This document is publicly available and should be useful to anyone interested in the initial
description of the EMPYREAN components and the specification of the initial release of the
EMPYREAN architecture. Moreover, this document can also help the general public better
understand the framework and scope of the EMPYREAN project.

empyrean-horizon.eu 13/91

D2.2 — Initial release of EMPYREAN architecture E@MPYREAN

3 EMPYREAN Technologies and Resources

EMPYREAN aims to develop an ecosystem of innovative technologies that enable a
collaborative, trustful, and cognitive loT-edge-cloud continuum. This continuum efficiently
and autonomously integrates heterogeneous infrastructure resources from various
technological domains with diverse characteristics and capabilities. The key technologies
developed in EMPYREAN include: (i) lightweight, privacy-preserving solution for Attribute-
Based Credentials (ABCs) in decentralized environments, (ii) secure and trusted execution
environments with workload isolation across the loT-edge-cloud continuum, (iii) software-
defined loT-edge interconnects, and (iv) hardware acceleration abstractions for the flexible
execution of workloads that can benefit from hardware acceleration.

The following sections provide more information on the hardware resources considered
within the EMPYREAN platform and associated software technologies developed within the
EMPYREAN project.

3.1 EMPYREAN Hardware Resources

3.1.1 Hardware Accelerators

Hardware accelerators are specialized systems designed to enhance the efficiency of
computations performed by general-purpose processors, such as CPUs. Many computational
tasks that can be parallelized, while typically executable on a generic CPU, can also be
offloaded to custom-designed hardware for significantly faster performance. Hardware
accelerators are commonly employed in various domains, including machine learning (ML),
computer vision, video editing/rendering, digital signal processing, and cryptography,
However, the use of hardware acceleration is most beneficial when dealing with
computationally intensive algorithms that demand high throughput and performance. For
routine tasks or algorithms that are more serial in nature, a CPU may actually be more
efficient. This is because CPUs generally operate at higher clock frequencies than accelerator
cores and are optimized for handling serial tasks and branching logic.

Nevertheless, offloading performance-critical functions to specialized hardware can be a
highly effective strategy to reduce execution time and improve energy efficiency. Hardware
accelerators such as Graphics Processing Units (GPUs), Field-Programmable Gate Arrays
(FPGAs), and Application-Specific Integrated Circuits (ASICs) are commonly used for this
purpose. GPUs consist of a large number of specialized processing units designed to handle
massive parallel data streams, making them ideal for tasks such as matrix calculations in deep
learning and rendering in computer graphics. FPGAs and ASICs, on the other hand, implement
fixed-function algorithms directly in hardware. FPGAs offer the flexibility to be reprogrammed
for different tasks, while ASICs are highly efficient but custom-built for specific algorithms,
providing optimal performance in their respective domains.

empyrean-horizon.eu 14/91

D2.2 — Initial release of EMPYREAN architecture E@MPYREAN

These accelerators are often deployed in environments such as edge computing, where they
operate close to the data source in compact devices that integrate memory, CPU, 1/0, and
acceleration capabilities. Alternatively, they can be found in cloud environments, typically
integrated into server systems where they handle large-scale, data-intensive workloads. By
harnessing the power of hardware accelerators, applications can achieve faster processing
speeds and greater energy efficiency, especially in scenarios requiring the parallel processing
of large datasets.

3.1.2 Smart NICS and Data Processing Units

NVIDIA Mellanox ConnectX® SmartNICs utilize stateless offload engines, overlay networks,
and native hardware support for RoCE and GPUDirect™ technologies that reduce 1/0 latency
within and beyond the server boundaries and results in significantly improved application
performance. Developers can use ConnectX custom packet processing technologies to
accelerate server-based networking functions and offload datapath processing for compute-
intensive workloads, including transport, network virtualization, security, and storage
functionalities.

The NVIDIA® BlueField®-3 data processing unit (DPU) delivers a broad set of accelerated
software defined networking, storage, security, and management services with the ability to
offload, accelerate and isolate data center infrastructure. Sitting at the edge of every server,
BlueField-3 empowers agile, secured and high-performance cloud and artificial intelligence
(Al) workloads, all while reducing the total cost of ownership and increasing data center
efficiency. The NVIDIA DOCA™ software framework enables developers to rapidly create
applications and services for the DPU. NVIDIA DOCA makes it easy to leverage DPU hardware
accelerators, providing breakthrough data center performance, efficiency and security.

3.1.3 Smart Boxes for CNC Machines

IDEKO collaborates closely with Savvy Data Systems, a technological start-up specializing in
machine-monitoring and data analytics. Together, they developed the Smart Box, an industry-
ready device to collect machine data. The Smart Box serves as both a data collection tool and
a data gateway featuring an industrial PC setup. It is capable of connecting to the most
common CNC models (machines) and other data sources and sensors.

There are several models of the Smart Box, each with different price ranges and computational
power. Typically, the boxes are deployed to one-to-one basis, one box is deployed for each
CNC machine. This arrangement can result in some machines having more computational
power than others, depending on the model of the box attached to them. Despite these
differences, each Smart Box comes with the full set of connectivity options required to gather
data form the machine and send it to a private cloud for further analysis. It is designed to
capture machine performance indicators such as axis positions, oil pressure, and running
programs at a configurable frequency, usually every second. One of the key advantages of the
Smart Box is its ease of use, as it is nearly plug-and-play, with support for remote configuration
and software upgrades. Additionally, it is compatible with Docker containers, enabling users

empyrean-horizon.eu 15/91

D2.2 — Initial release of EMPYREAN architecture E@MPYREAN

to deploy edge computing solutions directly on the device. This is particularly useful for
scenarios where customers prefer to process data locally rather than sending it to the cloud,
either for privacy concerns or specific operational requirements.

3.2 EMPYREAN Software Components

3.2.1 p-ABCC Library

The p-ABC C Library is a lightweight, privacy-preserving solution designed to support Attribute-
Based Credentials (ABCs) in decentralized environments. It is optimized for loT and low-
computation devices, enabling independent credential management. Utilizing advanced
cryptographic techniques like Pointcheval-Sanders (PS) multi-signatures (MS) and Zero-
Knowledge Proofs (ZKFs), the library ensures secure authentication. It enhances identity
management and access control across the EMPYREAN ecosystem through its integration with
the Privacy and Security Manager (Section 4.1).

Table 1: Description of p-ABC C Library components

Component ID | WP3.1.2
Name p-ABC C Library

The p-ABC library is a cutting-edge solution designed to facilitate distributed,
privacy-preserving Attribute-Based Credentials (ABCs) by leveraging PS Multi-
Signatures (MS), with a robust foundation in Elliptic Curve (EC) arithmetic. It
empowers developers to implement advanced cryptographic protocols, enabling
secure and private authentication mechanisms. The p-ABC library enables the
creation of derived, verifiable presentations that can be shared and validated
without compromising user privacy. By employing ZKFs, the module ensures that
sensitive information remains confidential, even in verification process. It is ideal
for applications requiring high levels of privacy and security, such as decentralized
identity systems, confidential transactions, and secure access control.

High level Moreover, the p-ABC module is designed with ease of use in mind, offering an
description automated script to streamline the setup process. This feature simplifies its
deployment and integration into existing systems, making it accessible even for
those who may not have extensive expertise in cryptography. Overall, the p-ABC
modaule library represents the latest in privacy-preserving technology, providing
the tools necessary to build secure, privacy-centric solutions in a digital world that
increasingly demands robust data protection. It enhances the Privacy and Security
Manager by enabling the creation and management of privacy-preserving
Verifiable Credentials and Presentations, crucial for secure authentication in loT
ecosystems. The library integrates advanced cryptographic techniques, such as
zero-knowledge proofs and selective disclosure, ensuring that loT devices can
securely interact and authenticate without compromising user privacy.

Collaborators e Privacy and Security Manager (WP3.1.1)

Interfaces e C Library compiled as dependency

empyrean-horizon.eu 16/91

D2.2 —Initial release of EMPYREAN architecture (\,MPYREAN

Q

N

It will be used in all use cases as part of the secure and trust mechanisms within

ucs the EMPYREAN platform.

3.2.2 Secure Execution Environment

This component establishes a secure and trusted execution environment across the loT-edge-
cloud continuum, supporting deployment from resource-constrained edge devices to cloud
infrastructures. It integrates (i) unikernel-based architecture, (ii) secure boot mechanisms, (iii)
container image attestation, and (iv) secure over-the-air (OTA) updates, ensuring both security
and scalability. It leverages unikernels, which are minimal, application-specific operating
systems. By running only the necessary components for a single application, unikernels reduce
the attack surface and increase efficiency, making them well-suited for loT and edge
environments with limited resources. Moreover, this component implements secure and
measured boot mechanisms, ensuring that only trusted and verified software is loaded during
the boot process. This tight security integration into the system boot process guarantees that
both the hardware and software stacks are validated, providing a root of trust from system
start-up.

To enhance security, the component includes attestation of all deployed workloads by
simplifying deployment using container images. We attest container images through
cryptographic signing, so before deploying or running applications across the loT-edge-cloud
continuum, each container image is verified for authenticity and integrity. This approach
ensures that only trusted, tamper-free applications are deployed, minimizing risks of malicious
software or altered images entering the system. This functionality enables fully secure OTA
updates, allowing devices and systems to receive firmware and application updates remotely.
These updates are cryptographically signed and verified before installation, ensuring they
come from trusted sources. This capability is crucial for maintaining the security and reliability
of distributed loT and edge systems, especially in environments where physical access to
devices is limited.

Additionally, applications can be deployed across micro and deep edge, far edge, and cloud
environments without modifying their deployment descriptors or application logic via pure
cloud-native for loT devices. This transparent and scalable operation allows seamless
adaptation across different hardware platforms.

The component’s approach to secure over-the-air (OTA) updates embraces a cloud-native
architecture, ensuring that devices across the loT-edge-cloud continuum can seamlessly
receive updates from a central management system. By leveraging cloud-native technologies,
updates are delivered in a highly automated and scalable manner, regardless of the number
of connected devices or their geographical distribution. The OTA updates are
cryptographically signed and verified as container images, ensuring that only trusted and
authorized updates are installed, thus protecting the system from potential attacks. This
cloud-native methodology allows updates to be managed dynamically, with minimal
downtime, enhancing the overall resilience and reliability of the system. Moreover,
integrating OTA updates within a cloud-native environment means that updates can be easily

empyrean-horizon.eu 17/91

D2.2 — Initial release of EMPYREAN architecture E@MPYREAN

customized and tailored based on specific device profiles or hardware capabilities. As new
software versions or security patches are released, they can be securely distributed across
various layers, from deep edge devices to central cloud servers, without manual intervention.
The central control plane in the cloud can manage update rollouts, monitor device health, and
initiate rollback mechanisms if needed, all while ensuring efficient use of resources and
minimizing the impact on operational workloads. This allows deploying critical updates in real-
time while maintaining a consistent and secure execution environment across the continuum.

Table 2: Description of Secure Execution Environment

Component ID | WP3.1.3

Name Secure Execution Environment

This component is focused on establishing a secure and trusted execution
environment across the loT-edge-cloud continuum. This environment based on
unikernels will support secure and measured boot mechanisms that are tightly
coupled with the systems layer. This approach will ensure that applications can
High level | be deployed with varying levels of security and trustworthiness across different
description hardware, enabling scalable and transparent operation from the micro deep edge
to far edge and to cloud environments without altering the deployment descriptor
or application logic. Furthermore, it will address the trade-off between flexible
workload deployment and the single-tenant use of computing resources,
particularly in energy and resource-constrained edge platforms.

e Privacy and Security Manager (WP3.1.1)
Collaborators e EMPYREAN Controller (WP4.4.4)
o Application Builder for Unikernels (WP4.3.2)

Interfaces Internal interfaces with the platform-level container orchestration mechanisms.

UC2 and UC3 will use this component as part of the EMPYREAN Security, Privacy,

uCs and Trust layer.

3.2.3 Software-defined Edge Interconnect

This component aims to integrate Remote Direct Memory Access (RDMA) network transport
technology into the communication and interconnection layer of selected EMPYREAN
components. RDMA’s key value proposition lies in its ability to offload network transport
entirely to a dedicated hardware accelerator within the Network Interface Card (NIC). This
offloading process (Figure 1) dramatically reduces network 1/O software overheads for the
communication endpoints, resulting in substantial improved performance in both latency and
bandwidth.

At EMPYREAN, we have identified two main use cases for leveraging this RDMA-based
support: (a) integration of hardware sensor equipment with wired network without any CPU
involvement using the FlexDriver FPGA IP, which enables seamless data transfer between
hardware sensors and the network, bypassing the CPU entirely for more efficient
communication, and (b) integration of edge nodes with a central Al cluster using a FlexDriver-

empyrean-horizon.eu 18/91

A
D2.2 — Initial release of EMPYREAN architecture @MPYREAN
Z

based publish/subscribe (Pub/Sub) frontend software service, facilitating high-performance
communication between distributed edge nodes and a central Al processing cluster.

The primary goal of RDMA support within EMPYREAN is to significantly accelerate small-sized
message performance across the platform, addressing a well-known limitation of standard
TCP-based Ethernet communication. TCP often struggles with the efficient handling of small
message, which hinders scalability in high-performance environments.

The EMPYREAN FlexDriver service aims to overcome this challenge by offering a software-
defined interface that allows a flexible definition of the communication descriptors. This
enables their fine-tuning to improve performance, particularly for small-sized messages,
thereby enhancing overall system efficiency and scalability.

VACCEL for Network I/0

EMPYREAN Unified Network I/0 Service

FlexDriver

EMPYREAN FlexDriver FPGA Pub/Sub
H/w Sensor

Figure 1: EMPYREAN edge node with wired backhaul and attached hardware sensors

Table 3: Description of software-defined edge interconnect components

Component ID

WP3.3.2

Name

H/W RDMA Transport Service

High level
description

RDMA-based transport service in the form of Register Transfer Level (RTL)
Intellectual Property (IP) that can be directly integrated into an FPGA-based
design. The FPGA platform needs to be physically attached to a PCl-e bus of a
server host (typically, it should have a PCl-e card form factor). Using Xilinx FPGA
is also a hard requirement, as there are dependencies on vendor-specific RTL IPs.
The host server needs an additional PCl-e slot where an NVIDIA ConnectX-6Dx NIC
will be attached, which will offer the RDMA network function to the accelerator
of the described hardware transport service component. The accelerator can use
the transport service to directly communicate with another accelerator
(Accelerator2Accelerator) or a centralized software service

empyrean-horizon.eu 19/91

D2.2 — Initial release of EMPYREAN architecture E@MPYREAN

(Accelerator2Software) with very low latency and jitter without requiring the
accelerator to run any software.

Collaborators e Hardware Acceleration Abstraction (WP3.3.4)

Inputs:
e H/W accelerator description and available interfaces
o Netlist of the accelerator built by a Xilinx toolchain
Interfaces Outputs:
e Integrated FPGA design that allows an accelerator to directly communicate

with other accelerators or the edge without the need for a host running any
software.

UC1 will use this component as part of the EMPYREAN Data Management and

UCs .
Interconnection layer.

Component ID | WP3.3.3
Name S/W RDMA-based Pub/Sub Transport Service

It is a software-based Pub/Sub transport service that is brokerless and offers all
the benefits of RDMA (low jitter and low latency) to the applications that need to
communicate at the edge. The communication interface offered will be similar to
High level | Pub/Sub but with reduced functionality with regards to what would have been
description offered if a broker acted as a mediator. The broker functionality is traded for the
significantly lower latency and jitter, which is the foundation for guaranteeing
near real-time operation where required. The bring up of Pub/Sub
communications is offered by a software-defined rendezvous server.

Collaborators e Decentralized and Distributed Data Manager (WP3.2.3)

Inputs:

e Software application transport performance requirements and current
Interfaces network 1/0 interface design

Outputs:
e Applications using the described transport for communication

UC1 will use this component as part of the EMPYREAN Data Management and

UCs .
Interconnection layer.

3.2.4 Hardware Acceleration Abstractions

The vAccel* framework is designed to accelerate workloads, particularly those that involve
Al/ML, using hardware accelerators like GPUs, TPUs, or FPGAs. It aims to abstract the
complexity of hardware accelerators from application developers, allowing them to easily
offload compute-heavy tasks to more powerful hardware. At its core, vAccel provides a
standardized APl and abstraction layer, making hardware-accelerated computing more
accessible, especially in cloud-native and edge environments. Figure 2 shows the architecture
of the vAccel software stack.

L https://docs.vaccel.org

empyrean-horizon.eu 20/91

D2.2 — Initial release of EMPYREAN architecture r:/(@\MPYREAN
e

The framework abstracts the specifics of different hardware accelerators, providing a unified
interface for developers. This design makes it easier to deploy applications that require
hardware acceleration without knowing the details of how the underlying accelerators work.
vAccel can interface with multiple hardware backends (e.g., GPUs, TPUs, FPGAs) and cloud
environments, allowing it to run on diverse platforms, including IoT edge devices, cloud
servers, and data centers. Backends (plugins in vAccel terminology) can also be extended to
support new accelerators or customized for specific applications. vAccel is designed with
security in mind. It can integrate with security frameworks like Confidential Computing (e.g.,
using Trusted Execution Environments—TEEs), allowing for secure execution of workloads,
even in shared environments like public clouds. The framework aligns well with containerized
applications and Kubernetes environments, offering cloud-native support.

User Application

Image Tensorflow | Torch %
Inference -
=
8 =
(7 ©
— o
8 .LT> 8
o . =
< ®
>
ot 3
Je1Son o hsorflow Torch &
inference 5
_____ w
S TF * torch | torch 2
Y™WIicpul cpu) GPU | §
o

Figure 2: vAccel software stack

Just like generic (hardware) plugins, the vAccel transport plugin enables the forwarding of an
APl operation to a vAccel library instance that is executing on a different context (Host instead
of Guest VM, or even a remote Host). In particular, the vsock plugin allows for efficient and
secure communication between isolated environments (e.g., virtual machines, containers)
and the host system via a generic RPC protocol. It leverages virtio-vsock, which is a para-
virtualized socket that enables communication without needing traditional networking stacks
(e.g., TCP/IP). This makes vsock ideal for environments where you want low-overhead
communication between a guest and host, while maintaining isolation.

Additionally, the vsock plugin is compatible with generic sockets, making it ideal for remote
execution over the network. loT and edge devices often have limited computational resources
but require real-time Al/ML inference for tasks like object detection, anomaly detection, or
predictive maintenance. The vAccel framework, with the vsock plugin, enables loT and

empyrean-horizon.eu 21/91

D2.2 — Initial release of EMPYREAN architecture

JMPYREAN

Q

N

lightweight edge devices to offload computationally expensive tasks to more powerful edge
nodes or nearby virtualized environments, which may host accelerators.

In EMPYREAN, we will enable this functionality, porting the existing gRPC protocol to an loT
software framework (e.g., esp-idf) and, combined with the pure cloud-native support, already
existing for the vAccel framework, enable end-to-end, hardware-acceleration-enabled
execution across the whole continuum (loT, Edge, Cloud nodes).

Table 4: Description of vAccel component

Component ID

WP3.3.4

Name

vAccel

High level
description

vAccel is an open-source framework designed to enable flexible execution by
mapping hardware-accelerate-able workloads to relevant hardware functions,
thus decoupling applications from hardware-specific code. It aims at enhancing
security by ensuring that consecutive executions on a hardware-accelerated
platform do not leak sensitive data. This framework is part of the EMPYREAN
project's initiative to facilitate the development and deployment of compute-
intensive functions across loT devices and edge nodes, leveraging the concept of
remote hardware accelerators. loT devices can use the vAccel APl to request
compute-intensive tasks to be executed by an available neighbouring node within
the Association, integrating with established open-source solutions at the systems
level (e.g., Kubernetes, K3s, OpenFaa$S) and including their high-level APIs in the
EMPYREAN SDK to simplify application development and deployment.

Collaborators

e Software-defined Edge Interconnect (WP3.3.1)
e EMPYREAN Controller (WP4.4.4)
e Decentralized and Distributed Data Manager (WP3.2.3)

Interfaces

It provides for popular languages, such as C, Python, and Rust.

UCs

UC1 and UC2 will use this component as part of the EMPYREAN Resource
Management layer.

empyrean-horizon.eu 22/91

D2.2 — Initial release of EMPYREAN architecture Z

'''''

4 EMPYREAN Platform Components

EMPYREAN aims to deliver trustworthy, cognitive, and Al-driven collaborative associations of
loT devices and edge resources for efficient data processing across the continuum. To this end,
EMPYREAN introduces and develops innovative technologies that bridge existing
technological gaps, enabling a cognitive computing continuum. The Association-based
continuum seamlessly integrates intelligence and automation, resulting in more efficient,
adaptive, and scalable data processing capabilities. EMPYREAN’s contributions focus on
several key factors for realising this continuum, including intelligence and automation,
trustworthiness and security, heterogeneous loT-edge mesh connectivity, interoperability,
elasticity and energy efficiency.

In the sections that follow, we present an overview of the main components of the EMPYREAN
platform.

4.1 Privacy and Security Manager

The Privacy and Security Manager is a core component of the EMPYREAN architecture,
designed to ensure advanced privacy and security features across decentralized
environments, especially in loT ecosystems. By leveraging Decentralized Identifiers (DIDs) and
Self-Sovereign Identity (SSI) systems, it manages Verifiable Credentials (VCs) and Verifiable
Presentations (VPs) using cryptographic techniques such as Zero-Knowledge Proofs (ZKPs) and
selective disclosure. This design enables privacy-preserving, secure interactions, while also
ensuring the integrity and authenticity of identities within the ecosystem.

