

TRUSTWORTHY, COGNITIVE AND AI-DRIVEN

COLLABORATIVE ASSOCIATIONS OF IOT DEVICES AND

EDGE RESOURCES FOR DATA PROCESSING

Grant Agreement no. 101136024

Deliverable D2.3

Final EMPYREAN architecture, use cases analysis

and KPIs

Programme: HORIZON-CL4-2023-DATA-01-04

Project number: 101136024

Project acronym: EMPYREAN

Start/End date: 01/02/2024 – 31/01/2027

Deliverable type: Report

Related WP: WP2

Responsible Editor: RYAX

Due date: 31/01/2025

Actual submission date: 31/01/2025

Dissemination level: Public

Revision: FINAL

This project has received funding from the European Union’s
Horizon Europe research and innovation programme under grant
agreement No 101136024

Ref. Ares(2025)790590 - 01/02/2025

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 2/129

Revision History

Date Editor Status Version Changes

17.11.24 RYAX Draft 0.1 Initial ToC

20.12.24 RYAX Draft 0.2 Integrate initial contributions in Sections 3, 4

09.01.25 RYAX Draft 0.3
Integrate updated partners contributions in

Sections 3, 4, 5

20.01.25 ICCS Draft 0.4 Integrate final contributions in Sections 5, 6, 7, 8

23.01.25 RYAX Draft 0.5 Complete version for internal review

29.01.25 RYAX Draft 0.6 Revised version after internal review

31.01.25 RYAX Final 1.0

Author List

Organization Author

RYAX Yiannis Georgiou, Michael Mercier, Pedro Velho, Yuqiang Ma

ICCS Aristotelis Kretsis, Panagiotis Kokkinos, Fotis Kouzinos, Emmanouel Varvarigos

CC Márton Sipos, Marcell Fehér, Daniel E. Lucani

NVIDIA Dimitris Syrivelis

UMU Antonio Skarmeta, Eduardo Canovas

ZSCALE Ivan Paez

NUBIS Anastassios Nanos, Charalampos Mainas, Georgios Ntoutsos, Ilias Lagomatis,

Konstantinos Papazafeiropoulos, Apostolos Giannousas

IDEKO Aitor Fernández, Javier Martín

NEC Jaime Fúster, Roberto González

EV ILVO Jan Bauwens, Theodoros Chalazas

TRAC Keshav Chintamani

Internal Reviewers

Eduardo Canovas, UMU

Ivan Paez, ZSCALE

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 3/129

Abstract: EMPYREAN introduces an innovative vision for an IoT-edge-cloud continuum,

seamlessly integrating IoT devices, robots, and computational resources into dynamic, self-

organizing collectives known as Associations. This deliverable presents the final outcomes of

Task 2.2 “Concept, Use Cases and Requirements Analysis” and Task 2.3 “Architecture

Specification”. It builds upon previous reports (D2.1 and D2.2), presenting key updates on

EMPYREAN components, their interactions, and the finalized architecture. A significant

contribution is the introduction of detailed system operation flows, providing insights into the

internal workings of the platform and its innovative functionalities. Finally, it outlines the

implementation and delivery plan, along with an analysis of requirements coverage, setting a

clear path for the next phases of development and evaluation within the project.

Keywords: EMPYREAN Architecture, EMPYREAN Platform, EMPYREAN Components, System

Operation Flows, Associations, Tracking KPIs, Edge-Cloud Continuum, Cognitive Orchestration,

Trustworthy, AI-Driven Data Processing

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 4/129

Disclaimer: The information, documentation and figures available in this deliverable are written by the

EMPYREAN Consortium partners under EC co-financing (project HORIZON-CL4-2023-DATA-01-04-

101136024) and do not necessarily reflect the view of the European Commission. The information in

this document is provided “as is”, and no guarantee or warranty is given that the information is fit for

any particular purpose. The reader uses the information at his/her sole risk and liability.

Copyright © 2025 the EMPYREAN Consortium. All rights reserved. This document may not be copied,

reproduced or modified in whole or in part for any purpose without written permission from the

EMPYREAN Consortium. In addition to such written permission to copy, reproduce or modify this

document in whole or part, an acknowledgement of the authors of the document and all applicable

portions of the copyright notice must be clearly referenced.