Figure 3 and Table 5 present the Privacy and Security Manager components and their
dependencies with other components within the EMPYREAN platform.

Privacy and Securl'H

Manager
A 4
PEP
Empyrean Service
Components Orchestration

Figure 3: Privacy and Security Manager interaction with other EMPYREN services

empyrean-horizon.eu 23/91

D2.2 — Initial release of EMPYREAN architecture :©MPYREAN

Table 5: Description of Privacy and Security Manager core components

Component ID

WP3.1.1

Name

Privacy and Security Manager

High level
description

This component enables and enforces privacy and security features within
decentralized ecosystems, particularly in environments involving loT devices. It
provides comprehensive management of Self-Sovereign Identity (SSI) systems,
leveraging Decentralized ldentifiers (DIDs) to enable secure, user-controlled
identity solutions.

Key functionalities include the management and authorization of Verifiable
Credentials (VCs) and the generation of Verifiable Presentations (VPs). Utilizing
the advanced cryptography of the p-ABC module (Section 3.2.1), the Privacy and
Security Manager supports the creation of verifiable presentations that employ
Zero-Knowledge Proofs (ZKPs) and selective disclosure. This ensures that only the
necessary attributes are revealed during interactions, preserving user privacy
without compromising the integrity of the data.

Additionally, the Privacy and Security Manager facilitates signing JSON Web
Tokens (JWTs) using DIDs, enabling secure and verifiable identity management.
This capability is particularly useful for creating fast access tokens for any entity
within the ecosystem, allowing swift and secure access to resources while
ensuring the authenticity and integrity of the identities involved.

To further enhance security, the Privacy and Security Manager integrates with
Distributed Ledger Technologies (DLTs) to verify credentials, ensuring
transparency and immutability in the authentication processes. It also employs
smart contracts to securely retrieve and store DIDs, automating these processes
to reduce manual intervention and potential security risks.

In summary, the Privacy and Security Manager is a powerful tool for enabling
secure, privacy-preserving interactions within decentralized environments. It
offers the EMPYREAN ecosystem advanced identity management, credential
verification, and transaction security, all while ensuring that user privacy is
maintained through state-of-the-art cryptographic techniques.

Collaborators

e P-ABC(WP3.1.1)
e Service Orchestrator (WP4.4.1)

e REST interface with methods to provide security
e /empyrean/psm/generateDID
e /empyrean/psm/doEnrolment

Interfaces e /empyrean/psm/generateVP
e /empyrean/psm/verifyCredential
e /empyrean/psm/signJWTContent
e /empyrean/psm/verifyJWT
In UC2, Proximal Sensing in Agriculture Fields, it will provide DID’s, VCreds and
UCs framework for verification through a Decentralized Ledger for edge devices. In

UC4, Security in Smart factories with S. Korea International Collaboration, it will
provide authN/authZ to enable a security level.

empyrean-horizon.eu 24/91

D2.2 — Initial release of EMPYREAN architecture @MPYREAN

4.2 Edge Storage and Edge Storage Gateway

EMPYREAN will develop an S3-compatible distributed secure storage service for the
Associations that stretches across the edge-cloud continuum, using erasure coding to provide
redundancy. Figure 4 shows the key building blocks of this service and their interactions with
other EMPYREAN components, while Table 6 provides a detailed description of each

component.

SkyFlok Backend
(external)

I

S3 interface

loT Query

. Edge Storage Gateway (T3.2
Engine (T4.3) g g v() loT Query

IS3 I s3 interface

Edge Storage Edge Storage
(13.2) (13.2)

Figure 4: Edge Storage and Edge Storage Gateway components and dependencies

Table 6: Description of Edge Storage and Edge Storage Gateway components

Component ID

WP3.2.1

Name

Edge Storage Gateway

High level
description

It provides access to SkyFlok Object Storage, a secure distributed data storage
SaaS. EMPYREAN users can access their data through an industry-standard S3
interface. To improve performance, the Gateway should be deployed to the edge,
close to the users as well as to edge storage resources.

Users are given a choice of storage locations to which their data is distributed in
an erasure coded manner. They can select both cloud (through SkyFlok) and edge
(through Edge Storage) locations, as well as the level of redundancy needed.

Beyond the standard S3 interface, the Gateway also provides a specialized
interface and storage schema for loT time series data. This feature is implemented
in the loT Query Engine (T4.3), the Gateway proxies requests to this component.
Internally, the Gateway utilizes the SkyFlok backend for metadata storage, user
and team management as well as authentication. It stores and retrieves data
fragments to/from cloud storage providers and Edge Storages directly, performs
the erasure coding, encryption and compression. Potentially, it could be extended
to include an object cache as well.

Collaborators

e Edge Storage (WP3.2.2)
e |oT Query engine (W4.3.5)
e SkyFlok Backend (outside the scope of EMPYREAN)

empyrean-horizon.eu 25/91

D2.2 — Initial release of EMPYREAN architecture E@MPYREAN

e |t exposes an S3-compatible object storage interface

Ll e |t exposes an SQL-like loT Query interface (REST)
An S3-compatible storage service will be provided to all three use cases, tailored
using storage policies to the applications’ requirements. An indirect approach is
UCs also possible, where this component acts as a data source and sink in a large scale

data flow. The UC applications would then interact indirectly with this component
through the data flow.

Component ID | WP3.2.2
Name Edge Storage
Manages an Edge Storage device, it is used by the Edge Storage Gateway. This is
a containerized application based on Min.io? It makes it possible to take
. advantage of edge storage resources, making them accessible to the platform’s
High level
. storage system. Any storage resource that can be mounted as a K8s or Docker
description

volume can thus be integrated into the storage system.

It is an internal component that, once set up, only offers its S3 interface to the
Gateway. It is not accessible as a storage location directly to platform users.

Collaborators

e [Edge Storage Gateway (WP3.2.1)

Interfaces

e |t exposes an S3 interface for the Edge Storage Gateway.
e |t exposes a Prometheus-compatible telemetry interface.

UCs

Potentially all three UCs, depending on whether they have storage resources at
the edge and the need to utilize them.

4.3 Decentralized and Distributed Data Manager

EMPYREAN Decentralised and Distributed Data Manager component is provided by ZSCALE
and it is based on the Eclipse Zenoh? open source project. Eclipse Zenoh is a Pub/Sub/Query
protocol that provides a set of unified abstractions to deal with data in motion, data at rest,
and computations at the Internet scale. EMPYREAN leverages the capabilities of Zenoh, aiming
to enhance real-time safety data exchange and communication between vehicle’s Onboard
Units (OBUs), robotics, and basically any component deployed across the edge and cloud
infrastructure. Zenoh protocol is based on Named-Data Networking (NDN), where the data is
represented using Unique Resource Identifiers (URIs), where a name and a value identify each
resource, also known as the data model. Besides interoperability, resource naming has a key
role in facilitating and optimizing, routing, and querying data. Thus, it is very simple to submit
a distributed query that indicates the desired data.

2 MinlO — High performance object storage: https://github.com/minio/minio
3 https://github.com/eclipse-zenoh/zenoh

empyrean-horizon.eu 26/91

A
D2.2 — Initial release of EMPYREAN architecture @MPYREAN
Z

Figure 5 shows a data flow path for solving the distributed query use case in an automotive
context by submitting a get(“desired_data”) function, with the desired data passed as a
parameter. Zenoh supports the use of wildcards, single-start (i.e. *) to represent any given
string char within the same level structure or double-start (i.e. **) to navigate within the same
level and deeper levels of the data hierarchy.

Figure 5: Distributed data query in automotive context

EMPYREAN Decentralised and Distributed Data Manager can run on the same virtual or
physical computer, a separate computer on a heterogeneous network, or a remote computer
at the edge or in the cloud. Zenoh’s routing determines how to route such a request to where
the data is. This is a very powerful mechanism when the user must collect data from multiple
sources.

Adopting this communication middleware will enable EMPYREAN’s components and user
applications to exchange data across different communication technologies such as Ethernet,
time-sensitive networking (TSN), Wi-Fi, and 4G/5G. It can also be used at different
geographical locations, such as a Local Area Network (LAN), a metropolitan area network
(MAN), and a Wide Area Network (WAN), and in various topology configurations such as peer-
to-peer, mesh, brokered, and routed. Another benefit is Zenoh’s integration with other
messaging protocols such as Data Distribution Service (DDS), Message Queuing Telemetry
Transport (MQTT), OPC Unified Architecture (OPC-UA), and its support for different database
storages such as traditional SQL-based, non-SQL-based, time series storages (i.e. influxDB), in
memory storage, filesystem storage, or cloud storages (i.e. S3).

empyrean-horizon.eu 27/91

D2.2 — Initial release of EMPYREAN architecture :©MPYREAN

Table 7: Description of Decentralized and Distributed Data Manager components

Component ID | WP3.2.3

Name Decentralised and Distributed Data Manager

It manages data exchanges between any device in the network. It supports
Pub/Sub, Push/Pull, distributed queries, and computations. This component also
supports the creation of storage resources that can be mounted backend volumes
and can thus be integrated into the storage system and queried on demand. It is
an internal component that should be installed and configured by the application
developers, and it can operate under different models, allowing it to run over any
topology and anywhere across the continuum. It can run in (i) a peer-to-peer
fashion way, allowing the creation of clique or mesh topologies; (ii) a brokered
fashion way, where nodes have only a limited set of functionalities and rely on the
network to provide the full Zenoh capabilities; (iii) routed fashion way, where
nodes act as software routers that forward messages between nodes

High level
description

e Dataflow Programming Component (WP4.2.5)

Collaborators
o EMPYREAN Aggregator (WP4.4.11)

Zenoh APIs are available for the most popular programming languages like RUST,
Python, and REST. It also includes Zenoh-Pico, which was developed in C to
Interfaces support microcontrollers and embedded devices. The API instructions are fairly
simple and support efficient publish/subscribe primitives, supporting multiple
levels of reliability, dynamic discovery, fragmentation, and wire-level batching.

Potentially all three UCs, our technology is available and ready to be used. At the
UCs time of writing the deliverable, it has been adopted by the UC3, Robotic Semi-
autonomous and Lights Out Logistics Order Picking.

4.4 Local Orchestration and Autoscaling Optimizations

Kubernetes (K8s) is the de-facto industry standard for cloud infrastructure resource
management and orchestration, and it has also been adopted as the main low-level
orchestration software for the edge-cloud continuum.

To bring intelligence to the low-level orchestrator in the edge-cloud continuum, we will
develop Al/ML-driven mechanisms to enable the autonomous and adaptive workload
autoscaling on the low-level Kubernetes platforms (Figure 6). Acommon workload autoscaling
technique is horizontal autoscaling, which already exists in Kubernetes and allows applications
to scale out or scale in the number of replicas. This powerful feature enables the system to
automatically adapt its resource allocation based on actual traffic. However, if the limits are
not set correctly, the average utilisation might grow the application in a non-optimal way.
Instead, we could keep more resources powered down and gain a lot in the system’s energy
consumption. Hence another technique to address the adaptation of workload is vertical auto
scaling, which enables the automated setting of limits for each replica®.

4 Minh-Ngoc Tran, Dinh-Dai Vu, and Younghan Kim. A Survey of Autoscaling in Kuber netes. In 2022 Thirteenth
International Conference on Ubiquitous and Future Networks (ICUFN), pages 263—-265, Barcelona, Spain, July
2022. IEEE

empyrean-horizon.eu 28/91

D2.2 — Initial release of EMPYREAN architecture :©MPYREAN

These EMPYREAN components focus on applying Al/ML techniques to vertical autoscaling
(i.e., toimplement an ML-based vertical autoscaler) in the Kubernetes cluster within the edge-
cloud continuum, based on telemetry data collected from the Kubernetes platform. The goal
is to recommend suitable container sizes for workloads, thus allowing better container bin-
packing on nodes and the saving on total number of nodes. This work will also allow us to
power off more resources, thus improving energy use.

In the edge-cloud continuum, besides traditional workloads that use CPU and RAM resources,
the emerging hyper-distributed Al applications also use GPU resources. However, there is
currently no mature technology to fraction GPU instances as the containers for CPU and RAM
in Kubernetes. Therefore, a possible extension of this work is to research state of-the-art GPU
fractioning methods, and apply vertical auto-scaling techniques to GPUs in the edge-cloud
continuum.

Workflow Manager
(Task 4.1)

I

Local Orchestration

Al-driven Autoscaling

Service Orchestrator I Telemetry Service
(Task 4.4) Kubernetes (Task 4.4)

Layers Locality Scheduler

Figure 6: Local Orchestration and Autoscaling Optimizations dependencies

Table 8: Description of Local Orchestration and Autoscaling Optimizations components

ComponentID | WP3.4.1

Name Autoscaling Optimizations

Al-enabled workload autoscaling mechanism that will be implemented based on
Kubernetes orchestrator enhanced with Al/ML techniques for intelligent resource
High level requests and limits allocation. In more detail, we will use Al/ML to perform
description optimal workload autoscaling by setting the most adequate resource limits
configuration and performing dynamic adaptation based on historical data of
previous executions.

e Workflow Manager (WP4.2.1)
e Service Orchestrator (WP4.4.1)
e Telemetry Service (WP4.4.7)

e Kubernetes

Collaborators

empyrean-horizon.eu 29/91

D2.2 — Initial release of EMPYREAN architecture E@MPYREAN

The main interface to exchange information between the Autoscaling
Interfaces optimizations engine and the local orchestrator, the telemetry engine and the
Workflow Manager will be based upon the standard Kubernetes API.

The autoscaling optimizations will be implemented to be lightweight and
adaptable to different workloads. They will optimize the resources usage of local
clusters. Hence, all 3 use cases will be possible to use them even those which
enable Kubernetes clusters with low-power edge hardware.

UCs

Component ID | WP3.4.2

Name Local Kubernetes Scheduler - Container Layers Locality Scheduler
. Kubernetes scheduling algorithm to minimize the cold start delays favouring the
High level .
.. placement of tasks on nodes that have more Layers of Containers related to the
description

task to be deployed.

o Workflow Manager (WP4.2.1)
Collaborators o Kubernetes
e Container Runtime Interface (CRI)

This scheduling plugin will mainly communicate with Kubernetes and the related

Interfaces . } .
Container Runtime Interface (CRI-O or Containerd) through the Kubernetes API.

UCs All 3 use cases will have the ability to use the Layers Locality Scheduler.

4.5 Analytics Engine

Service assurance mechanisms for the self-driven adaptability of the loT-edge-cloud
continuum are essential for maintaining optimal performance, reliability, and efficiency across
this complex and dynamic infrastructure. To achieve this, EMPYREAN aims to develop a highly
automated and intelligent loT-edge-cloud continuum, empowered by Al-enabled distributed
management through its Service Assurance service. This will ensure optimal performance for
deployed applications through autonomous adaptations over an infinite time horizon control
loop.

EMPYREAN will integrate distributed service assurance mechanisms within each Association,
utilizing real-time telemetry data and a robust set of algorithms within the Analytics Engine.
This approach ensures that applications perform as intended while proactively or reactively
triggering any necessary re-optimizations. The algorithms within the Analytics Engine will
leverage continuous analysis techniques, such as machine learning, machine reasoning,
swarm intelligence, and robust adaptive optimization, that will drive orchestration
mechanisms to: (i) adapt resources within the Associations, (ii) provide dynamic load
balancing of processing workloads and data within and across Associations, (iii) migrate
workloads to optimize energy efficiency, and (iv) mitigate resource fragmentation and
connectivity issues.

Figure 7 shows the key building blocks of the EMPYREAN Analytics Engine and their
interactions with other EMPYREAN components, while Table 9 provides an initial description
of each component.

empyrean-horizon.eu 30/91

D2.2 — Initial release of EMPYREAN architecture

EMPYREAN

Analytics Engine

Service Orchestrator
(Task 4.4)

Data Connector

Telemetry Service
I (Task 4.4)

(13.2)

Data Distributor

Data Manager

!

BN

Event Detection Engine

Figure 7: Analytics Engine core components and dependencies

Table 9: Description of Analytics Engine core components

Component ID

WP3.4.3

Name Analytics Engine
It implements the service assurance mechanisms within the EMPYREAN platform
. to detect issues with the operation of the infrastructure resources and
High level L . o .
. . Associations along with the performance of the deployed applications. It will be
description

designed as a distributed and scalable service to analyze the collected telemetry
data in order to trigger pro-actively and re-actively dynamic adjustments.

Collaborators

e Service Orchestrator (WP4.4.1)
o Telemetry Service (WP4.4.7)
e Decentralized and Distributed Data Manager (WP3.2.3)

e REST

Interfaces
e Asynchronous message-based
It will ensure that the applications perform as intended, while it will dynamically
UCs trigger the necessary adjustments if the current deployments do not comply with

the requested SLA guarantees.

Component ID

WP3.4.4

Name Data Connector

It will handle the collected monitoring data and apply several transformations to
High level prepare them for the Event Detection Engine. It will support various data formats
e (e.g., JSON, CSV, raw) and will be able to fetch data directly by querying the

monitoring solution (using a predefined interface) or consuming a stream directly
from a queuing service.

Collaborators

e Event Detection Engine (WP3.4.6)

e Data Manager (W3.4.5)

e Telemetry Service (WP4.4.7)

e Decentralized and Distributed Data Manager (WP3.2.3)

Interfaces REST, MQTT, AMQP, and other types supported by open-source connectors.
It will facilitate the operation of the Analytics Engine and the provision of service
UCs assurance mechanisms within the EMPYREAN platform for all deployed

applications.

empyrean-horizon.eu

31/91

D2.2 — Initial release of EMPYREAN architecture E@MPYREAN

Component ID | WP3.4.5

Name Data Manager

It will provide local storage for process data, trained models, and results. It will
also facilitate the exchange of events and data with other external components,
such as the Data Distributor.

High level
description

e Event Detection Engine (WP3.4.6)
e Data Connector (WP3.4.4)

e REST
Interfaces e S3-compatible
e Asynchronous message-based

Collaborators

It is an internal component that will facilitate the operation of the Analytics

UCs Engine.

Component ID | WP3.4.6

Name Event Detection Engine

It will implement the core functionality of the EMPYREAN distributed service
assurance mechanisms based on provided real-time telemetry data and
appropriate machine reasoning techniques. It will facilitate the execution of the
developed data-driven algorithms that will safeguard that deployed applications
and available Associations perform as intended.

e Data Connector (WP3.4.4)

e Data Manager (WP3.4.5)

e Decentralized and Distributed Data Manager (WP3.2.3)
e Service Orchestrator (WP4.4.1)

High level
description

Collaborators

It will support both synchronous and asynchronous communication interfaces to
Interfaces facilitate the interaction with the internal components (e.g., Data Manager) and
other EMPYREAN services (e.g., Data Distributor, Service Orchestrator).

It will provide service assurance and anomalous events detection capabilities,
including but not limited to hardware resources, performance, applications. The
UCs provided analysis will be made available to service orchestration and deployment
mechanisms to assist the autonomous and efficient operation of the overall
EMPYREAN platform.

4.6 Cyber Threat Intelligence Engine

The increasing frequency and sophistication of cyber threats in recent years has kindled a
dramatic surge in the amount of Cyber Threat Intelligence (CTI) available to the general public
and companies. However, the sheer volume and diversity of this information have made
comprehensive analysis of CTl a daunting task. The Cyber Threat Intelligence Engine (Figure 8)
will try to address these issues by compiling and analysing CTI from various sources, including
the Cyber Threat Alliance (CTA) and the Malware Information Sharing Platform (MISP),
providing a user-friendly interface for security experts, and a REST API for integration with the
EMPYREAN orchestration mechanisms.

empyrean-horizon.eu 32/91

D2.2 — Initial release of EMPYREAN architecture

Q

N

JMPYREAN

In addition, the CTI Engine will leverage advanced machine learning and data mining
algorithms to identify trends and patterns within the CTI data. These algorithms will be two-
fold: On the one hand, algorithms based on large language models will be used to extract
information from unstructured data sources. On the other hand, Al-based algorithms will be
developed to learn relevant facts from the complex CTI knowledge graph database. By
identifying emerging threats and trends, our system will enable proactive measures and
informed decision-making. This analytical capability will be crucial in understanding the
evolving tactics, techniques, and procedures of cyber adversaries, thereby enhancing the
overall cybersecurity posture of organizations.

CTI Engine
Empyrean Platform Gul [.
REST API Security Expert

Figure 8: EMPYREAN Cyber Threat Intelligence Engine

Table 10: Description of Cyber Threat Intelligence

ComponentID | WP4.1.1
Name CTl Engine
Module that collects and analyses Cyber Threat Intelligence (CTl) from the Cyber
Threat Alliance (CTA) repository to extract trends and important information. By
integrating data from these prominent sources, the engine will compile a
comprehensive repository of Indicators of Compromise (loCs), malicious IP
. addresses, domain names, file hashes, URLs, and more. This extensive dataset will
High level . . .
. . serve as a foundation for thorough threat analysis and proactive defence
description

strategies. A user-friendly interface will streamline information retrieval, allowing
security professionals to quickly search, filter, and visualise relevant threat
information. The CTI Engine will also feature a REST API, enabling integration with
existing systems and tools, facilitating the automation of threat intelligence
workflows.

Collaborators

e Service Orchestrator (WP4.4.1)
e Telemetry Service (WP4.4.7)

Interfaces

e GUI for security experts
e RESTAPI

UCs

The engine will contribute to Anomaly Detection in Robotic Machining Cells (UC1).

empyrean-horizon.eu 33/91

D2.2 — Initial release of EMPYREAN architecture E@MPYREAN

4.7 Decision Engine

The proliferation of hyper-distributed applications and the integration of distributed data
processing across the loT-edge-cloud continuum pose significant challenges in resource
allocation, task placement, load balancing, and data management within the computing
infrastructure. These challenges are further exacerbated by the dynamic and unpredictable
nature of loT, edge and cloud multi-technology environments, as well as the variability of
workloads, resource availability, and infrastructure and application failures. Managing these
complexities requires decentralized decision-making and autonomous adaptations to ensure
efficient and reliable operation across this heterogeneous and evolving landscape.

EMPYREAN adopts a distributed speculative intelligent approach to orchestrate hyper-
distributed applications, balancing centralized and decentralized solutions by developing
novel algorithms. EMPYREAN will exploit multi-objective optimization, game theory, Al/ML
techniques, and heuristics to design a set of algorithms aiming to provide different trade-offs
between optimality and complexity. EMPYREAN will also incorporate environmental
considerations to support intelligent, energy-aware workload and data distribution.
Specifically, the developed algorithms will prioritize energy efficiency and adhere to relevant
limits and thresholds, such as consumption, carbon emissions, and energy budgets, in the
Associations’ operations. EMPYREAN will also take into account the energy sources powering
devices and resources (e.g., battery or renewable energy sources), their charge states, and
their overall sustainability (e.g., quality of energy-saving technology), focusing on prioritizing
green resources.

The Decision Engine will integrate these algorithms in the EMPYREAN platform, implementing
the decide part at the envisioned closed-loop control based on the principles of observe,
decide and act. It will provide to EMPYREAN Aggregator and Service Orchestrator the required
intelligence (i) to support the efficient operation of Associations, (ii) to orchestrate the hyper-
distributed applications and allocate their workloads considering the local resource state and
characteristics while trying to fulfil their own objectives, and (iii) to coordinate the efficient
load-balancing of data and workload within and across the available Associations.

The Decision Engine will be built upon the open-source Resource Optimization Toolkit (ROT)
framework, initially developed by ICCS during the H2020 SERRANO? EU project. ROT facilitates
the integration and execution of various decision-making algorithms. Within the EMPYREAN
project, efforts will focus on extending the ROT into the cloud-native Decision Engine
component, which includes the development and evaluation of distributed decision-making
algorithms. In addition, EMPYREAN will enhance the Decision Engine to support sophisticated
resource optimization in a cloud-native environment. By doing so, the Decision Engine will
provide robust and efficient decisions for dynamic resource allocation, workload balancing,
and energy-efficient operations across the Association-based loT-edge-cloud continuum.

5> https://ict-serrano.eu

empyrean-horizon.eu 34/91

D2.2 — Initial release of EMPYREAN architecture :©MPYREAN

Figure 9 illustrates the key building blocks of the Decision Engine and its interactions with
other EMPYREAN components, while Table 11 provides a high-level description of these
components. Task 4.1 will provide the development of distributed and Al-enable decision-
making algorithms, as well as the detailed design and implementation of the Decision Engine.

Decision Engine

Service Orchestrator .. . Telemetry Service
Decision Engine Controller
(Task 4.4) (Task 4.4)

I

Decision Engine Worker

I

Decision Algorithms

Figure 9: Decision Engine core components and dependencies

Table 11: Description of Decision Engine core components

Component ID

WP4.1.2

Name Decision Engine

Hieh level This component provides the decision-making functionality to the Service
g . Orchestration. It prepares and manages the requested algorithm's execution to

description

provide suggestions for application deployment across the available Associations.

Collaborators

e Decision Engine Controller (WP4.1.3)
e Decision Engine Worker (WP4.1.4)
Decision Algorithms (WP4.1.5)
Service Orchestrator (WP4.4.1)
Telemetry Service (WP4.4.7)

e REST interface to request execution of algorithms and retrieve the results.
e Asynchronous internal interface for interacting with the Decision Engine

Interf
ntertaces Workers based on the AMQP protocol.
e Internal interface based on predefined JSON schema descriptions
UCs It will provide the required high-level orchestration decisions to EMPYREAN

Service to assign and re-optimize the UC applications’ workloads.

empyrean-horizon.eu 35/91

D2.2 — Initial release of EMPYREAN architecture

JMPYREAN

Q

N

Component ID

WP4.1.3

Name Decision Engine Controller
. It receives execution requests from the Service Orchestrator handles the
High level -) . .
. . interaction with the multiple Decision Engine Workers. It also interacts with the
description

Telemetry Service to retrieve the required information.

Collaborators

e Service Orchestrator that requests the execution of some specific algorithms.

e Telemetry Service that provides details for the state of infrastructure
resources and available workloads.

e Decision Engine Worker that serves the requests.

e REST interface to request execution of algorithms and retrieve the results.

Interfaces e Asynchronous internal interface for interacting with the Decision Engine
Workers based on the AMQP protocol.
UCs It will provide the required high-level orchestration decisions to EMPYREAN

Service to assign and re-optimize the UC applications’ workloads.

Component ID

WP4.1.4

Name Decision Engine Worker
It implements the developed multi-objective optimization and orchestration
. algorithms. It receives requests, for starting or terminating algorithm execution,
High level
. . from the Decision Engine Controller and performs all the required actions,
description

including preparing the execution environment, monitoring progress, and
forwarding the results to Controller.

Collaborators

e Decision Engine Controller that orchestrates and handles the execution

requests
e Asynchronous internal interface for interacting with the Decision Engine
Interfaces
Controller based on the AMQP protocol.
UCs It will provide the required high-level orchestration decisions to EMPYREAN

Service to assign and re-optimize the UC applications’ workloads.

Component ID

WP4.1.5

Name Decision Algorithms

The library of multi-objective optimization and orchestration algorithms. The
High level integrated algorithms will achieve different trade-offs between optimality and
e complexity to efficiently satisfy the heterogeneous and strict applications

requirements. There will be also algorithms to provide energy-aware workload
and data balancing, both within and between Associations.

Collaborators

e Decision Engine Worker

Interfaces

e Internal interface based on predefined JSON schema descriptions

UCs

It will provide the required high-level orchestration decisions to EMPYREAN
Service to assign and re-optimize the UC applications’ workloads.

empyrean-horizon.eu

36/91

D2.2 — Initial release of EMPYREAN architecture @MPYREAN

4.8 Workflow Manager

The Workflow Manager component enables the user to design and execute a data analytics
application. In particular, it provides the means to create, deploy, update, execute, and
monitor the execution of data processing applications in the form of workflows upon hybrid
cloud, edge, and on-premises computing infrastructures. It allows users to create their data
automations and expose them with APIs through fully customizable workflows using a low-
code Ul. The Workflow Manager in EMPYREAN (Figure 10) is based upon the open-source
platform Ryax, which will be sufficiently enhanced to cover the needs of project. It uses a
powerful custom runtime, abstracting completely the complexity of building and deploying
containers with their dependencies upon edge-cloud infrastructures.

Aggregator Decision Engine Service Orchestrator
(Task 4.4) (Task 4.1) (Task 4.4)

I I I

Workflow Manager

Hybrid Multi-site Support
Microservices/Serverless
Runtime
Dataflow Support
Dataflow Programming Application Packaging Autoscaling & Local
(Task 4.2) (Task 4.3) Orchestration (Task 3.4)

Figure 10: Workflow Manager components and dependencies

The engine will be enhanced to provide the right abstractions and internal mechanisms to
efficiently support both long-duration microservices and short-duration serverless functions
in such a way in order to cover the requirements of most data analytics and Al applications. It
will use the Ryax abstractions, particularly the default YAML-based representation to define
actions and workflows.

One of the principal features that is needed in a workflow manager for the edge-cloud
continuum and which will be added on Ryax is the support of multiple sites, meaning the
possibility to execute parts of a workflow on one cluster at the edge and parts on another
cluster in the cloud. Besides the networking and storage, which need to be configured to
enable the exchanges in a multi-infrastructure setting, the platform needs to provide the
necessary hooks and abstractions to enable the user to add their hard constraints related to
their choice of infrastructure to use for each part of the workflow, connect to the decision
engine to perform the orchestration and control the selection by proposing the recommended
choice to the Local orchestrator. In this context the workflow manager Ryax will be also

empyrean-horizon.eu 37/91

D2.2 — Initial release of EMPYREAN architecture E@MPYREAN

enhanced to efficiently handle EMPYREAN Associations through its communication with the
Aggregator.

Finally, another important optimization integrated within the Ryax Workflow Manager, is its
support for a native dataflow programming framework such as ZenohFlow
(Section 4.9). The idea is to provide fine-grain support for how data communications take
place, which is not handled by default by most workflow managers like Ryax. The support of
dataflow within Ryax will enable users with increased real-time capabilities, which is ideal for
the loT-based use cases of EMPYREAN.

Table 12: Description of Workflow Manager components

ComponentID | WP4.2.1

Name Ryax Workflow Manager Engine

Ryax open-source workflow engine enables the design, deployment and
monitoring of workflows of data analytics upon Cloud, Edge, HPC infrastructures.
High level It makes use of Kubernetes orchestration, and it provides a custom runtime
description environment for the deployment of components upon the related infrastructure.
This will be enhanced to provide a tight integration with EMPYREAN, among
others, through the support of associations and aggregators.

Decision Engine (WP4.1.2) / Service Orchestrator (WP4.4.1)
Autoscaling Optimizations (WP3.4.1) & Local Orchestration (WP3.4.2)
Application Packaging (WP4.3.3)

Dataflow Programming Component (WP4.2.5)

Collaborators

Different interfaces are available to exchange with Ryax: a CLI and a Web Interface

Interf; i i i
ntertaces can be used by users while a REST-API can be used by the different services.

All 3 use cases will have the ability to use and benefit from the usage of the Ryax

ucs workflow engine.

Component ID | WP4.2.2

Name Ryax Workflow Engine’s Hybrid Microservices/Serverless Runtime

Ryax hybrid microservices/serverless runtime is developed in a way to allow users
to specifically define through the YAML programming language and specific hooks
and abstractions the definition of actions to be participating in a workflow as
microservices or serverless functions. Currently in Ryax microservices can only be
defined as triggers of a workflow while only serverless functions can be continuing
in the middle or the end of the workflow logic. This will be enhanced to allow
microservices and serverless functions to be executed in all levels of the
workflows with no exceptions. This will provide a better support of the real-time
nature of loT-based applications.

e Autoscaling Optimizations (WP3.4.1) & Local Orchestration (WP3.4.2)
Collaborators e EMPYREAN Aggregator (WP4.4.11)
e Application Packaging (WP4.3.3)

High level
description

The Ryax APl will be the main communication interface between the runtime and

Interfaces
the other components.

All 3 use cases will have the ability to use and benefit from the usage of the Ryax

UCs
hybrid microservices/serverless runtime.

empyrean-horizon.eu 38/91

D2.2 — Initial release of EMPYREAN architecture

(EMPYREAN

Component ID

WP4.2.3

Name

Ryax workflow engine’s multi-site support

High level
description

Ryax multi-site support will allow users to execute their workflows seamlessly
upon different infrastructures (e.g., cloud, edge, on-premise) by allowing them to
select during deployment time the site, site characteristics or specific node-pool
they need. The component will also provide the alternative to set execution
objectives, letting the system to choose the optimal resource matching based on
the application needs. This will be performed through the integration with the
Decision Engine and the Service Orchestrator components. The component will
provide a tight integration with EMPYREAN’s associations and aggregator in order
to enable the system to enable executions on one or multiple associations
addressing the needs of EMPYREAN’s standards through the aggregator.

Collaborators

o EMPYREAN Aggregator (WP4.4.11)
e Decision Engine (WP4.1.2) / Service Orchestration (WP4.4.1)
e Autoscaling Optimizations (WP3.4.1) / Local Orchestration (WP3.4.2)

Interfaces

The Ryax API will be the main communication interface between the multi-site
sub-component and the other components and services.

UCs

All 3 use cases will have the ability to use and benefit from the usage of the Ryax
workflow engine’s multi-site support.

Component ID

WP4.2.4

Name Ryax workflow engine’s dataflow support
Ryax dataflow support will be brought through a tight integration with the
Dataflow programming component based on Zenohflow. In particular the user will
High level get the ability to express the ways data should flow between the different actions
description of the workflows, besides expressing which inputs and outputs should be

exchanged. In particular, the real-time communication from the different multi-
infrastructures will be handled by the dataflow programming component.

Collaborators

o Dataflow Programming Component (WP4.2.5)
e Networking and Storage components

Interfaces

The Ryax APl will be the main communication interface between the dataflow
sub-component and the other components and services.

UCs

All 3 use cases will have the ability to use and benefit from the usage of the Ryax
workflow engine’s dataflow support.

empyrean-horizon.eu

39/91

D2.2 — Initial release of EMPYREAN architecture :©MPYREAN

4.9 Dataflow Programming Component

EMPYREAN Dataflow Programming Component is provided by ZSCALE and it is based on the
Eclipse ZenohFlow® open-source project. ZenohFlow component facilitates the development
and deployment of data-intensive applications across the loT-edge-cloud continuum. It
consists of a set of nodes interconnected with links. Thus, an application can be represented
as a Directed Acyclic Graph (DAG)’ . These graphs are described in human-readable descriptor
files that enforce by contract all the communications and possible data exchanges. Starting
from the base descriptor file, ZenohFlow instantiates the application components’ placement
across the available infrastructure. This declarative approach simplifies the development of
complex and constraint applications, as the developer simply needs to (a) create the different
nodes (i.e., source, operators, sinks) that compose the application, and (b) describe the
connection between them (i.e., data-type, timeout).

As illustrated in Figure 11, an application can consist of a source node (A), three operator
nodes (B, C, and D), and a sink node (E). ZenohFlow utilizes Eclipse Zenoh (as described in
Section 4.3) as its communication framework. This allows application developers using
ZenohFlow to deploy their application without needing prior knowledge of where the
individual nodes will be running. Zenoh seamlessly handles data routing based on key
expressions, ensuring efficient communication between nodes.

EMPYREAN will benefit from this technology. ZenohFlow assigns each instance of an
application a unique identifier, which is automatically incorporated into the communication
process. This ensures that even if the same application is deployed multiple times on the same
infrastructure, or if several applications share the same resources (i.e., topics), there are no
collisions or conflicts. Additionally, the same technique is used for each link, allowing multiple
nodes to safely expose the same key expressions without interference.

Figure 11: Representation of a distributed dataflow programming using ZenohFlow

6 https://github.com/eclipse-zenoh-flow/zenoh-flow
7 https://en.wikipedia.org/wiki/Directed_acyclic_graph

empyrean-horizon.eu 40/91

D2.2 — Initial release of EMPYREAN architecture E@MPYREAN

Table 13: Description of Dataflow programming component

Component ID | WP4.2.5

Name Dataflow Programming Component

It provides a declarative approach for developers to describe the application’s
High level structure precisely, what will be deployed, and how it will be connected. Its
description human-readable format has the advantage of lowering the entry barrier for purely

technical application designers.

e Decentralised and Distributed Data Manager (WP3.2.3)
e EMPYREAN Aggregator (WP4.4.11)

ZenohFlow is built on top of Eclipse Zenoh, it supports all of Zenoh interfaces and
pub/sub mechanisms.

Collaborators

Interfaces

Potentially all three UCs, as previous usage in an Autonomous Driving System?®

UCs . . e . .
illustrates its capabilities, allowing for real-time control.

4.10 Lightweight Application Packaging

This particular component is essential for the application design process. It allows the system
to be modular and flexible to cover the definition of various types of applications since it
enables users to build their logic in small microservices or serverless functions in whichever
programming language they prefer while being agnostic to different types of architectures
(x86, ARM). Since each environment is built as a standard OCI container, this allows workflows
to be completely polyglot in a completely seamless and infrastructure-agnostic way.

The NIX-based Environment Packaging component is based on the NIX functional package
manager, providing a declarative way to build reproducible and lightweight environments. The
technique used to build the containers takes particular care in packaging the environments in
different structured layers, which can be an essential advantage during deployment. In the
context of EMPYREAN, this component will be enhanced to support unikernels and Web
Assembly in order to improve the security and overhead of typical container creation upon
different types of architectures.

8 https://www.youtube.com/watch?v=QajVWYshaHk&t=11s

empyrean-horizon.eu 41/91

D2.2 — Initial release of EMPYREAN architecture r:/(@\MPYREAN
e

Workflow Manager
(Task 4.1)

I

Lightweight Application
Packaging

Local Orchestrator Application Builder for
(Task 3.4) NIX Functional Package Unikernels (Task 4.3)

Manager

Figure 12: NIX-based Environment Packaging components and dependencies

Table 14: Description of NIX-based Environment Packaging

Component ID | WP4.3.1

Name NIX-based Environment Packaging
. Ryax workflow engine offers internally the mechanism of performing multi-arch
High level . . . "
. . polyglot environment packaging to build the components to be used within the
description

workflows. This will be enhanced to support Web Assembly and unikernels.

e Workflow Manager (WP4.2.1)
Collaborators o Application Builder for Unikernels (WP4.3.2)
e Local Orchestrator (WP3.4.2)

The main interface for this component will be its REST APl. The communication

ntegiaces with the Local Orchestrator will be performed through the Kubernetes API.

All 3 use cases will have the ability to use and benefit from the usage of the

ucs Lightweight Application Packaging.

4.11 Application Builder for Unikernels

EMPYREAN targets an end-to-end software stack for application deployment based on
unikernels. EMPYREAN develops Bunny, a set of systems software components that enable
deploying applications as unikernels in cloud-native environments. Bunny is designed to
streamline the process of creating, packaging, and deploying custom-made, single-tenant-
based applications. This toolchain (Figure 13) simplifies the development of highly efficient
and secure applications by automating the creation of unikernels or simple binaries and the
packaging process. Unikernels, being lightweight and specialized operating systems that run a
single application, offer improved performance and a reduced attack surface, making them
particularly suitable for loT, edge, and cloud environments.

empyrean-horizon.eu 42/91

D2.2 — Initial release of EMPYREAN architecture r:/(@\MPYREAN
e

Framework se,|e.c'tion

Bunm{ﬂlc

Code o\nall‘,'SiS

LD

Build Unikernel image

EES
i

Figure 13: High-level overview of the Bunny workflow

Fetah Bui[ol?v\g, |wfers Produce OCI mage

LwIP
@ musl
libpython3
[[: rumpkern_bmktc
—

rumpnet
rumprunfs_base

mirage-runtime
mirage-net
tcpip.ipvd
libblk.so

libnet.so
libvfs.so

OS¥o

Using Bunny as the underlying framework, the Application Builder can seamlessly integrate
the compilation of application code into a self-contained binary, or a unikernel, abstracting
away the complexity of manually configuring the operating system components. It provides a
cloud-native approach to packaging applications, ensuring that the binaries generated are
portable and can be deployed across the loT-edge-cloud continuum. This packaging tool
(Figure 13) automates dependencies, builds, and configurations, allowing developers to focus
on application logic while the system ensures that the application runs efficiently within a
unikernel. This approach enhances security and performance, particularly in environments
where resource constraints and security are critical concerns.

Coupled with a custom container runtime (i.e., urunc®), able to spawn unikernels (or pre-
compiled, static binaries) packaged as OCl images, EMPYREAN fully embraces the cloud-native
concept.

Table 15: Description of Application Builder for Unikernels components

Component ID

WP4.3.2

Name Application Builder for Unikernels

This component addresses the deployment of applications in cloud-native
High level environments using unikernels. It aims to tackle two major challenges associated
description with unikernels: (i) simplifying the building and deployment process and (ii)

minimizing the engineering overhead to resolve external software dependencies.

Collaborators

e Application Packaging (WP4.3.3)
e Container Runtime (WP4.3.4)
e EMPYREAN Registry (WP4.4.13)
e Workflow Manager (WP4.2.1)

Inputs:
e application description

Interfaces e source/binary repository of the application
Outputs:
e binary artifact (unikernel, bootable using a hypervisor, or on bare metal)
UCs At least one use case will use this component as part of the EMPYREAN

development and deployment stack.

urunc - a container runtime for unikernels: https://github.com/nubificus/urunc

empyrean-horizon.eu

43/91

D2.2 — Initial release of EMPYREAN architecture

(EMPYREAN

Component ID

WP4.3.3

Name

Application Packaging

High level
description

This component is designed to streamline the application packaging process
across diverse computing environments, focusing on creating OCl-compatible
container images. It aims to bundle binary artifacts along with their descriptors
into OCI container images, facilitating deployment across EMPYREAN's supported
execution modes, including containers, sandboxed containers, WebAssembly
(WASM), unikernels, and binary blobs for loT devices.

This development is crucial for EMPYREAN’s overarching goal of enabling
seamless application deployment and execution across heterogeneous hardware
architectures and environments, enhancing interoperability, and ensuring
efficient, cloud-native deployment methodologies.

Collaborators

e Container Runtime (WP4.3.4)
o NIX-based Environment Packaging (WP4.3.1)

Inputs:

e application description (Dockerfile-like)
e source/binary repository of the application (combined with Application

L Builder component), or unikernel binary
Outputs:
e OCl artifact bootable
UCs At least one use case will use this component as part of the EMPYREAN

development and deployment stack.