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 5/129

Table of Contents

1 Executive Summary ... 14

2 Introduction ... 15

2.1 Purpose of this document .. 15

2.2 Document Structure ... 15

2.3 Audience ... 15

3 EMPYREAN Components ... 16

3.1 Overview... 16

3.2 Components Updates ... 16

3.2.1 Privacy and Security Manager .. 16

3.2.2 Edge Storage Gateway and Edge Storage .. 17

3.2.3 Decentralized and Distributed Data Manager ... 19

3.2.4 Local Orchestration and Autoscaling Optimizations .. 20

3.2.5 Analytics Engine ... 21

3.2.6 Cyber Threat Intelligence Engine ... 22

3.2.7 Decision Engine .. 23

3.2.8 Workflow Manager .. 24

3.2.9 Dataflow Programming .. 25

3.2.10 Action Packaging .. 27

3.2.11 Unikernels Builder .. 28

3.2.12 Analytics-friendly Distributed Storage ... 28

3.2.13 Service Orchestrator and EMPYREAN Controller ... 30

3.2.14 Telemetry Service ... 31

3.2.15 EMPYREAN Aggregator .. 32

3.2.16 EMPYREAN Registry.. 33

3.3 Components Interactions ... 34

3.3.1 Decision Engine with Telemetry Service .. 34

3.3.2 Workflow Manager with Service Orchestrator .. 37

3.3.3 Workflow Manager and Dataflow Programming ... 39

3.3.4 Application Packaging and Unikernels Builder ... 41

3.3.5 Workflow Manager and Edge Storage ... 42

3.3.6 EMPYREAN Aggregator with Security and Privacy Manager 44

4 EMPYREAN System Operation Flows ... 47

4.1 Overview... 47

4.2 EMPYREAN Ecosystem ... 47

4.3 Generic Operation Flow ... 52

4.4 Associations Management ... 53

4.4.1 Association Setup ... 53

4.4.2 Association Deletion ... 56

4.4.3 Association Update .. 58

4.5 Infrastructure Resources and Users Management .. 60

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 6/129

4.5.1 Computing Resources Onboarding .. 60

4.5.2 Computing Resources Offboarding .. 61

4.5.3 Storage Resources Onboarding / Offboarding ... 62

4.5.4 Entity Enrollment.. 64

4.6 Application Development ... 66

4.6.1 Low-Code Application Development ... 66

4.6.2 Action Packaging .. 67

4.6.3 Integration of Data Spaces ... 68

4.7 Application Deployment ... 70

4.7.1 Cloud-Native Application Deployment... 70

4.7.2 Intra-Association Workload and Data Migration ... 75

4.7.3 Data Flows and Data Access ... 77

4.7.4 Isolated and Trusted Execution .. 79

4.7.5 Software-Defined Interconnect over RDMA and Hardware Accelerated Workloads

 80

4.7.6 Cloud-Native Unikernels Execution .. 81

4.7.7 Analytics-Friendly Data Storage and Query ... 82

4.7.8 Workload Autoscaling .. 83

4.8 Inter-Association Operations ... 84

4.8.1 Inter-Association Workload and Data Migration ... 84

4.9 Telemetry and Service Assurance .. 87

4.9.1 Telemetry and Observability .. 87

4.9.2 Service Assurance ... 89

4.9.3 Cyber-Security Aspects ... 90

5 EMPYREAN Architecture Design .. 92

5.1 EMPYREAN Final Architecture .. 92

5.2 EMPYREAN Detailed Architecture .. 94

5.3 Tracking KPIs ... 97

5.3.1 Methodology for Tracking KPIs .. 97

5.3.2 Technical KPIs ... 97

5.3.3 Use case KPIs .. 99

6 Use Cases Analysis ... 100

6.1 Anomaly Detection in Robotic Machining Cells (UC1) ... 100

6.1.1 Overview... 100

6.1.2 Development and Deployment Updates ... 100

6.1.3 Leveraging EMPYREAN Components and Features ... 102

6.2 Proximal Sensing in Agriculture Fields (UC2) ... 104

6.2.1 Overview... 104

6.2.2 Development and Deployment Updates ... 104

6.2.2.1 Devices, equipment and communications ... 105

6.2.2.2 Adjustments from D2.1 .. 106

6.2.2.3 AI models training/development ... 106

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 7/129

6.2.2.4 Workflows identified within the use case .. 107

6.2.3 Leveraging EMPYREAN Components and Features ... 109

6.3 Advanced Inference and Coordinated Behaviors for Warehouse Automation Robots

(UC3) 111

6.3.1 Overview... 111

6.3.2 Development and Deployment updates .. 111

6.3.2.1 Devices, equipment and communications ... 111

6.3.2.2 Workflows identified within the use case .. 112