Component ID

WP4.3.4

Name

Container Runtime

High level
description

The component within the EMPYREAN project aims at facilitating the deployment
of applications across various execution environments, including unikernels and
loT devices. This component is based on urunc, a runtime capable of spawning
unikernels and seamlessly integrating them with generic container runtimes
compatible with Kubernetes and serverless architectures.

This component allows for the execution of applications built with the
"Application Builder" component within the existing container orchestration
ecosystems, providing the benefits of diverse building systems (e.g., unikernels
for improved security and performance) while maintaining compatibility with
widespread deployment models.

Collaborators

e Application Packaging (WP4.3.4)
e NIX-based Environment Packaging (WP4.3.1)
e EMPYREAN Controller (WP4.4.4)

Inputs:
e QOCl artifact

Interfaces e metadata
Outputs:
e successful execution of the binary artifact
UCs At least one use case will use this component as part of the EMPYREAN

development and deployment stack.

empyrean-horizon.eu

44/91

D2.2 — Initial release of EMPYREAN architecture :©MPYREAN

4.12 Analytics-friendly Distributed Storage

EMPYREAN will offer a novel way to store and retrieve loT data, distributed across edge and
cloud locations. By employing erasure coding and compression, storage costs are minimized.

By structuring
characteristics,

representation

data in a highly organized schema that provides different alignment
queries can be evaluated directly on the erasure coded, compressed
Without this approach, network egress costs charged by cloud providers

would make such a system unfeasible.

The loT Query Engine will work either in close collaboration or as a submodule of the Edge
Storage Gateway. It will hide the complexities of data storage and retrieval behind simple,
easy to use interfaces.

Edge Storage Gateway (3.2) loT Query Engine (T4.3)

Figure 14: Analytics-friendly Distributed Storage

Table 16: Description of Analytics-friendly Distributed Storage components

Component ID

WP4.3.5

Name

loT Query Engine

High level
description

This component is in charge or providing an loT analytics-friendly distributed
storage solution.

loT time series data is ingested, processed and stored in an erasure-coded
manner, distributed to both cloud and edge locations. This is key to offering cost-
efficient, highly reliable and available data storage. To be able to run analytics
workloads efficiently, the component uses a novel data rearrangement and
erasure coding schema. The goal is to avoid having to reconstruct complete data
fragments when evaluating queries. Our solution will make it possible to access
individual bytes of data files with very little to no overhead, while maintaining the
benefits of erasure coding and allowing the use of the whole continuum for
distributed data storage.

This feature will be accessed through the Edge Storage Gateway. Data ingest will
include a description of the time series data next to the actual values. Data egress
will happen through the IoT Query interface. Users will be able specify using an
SQL-like syntax the parts of the time series data they are interested in (e.g. SELECT
‘temperature’ FROM ‘robot3_telemetry’ WHERE ‘cell_voltage_1’ < 3.0 AND
‘timestamp” > 1712828555).

To further improve storage costs, we might be able to also support compression
through a novel technique called Generalized Deduplication.

Collaborators

e Edge Storage Gateway (WP3.2.1)

Interfaces

It likely exposes some binary interface (e.g. direct TCP connection with protobuf,
ZeroMQ) to the Edge Storage Gateway.

UCs

Hopefully at least one or two UCs.

empyrean-horizon.eu 45/91

D2.2 — Initial release of EMPYREAN architecture E@MPYREAN

4.13 Service Orchestrator and EMPYREAN Controller

EMPYREAN is dedicated to achieving the autonomous operation of the loT-edge-cloud
continuum through an advanced cognitive platform that integrates decentralized decision-
making and self-adaptive capabilities. To realize this vision, EMPYREAN utilizes a distributed
speculative intelligence approach for orchestrating hyper-distributed applications, striking an
optimal balance between centralized and decentralized solutions. This methodology
empowers more localized decision-making while maintaining a collective logic that ensures
overall system-wide optimality. Consequently, the continuum will be well-equipped to
support the future of hyper-distributed, dynamic applications and the rapid expansion of loT.

The orchestration process within EMPYREAN involves two primary stages, engaging two key
components of the platform: the Service Orchestrator and the EMPYREAN Controller. The
platform features multiple high-level orchestrators, the Service Orchestrators, operating at
the Association level, in conjunction with various Local Orchestrators managing the individual
edge and cloud platforms unified within the EMPYREAN framework. This orchestration model
ensures efficient and intelligent management of resources and tasks across the entire loT-
edge-cloud continuum.

In the first stage, multiple Service Orchestrators acts as cognitive agents competing based on
their local knowledge for the efficient and rapid mapping of applications’” workloads. Thus,
individual parts of the overall application can be assigned to resources in an Association or in
different Associations according to the deployment requirements and available infrastructure
resources. In the second stage, each Service Orchestrator intelligently assigns the part of the
overall workflow that is responsible to the Associations it manages. For this operation,
EMPYREAN adopts a hierarchical orchestration approach, with high-level decisions taken, by
the Service Orchestrator, on the Association layer, and low-level scheduling (i.e., actual
assignment of workload to specific infrastructure resources) performed by each platform’s
(e.g., K8s, K3s) orchestration mechanisms (i.e., Local Orchestrator) to provide guarantees to
the platform specifications. This approach provides several degrees of freedom to Local
Orchestrator for serving in an optimal manner a job request, satisfying both the Aggregator
and the resource’s objectives. Moreover, the EMPYREAN Controller abstracts the
management and interaction with the individual devices, resources, and services. Its modular
design allows for seamless integration with resource-specific services, effectively handling
orchestration, deployment, and management requests from the Service Orchestrator.

Both the Service Orchestrator and the EMPYREAN Controller will build upon the Resource
Orchestrator service developed by ICCS during the H2020 SERRANO EU project. This high-level
orchestrator operates seamlessly across diverse cloud and HPC platforms. In EMPYREAN, the
original design and implementation of the Resource Orchestrator will be extended and
enhanced to support decentralized and cooperative operations. This will support the efficient
orchestration of edge-cloud resources and dynamic application deployment across the
Association-based continuum.

empyrean-horizon.eu 46/91

D2.2 — Initial release of EMPYREAN architecture :©MPYREAN

The core building blocks of the EMPYREAN Service Orchestrator and Controller along with
their interactions with other EMPYREAN components are presented in Figure 15, and Table 17
provides their high-level description.

API Gateway (Task 4.4)

!

Service Orchestrator

Decision Engine

Analytics Engine
(Task 3.4) Orchestration APl Server (Task 4.1)

I Telemetry Service
Orchestration Manager (Task 4.4)

!

EMPYREAN Controller

Secure Storage
Service (Task 3.2)

Orchestration Interface

!

Orchestration Plug-ins

!

Local Orchestrator (K8s, K3s)
(Task 3.4)

Figure 15: Service Orchestrator and EMPYREAN Controller components and dependencies

Table 17: Description of Service Orchestrator and EMPYREAN Controller core components

Component ID | WP4.4.1

Name Service Orchestrator

It provides efficient service orchestration and resource management in the
High level disaggregated and heterogeneous EMPYREAN infrastructure. It initiates the
description application deployment and automatically coordinates the necessary

supplemental actions (e.g., transfer of required data).

e APl Gateway (WP4.4.12)

e Decision Engine (WP4.1.2)
Collaborators e Telemetry Service (WP4.4.7)

e EMPYREAN Controller (WP4.4.4)
e Analytics Engine (WP3.4.3)

e REST interface
e Asynchronous message-based interface for notifications

Interfaces

It will coordinate the resource allocation and workload deployment procedures

uCs derived by analysing the use case preferences.

empyrean-horizon.eu 47/91

D2.2 — Initial release of EMPYREAN architecture

Q

N

JMPYREAN

Component ID

WP4.4.2

Name Orchestration APl Server

Hieh level It acts as the single-entry point for the other components to EMPYREAN service
. . . orchestration functionalities. Initially it validates the requests and then forwards

description

them to the Orchestration Manager

Collaborators

e Orchestration Manager (WP4.4.3)
e APl Gateway (WP4.4.12)
e Analytics Engine (WP3.4.3)

Interfaces

e REST interface
e Asynchronous message-based interface for notifications

UCs

It will trigger the necessary internal procedures for the appropriate resource
allocation and initial deployment of workloads based on UCs preferences.

Component ID

WP4.4.3

Name Orchestration Manager

It implements the application logic, oversees the operation of the other internal
High level components and coordinates the resource allocation and application deployment
description operations. It also interacts with the Decision Engine and Telemetry Service

components.

Collaborators

e EMPYREAN Controller/Orchestration Driver (WP4.4.4)
e Decision Engine (WP4.1.2)
o Telemetry Service (WP4.4.7)

Interfaces

e REST interface

UCs

It will setup and coordinate the application deployment at the selected individual
edge and cloud platforms.

Component ID

WP4.4.4

Name EMPYREAN Controller / Orchestration Driver

Hieh level It provides an abstraction layer for interacting with the specific edge and cloud
g .. orchestration mechanisms at each EMPYREAN location. It receives by the Service

description

Orchestrator requests for deploying or adjusting already deployed applications.

Collaborators

e Orchestration Manager (WP4.4.3)

Interfaces

e REST interface

UCs

It will handle the requests from the Service Orchestrator regarding the initial
deployment and re-optimization of submitted applications.

empyrean-horizon.eu

48/91

D2.2 — Initial release of EMPYREAN architecture

JMPYREAN

Q

N

Component ID

WP4.4.5

Name Orchestration Interface

Hieh level It will provide at the Orchestration Manager and Orchestration Driver an
. . . infrastructure agnostic interface for descripting the deployment description and

description

constraints to the heterogeneous local orchestration mechanisms.

Collaborators

e Orchestration Manager (WP4.4.3)

Interfaces

e REST interface

UCs

It will manage the seamless deployment and execution of submitted applications’
workloads at the specific part of the EMPYREAN infrastructure.

Component ID

WP4.4.6

Name Orchestration Plug-ins
It will map the generic instructions from the Orchestration Interface to specific
. actions and procedures for the selected local orchestration mechanisms. The
High level
. . interaction will be based on the APIs exposed by each local orchestration
description

component. There will be a specific plug-in for each supported local orchestration
mechanism.

e Orchestration Interface (WP4.4.5)
e Local Orchestrator (e.g., K8s, K3s)

REST interface

Collaborators

Interfaces °

It will handle the actual seamless deployment and execution of applications’

ucs workloads at the specific part of the EMPYREAN infrastructure.

4.14 Telemetry Service

As machine learning continues to drive advancements in continuum automation, the
significance of telemetry and observability across federated loT-edge-cloud platforms has
become critical. Traditional localized monitoring methods are no longer sufficient to provide
the essential data required to ensure that all platform services operate in harmony, delivering
optimal performance, security, and efficiency throughout the entire system.

The EMPYREAN telemetry service is designed to address these challenges by incorporating
components that deliver robust observability and telemetry capabilities within the
Associations. Observability allows us to gain insights into a system from the outside, enabling
us to ask questions about its behaviour and performance without needing detailed knowledge
of its internal workings. This capability is crucial for effective troubleshooting and resolving
new, unforeseen issues, helping to answer the fundamental question, "Why is this
happening?". Telemetry, on the other hand, involves the real-time collection, measurement,
and transmission of data related to a system’s performance, status, and behaviour. This data
encompasses a wide range of metrics, including CPU usage, memory consumption, storage

empyrean-horizon.eu 49/91

D2.2 — Initial release of EMPYREAN architecture Z

'''''

capacity, and network traffic, providing a comprehensive view of the system's health and
operational state.

Together, observability and telemetry form the backbone of effective monitoring and
management in the EMPYREAN platform, ensuring that the complex, interconnected services
across loT, edge, and cloud environments function seamlessly and respond dynamically to
evolving conditions. Furthermore, they facilitate additional key operations such as data-driven
decision making, enhanced security, automation and scalability, optimized resources
utilization, and end-to-end visibility.

The EMPYREAN platform employs a robust and distributed telemetry infrastructure that is
built around several key components, including several Telemetry Engines, Monitoring Probes,
and a Persistent Monitoring Data Storage (PMDS) system. Telemetry Engines serve as the
backbone of the EMPYREAN telemetry infrastructure. Each Telemetry Engine represents a
generic monitoring entity tasked with managing, collecting, and analyzing telemetry data from
a specific segment of the infrastructure. These engines operate independently yet cohesively
to provide a detailed and unified view of system performance and health. The Monitoring
Probes are specialized components, each dedicated to collecting telemetry data from a
specific resource type. They collect real-time performance data related to various aspects of
the infrastructure and deployed applications. To support long-term analysis and decision-
making, the telemetry service integrates the Persistent Monitoring Data Storage (PMDS)
system. The PMDS serves as a centralized repository for all collected telemetry data, storing
it in a timestamped format that facilitates historical analysis. This long-term data storage is
crucial for enabling advanced data analytics and supporting the EMPYREAN decision-making
processes, as it provides the necessary historical context to identify trends, predict future
issues, and optimize resource allocation.

Figure 16 illustrates the main building blocks of the EMPYREAN Telemetry Service, highlighting
how these components interact with other elements of the EMPYREAN platform. Table 18
provides a high-level description of each component, detailing their roles to the overall
telemetry infrastructure.

empyrean-horizon.eu 50/91

D2.2 — Initial release of EMPYREAN architecture @MPYREAN

P-ABC Decision Engine Analytics Engine
(Task 3.1) (Task 4.1) (Task 3.4)

I I I

Telemetry Service

Persistent Monitoring

Telemetry Engines
Data Storage

I

Monitoring Probes

I I I

CTI Engine Service Orchestrator Autoscaling & Local
(Task 4.1) (Task 4.4) Orchestration (Task 3.4)

Figure 16: EMPYREAN Telemetry Service components and dependencies

Table 18: Description of Telemetry Service core components

Component ID | WP4.4.7

Name Telemetry Service

It provides the EMPYREAN distributed telemetry service, maintaining an overall
view of the state of the infrastructure resources and deployed applications. The
collected data will be supplied to the EMPYREAN orchestration, service assurance,
High level and security analysis mechanisms to enable efficient orchestration, improve
description resilience, and detect threats and anomalies. It will also provide alerts and
notifications whenever abnormal values are detected to trigger the appropriate
actions. Finally, a dashboard based on web-based visualization tools will enable
quick access to real-time updates on the platform status.

e Telemetry Engine (WP4.4.8)

e Monitoring Probes (WP4.4.10)

e Persistent Monitoring Data Storage (WP4.4.9)

e p-ABC (WP3.1.2)

Collaborators e Analytics Engine (WP3.4.3)

e CTl Engine (WP4.1.1)

e Decision Engine (WP4.1.2)

e Service Orchestrator (WP4.4.1)

e Autoscaling Optimizations (WP3.4.1) / Local Orchestrator (WP3.4.2)

Interfaces e REST interface

It will provide the required information for the EMPYREAN orchestration and
UCs decision-making mechanisms. Thus, it will contribute to UC applications’ cognitive
orchestration and deployment in the EMPYREAN platform.

empyrean-horizon.eu 51/91

D2.2 — Initial release of EMPYREAN architecture

Q

N

JMPYREAN

Component ID

WP4.4.8

Name

Telemetry Engine

High level
description

It coordinates the operation of a specific set of Monitoring Probes that are
responsible for monitoring the underlying platform resources and deployed
applications. The implementation will be based on well-established open-source
solutions such as Prometheus and Grafana. Prometheus will facilitate the data
collection through its reconfigurable pull-based model, data storage as time
series, provision of alerts based on specific rules, and automatic service discovery
within K8s and K3s platforms. Grafana will be used to visualize and analyze the
available telemetry data. It will also enable querying, visualizing, alerting, and
exploring metrics, logs, and traces. EMPYREAN will implement the required
extensions and improvements to glue together the different components.

Collaborators

e Telemetry Service (WP4.4.7)

e Persistent Monitoring Data Storage (WP4.4.9)
e Monitoring Probes (WP4.4.10)

e p-ABC (WP3.1.2)

e REST interface

Interfaces
e Web application, based on open-source Grafana
It will collect, store, and forward to Persistent Monitoring Data details about the
UCs characteristics and current status of available resources and deployed services

under its administration domain.

Component ID

WP4.4.9

Name

Persistent Monitoring Data Storage

High level
description

It provides a central repository to retain historical telemetry data for the current
state of the heterogeneous resources and deployed applications. It is a
fundamental piece of EMPYREAN's effective orchestration pipeline that feeds the
various data-driven decision mechanisms within the EMPYREAN platform. The
implementation will be based on InfluxDB?, an open-source time-series database
that provides fast, highly available storage for time-series data and can also be
used as a data source for many other solutions, such as the Grafana.

Collaborators

e Telemetry Service (WP4.4.7)
e Telemetry Engine (WP4.4.8)

Interfaces

e REST interface

UCs

It will provide historical telemetry data to enable their cognitive orchestration and
re-optimization.

10 InfluxDB: Open Source Time Series Database: https://www.influxdata.com/developers/

empyrean-horizon.eu

52/91

D2.2 — Initial release of EMPYREAN architecture E@MPYREAN

Component ID | WP4.4.10

Name Monitoring Probes

This component is responsible for the actual monitoring of resources and
deployed applications. It will provide the necessary telemetry data to the
High level telemetry framework. Some probes will be out of the shelf, while others will be
description implemented in the context of EMPYREAN. By focusing on individual resource
types, Monitoring Probes ensure that telemetry data is both precise and relevant,
allowing for targeted monitoring and analysis.

Collaborators o Telemetry Engine (WP4.4.8)

Interfaces e REST interface

It will collect and forward to telemetry components information about the

UCs . . .
characteristics and current status of available resources and deployed services.

4.15 EMPYREAN Aggregator

The management fabric of the EMPYREAN continuum will be implemented through
EMPYREAN Aggregators. Multiple self-managed and interacting Aggregators, that cooperate
in a multi-agent manner, transforms the loT-edge-cloud continuum into an autonomous,
collaborative, composable, and self-organized ecosystem. These Aggregators are pivotal
entities responsible for the seamless and dynamic creation, maintenance, and management
of Associations. Operating autonomously and in a distributed manner, Aggregators employ an
internal hierarchical two-level system to effectively oversee the resources within an
Association. To establish a robust and collaborative management fabric, Aggregators will
communicate not only among themselves but also with edge computing infrastructures and
(multi) cloud providers. This interconnectivity ensures a comprehensive and cohesive
management framework across the continuum.

Moreover, the EMPYREAN Aggregator will facilitate the Associations capability to function
independently. In scenarios where connectivity to remote cloud resources is either unfeasible
or undesirable, Associations can maintain operational continuity without relying on external
cloud connectivity. This independence underscores the flexibility and resilience of the
EMPYREAN continuum’s management architecture, enabling it to adapt to a variety of
network conditions and operational requirements.

An Aggregator is a logical component that consolidates multiple components and services to
deliver the necessary intelligence and orchestration logic for managing an Association. It also
facilitates the deployment of applications, ensures secure and trusted execution of workloads,
and oversees data storage across Associations within the continuum. These include
functionalities, such as resource and workload orchestration (Service Orchestrator), intelligent
decision-making (Decision Engine), distributed, hybrid and encrypted data storage (Edge
Storage Gateway), decentralized interconnection and seamless data distribution (Data
Distributor), distributed trust and identity management (Security and Privacy Manager),
monitoring of heterogeneous resources and deployed applications (Telemetry Engine), and

empyrean-horizon.eu 53/91

D2.2 — Initial release of EMPYREAN architecture @MPYREAN

service assurance mechanisms (Analytics Engine). These components are platform-agnostic,
leveraging open and standardized APIs and frameworks to operate independently of the
underlying platforms in the lower layers.

Figure 17 illustrates the key building blocks of the EMPYREAN Aggregator and its interactions
with other EMPYREAN components. Table 19 provides a high-level description of its
components that are not described in the previous sections. The EMPYREAN Aggregator
design promotes the composability of infrastructures and services across the continuum.

EMPYREAN Registry Generic Cloud

Aggregator(s)
(Task 4.4) Platforms
EMPYREAN Aggregator
. - . Analvtics Enei
API Gateway Service Orchestrator Decision Engine nalytics Engine
(Task 4.4) (Task 4.1) (Task 3.4)
Edge Storage Security & Trust Telemetry Engine Data Distributor
Gateway (Task 3.2) Manager (Task 3.1) (Task 4.4) (Task 3.2)

I

EMPYREAN Controller
(Task 4.4)

Figure 17: EMPYREAN Aggregator core components and dependencies

Table 19: Description of EMPYREAN Aggregator core components

Component ID | WP4.4.11
Name EMPYREAN Aggregator
It manages and coordinates the operation of an EMPYREAN Association. Each
Hieh level Aggregator includes several core services that provide the required intelligence
. . . and orchestration logic to operation an Association, deploy workloads, and
description

manage data access and storage. An Aggregator orchestrates its own Associations
that include separate or shared computational and storage resources.

Collaborators

e APl Gateway (WP4.4.12)

e EMPYREAN Registry (WP4.4.13)

e Service Orchestrator (WP4.4.1)

e Security and Trust Manager (W3.1.1)

e Decentralize and Distributed Data Manager (WP3.2.3)
o Telemetry Engine (WP4.4.8)

e Decision Engine (WP4.1.2)

empyrean-horizon.eu 54/91

D2.2 — Initial release of EMPYREAN architecture E@MPYREAN

Edge Storage Gateway (WP3.2.1)
Analytics Engine (WP3.4.3)
EMPYREAN Controller (WP4.4.4)
Other EMPYREAN Aggregators
Generic cloud platforms

REST interface

Interfaces
e Asynchronous interface for notifications and events
It will provide and manage the Association-based loT-edge-cloud continuum to
UCs ensure the performance, security and energy efficiency for the use cases
workloads.
Component ID | WP4.4.12
Name API Gateway
. It enables communication between Aggregators, general edge or (multi-) cloud
High level
. L. providers. It abstracts through its open and well-defined interfaces the
description

interactions between users and EMPYREAN’s core services.

Collaborators

EMPYREAN Registry (WP4.4.13)

Service Orchestrator (WP4.4.1)

Security and Trust Manager (WP3.1.1)

Decentralized and Distributed Data Manager (WP3.2.3)
Telemetry Service (WP4.4.7)

Other EMPYREAN Aggregators

Interfaces

REST interface
Asynchronous interface for notifications and events

UCs

It will abstract the inter-Association interactions and facilitate their collaborative
operation.

4.16 EMPYREAN Registry

Within the Association-based continuum, the EMPYREAN Registry (Figure 18) serves as a
crucial component for discovering, cataloging, and advertising Associations and services
across diverse environments, including loT devices, edge devices and nodes, and central cloud
platforms. It provides a unified entry point for both core platform services and third-party
entities, enabling access to the functionalities offered by the EMPYREAN components.

The EMPYREAN Registry supports application developers in managing, maintaining, and
updating application and deployment blueprints. It offers a centralized repository for
exploring and accessing all available software, container images, services, and datasets,
thereby enhancing the composability of deployed services and applications within the
EMPYREAN platform. The Registry will be dynamically updated with new information as
infrastructure resources are registered or new applications and services are published.

empyrean-horizon.eu

55/91

D2.2 — Initial release of EMPYREAN architecture :©MPYREAN

Furthermore, the Registry will store information and metadata about the available
Associations, including their resources, the available services, and deployed applications. It
will list all the available services, applications, and EMPYREAN-compliant artifacts along with
their capabilities, requirements, and dependencies. All metadata and datasets from the
individual platforms and data sources will be shared across multiple Associations, according
to the selected privacy settings. The Registry will also interact also with other catalogues,
providing a starting point for the interconnection with the Gaia-X service catalogue!!
composition model and architecture to ensure compliance and broader usage. The
orchestration and deployment mechanisms of the EMPYREAN control and management plane
will utilize this data to facilitate the efficient management of Associations and the deployment
of hyper-distributed applications within and across them.

Workflow Manager Lightweight EMPYREAN SDK
(Task 4.2) Packaging (Task 4.3) (Task 5.1)

I I I

EMPYREAN Registry
API Gateway Data Connectors Service Catalogue
Container Image Association Security & Trust
Repository Metadata Store Manager (Task 3.1)
Data Sources, Data EMPYREAN
Catalogue, Data Stores Aggregator (Task 4.4)

Figure 18: EMPYREAN Registry core components and dependencies

11Gaia-X Architecture Document - 24.04 Release - https://docs.gaia-x.eu/technical-committee/architecture-
document/latest/enabling_services/#federated-catalogues

empyrean-horizon.eu 56/91

D2.2 — Initial release of EMPYREAN architecture

(EMPYREAN

Table 20: Description of EMPYREAN Registry core components

Component ID

WP4.4.13

Name EMPYREAN Registry
It manages the registration of loT devices, edge, and cloud resources in
High level Associations. It also abstracts to the Workflow Manager the interaction with the
. . . available Associations. The EMPYREAN registry will keep track of the available
description

Associations and services, the mapping of the infrastructure resources to
Associations, and the relation between users and Associations.

Collaborators

e APl Gateway (WP4.4.14)

e Service Catalogue (WP4.4.15)

e Container Image Repository (WP4.4.16)
e Association Metadata Store (WP4.4.17)
e EMPYREAN Aggregator (WP4.4.11)

e Workflow Manager (WP4.2.1)

e Application Packaging (WP4.3.3)

e EMPYREAN SDK

e REST interface

Interfaces . I
e Asynchronous interface for notifications and events
It will facilitate the seamless deployment of EMPYREAN use case applications
UCs across an Association-based loT-edge-cloud continuum. It will handle along with

the Workflow Manager the initial steps of the applications’ lifecycle workflow
within the EMPYREAN platform.

Component ID | WP4.4.14

Name API Gateway

High level It is a lightweight version of the corresponding component in the EMPYREAN
& . .. Aggregator. It facilitates the interaction and exchange of events between the

description

EMPYREAN services and the Registry core components.

Collaborators

e Association Metadata Store (WP4.4.17)
e Service Catalogue (WP4.4.15)

e Container Image Repository (WP4.4.16)
e Workflow Manager (WP4.2.1)
Application Packaging (WP4.3.3)
EMPYREAN Aggregator (WP4.4.11)

e EMPYREAN SDK

Interfaces

e REST interface
e Asynchronous interface for notifications and events

UCs

It will be used in all use cases as a core component of the EMPYREAN Registry that
is essential for the operation of the EMPYREAN platform.

empyrean-horizon.eu

57/91

D2.2 — Initial release of EMPYREAN architecture

(EMPYREAN

Component ID

WP4.4.15

Name

Service Catalogue

High level
description

It will keep track of ownership and metadata for all the available software in the
EMPYREAN platform such as, services, containers, and data pipelines. The Service
Catalogue will store and manage the descriptors of hyper-distributed applications
and services that are available for deployment on the EMPYREAN infrastructure.
The catalogue will provide information about the software packages, container
images, service descriptors, and other metadata that are required for service
deployment and management.

Collaborators

e APl Gateway (WP4.4.14)
e Association Metadata Store (WP4.4.17)

Interfaces

e REST interface
e Asynchronous interface for notifications and events

UCs

It will be used in all use cases as a core component of the EMPYREAN Registry that
is essential for the operation of the EMPYREAN platform.

Component ID

WP4.4.16

Name Container Image Repository

This component will be part of the EMPYREAN services that focus on building and
High level storing EMPYREAN-enhanced lightweight container images. Once a hyper-
deicription distributed application is created through the EMPYREAN building and packaging

mechanisms, its OCl-compatible images contain will be stored in the Container
Image Repository.

Collaborators

e APl Gateway (WP4.4.14)
e Service Catalogue (WP4.4.15)

Interfaces

e REST interface
e Asynchronous interface for notifications and events

UCs

It will be used in all use cases as a core component of the EMPYREAN Registry that
is essential for the operation of the EMPYREAN platform.

Component ID

WP4.4.17

Name Association Metadata Store
It will store high-level information and metadata concerning the formation of
available Associations, including details about participating resources, their
High level | OWNers, and sharing policies. This information will be continuously updated
.. during the registration of new resources and their decommissioning.
description

Furthermore, the stored information will support the orchestration and load-
balancing decisions of distributed decision-making mechanisms, ensuring
efficient and balanced resource management across the continuum.

Collaborators

e APl Gateway (WP4.4.14)
e Service Catalogue (WP4.4.15)
e EMPYREAN Aggregator (WP4.4.11)

Interfaces

e REST interface
e Asynchronous interface for notifications and events

UCs

It will be used in all use cases as a core component of the EMPYREAN Registry that
is essential for the operation of the EMPYREAN platform.

empyrean-horizon.eu

58/91

A
D2.2 — Initial release of EMPYREAN architecture @MPYREAN
Z

Component ID

WP4.4.18

Name Data Connectors
It will collect metadata and information from various systems, including data
Hieh level stores, external catalogues, data pipelines, any other relevant data source. It will
. . L. rely on connector interfaces for each specific data. By adding new connectors or
description

expanding the graph model, the system can be extended to collect any required
metadata.

Collaborators

AP| Gateway (WP4.4.14)

Service Catalogue (WP4.4.15)

Association Metadata Store (WP4.4.17)
Data Catalogues, Data Sources, Data Stores

REST interface

Interfaces e Asynchronous interface for notifications and events
e Data-specific interfaces
UCs It will be used in all use cases as a core component of the EMPYREAN Registry that

is essential for the operation of the EMPYREAN platform.

empyrean-horizon.eu

59/91

A
D2.2 — Initial release of EMPYREAN architecture @MPYREAN
Z

5 EMPYREAN Architecture

5.1 High-Level Architecture

EMPYREAN envisions an loT-edge-cloud continuum composed of collaborative collectives of
loT devices, robots, and resources that extend from the edge to the cloud. EMPYREAN refers
to this concept as the Association-based continuum (Figure 19). In this paradigm, multiple
Associations—each a collaborative collective of loT devices, robots, and resources—operate
simultaneously across different locations, collectively forming the loT-edge-cloud continuum.

~ —_—— —
EMPYREAN _-~ - Q/IPYREAN P ~ EMPYREAN

b EMPYREAN ASseiatiert Assqgiation
M Association

————— "l"]é \.I.zE @; Al
A B D B B O 2 H O = <

g Conitive loT-Edge Analytics &
Copnitive loT-Edge Analytics & aﬂ'\ 82’.'"371',. me:;!::xon .'.‘."'Z'-\".?f.'.: Opuntin tecomncton '""‘;"'::“
Operation Interconnection Intelligence

Cognitive loT-Edge Analytics &
Operation Interconnection Intelligence

: - s i
Y42 L 2. ‘,(‘ :‘t} %i% ;(‘j}
. @ @ . X X
- Pt A "(}r g Securlty®& Datastorage& Green& Sacarty KOs Ecinge KR S0 R
Securlty& DataStorage& Green& 5 et Privacy Proceming Energy-ware Privacy Proceming Energy-ware
Privacy Processing Energy-ware Security® DataStorage& Green &
Privacy Proceming Energy-vare

BB s . =) E = A BB

/ <

< \ 0 / \/U‘F‘ -2
A e YL W) 7y L] T
S P | \ / aas

b g &al L. N . ki 2R —

8 . \'\ _ / /
EMPYREAN === 4
Registr : : y: 7 = - -
_ ‘ on-premise/micro edge

. /
Copnitive loT-Edge Analytics & e

A1k ~
%i% él} @ Eﬂ far edge

Securlty& DataStorage& Green &
Privacy Processiny

Figure 19: EMPYREAN Association-based loT-Edge-Cloud continuum

An Association consists of a diverse array of loT devices, robots, edge computing and storage
resources, which can vary in size and purpose, encompassing both general-purpose and
specialized units. Through an Association, resources from different owners are shared
between the participant users and seamlessly and cognitively combined to create a unified
virtual execution environment. These Associations are dynamically formed and updated,
depending on the participation of resource owners. While the system primarily relies on edge
resources, it can leverage central cloud resources whenever necessary.

EMPYREAN platform promotes the composability of infrastructures and services across the
loT-edge-cloud continuum. Associations facilitate the collaborative operation and
management of virtual execution environments by pooling computational, storage,
networking, and other infrastructure and service resources. This flexible and adaptive
structure ensures efficient resource utilization and enhances the overall functionality of the
loT-edge-cloud ecosystem. Moreover, the EMPYREAN Al-enabled distributed control and

empyrean-horizon.eu 60/91

A
D2.2 — Initial release of EMPYREAN architecture @MPYREAN
~

management plane provides robust anomaly mitigation, adaptability, and self-driven
recovery, ensuring resilient and efficient operations in the face of unforeseen issues across
the infrastructure. The EMPYREAN platform provides a loosely coupled continuum
implementation that enables more local decisions and a collective logic that leads to system-
wide welfare optimality to serve dynamic and hyper-distributed applications more efficiently.

We employed a top-down, iterative approach to define the EMPYREAN architecture. We
began by drafting the high-level architecture, which outlines the conceptual design of the
EMPYREAN platform, emphasizing the main components and functionalities without delving
into implementation details. Following this, we developed the logical architecture, detailed in
Section 5.3, which describes the logical components comprising the EMPYREAN platform and
aligns closely with the developed technological solutions. This comprehensive design process
integrates the analysis and functional requirements from tasks T2.1 “State-of-the-Art
Analysis” and T2.2 “Concept, Use Cases and Requirements Analysis,” as documented in
deliverable D2.1 (M6).

EMPYREAN adopts a layered architecture, where each layer consists of a set of discrete
components that use well-defined and open interfaces to interact horizontally and vertically
to form the EMPYREAN platform. Figure 20 illustrates the EMPYREAN high-level architecture.

EMPYREAN Use Cases

Monitoring & Service Layer Security, Trust,

Observability Layer p - . & Privacy Layer
Dataflow Unikernels
Programming Application Builder ENEAEESNISBI

Workflow Manager

Association Management Layer
p-ABC Library

Analytics Engine f |
EMPYREAN Aggregator EMPYREAN Registry ‘

Multi-Cluster Orchestration Layer CWEhE

Persistent Monitoring

Data Storage Container Layers Locality

Scheduler Decision Engine

Service Orchestrator ‘

Privacy & Security
Resource Management Layer Data Management & Manager

Telemetry Engi X
sy Sl Interconnection Layer

Al-enabled Workload ‘ ‘ "~ EMPYREAN ‘
utoscaling Controller Software-Defined 10T Query

NIX-based Enviroment‘ ‘ Unikernel ‘ Edge Interconnect Engine

Packaging Deployment - -
Monitoring Prob Decentralized & Distributed Data
onitoring Probes
g Application Packaging ‘ Container Runtime ‘ aaney Secure & Trusted
Edge Storage Execution Environment

Hardware Acceleration Abstractions Gateway Edge Storage

b

T ?% < g

— FER 4 _flf

:I'i: v.x‘ - p 22 E E a E.§

: % e ETE £ =

2 el s

“

[IoT / loT Devices ON-PREMISE DEEP EDGE FAR EDGE cLouD
c

loT-Edge-Cloud Infrastructure

Figure 20: EMPYREAN high-level architecture

empyrean-horizon.eu 61/91

D2.2 — Initial release of EMPYREAN architecture Z

'''''

Moreover, the architecture is aligned with the current version of the European reference
architecture for the continuum, provided by the Task Force (TF) 3 “Architecture” of the
EUCloudEdgeloT? initiative. The reference architecture!® defines eight main categories of
building blocks corresponding to the technical processes to operate applications along the
continuum: Security & Privacy, Trust & Reputation, Data Management, Resource
Management, Orchestration, Network, Monitoring & Observability, and Artificial Intelligence.

The Service Layer encompasses components designed to enhance the development of
Association-native applications, offering robust support for application-level adaptations,
interoperability, elasticity, and scalability across the loT-edge-cloud continuum. This layer
addresses, among others, the following key aspects: (a) workflow design and management of
hyper-distributed applications, (b) cloud-native unikernel application development, and (c)
data-flow description.

The Workflow Manager provides tools for the high-level design, development, and remote
debugging of cloud-native applications. It allows these applications to be seamlessly deployed
across the Association-based loT-edge-cloud continuum. The Unikernels Application Builder
facilitates the development and deployment of applications as unikernels in cloud-native
environments. It reduces engineering overhead by simplifying the building process.
Unikernels are highly efficient, lightweight, and secure, making them ideal for edge and cloud
environments where performance and security are critical. The Dataflow Programming
complements the workflow-based application management by focusing on a data-centric,
decentralized, and highly dynamic data interconnection. It supports the declarative definition
of data flow requirements through unified abstractions and location-transparent descriptions.
This enables more responsive and adaptable data management, particularly in highly
distributed and heterogeneous environments. Additionally, the EMPYREAN SDK empowers
developers by providing a comprehensive toolkit for the development and deployment of
hyper-distributed applications that fully leverage the EMPYREAN platform functionalities.

The Association Management Layer is responsible for the dynamic and transparent creation
and management of Associations that integrate heterogeneous resources across multiple
providers, connectivity types, and segments of the loT-edge-cloud continuum. It incorporates
components that intelligently and dynamically form resource federations, facilitating
collaboration, resource sharing, workload and data distribution, and interoperability across
diverse administrative domains within the loT and edge-cloud environment. Alongside the
Multi-Cluster Orchestration Layer, it forms the core of EMPYREAN’s novel, distributed, and
autonomous control and management plane, realizing the concept of an Association-based
continuum.

12 https://eucloudedgeiot.eu
13 Task Force 3: Architecture. (2023). Developing a Reference Architecture for the Continuum - Concept,
Taxonomy and Building Blocks. Zenodo. https://doi.org/10.5281/zenod0.8403593

empyrean-horizon.eu 62/91

A
D2.2 — Initial release of EMPYREAN architecture @MPYREAN
~

At the heart of this layer is the EMPYREAN Aggregator, a key component that enables the
formation, coordination, and management of Associations, while also facilitating the
discovery of available resources. An Aggregator (Figure 21) can manage multiple Associations,
within each it enables |oT devices and computational resources, potentially spanning multiple
clusters, to cooperate dynamically and autonomously. Moreover, it interfaces with other
Aggregators and edge or (multi) cloud providers, enabling services and data to be processed
seamlessly across various providers. Multiple self-managed and interacting Aggregators
constitute the distributed and data-driven management plane for the EMPYREAN platform.

This setup abstracts the underlying complexity and heterogeneity of diverse loT devices and
edge resources, while providing resiliency, fault-tolerance, and elasticity for users and
applications. Additionally, the EMPYREAN Registry plays a critical role in managing the
registration of loT devices, edge, and cloud resources within Associations, while also tracking
available services and resources. It registers all data within the system, making it accessible
and providing EMPYREAN developers and platform services with a unified view of all available
software, services, machine learning models, and datasets. This unified view enhances
operational efficiency and simplifies the development and deployment of applications within
the EMPYREAN platform.

EMPYREAN Association

Aggregator

o fad =g
.

APl Gateway Orchestrator Security Telemetry

b @ W

Data Decision Edge Storage Analytics Control
Distributor Engine Gateway Engine ontro
W _ ® Monitoring
3 £ g 5
e £ -
S 5 © g To other
k‘“ ® Associations
< 0 Workload
N
0 o Data
- | @
el i
On-device
On-premise Deep edge

TS
EFYS

Figure 21: EMPYREAN Aggregator and Associations’ management

The Multi-Cluster Orchestration Layer provides efficient service orchestration and resource
management across the disaggregated and heterogeneous EMPYREAN infrastructure. This
layer includes distributed, cognitive, and autonomous decision-making mechanisms designed
to efficiently orchestrate emerging, highly dynamic, hyper-distributed applications, while also
supporting their autonomous and self-driven adaptations. Multiple instances of this layer
components underpin the decentralized and multi-agent operation of the EMPYREAN control
and management plane, optimizing resource utilization and providing scalability, resiliency,
energy efficiency, and high quality of service.

empyrean-horizon.eu 63/91

D2.2 — Initial release of EMPYREAN architecture E@MPYREAN

The EMPYREAN Orchestrator and Decision Engine are key components responsible for service
orchestration and resource management. The EMPYREAN Orchestrator oversees the efficient
deployment of applications and coordinates the necessary actions for resource management.
Workload assignment decisions are delegated to the Decision Engine, which enables
decentralized, speculative, and multi-objective resource orchestration. The Decision Engine
integrates various distributed optimization and orchestration algorithms to balance
computing tasks and data both locally within an Association and across federated
Associations. It also considers environmental factors, enabling intelligent and energy-efficient
workload and data distribution. These components operate at the Association level, managing
multiple clusters within the EMPYREAN platform. Additionally, the Container Layers Locality
Scheduler, implemented as a scheduling plugin for the local orchestrator in each platform,
optimizes workload scheduling at the cluster level. It enhances the native decision-making
capabilities of Kubernetes and K3s by implementing advanced scheduling algorithms that
minimize cold start delays and optimize workload placement based on container layer locality.

The Resource Management Layer abstracts the complexity of managing and interacting with
orchestration and deployment mechanisms across loT, edge, and cloud platforms, all of which
are unified under the EMPYREAN platform. To this end, it integrates a wide range of novel
software mechanisms that span the entire system stack from platform-level scheduling
mechanisms (e.g., EMPYREAN Controller, Al-enabled Workload Autoscaling) to low-level
mechanisms (e.g., Unikernel Deployment, Container Runtime). The components within this
layer operate within a specific Kubernetes or K3s cluster, providing targeted management and
optimization of resources. Additionally, the layer’s modular design offers flexibility to the
EMPYREAN platform, allowing for seamless extension and the quick integration of new
hardware and software platforms at the Infrastructure Layer. This modularity ensures that the
platform remains adaptable and scalable, capable of evolving with emerging technologies and
diverse deployment environments.

The EMPYREAN Controller serves as a bridge for integrating individual 10T, edge, and cloud
platforms. It incorporates platform-specific logic and interfaces to enable efficient and
seamless deployment of cloud-native applications and serverless workloads. It translates
assignment decisions from the multi-cluster orchestration layer’s decision-making
mechanisms into platform-specific deployment objectives. These objectives are then
conveyed as declarative descriptions to low-level deployment mechanisms, ensuring smooth
and consistent deployment across heterogeneous environments. The Al-enabled Workload
Autoscaling component enhances the Kubernetes orchestrator by incorporating Al/ML
techniques for intelligent workload autoscaling. By analysing historical data, this component
ensures optimized resource allocation, dynamic application-level adaptations, and efficient
utilization of resources, providing a more responsive and adaptive environment for workloads.