6.3.2.3 Developments .. 112

6.3.3 Leveraging EMPYREAN Components and Features ... 114

6.4 Security in Smart Factories - S. Korea International Collaboration (UC4) 115

6.4.1 Overview... 115

6.4.2 Development and Deployment Updates ... 115

6.4.3 Leveraging EMPYREAN Components and Features ... 116

7 Implementation and Delivery Plan .. 117

8 Conclusions .. 118

9 Appendix - Requirements Coverage .. 119

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 8/129

List of Figures

Figure 1: Privacy and Security Manager interaction with other EMPYREAN services 17

Figure 2: Overview of the main components of the EMPYREAN platform’s storage solution.18

Figure 3: Eclipse Zenoh network stack ... 19

Figure 4: Local Orchestration and Autoscaling Optimization dependencies 21

Figure 5: Analytics Engine core components and dependencies ... 22

Figure 6: Architecture of the CTI Engine .. 22

Figure 7: Example of the Trending Elements functionality ... 23

Figure 8: Decision Engine core components and dependencies ... 24

Figure 9: Workflow Manager components and dependencies .. 25

Figure 10: Example of dataflow application deployed across the continuum 26

Figure 11: NIX-based Environment Packaging components and dependencies 27

Figure 12: Unikernels Builder - High-level overview of the Bunny workflow 28

Figure 13: Comparing replication with erasure coding .. 29

Figure 14: Analytics-friendly Distributed Storage .. 29

Figure 15: Service Orchestrator and EMPYREAN Controller components and dependencies 30

Figure 16: EMPYREAN Telemetry Service components and dependencies 31

Figure 17: EMPYREAN Aggregator core components and dependencies 33

Figure 18: EMPYREAN Registry core components and dependencies 34

Figure 19: EMPYREAN Association-based IoT-Edge-Cloud continuum 48

Figure 20: EMPYREAN ecosystem, key stakeholders, their roles, and interactions 49

Figure 21: EMPYREAN generic operation flow ... 53

Figure 22: Association setup operation flow – Steps involved and interactions 55

Figure 23: Association deletion operation flow – Steps involved and interactions 57

Figure 24: Association update operation flow – Steps involved and interactions 59

Figure 25: Entity enrollment operation flow .. 65

Figure 26: Data Spaces integration within the EMPYREAN platform 70

Figure 27: Initial assignment of cloud-native application’s microservices to Associations 72

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 9/129

Figure 28: Hierarchical and cognitive orchestration at the Association level 73

Figure 29: Selection of worker nodes and seamless application deployment 74

Figure 30: Intra-Association workload and data migration ... 76

Figure 31: Seamless access of object-based storage resources through Zenoh 77

Figure 32: Decentralized and distributed interaction and data distribution with secure storage

across Associations ... 78

Figure 33: Workflow for creating a dataflow descriptor file using Eclipse zenoh-flow 79

Figure 34: Inter-Association workload and data migration operation flow – Steps involved and

interactions... 86

Figure 35: Telemetry and observability operation flow – Steps involved and interactions 88

Figure 36: Service assurance operation flow – Steps involved and interactions 90

Figure 37: CTI Engine core components and dependencies. ... 91

Figure 38: EMPYREAN high-level architecture ... 92

Figure 39: EMPYREAN detailed architecture, final version .. 96

Figure 40: The typical architecture employed by machine tool clients, consisting of deep-edge

devices integrated with the robots and far-edge resources hosted on-premise by the

client. .. 100

Figure 41: Current production workflow. .. 101

Figure 42: Possible breakdown in EMPYREAN of current behavior into three workflows 102

Figure 43: Planned UC2 architecture with the EMPYREAN components 109

Figure 44: A Tractonomy’s autonomous towing robot (ATR) collecting point cloud data. ... 113