The Application Packaging and NIX-based Environment Packaging components support multi-
environment and multi-architecture packaging for cloud-native applications, improving the
interoperability and adaptability of workloads within the EMPYREAN platform. They
streamline the packaging process by creating OCl-compatible container images, supporting
multiple architectures and programming languages, and ensuring deployment flexibility

empyrean-horizon.eu 64/91

D2.2 — Initial release of EMPYREAN architecture E@MPYREAN

across different execution environments. The Hardware Acceleration Abstractions
component, based on the open-source vAccel'* framework, enables the offloading of
compute-intensive tasks to hardware accelerators on neighbouring nodes. This offloading is
performed while ensuring data security and integrity, thereby enhancing performance for
resource-heavy workloads without compromising on safety. Additionally, the Unikernel
Deployment and Container Runtime components provide a versatile container runtime
integration for the deployment of cloud-native applications across various execution
environments. These components facilitate the spawning of unikernels and their integration
with generic container runtimes that are compatible with Kubernetes and serverless
architectures.

The Data Management and Interconnection Layer is responsible for managing secure data
storage and ensuring dynamic interconnection and communication between loT devices and
computing and storage resources. This layer’s components operate both at cluster and
Association levels, enabling flexible and scalable data management across the EMPYREAN
platform. They facilitate the seamless integration of loT devices with edge and cloud
resources, enabling data-driven applications to operate effectively in highly distributed and
heterogeneous environments.

The Edge Storage, Edge Storage Gateway, and loT Query Engine are the core elements of
EMPYREAN’s secure and hybrid cloud-edge storage and efficient time series data storage
management. They are designed to manage storage resources across cloud and edge
environments, supporting hybrid policies for data distribution, redundancy, and security. They
also enhance the storage and retrieval of loT time series data, employing erasure coding
techniques to ensure secure and reliable data management. This approach provides robust
support for efficient and scalable time series data storage, which is critical for applications
requiring high-performance data access and analytics. Additionally, the Decentralized and
Distributed Data Manager implements decentralized and distributed communication
mechanisms with efficient publish/subscribe and data querying capabilities. It facilitates
communication between loT devices and edge computing and storage resources across
various providers/administrative domains, connectivity types (e.g., extremely constrained
networks), technologies, and network zones. Moreover, the Software-Defined Edge
Interconnect provides a high-performance data transport service that integrates remote 1/0
operations into large computational pipelines, such as Al training workflows. It optimally
overlaps computation with network 1/0O, improving the efficiency of data-intensive tasks
across distributed environments and thereby supporting real-time processing and analytics.

The Infrastructure Layer consists of heterogeneous resources from various administrative and
technology domains including, (i) 1oT/lloT devices, robots, and on-premise, micro edge
resources, where data is produced and service requests are generated, (ii) deep and far edges,
close and further from the end users/devices, for real-time processing and as aggregator
nodes, and (iii) multiple clouds (federated operation) to increase robustness and reduce cost
and dependencies on a single cloud provider, for data storage and replication. This layer also

¥ https://docs.vaccel.org

empyrean-horizon.eu 65/91

D2.2 — Initial release of EMPYREAN architecture Z

'''''

includes the EMPYREAN-enhanced software resources (Section 3.2). Moreover, EMPYREAN
will not only accommodate container-based application development and deployment, but
also the serverless paradigm allowing users to optimize the execution of their functions. That
exceptional unification of highly diverse resources and deployment modes provides the
EMPYREAN platform the ability to cater for application and user constraints, while calibrating
the configuration of available resources.

The architecture is complemented by the Security, Trust, and Privacy Layer and the Monitoring
and Observability Layer, which are across the other layers, providing critical functionalities for
the overall platform.

The Security, Trust, and Privacy Layer integrates components that are designed to ensure
secure access to resources while addressing privacy concerns and enabling trusted execution.
These components are distributed across EMPYREAN platform, functioning at both cluster and
Association levels. They ensure that Associations operate as secure and trusted execution
environments, where trust between data-generating and data-processing entities is
continuously validated using distributed trust services. In parallel, identity and data access
management components ensure controlled access and data confidentiality among different
entities.

The Privacy and Security Manager component and P-ABC library provide robust identity and
access management alongside attribute-based credential management. The Privacy and
Security Manager ensures secure and private identity management, data verification, and a
strong cryptographic foundation for managing privacy-preserving attribute-based credentials
across the platform. The P-ABC library complements this by offering a distributed privacy-
preserving attribute-based credential system based on PS multi-signatures. The Secure and
Trusted Execution Environment establishes secure and trusted execution across the loT-edge-
cloud continuum, supporting secure and measured boot mechanisms. It enables applications
to be deployed seamlessly with varying levels of security and trustworthiness across different
hardware platforms. This allows for scalable and transparent operation, from micro deep edge
devices to the far edge and cloud environments, ensuring that security requirements are met
at all levels. Furthermore, the Cyber Threat Intelligence (CTl) Engine facilitates automated
cyber threat analysis, providing valuable insights into past cyber threat events observed
globally. By quantifying system risks, it enables proactive adaptations within and across
EMPYREAN Associations, significantly enhancing overall platform security.

Finally, the Monitoring and Observability Layer integrates real-time monitoring,
observability, and service assurance components to provide comprehensive visibility and
control over the EMPYREAN platform. This layer incorporates distributed and automated
telemetry mechanisms that dynamically collect a wide range of metrics from heterogeneous
infrastructures and deployed applications. These mechanisms continuously track the health,
performance, and availability of 10T devices, edge/cloud infrastructures, platform services,
and applications, facilitating data-driven decision-making and enabling advanced automation
capabilities.

empyrean-horizon.eu 66/91

D2.2 — Initial release of EMPYREAN architecture E@MPYREAN

At the core of this telemetry infrastructure are the Telemetry Engine, Monitoring Probes, and
Persistent Monitoring Data Storage (PMDS). The Telemetry Engine also provides smart
observability, offering an initial analysis of telemetry data to deliver real-time insights into
system performance and security. This enables rapid anomaly detection, efficient resource
utilization, and prompt response to emerging issues. Moreover, the Analytics Engine provides
service assurance by using Al-driven analytics on top of monitoring and observability data.
This approach ensures that applications perform as intended by dynamically adjusting
deployments based on changing conditions and requirements. Components within this layer
operate both at cluster and at the Association level, the latter covering multiple clusters to
ensure a cohesive and scalable monitoring and observability framework across the entire
EMPYREAN platform.

5.2 Data Spaces and Architecture

The increasing importance of data has led to the creation and development of Data Spaces,
which are ecosystems where organizations can share data from different sources and
collaborate to achieve a goal. Data Spaces are essential in today's data-driven world,
promoting innovation, collaboration, and value creation by enabling trusted and secure data
sharing across industries and sectors. They are designed to break down traditional data silos
by providing a common framework where participants can maintain control over their own
data while sharing it with others under mutually agreed-upon terms. Data spaces bring
together relevant data infrastructures and governance frameworks to facilitate data pooling
and sharing. The emergence of Data Spaces entails a shift in the way that companies and
organizations share and manage data.

From a technical point of view, Data Spaces are a concept of data management: they put
technology systems and rules in place to integrate and exchange data. What emerges is a
federated data ecosystem based on shared policies and rules. Data is distributed across
storage points and integrated on the basis of what is needed. Tools are provided to discover,
access, and analyse data that is distributed across industries, companies and entities.

Data Spaces are designed with a focus on robust architecture, emphasizing interoperability
and security. To this end, Data Spaces incorporate several key roles:

e Data Owners: Entities that hold the rights to access and use the data, maintaining
control over how their data is shared and utilized within the Data Space.

e Data Providers: Entities that make data available within the Data Space, managing
data offerings through a catalogue that ensures data discoverability and accessibility.

e Data Consumers: Participants who access and utilize the data offered in the Data
Space, leveraging shared data to drive insights, innovation, and decision-making.

e Data Intermediaries: Entities that provide services that facilitate data access and
sharing within the Data Space. They preserve the catalogue of organized data, enforce
data quality, and ensure operational control through various application tools.

empyrean-horizon.eu 67/91

D2.2 —Initial release of EMPYREAN architecture \,MPYREAN

Q

N

e Technology Providers: Entities that supply the necessary technologies to enable the
functionality and utility of the Data Space, including infrastructure, software, and
platform services.

e Operators: Responsible for the definition, management, and maintenance of the Data
Space, ensuring that it operates smoothly, securely, and in accordance with agreed-
upon standards and protocols.

A standard reference technological framework is employed for implementing the Data Spaces,
incorporating key elements such as the Data Space Registry, federated services of the Data
Space, and the connector. The connector serves as the primary hardware and software agent
that enable secure and interoperable data sharing within Data Spaces ecosystems. It allows
participants in the Data Space to function as data providers, consumers, or both, ensuring
interoperability and compliance to predefined standards for each transaction within the Data
Space. There is available a reference implementation supported by the Data Space Business
Alliance® (DSBA), a coalition that promotes a robust data economy and include several key
organizations such as the International Data Spaces Association® (IDSA), FIWAREY, Gaia-X'8,
and Big Data Value Association!® (BDVA). Additional implementations include the Eclipse Data
Space Connector?® (EDC), an open-source and extensible connector developed under the
Eclipse Foundation, and the FIWARE True Connector?! (FTC) for the IDS ecosystem that
promotes a standardized approach to connecting and interacting within Data Spaces,
facilitating trusted data sharing and compliance with the IDS reference architecture.

The EMPYREAN architecture is designed to facilitate seamless operation within multi-instance,
multi-domain configurations in federated frameworks, supporting advanced edge/cloud
services and Data Spaces. EMPYREAN aligns with the concepts defined by Gaia-X, which
emphasizes secure, cross-border data sharing and the establishment of a federated data
infrastructure. In the Gaia-X framework, various infrastructure ecosystems and data
ecosystems are interconnected to foster the data economy. This framework defines three
pillars (Figure 22) that must be addressed to integrate infrastructure and data ecosystems
effectively:

e Compliance: Ensuring that all participants adhere to the common set of rules and
standards defined by the ecosystem. This includes data protection regulations, security
protocols, and usage policies that govern how data can be shared and used within the
Data Space.

15 Data Space Business Alliance: https://data-spaces-business-alliance.eu

16 International Data Spaces Association: https://internationaldataspaces.org/

7 FIWARE Foundation: https://www.fiware.org/

18 Gaia-X: https://www.gaia-x.eu/

19 Big Data Value Association: https://www.bdva.eu/

20 Eclipse Dataspace Components: https://projects.eclipse.org/projects/technology.edc

21 FIWARE TRUsted Engineering Connector: https://fiware-true-connector.readthedocs.io/en/latest/

empyrean-horizon.eu 68/91

A
D2.2 — Initial release of EMPYREAN architecture @MPYREAN
Z

e Federation: Facilitating the interconnection of different data and service providers
through a federated model. This allows for the seamless integration of resources from
multiple domains, enhancing the scalability and flexibility of the Data Space.

e Data Exchange: Enabling the efficient and secure exchange of data between
participants, supported by a standardized set of protocols and interfaces. This pillar
focuses on maintaining data integrity, ensuring traceability, and providing mechanisms
for consent and data usage management.

Data Ecosystems

Infrastructure Ecosystems

Figure 22: Gaia-X Connecting Data & Infrastructure Ecosystems'®

The EMPYREAN architecture is inherently designed to address the federation pillar, supporting
a hyper-distributed computing paradigm that relies on federations of collaborative and
heterogeneous loT devices, multilayer edge, and cloud resources across different providers
and networks. This architecture promotes a highly adaptable and scalable framework,
facilitating the seamless integration and cooperation of diverse resources, regardless of their
geographical or administrative boundaries. EMPYREAN incorporates distributed and Al-
enabled decision-making mechanisms that dynamically balance computing tasks and data
both within individual Associations and across multiple federated Associations. This approach
brings services closer to the edge, leveraging trustworthy loT devices and edge resources for
efficient data processing. By doing so, EMPYREAN ensures that data sovereignty is maintained,
providing stakeholders with control over their data.

Additionally, the EMPYREAN platform can function as a Data Provider. Data generated from
loT resources is collected, stored, and analysed through developed extreme scale analytics
mechanisms. This processed data can then be offered as valuable data services, enhancing the
platform's role within data-centric ecosystems. The platform’s ability to provide data services
makes it an integral part of the data economy, where data becomes a key asset for innovation
and decision-making. Through components like the EMPYREAN Registry and EMPYREAN
Aggregator, the platform operates effectively as both an Infrastructure Service Provider and
Data Provider within the Gaia-X ecosystem. These components enable seamless registration,
management, and discovery of resources, facilitating interoperability and promoting a
federated model where data and resources are shared across multiple domains.

empyrean-horizon.eu 69/91

A
D2.2 — Initial release of EMPYREAN architecture @MPYREAN
Z

Moreover, EMPYREAN fosters the development of a dynamic open-edge ecosystem by
enabling a marketplace where infrastructure and service providers, developers, and end-users
can interact. This collaborative platform integrates diverse stakeholders from across the value
chain, encouraging innovation and the development of new services and applications.
EMPYREAN’s components support the advertisement of data, edge resources, and services to
third-party marketplaces through standardized APIs, enhancing market accessibility and
fostering a competitive environment.

Another key concept in defining a Data Space is the trust framework (Figure 23), which
includes all agreements and decisions necessary to establish a functional Data Economy within
the ecosystem. This framework integrates elements that ensure interoperability, trust, data
sovereignty, and empowerment among participants. It also employs mechanisms that protect
and preserve privacy, utilizing privacy-preserving enablers to keep data secure. Enhanced
privacy and confidentiality are crucial in identity (trust) management within data connectors,
as compromising sensitive identity information can result to significant data breaches. The
Gaia-X Trust Framework?? envisions the use of verifiable credentials and linked data
representations. EMPYREAN'’s architecture aligns with Gaia-X principles, emphasizing secure,
federated data sharing and infrastructure cooperation, thereby contributing to a robust and
scalable data economy.

Data Data Sovereignty Data
Interoperability and Trust Value Creation

,, ‘
I | I
I Data Models & 1 I
[formats : I
I

I 1 ;
! L ' I
ll Data Space nd Data Exchange API ==| Identity Management b s N Federated [
| ‘l —— o0 Discovery Services ! .
Ml Connectors | Services |
[=l |
| ! 1 | :
[# » Provenance & : Trust services | | él_: Marketplaces & Usage 1 "
[3 Traceability , 1 l::ﬂ Accounting | |
I 1 | |

1
I

Technology Building Blocks

= Access & Usage Data, Services and
= Policies Control Offerings descriptions

Figure 23: Design principles for Data Spaces?3

EMPYREAN will offer secure identity and access management, alongside attribute-based
credential management mechanisms, to support privacy-preserving attribute-based
credentials across the Association-based continuum. These mechanisms will enhance data
sovereignty by establishing trust between stakeholders, making data and services searchable,
discoverable, and consumable in a secure manner.

22 Gaia-X Trust Framework: https://docs.gaia-x.eu/policy-rules-committee/trust-framework/22.10/
23 Data Spaces Business Alliance, Technical Convergence: https://data-spaces-business-alliance.eu/wp-
content/uploads/dim uploads/Data-Spaces-Business-Alliance-Technical-Convergence-V2.pdf

empyrean-horizon.eu 70/91

https://docs.gaia-x.eu/policy-rules-committee/trust-framework/22.10/
https://data-spaces-business-alliance.eu/wp-content/uploads/dlm_uploads/Data-Spaces-Business-Alliance-Technical-Convergence-V2.pdf
https://data-spaces-business-alliance.eu/wp-content/uploads/dlm_uploads/Data-Spaces-Business-Alliance-Technical-Convergence-V2.pdf

D2.2 — Initial release of EMPYREAN architecture E@MPYREAN

A privacy-preserving Self-Sovereign Identity (SSI) approach empowers end-users with control
over their personal data without relying on a central authority, involving three main
participants: the holder of Verifiable Credentials (VCs) with a digital wallet, the issuer of VCs,
and the verifier of VCs, supported by a decentralized Data Registry like Blockchain. To
strengthen the basic SSI model, EMPYREAN incorporates a cryptographic module that includes
distributed attribute-based credentials leveraging Pointcheval-Sanders multisignatures (dp-
ABC) and Zero-Knowledge Proofs (ZKP). This robust and comprehensive approach to privacy-
preserving identity management allows users to disclose only the necessary attributes
required for specific transactions through Selective Disclosure, ensuring sensitive information
remains protected and that users have greater control over their personal data. ZKP further
enhance security by allowing the prover to demonstrate to the verifier that specific attributes
are met without revealing the underlying data. This cryptographic module significantly
enhances the security and privacy of the SSI mechanisms, granting users greater control over
their personal information.

Access control is another crucial mechanism that ensures data is accessible only to authorized
entities while maintaining privacy and compliance with security policies. Sticky policies serve
as a form of data policy management that persists with the data as it moves across different
systems and environments, offering fine-grained access control via Ciphertext-Policy
Attribute-Based-Encryption (CP-ABE). These policies ensure data privacy by restricting access
to authorized members. Data producers encrypt their data based on attribute-based policies
(CP-ABE), and once access is granted, the consumer must decrypt the data. The decryption
process relies on a key associated with the consumer's identity attributes, ensuring that data
can only be decrypted if the attributes align with the sticky policy.

Additionally, a policy enforcement model based on the XACML framework will be employed.
This model, combined with sticky policies and ABE, creates a secure resource access
authorization layer, integrating identity attributes with user preferences, permissions, and
consent choices. Beyond basic access control, EMPYREAN also addresses usage control by
enabling more dynamic and context-aware control over the usage of the assets. Policies are
defined as a set of rules consisting of conditions and associated decisions (e.g., permit, deny),
allowing for refined control over how data and resources are utilized within the ecosystem.

5.3 Logical Architecture

A more detailed and elaborate design for the overall architecture of the EMPYREAN platform
after the first iteration of the requirements analysis and design (M01-MO7) is presented in
Figure 24. It includes all the components that will be developed by the project technical work
packages (WP3-5), previously presented in Sections 3 and 4. Additionally, the diagram
illustrates the core interactions and required information exchanges. According to the project
implementation plan, the final version of the EMPYREAN architecture will be reported in
deliverable D2.3 “Final EMPYREAN architecture, use cases analysis and KPI1” (M12), including
all the required revisions, detailed workflows, and interfaces specifications.

empyrean-horizon.eu 71/91

Application Orchestration Data Monitoring & Control &
&0 t i
Hyper-Distributed J [P [
Applications ' PR 2 1 3
SDK Builder Workflow Manager —
. Observability Dashboard
p-ABC Library H 4 (e.q., Grafana)
: EMPYREAN Registry l
Privacy &
Security
—
Manager Persistent Monitoring Data Storage — CTI Engine
Association
Metadata Store T
1
N
£ EMPYREAN Aggregator \ EMPYREAN Aggregator
[)
Privacy & Security Privacy & Security
T E T T Decision Engine e Service Orchestrator Decision Engine s
Decentralized & Edge Storage < > Decentralized & Edge Storage
Distributed Data Manager ‘ ‘ Gateway 10T Query Engine Distributed Data Manager Gateway loTQuery Engine
~ ~
D — |
i ‘ y Engine Analytics Engine Telemetry Engine Analytics Engine
|

K3s

Platform 1

SOPON JNIOM

Abstractions

E=¢)

aEE Qe
BN

BIHE

Cloud

o

‘ o
"o a =
. EMPYREAN Container Layers Al-enabled Workload | §
. Controller Locality Scheduler Autoscaling H
; g
:) ®
: > S—
. [NiX-based
' 3 Application Software-Defined
' i::';:;:;‘ Packaging EdgeiStoros Edge Interconnect
' Monitoring
'
: Hardware Secure & Trusted Probes
| Acceleration canha_lner Lnsre] Execution
' Runtime Deployment G orh
'
'
'

Platform 2

o o
< / °
= " =
EMPYREAN Container Layers Al-enabled Workload 9 B EMPYREAN Container Layers Al-enabled Workload g
Controller Locality Scheduler Autoscaling H ' Controller Locality Scheduler Autoscaling H
H] H]
v . : v .
/" Nixbased |[h : NiX-based B
ase! ' se \
o Application Software-Defined ' 5 Application Software-Defined
| EP:‘:;‘;"::"‘ Packaging EdgeiSorsos Edge Interconnect ' i:"c'm:‘m Packaging EdgeiStorsoy Edge Interconnect
ging Monitoring H 9ing / Monitoring
Secure & Trusted Probes H Hardware Secure & Trusted Probes
Acceleration cR ti Depl t Execution = H . Kss Acceleration c': n:_lner DI;In:kernel t Execution
| Abstractions untime eploymen Environment S H Abstractions uname | ploymen Environment
o z : i
ol 2 '
gaky BF B RS
<V ©—@ o e : 5=
! = ' —
16T / 16T Devices On-Premises Resources E Deep Edge Far Edge
H
'

SAPON JaNIOM

Figure 24: EMPYREAN logical architecture

Platform 3

6 EMPYREAN Platform Deployment View

EMPYREAN seeks to demonstrate the innovative capabilities of its platform by showcasing
how it can enable trustworthy, cognitive, and Al-driven collaborative Associations of loT
devices and edge resources for efficient data processing. This will be achieved through three
carefully selected use cases (UCs) that span diverse domains characterized by device- and
data-intensive applications. These use cases correspond to diverse, dynamic, hyper-
distributed, safety-critical, and high-performance demanding applications that impose diverse
and heterogeneous requirements.

The EMPYREAN UCs correspond to high-impact applications in (i) advanced manufacturing
with a focus on enabling real-time anomaly detection in robotic machining cells, (ii) smart
agriculture with a focus on enabling proximal sensing in agriculture fields, and (iii) warehouse
automation with a focus on robotic semi-autonomous and lights out logistics order picking.
Each of these UCs involves robots and other devices equipped with cameras and sensors,
operating in diverse environments such as industrial settings, warehouses, and agricultural
fields. These environments demand significant computational power and intelligence at the
edge due to the continuous data streams, the unpredictable and ad hoc nature of
computational loads, and the distinct processing, data, and latency requirements. Deliverable
D2.1 (M6) provides a comprehensive specification of the EMPYREAN use cases, detailing their
current and envisioned future states with the implementation of EMPYREAN, identifying key
challenges, and outlining an initial validation and testing methodology.

Next, we provide an initial high-level overview of the individual deployments that will be
established for the evaluation of each UC. In the second and third years of the projects,
activities within WP6 “Use Cases Demonstrator and EMPYREAN Evaluation” will refine this
description by detailing the evaluation methodology, defining a comprehensive set of
evaluation Key Performance Indicators (KPls), setting up testbeds for demonstrators, and
specifying detailed demonstration and evaluation scenarios for each use case. These efforts
will ensure that the EMPYREAN platform is rigorously tested and validated against the diverse
and demanding requirements of its targeted applications.

6.1 Anomaly Detection in Robotic Machining Cells (UC1)

Based on the EMPYREAN architecture design (Section 5) and the analysis of this use case, as
elaborated in deliverable D2.1 (M6), we present an initial deployment architecture. The
specificities of this advanced manufacturing use case, namely the purely on-premise setup (no
Cloud interaction), the online, real-time operations and relatively low compute power at the
deep-edge dictate a particular setup. In this setup, complex and compute-intensive processing
occurs at the far-edge, while the deep-edge primarily collects data from sensors and forwards
it to the far-edge for processing. The deep-edge may also perform some basic pre-processing
tasks.

D2.2 — Initial release of EMPYREAN architecture E@MPYREAN

Multiple Kubernetes clusters (with possibly different distributions to adjust to the lower
compute power) will enable the orchestration of containerized workloads across the
respective layers (far-edge, deep edge, etc.). This will be then combined with a higher multi-
cluster scheduling, offered by EMPYREAN components, enabling efficient execution across the
different infrastructure layers based on application requirements.

The far-edge, which comprising the most computationally powerful hardware, will be
equipped with at least 16 or 32GB of RAM to host the majority of EMPYREAN components. It
may also include a GPU pool of nodes to execute the training of models needed for the
“Fingerprint Generation System” process (see D2.1 - section 4.1.3). The deep-edge, composed
mainly by the “Edge Smart Boxes - 8GB of RAM” (see D2.1 - section 4.1.5), will host a
lightweight Kubernetes distribution along with distributed EMPYREAN components, such as
the Ryax Workflow Engine Worker to control executions and connect with the main Ryax
server on the main cluster along with ZenoFlow daemon to perform the necessary dataflow
and real-time communication medium with the far-edge. While, some pre-processing may
occur at the deep-edge, this layer’s primary role is to transfer data to the far-edge for online
operations. Finally, the low-power hardware at the on-premises edge, such as the “Edge Smart
Boxes - 2/4GB of RAM” (see D2.1 - section 4.1.5) will probably only run light executables
orchestrated by the deep-edge microservices. These will primarily handle data collection and
transfer from the robots’ sensors.

Following the previous setup, the project will first explore the deployment of a single
EMPYREAN association for one robot that will be managed by one Aggregator. Towards the
end of the project, more complex scenarios will be investigated, such as a robot participating
in multiple associations and having multiple robots per association. Key EMPYREAN features
essential for the success of this deployment include (non-exhaustive list): (i) the multi-
clustering support within Ryax Workflow Engine, along with the scheduling optimizations at
both the multi-cluster and local cluster levels, (ii) the integration of Dataflow programming
framework within the Ryax Workflow Engine to support real-time data communication, (iii)
the application builder for unikernels, which will enable the deployment of binaries remote
controlled execution for loT devices, (iv) the EMPYREAN telemetry service, (v) the analytics-
friendly distributed storage, (vi) and the privacy and security manager to ensure the secure
interactions in the highly distributed environment.

Concerning the workflow architecture, the initial approach will involve adapting the existing
production workflows (see D2.1 - section 4.1.3, figure 9) to the EMPYREAN distributed
architecture by leveraging the different components and added functionalities brought by
EMPYREAN. Hence, a possible direction is to decompose the current processes into the
following Ryax workflows (Figure 25):

1%t workflow: This workflow will operate between the deep-edge and the far-edge, involving
the on-premises edge layer. The Data Recording System (DRS) will be executed at the deep-
edge, retrieving high-frequency data from on-premises edge devices and loT sensors, and
compute some indicators for a first-level processing. It will then feed the data to a MongoDB-
based message queue system at the far-edge.

empyrean-horizon.eu 74/91

A
D2.2 — Initial release of EMPYREAN architecture @MPYREAN
Z

2" workflow: Executed primarily at the far-edge, this workflow will be triggered by the data
stored in the MongoDB-based message queue. It will execute the Fingerprint Comparison
System (FCS) (initially using statistical simulations, later involving to ML inference), trigger
online alerts, and store necessary data on the database.

3" workflow: Periodically executed on the most powerful computational units at the far-edge,
this workflow will retrieve data from the database and execute the Fingerprint Generation
System (FGS) to automatically generate patterns (ML training). These models will be stored in
the database for use in the 2" workflow’s inference processes.

The first two workflows will be our focus during the first years of the project while the 3d one
will be developed towards the end.

Deep Edge Far Edge
r-- -~~~/ - - T T T
I
| DRS-Data Recording System ': :
|
| I |
Read Preprocess Store [
RODOt e — — e '
one | data data data 1y % :
l P R— I
| : | queue !
_____________________________________ d e e e e - - _I
Far Edge Deep / Far Edge Far Edge
_______ P mmmmm e BT
i | | [|
: % | I FC5 — Fingerprint Comparison System | : |
| i
| queue | ! : : |
! ! | Read Get Execute Store |
1 I #
! o task | data task result > |
b .
i i \ |

Far Edge
r—r—--""-""""""=""="-""="-""-""="-""="-""=-""="-""-""=-""=-"-"-""-""-""-"--"""-"-"--"""”""-"--""-""-"""-""-"="="-"="-"=-"="="="="-"="="="="="=”"=”"”"="—"=”"—-"=”—-"¥—/'—"-"=—/' = |
|
: % FGS — Fingerprint Generation System :
|
! |
| queue . . |
I Read Get Train Store N I
: task data model result db :
: db |
|
! |

R T ___________________________________

Figure 25: Possible breakdown of the current behavior into three workflows (WF)

empyrean-horizon.eu 75/91

D2.2 — Initial release of EMPYREAN architecture E@MPYREAN

6.2 Proximal Sensing in Agriculture Fields (UC2)

This section presents an initial analysis of the smart agriculture use case in combination with
the EMPYREAN architecture, to propose a preliminary deployment setup. The use case is
characterised by remote, battery-powered field units (drones, robots) with 4G network
connection. The deep-edge infrastructure consists of drones or robots, collecting data from
different on-board sensors, offering basic computational capabilities. The far-edge
infrastructure has a more typical power supply, with WiFi or cabled network connections and
more powerful computational units, potentially including GPUs for ML inference.

A key objective of this use case is to perform data processing as close as possible to the sources
in order to transition to a near real-time assessment of soil health. To achieve this efficiently,
besides the real-time data processing nature of operations, spanning from edge to cloud, we
also need to manage the power consumption of the battery-powered field units (drones,
robots), ensuring their tasks are executed optimally within the limited time before they need
recharging. EMPYREAN components will provide key features to facilitate this operation.

The initial computing infrastructure setup will be composed by: (a) drones and robots
equipped with on-board computational units with around 8GB of RAM (such as Raspberry Pi
5), representing the deep-edge. The drones and robots will also feature various on-board
sensors, such as RGB or multispectral/hyperspectral cameras, (b) intermediate servers near
the fields, consisting of PC’s and laptops or GPU units (such as Nvidia Jetson) with around 32GB
of RAM, representing the far-edge, and (c) connection to the cloud, which will offer more
powerful computation, utilizing a variety of hardware resources and access to GPU node
pools.

Initially, the deployment will explore a single EMPYREAN association and aggregator to enable
the execution of tasks from the deep-edge to the far-edge up to the cloud. In the second half
of the project, we will investigate more complex scenarios involving multiple associations,
where each association may be dedicated to different soil fields and different organisations,
featuring different deep-edge setups but sharing far-edge and cloud resources.

Several key EMPYREAN features critical to the success of this deployment include: (i) power
consumption monitoring and its integration with the telemetry service, (ii) the privacy and
security manager along with the cyber-threat intelligence engine to guarantee that operation
will remain secure even in highly vulnerable contexts (such in 4G networks), (iii) the support
for intermittent connectivity, (iv) the provision and control of secure and distributed edge
storage, (v) the multi-clustering support, and (vi) the energy-efficient orchestration, among
the others.

empyrean-horizon.eu 76/91

D2.2 — Initial release of EMPYREAN architecture

N
@MPYREAN

; ; Send

‘Workflow manager

« Workflow-based description
« high-level deployment
requirements

Empyrean Registry

Higher layer

Deploy

Telemetry engine

application logic

Local

=

Data

ized and i
Broker / Zenoh-Flow

loT Query Engine

Edge storage gateway

Lower layer: Empyrean Controller

Edge storage

Secure & Trusted Execution

environment

Send application statistics

|
\
\
¥

rone + Raspberry Pl (5) Edge server (Al workloads): Raspberry Pi with Al shield?

Workflow 1: Creation of management zones

Send application statistics

ILVO Climate robot

Store

'T!f‘ . | 1= .
R

zones on cloud
storage

Collect raw
spectrometer and

Workflow 2: Determine soil organic carbon

moisture
measurements

El
9
L
g

Store soil organ

carbon values on
cloud storage

Send telemetry

such

Figure 26: Proximal sensing in agriculture fields use case deployment overview

Regarding the workflow architecture, Figure 26 presents an initial design of the workflows to
be explored. This design not only highlights the task separation and the way they will be
deployed on the hybrid computing infrastructure but also illustrates the use of various key
EMPYREAN components and how they will be utilised to efficiently address the needs of the
workflows. In particular, the following workflows are anticipated:

1%t workflow — Management Zone Creation: This workflow will be deployed on the drones
computing infrastructure, enabling the collection of images at the deep-edge. The prediction
phase will take place either at the far-edge or directly at the deep-edge, depending on the
resource availability. The collected data will then be stored at the far-edge for insights
collection and future reference or training purposes.

empyrean-horizon.eu

77/91

D2.2 — Initial release of EMPYREAN architecture E@MPYREAN

2" workflow — Soil Organic Carbon Inference: This workflow will be deployed on the robots
computing infrastructure, using data from the robot’s spectrometer and moisture related
sensors at the deep-edge. The prediction phase will primarily take place at the far-edge,
although lightweight ML models could be executed at the deep-edge. The processed data will
then be stored at the far-edge, and the soil organic carbon assessments will be used as inputs
for creating prescription maps.

3 workflow - Battery Consumption Monitoring: This workflow tracks the battery
consumption of drones and robots, providing different soft and hard thresholds and triggering
alerts when necessary. Alerts may need human intervention or trigger other specific actions,
such as stopping data collection or offloading computation to nearby computing units.

6.3 Robotic Semi-autonomous and Lights Out Logistics Order
Picking (UC3)

The particular use case centers around a robotic warehouse automation application, where a
fleet of Autonomous Towing Robots (ATRs) performs order-picking based on incoming orders.
Warehouse operators utilize a specialized software named the Fleet Control System (FCS),
which enables then to submit order-picking tasks to the ATRs. In this use case, the ATRs will
be equipped with on-board computational capabilities along with a variety of sensors (such as
lidars and radars), enabling them to perform the needed computations directly upon the
robots at the deep-edge. The Fleet Control System is installed and operates mainly at the far-
edge, where more substantial computational resources are available, including GPU node
pools that can offload ML inference tasks and potentially perform ML training. Additionally,
public or private cloud resources can be also used to offload even more compute-intensive
operations.

A key challenge of this use case is the collaboration and data exchange between robots, which
besides the adaptations needed on the Fleet Control System itself it requires efficient data
transfer among robots and with the FCS. This setup also demands increased computational
power across the different layers of the continuum. Moreover, the possible intermittent
connectivity of the ATRs within the warehouse needs also to be taken into account. To address
these needs, the use case leverages novel functionalities from the EMPYREAN platform.
EMPYREAN’s ability to enable seamless executions on different layers of the edge-cloud
computing infrastructure to facilitate the operation of the robots, while ensuring secure data
transfers even under intermittent networking connectivity, will significantly enhance the
robot fleet’s operation.

The initial computing infrastructure setup for this use case will include: a) the ATR robots
equipped with onboard industrial PC units featuring Intel i5 CPUs and 16GB of RAM,
representing the deep-edge part. The robots will have various onboard sensors (such as lidars,
radars) to facilitate navigation and order-picking within the warehouse; b) intermediate
servers located in the warehouse office, consisting of PC’s, laptops, or GPU-equipped units

empyrean-horizon.eu 78/91

A
D2.2 — Initial release of EMPYREAN architecture @MPYREAN
Z

with around 32GB of RAM, representing the far-edge; and optionally c) a distant data-center
or cloud resources for offloading more demanding computations, offering more powerful
computation resources and diverse hardware sources along with access to GPU node pools.

Based on this infrastructure setup, one EMPYREAN association and aggregator will be
explored initially to enable the execution of tasks from deep-edge to far-edge up-to the cloud.
Each ATR robot will be an independent cluster in the association, possibly using lightweight
Kubernetes distributions such as K3S. Initially, one robot will participate in the association
while afterwards multiple robots will participate. By the end of the project, we will validate
the functionality of defining multiple associations for different aspects where robots may
participate in more than one association.

Critical EMPYREAN features for the successful execution of this particular deployment include:
(i) the integration of the dataflow programming (ZenohFlow) within the workflow
management system (Ryax), (ii) the cyber-threat intelligence engine and the privacy and
security manager to guarantee that operation will remain secure even in highly vulnerable
contexts (such in 4G networks), (iii) the support of unikernels for lightweight, secure, and
reproducible deployment at the edge, (iv) the support for intermittent connectivity, (v) the
edge distributed storage, (vi) the multi-clustering execution, and (vii) optimized offloading for
GPU-based ML inference..

At this initial stage of the project the following use case workflows are anticipated:

1%t workflow: The FCS is connected to the EMPYREAN platform, and when a certain order is
submitted on the FCS, the workflow demands the collection of data at the deep-edge on the
computing cluster of the ATR while performing an initial pre-processing on-board and
transferring data to the far-edge for further data treatment while enabling storage of insights
and results on the FCS triggering specific alerts or observability functions. This workflow can
be duplicated and used for each different ATR.

Far Edge

Workflow 1

‘ Data treatment *—-—[_D_B_]

-
-
-
:_ Hﬂ' ATR compute Pre-processed Edge Deep Edge
.: i data i i
-

* Inferences

Navigation - i i
a% d pSr: npSrCIUI'cSZ:tIinfEé}?r LA DI’TI‘]' D;Icsf:élr:::de%:;d
X Fleet Control System
i
Sensing remote storage Broker / Zenoh-Flow
Recovery

Figure 27: UC3 preliminary deployment view — 15t workflow

empyrean-horizon.eu 79/91

A
D2.2 — Initial release of EMPYREAN architecture @MPYREAN
Z

2" workflow: The ATR retrieves data, and depending on the task’s computational demands,
it may offload the more compute intensive tasks to the far-edge (or the cloud) featuring a
GPU. The processed data is then transferred back to the ATR to use it accordingly.

Far Edge

Workflow 2

Deployment of
compute intensive
task on GPU

-
w ATR compute Pre-proc Edge Deep Edge

.............................. . . re-processed)

: : £ data

Compute Decentralized and

H- P : H Pre-processing and Tractonormy e
: intensive sensing : data compression Fleet Control System DLS(I'IbU(Ed EaFtla
task Broker / Zenoh-Flow

Task | | Observe

Figure 28: UC3 preliminary deployment view — 2" workflow

3" workflow: The FCS operator submits a request for robot collaboration between two ATR
robots, such as jointly picking up a particular (heavier) cart. Based on that, the two robots will
receive the operation order, and data will be transferred to both for preprocessing. This
particular preprocessing process will be started on both robots simultaneously. This may be
managed by a single workflow executing across both robots and waiting to aggregate insights
from both or by two workflows coordinating with each other.

Dynamic peer-to-peer routing

ATR1
compute l

Coordinated Control
Workflow 3

Deep

Ed
e Edge

Aupgepeny

Decentralized and
Distributed Data
Broker / Zenoh-Flow

Coordinated Control
Orchestrator

Coordinated !
Control Task | 4

Tractonomy
Fleet Control System

—
- 1
2ar ating | 3 3
Articip e w i Local Zenoh Broker Task ‘

A
Coordinated Control 8
Execution Node

[=001

Observe

Dynamic peer-to-peer routing

Figure 29: UC3 preliminary deployment view — 3™ workflow

The focus in the initial years of the project will be on the first two workflows, while the third
workflow will be further developed in the later stages.

empyrean-horizon.eu 80/91

D2.2 — Initial release of EMPYREAN architecture E@MPYREAN

7 Implementation and Delivery Plan

7.1 Software Engineering Approach

7.1.1 EMPYREAN Platform CI/CD

This section outlines the components and software tools chosen for the EMPYREAN project,
detailing their roles in the Continuous Integration (Cl) and Continuous Delivery (CD) process.
The EMPYREAN environment comprises various software elements designed to work
cohesively for integrating, testing, and deploying the platform efficiently.

In Task 5.1, our focus is on integrating, testing, and refining the EMPYREAN platform using a
streamlined, lightweight approach that promotes quick deployment and ease of use across
diverse environments. Given the collaborative nature of the project, involving numerous
partners with varying methodologies, this approach ensures a unified CI/CD framework that
can be readily adopted by all. This scenario minimizes installation and maintenance needs,
allowing partners to focus on development and innovation.

7.1.1.1 CI/CD Components

To satisfy the project’s need for a CI/CD procedure that guarantees all components are
interconnected and tested, four key components are essential.

Version Control System (VCS)

Version control, also known as source control, is the practice of tracking and managing
changes to the software code. Version Control Systems (VCS) are software tools that help
software teams manage changes to source code over time. VCS keeps track of every
modification to the code in a special kind of database. It consists of a remote repository of
files that comprise the source code of a software application. If a mistake is made, developers
can compare earlier versions of the code to fix the mistake while minimizing disruption to all
team members. This component must be integrated with Cl tools to monitor the VCS and
trigger automated builds, tests, and deployments when it detects changes.

Continuous Integration / Continuous Delivery (Cl/CD)

Continuous integration (Cl) is a primary DevOps practice that allows for automation of the
integration of code changes from multiple contributors to a single software project.
Developers regularly commit code into a centralized repository where builds and tests then
run, thus asserting the new code’s correctness before integration.

The steps in a Cl procedure include:

e Developers get copies of the source code and apply changes to their local system.
e The changes are then committed to the centralized, common repository.
e The server is immediately notified upon any incoming change.

empyrean-horizon.eu 81/91

D2.2 — Initial release of EMPYREAN architecture Z

'''''

e The server initiates the following actions:
o Pulls the latest code version, including the new changes.
Builds the application and reports any potential problems.
Runs unit and integration tests, reporting any issues if they exist.
Releases any artifacts to be deployed for testing.
Assigns a build tag to the software version that was built.

o O O O

Test Logs and Report

A mechanism to display results related to unitary and integration tests performed after
producing testing builds of the software. A build refers to the process of compiling the source
code, linking it with libraries and dependencies, and generating an executable or deployable
artifact. Using this mechanism, the different log files generated during program execution and
the information about the program's status will be shown and easily checked. These reports
are fundamental in the CI/CD procedure as they provide insight into the status and results of
different tests executed during the development cycle. The reports generated are structured
in legible files containing relevant information, such as software dependencies.

Container Registry

A stateless, highly scalable central space for storing and distributing container images.
Container registries provide secure image management and a fast way to pull and push images
with the right permissions. The images stored in these containers are preconfigured snapshots
of applications and are configured to run in various environments. Container registries are
essential in CI/CD because they allow the DevOps team to manage different versions
efficiently and simultaneously.

7.1.1.2 CI/CD Workflow

Once all the components needed for the deployment of the CI/CD are revisited, a Cl/CD
preliminary scenario composed of different tools is proposed, and the suggested workflow is
described in Figure 30 and detailed next:

Developers commit their code to the project code repository in GitHub.

A webhook is triggered (Commit trigger).

A Build is prepared in a GitHub Actions Runner.

Unit testing is conducted and results are displayed directly in GitHub with GA Test

Reporter.

5. Integration testing is performed, if necessary (in this case example of 2 components
for concept), involving components such as the Privacy and Security Manager (PSM)
and Service Orchestration (SO)

6. Based on the results:

a. If the Build and tests pass successfully, it will be published in the GitHub
Container Registry (GHCR).

b. If the Build or any of the tests fail, the artifact is not ready to publish, and the
issues must be resolved before proceeding.

PwnNPE

empyrean-horizon.eu 82/91

A
D2.2 — Initial release of EMPYREAN architecture @MPYREAN
Z

This streamlined approach ensures that all partners can efficiently work together, leveraging
a common CI/CD framework that supports the collective goals of the EMPYREAN project.

2. Workflow Trigger | e o 3. Build

Github ‘ Github Actions

‘O Repository ‘ >| g D Workfiow Github
Runner

) L Y,

A

4.Unit Testing

6b. Fail build

1. Commit

Github Container 5. Integration testing(if neccesary)
Registry (GHCR)
g

4

—_—
Github Action ‘

TestReporter ‘

\. y

Empyrean Developer

Figure 30: CI/CD workflow

7.1.1.3 CI/CD Possible tool selection

These components were selected due to their lightweight and agile nature, which eliminates
the need for installation on our own servers and additional infrastructure. This plug-and-play
scenario effectively meets the CI/CD requirements of the EMPYREAN project, ensuring a
seamless and scalable integration process.

This streamlined approach ensures that all partners can efficiently work together, leveraging
a common CI/CD framework that supports the collective goals of the EMPYREAN project.

Version Control System: GitHub

GitHub could be selected as the VCS. GitHub is an ideal fit due to its multiple advantages, such
as security, integration tools, and cost-effectiveness. GitHub incorporates security features
like vulnerability scanning, dependency tracking, and code scanning, helping teams identify
and address security issues in their code. Additionally, GitHub natively integrates with various
development tools, CI/CD platforms, and third-party services, offering a wide range of variety.
Finally, GitHub offers a free plan that allows users access to a variety of resources and
functionalities, including unlimited collaborators for public repositories.

Continuous Integration: GitHub Actions

GitHub Actions is a continuous integration and continuous delivery (Cl/CD) platform that
allows the automation of building, testing, and deployment of pipelines. Workflows can be
created to build and test every pull request to a repository or deploy merged pull requests to
production. Beyond DevOps, GitHub Actions allows workflows to be triggered when events

empyrean-horizon.eu 83/91

D2.2 — Initial release of EMPYREAN architecture E@MPYREAN

happen in other repositories. GitHub provides Linux, Windows, and macOS virtual machines
to run workflows, or can be self-hosted runners in an own data center or cloud infrastructure
(e.g. runners in a own k8s cluster). GitHub has no restrictions for free Organizations that have
public repositories and offers 2000 free minutes of build time per month. If these limits are
exceeded, hosting running is advisable to prevent any decrease in efficiency.

Logs and Report: Test Reporter (GitHub Action)

Test Reporter is a GitHub Action that displays test results from testing frameworks directly in
GitHub. It is used mainly for:

¢ Parsing test results in XML or JSON format to generate a visually appealing report
within a GitHub Check Run.

¢ Automatically annotating code sections where failures occur, leveraging captured
messages and stack traces from test executions.

o Offering a comprehensive evaluation of test results, including counts for passed,
failed, and skipped tests.

Container Registry: Docker Hub (Public Registry)

Docker Hub is the standard registry for Docker and Kubernetes. It is a highly scalable central
space for storing and distributing container images, providing secure image management and
a fast way to pull and push images with the right permissions and without either
administration overhead or resource costs. The only limitation with public registries is the lack
of full control over their actions and the potential expense if multiple private images are
needed.

7.2 Implementation Schedule

The overall work within the EMPYREAN project is organized based on a series of well-defined
and complementary phases (Figure 31) that start with the definition of the use cases and the
requirement analysis (Phase 1). Next, EMPYREAN adopts an iterative approach for the
definition of the architecture (Phase 2), the implementation and evaluation of the individual
technological developments (Phase 3), and the overall platform integration (Phase 4). The
design and implementation activities will be implemented according to a spiral model with
two iterations (M01-M18, M18-M36), each of which will include a series of activities that
bridge the gap between requirement analysis, technology, and innovation. The developed
components and services will be continuously integrated, according to the integration plan
(Section 7.1), with the defined interfaces and communication protocols as set in the
EMPYREAN architecture specification. The project will conclude with the demonstration of the
UCs (Phase 5) and the exploitation of the results.

empyrean-horizon.eu 84/91

D2.2 — Initial release of EMPYREAN architecture

N
@MPYREAN

Initial Analysis

- Analysis:

- SoTA

- Use Cases (UCs)

- Requirements
- Use Cases Definition
- Overall Specifications

Architecture
& Requirements

- Architecture Definition
- Specification:
- Components
- Interfaces
- KPIS
- UCs Technical
Requirements

Research
& Development

- R&D Activities

- WP3
- WP4
- Use cases

- Feedback for Final

Architecture

(

Integration
& Testing

| (Demonstration)
& Evaluation

- Components Testing
- Platform Integration
- Platform Testing
- EMPYREAN Releases:
- Initial (M18), Full (M30}
- Feedback:

- Demonstrators Design
- Testbeds Setup
- UCs Demonstration
- UCs Evaluation
- EMPYREAN:
- Overall Evaluation

(WP3, WP4, UCs

J/

\- Final Release (M36'J

§ ﬁ Two iterations |

Rafi p f !
] s, incr [r |

Adaptation & Refinements

Dissemination and Exploitation

Figure 31: Overall technical development strategy and methodology

Based on the above development strategy, the three main releases (Figure 32) for the
integrated EMPYREAN platform are:

e Initial platform release in M18

e Full platform release in M30

e Final platform release in M36

D5.3
D3.1,D32 MS510
D23 D4.1.D4.2 D51,D052 D33,D43 P D61 D5.4, D6.2
MS4 Ms5, MS7 Ms9 MS6, MS8 MS12 Ms11
Feb Jan April Jul March May Jul Jan
24 25 25 25 26 26 26 27
(v1) (M12) (M15) (M18) (M26) [Mm28) (M30) (M38)
Initial Platform Release
. Final
Platform nitial | o e WPSdinitil EMPYREAN
requirements orchitecture architecture developments Initial Release
— — a —
Ifms\\l /I\:T\ |/r.|12 | I\I'-HE-/I | Mz |
N/ K—/ A - N Full Platform Release
WP3-4 final UCs final EMPYREAN
developments developments Full Release
|62?| Iﬁz}l |ﬁ3}|
N N N/ Final Platform
KPis &
evaluation E.M PYREAN
methodology Final Release
N (a2
I\I‘J‘I3[]j| \M3G)

Figure 32: EMPYREAN development roadmap

empyrean-horizon.eu

85/91

D2.2 — Initial release of EMPYREAN architecture Z

N

JMPYREAN

The initial platform release will be the outcome of the first project development iteration (M4-
M15) and will provide the partial implementation of EMPYREAN components. In this version,
each component will implement a subset of the envisioned features along with the primary
inter-component communication interfaces. The initial release aims to provide a basic
functional prototype that will support the core functionalities of the project use cases.
Deliverable D5.2 “Initial release of EMPYREAN integrated platform” (M18) will provide its
description and documentation. Moreover, the initial platform prototype will provide critical
feedback for the second development iteration (M18-M36).

The EMPYREAN full platform release will be based on the initial release, and will provide the
remaining functionality, which has not been included in the early prototype. As the
development in technical work packages (WP3, WP4) conclude by M26, this release will be
provided in M30. The intention is to achieve a fully functional platform that integrates all
project components and provides a prototype suitable for the pilots’ experimentation.

For the final release of the EMPYREAN platform, delivered at the end of the project, the
consortium will focus on implementing the feedback from the final evaluation of the
EMPYREAN platform (Phase 5) through the demonstration of the three project use cases. The
outcomes from the demonstrators will be collected and documented, and videos will be
prepared and uploaded to project communication and dissemination channels. This version
will be fully integrated and documented as part of deliverables D5.4 “Final release of
EMPYREAN integrated platform” (M36) and D6.2 “Demonstrators’ deployment and
EMPYREAN evaluation” (M36). Moreover, it will be used to identify the critical and high-
impact components to create the final exploitation plans.

empyrean-horizon.eu 86/91

D2.2 —Initial release of EMPYREAN architecture (\,MPYREAN

Q

N

8 Requirements Coverage

Next, we outline how the initial set of functional requirements, which were meticulously
gathered, described, and categorized in deliverable D2.1 “State of the art, use cases analysis,
platform requirements and KPIs” (M6), are addressed by the various components of the
EMPYREAN architecture. Throughout the design phase of the initial release version of the
EMPYREAN architecture, all partners closely collaborated. This collaborative effort involved
iterative discussions and reviews among the technical and UC partners of the project, with the
primary objective of ensuring that the EMPYREAN platform would be fully capable of
delivering the specified functionalities.

The forthcoming deliverable D2.3 “Final EMPYREAN architecture, use cases analysis and KPIs”
(M12) will provide a comprehensive update, including the refined analysis of use cases and
platform requirements. The updated insights and evaluations will be incorporated into the
final version of the EMPYREAN architecture, also detailed in D2.3, to ensure the platform’s
robustness and alignment with project objectives.

Table 21: Functional requirements covered by the initial release of the EMPYREAN architecture

ID Short Description Priority Components

EMPYREAN Aggregator, EMPYREAN Registry,
Federate heterogeneous and Must- Service Orchestrator, Privacy and Security
F GR.1 distributed loT, edge and cloud Manager, Telemetry Engine, EMPYREAN

have . A
resources. Controller, Decentralized and Distributed
Data Manager, Edge Storage Gateway

EMPYREAN Aggregator, EMPYREAN Registry,

. . Service Orchestrator, Decision Engine,
Enable collaborative autonomy in the | Must- &

F_GR.2 loT-edge-cloud continuum. have Telemetry Engine, Decentralized and
Distributed Data Manager, Privacy and
Security Manager
Service Orchestrator, Decision Engine,
F GR3 Encompass autonomous and Must- | Analytics Engine, Telemetry Engine,
- continuous control loops. have |Persistent Monitoring Data Storage,
EMPYREAN Controller
Workflow Manager, Dataflow Programming
Provide seamless deployment of Component, Service Orchestrator, NIX-based
F GRA hyper-distributed cloud-native Must- | Environment Packaging, Application
- applications across a collaborative have | Packaging, Container Runtime, Edge Storage
loT-edge-cloud continuum. Gateway, Decentralized and Distributed Data

Manager

Workflow Manager, Dataflow Programming
Component, Software-Defined Edge
Must- | Interconnect, Decentralized & Distributed
have |Data Manager, Workload Autoscaling,
Hardware Acceleration Abstractions,
Application Packaging

Support hyper-distributed, highly-
F_GR.5 demanding, and dynamic applications
from diverse domains.

empyrean-horizon.eu 87/91

D2.2 — Initial release of EMPYREAN architecture

N
@MPYREAN

Provide monitoring for cloud-native Must- Monitoring Probes, Telemetry Engine,
F_GR.6 | applications and heterogeneous have Persistent Monitoring Data Storage,
infrastructure resources. Container Runtime
Energy and power aware operation Must- Monitoring Probes, Telemetry Engine,
for optimal power management, Decision Engine, Workload Autoscaling,
F_GR.7 .. . have . .
energy efficiency and ecological Container Layers Locality Scheduler
sustainability.
. EMPYREAN Registry, EMPYREAN A tor,
Combine heterogeneous Must- egIstry ggregator
. EMPYREAN Controller, Edge Storage
F_ASSOC.1 | computational and storage resources have . o
) . Gateway, Decentralized and Distributed Data
and different connectivity resources.
Manager
Facilitate secure onboarding of new Must- EMPYREAN Registry, Secure and Trusted
F_ASSOC.2 loT devices, .rol.oots and edge/cloud have Execution Environment, Privacy and Security
resources within the EMPYREAN Manager
control and management plane.
. Privacy and Security Manager, CTl Engine,
h Must-
F_ASSOC.3 Constltlute @ sgcure and trustworthy ust Secure and Trusted Execution Environment,
execution environment. have
Edge Storage Gateway
Workflow Manager, Analytics Engine,
Support autonomous operation and Must- Decentralized and Distributed Data
F_ASSOC.4 | enhance resiliency across the have Manager, Decision Engine, Workload
continuum. Autoscaling, EMPYREAN Controller,
Software-Defined Edge Interconnect
. . EMPYREAN Aggregator, Software-Defined
Provide low and predictable latency Should- gsres W . I
F_ASSOC.5 for hvoer-distributed applications have Edge Interconnect, Decentralized and
yp PP ' Distributed Data Manager
Provide inter-Association Must EMPYREAN Aggregator, Decentralized and
F_ASSOC.6 | communication and exchange of have Distributed Data Manager
events.
Data-driven seamless workload and Must- Telemetry Engine, Monitoring Probes,
F_ASSOC.7 | data migration across the have Analytics Engine, Service Orchestrator, Edge
Associations. Storage Gateway
Aggregators must maintain a EMPYREAN Registry, EMPYREAN Controller,
L Must- .
F_ASSOC.8 | catalogue of the Association have Telemetry Engine
resources.
Aggregators must dynamically EMPYREAN Registry, EMPYREAN Aggregator,
discover resources within the Must- | EMPYREAN Controller Telemetry Engine,
F_ASSOC.9 . . .
registered infrastructures and detect have | Monitoring Probes
events.
N EMPYREAN Registry, EMPYREAN A tor,
Aggregators must maintain the state Must- egl.s Y . ggrgga .or
F_ASSOC.10 _— Telemetry Engine, Persistent Monitoring
of the Association. have
Data Storage
. . . Must- -ABC Lib , Pri ds ity M
F_ST.1 Decentralized identity management. h:\fe P forary, Frivacy and security Manager
F ST Privacy-Preserving authentication and | Must- | p-ABC Library, Privacy and Security Manager,
- authorization. have | Secure and Trusted Execution Environment
Must- -ABC Lib Pri ds ity M
F_ST.3 Policy-Based Encryption. h:\fe P forary, Frivacy and security Viahager

empyrean-horizon.eu

88/91

D2.2 — Initial release of EMPYREAN architecture

N
@MPYREAN

F ST.4 Automated Cyber Threat Analysis. Must- | CTI .Eng_lne, Telemetry Engine, Persistent
have | Monitoring Data Storage
ML for Anomaly Detection and Must- | CTlI Engine, Telemetry Engine, Persistent
F_ST.5 . o
Cybersecurity. have | Monitoring Data Storage
Must- Secure and Trusted Execution Environment,
F_ST.6 Secure and Trusted Execution. have Privacy and Security Manager, Container
Runtime, Unikernel Deployment
Provide S3-compatible storage service Must-
F_DCM.1 |that encompasses edge-cloud have Edge Storage, Edge Storage Gateway
continuum.
F DCM.2 Provide an analytics-friendly erasure- | Must- | loT Query Engine, Edge Storage, Edge
- ’ coded loT storage platform. have | Storage Gateway
Decentralized decision-making, Must- EMPYREAN Registry, EMPYREAN Aggregator,
F_DI.1 speculative and multi-objective have Decision Engine, Service Orchestrator,
resource orchestration. EMPYREAN Controller
Multi-agent speculative intelligent Must- Decision Engine, Service Orchestrator,
F_DI.2 resource orchestration across have EMPYREAN Controller, Container Layers
EMPYREAN Associations. Locality Scheduler
Hierarchical orchestration and multi- Decision Engine, Service Orchestrator,
F D13 objective optimization for cognitive Must- | EMPYREAN Controller, Container Layers
- resource orchestration within have | Locality Scheduler
Associations.
Al-enhanced data orchestration and Must- Decision Engine, Service Orchestrator, Edge
F_Dl.4 storage resource management within have Storage Gateway, Edge Storage,
and across Associations. Decentralized and Distributed Data Manager
Decision Engine, Service Orchestrator
E - ki Must- ’ ’
F_DI.5 pergy a.ware wor (.)ad and data ust EMPYREAN Controller, Container Layers
distribution mechanisms. have .
Locality Scheduler
Monitoring and managing power and Must- Monitoring Probes, Telemetry Engine,
F_DI.6 energy consumption in loT devices have Analytics Engine
and edge nodes.
Analyti Engi i h
Decentralized and Al-enabled service Must- nalytics ngl.ne, Serv.lce Orc esjcrat'or,
F_DI.7 . Telemetry Engine, Persistent Monitoring
assurance mechanisms. have
Data Storage
. Workload Aut ling, Analytics Engine, CTI
Al-enhanced self-healing for °f od u.osca Ng, ANAIVLICS Engine
L - Must- | Engine, Service Orchestrator, EMPYREAN
F_DI.8 enhanced resiliency, adaptability, and . .
. have |Controller, Telemetry Engine, Persistent
autonomous operation. -
Monitoring Data Storage
Workload Autoscaling, Analytics Engine,
F DL9 Autonomous and adaptive workload Must- | Container Layers Locality Scheduling,
- autoscaling. have | EMPYREAN Controller, Telemetry Engine,
Persistent Monitoring Data Storage
Continuum-native workflow-based Workflow Manager, Dataflow Programming
application design considering Must- | Component, NIX-based Environment
F_SO.1 . . L .
dataflow programming and low-code have | Packaging, Application Packaging

techniques.

empyrean-horizon.eu

89/91

D2.2 — Initial release of EMPYREAN architecture

N
@MPYREAN

Deployment objectives (SLOs)

Must-

Workflow Manager, EMPYREAN Registry,

F_SO.2 definition for continuum-native have Service Orchestrator, Decision Engine
applications
Seamless and declarative Must- EMPYREAN Registry, Service Orchestrator,
F_SO.3 orchestration of self-organized have Decision Engine, EMPYREAN Controller,
distributed orchestration systems. Container Layers Locality Scheduler
Policy-based orchestration and Must- Wor!<f|ow Manager, EMPYR.EAN Regls'try,
F SO.4 efficient resource allocation have Service Orchestrator, Decision Engine,
' EMPYREAN Controller, Telemetry Engine
F SO5 Context awareness and autonomous Must- | Workflow Manager, EMPYREAN Registry,
- adaptive response. have | Analytics Engine, Workload Autoscaling
Transparent lifecycle management of Must- Workflow Manager, Dataflow Programming,
F_SO.6 hyper-distributed application have Service Orchestrator, EMPYREAN Controller,
components. Container Runtime
. N _ EMPYREAN A g i
Coordinate workload migration within | Must- .g.gregator. SerV|.ce
F_SO.7 and across Associations have Orchestrator, Decision Engine, Analytics
) Engine, EMPYREAN Controller
EMPYREAN Aggregator, Service
Support automatic data migration Must- Orchestrator, Decision Engine, Analytics
F_SO.8 operations within and across have Engine, EMPYREAN Controller, Edge Storage
Associations. Gateway, Decentralized & Distributed Data
Manager
Implementation and integration of Must- | Decision Engine, Container Layers Locality
F_S0.9 . .
- custom scheduling policies. have |Scheduler
Seamless orchestration and Must- Workflow Manager, Service Orchestrator,
F_SO.10 | management of both container-based have EMPYREAN Controller, NIX-based
and serverless workloads. Environment Packaging, Container Runtime
H Accel i A i
Flexible Hardware-accelerated Must- ardV\(are Fce erat|or.1 . bstractlc?ns,
F_SO.11 execution have Container Runtime, Application Packaging,
’ EMPYREAN Controller
. Hardware Acceleration Abstractions,
F_SO.12 dO::/Ii(Zaei acceleration to nearby '\P?:\f::_ Container Runtime, EMPYREAN Controller,
) Software-Defined Edge Interconnect
Must Unikernel Application Builder, NIX-based
F_SO.13 | OCl-compatible container images. have Environment Packaging, Unikernel
Deployment, Container Runtime
Unikernel Application Builder, NIX-based
F 5014 Support diverse execution Must- | Environment Packaging, Unikernel
- environments. have | Deployment, Container Runtime, EMPYREAN
Controller
Must- Unikernel Application Builder, NIX-based
F_SO.15 | Reproducible Environment Packaging have Environment Packaging, Unikernel
Deployment
empyrean-horizon.eu 90/91

D2.2 —Initial release of EMPYREAN architecture (\,MPYREAN

Q

N

9 Conclusions

This deliverable provides a detailed report on the work performed in WP2, specifically within
Task 2.3, which focuses on defining the initial architecture of the EMPYREAN platform. The
architecture design was a collaborative effort involving all project partners, following a well-
defined methodology. The goal of the architecture is to establish an loT-edge-cloud continuum
consisting of collaborative collectives of loT devices, robots, and resources, extending
seamlessly from the edge to the cloud.

The deliverable presents both the conceptual and logical architecture of the multi-layered
EMPYREAN platform. Each layer is thoroughly analysed, detailing its internal decomposition
into functional components and their interrelationships. This early identification of the main
integration points between components is crucial, as it facilitates the overall design process
and sets the foundation for subsequent implementation phases. The document also
elaborates on the core functional components and provides an overview of the EMPYREAN
platform deployments that will support the project’s use cases. Furthermore, it introduces the
development roadmap for the EMPYREAN platform, and presents how the proposed
architecture addresses the challenging technical and use cases requirements outlined in D2.1
(M6).

This deliverable will serve as a guiding framework for the technical activities in WP3 and WP4,
which involve the development of the key building blocks of the EMPYREAN platform. It will
also support WP5 and WP6 in the development, integration, and evaluation of the project use
cases, ensuring that the outcomes of WP3-6 remain relevant and aligned with the EMPYREAN
objectives.

The architecture detailed in this deliverable is intended to be a living document that will evolve
throughout the project. It will be refined and enhanced based on insights from ongoing WP2
activities, as well as feedback from the technological developments in WP3 and WP4. The final
version of the EMPYREAN platform architecture, including detailed workflows between its
components and comprehensive interface descriptions, will be reported in D2.3 “Final
EMPYREAN Architecture, Use Cases Analysis, and KPIs” (M12). This final deliverable will
encapsulate the complete architectural vision of EMPYREAN, ensuring a cohesive and robust
framework that supports the project's ambitious goals and provides clear guidance for future
developments.

empyrean-horizon.eu 91/91