Figure 45: A two carts automatic locking system. ... 114

Figure 46: EMPYREAN development roadmap .. 117

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 10/129

List of Tables

Table 1: Decision Engine Interface ... 36

Table 2: Telemetry Service Interface ... 36

Table 3: PMDS Interface ... 36

Table 4: Workflow Manager Interface ... 38

Table 5: Service Orchestrator Interface ... 38

Table 6: Privacy and Security Manager Interfaces ... 45

Table 7: EMPYREAN Aggregator Interface ... 46

Table 8: Overview of Association setup operation flow .. 54

Table 9: Overview of Association deletion operation flow .. 56

Table 10: Overview of Association update operation flow .. 58

Table 11: Overview of computing resources onboarding operation flow 60

Table 12: Overview of computing resources offboarding operation flow 61

Table 13: Overview of storage resources onboarding and offboarding operation flow 63

Table 14: Overview of entity enrollment operation flow .. 64

Table 15: Overview of low-code application development operation flow 66

Table 16: Overview of application and action packaging operation flow 68

Table 17: Overview of data spaces integration operation flow ... 69

Table 18: Overview of cloud-native application deployment operation flow 71

Table 19: Overview of intra-association workload and data migration operation flow 75

Table 20: Overview of intra-association workload and data migration operation flow 77

Table 21: Overview of isolated and trusted execution operation flow 80

Table 22: Overview of software-defined interconnect over RDMA and hardware accelerated

workloads operation flow .. 81

Table 23: Overview of cloud-native unikernels execution operation flow 82

Table 24: Overview of analytics-friendly data storage and query operation flow 83

Table 25: Overview of workload autoscaling operation flow .. 84

Table 26: Overview of inter-Association workload and data migration operation flow 85

Table 27: Overview of telemetry and observability operation flow .. 87

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 11/129

Table 28: Overview of service assurance operation flow .. 89

Table 29: Overview of cyber-security operation .. 91

Table 30: EMPYREAN Technical KPIs .. 98

Table 31: The different hardware components and their key features of UC2. 105

Table 32: Functional requirements coverage in the final EMPYREAN architecture and

operation flows .. 119

Table 33: Analysis of overall non-functional requirements ... 123

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 12/129

Abbreviations

AI Artificial Intelligence

AMQP Advanced Message Queuing Protocol

APC Attribute-Based Credentials

API Application Programming Interface

ATR Autonomous Towing Robots

AWS Amazon Web Services

CLI Command Line Interface

CRI Container Runtime Interface

CRUD Create, Read, Update, Delete

CTA Cyber Threat Alliance

CTI Cyber Threat Intelligence

CV Computer Vision

CVEs Common Vulnerabilities and Exposures

D Deliverable

DAG Directed Acyclic Graph

DB Database

DDS Data Distribution Service

DID Decentralized Identifier

DKMA Distributed Key Management and Authentication

DLT Distributed Ledger Technology

DoA Description of Action

EAT Entity Attestation Token

EC European Commission

ETL Extract, Transform, Load

EUs End Users

FCS Fleet Control System

FL Federated Learning

FPGA Field Programmable Gate Arrays

GPU Graphics Processing Unit

GUI Graphical User Interface

HW Hardware

IDS Intrusion Detection System

IEC International Electrotechnical Commission

IIoT Industrial Internet of Things

IoC Indicators of Compromise

IoT Internet of Things

JWT JSON Web Tokens

K8s Kubernetes

KMS Key Management System

KPI Key Performance Indicator

M Month

ML Machine Learning

MQTT Message Queueing Telemetry Transport

MTTR Mean Time to Repair

NBS Nash Bargaining Solution

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 13/129

NIR Near-Infrared Spectrum

OCI Open Container Initiative

OF Operation Flow

OOM Out-of-Memory

OT Operational Technology

PDP Policy Decision Point

PEP Policy Enforcement Point

PMDS Persistent Monitoring Data Storage

PoC Proof of Concept

PPFL Privacy-Preserving Federated Learning

PSM Privacy and Security Manager

PVC Persistent Volume Claim

QoS Quality of Service

RAM Random Access Memory

RDMA Remote Direct Memory Access

REST REpresentational State Transfer

RL Reinforcement Learning

RLNC Random Linear Network Coding

ROT Resource Optimization Toolkit

SDK Service Development Kit

SLA Service Level Agreement

SOC Soil Organic Carbon

SSI Self-Sovereign Identity

SW Software

TPU Tensor Processing Unit

UAV Unmanned Aerial Vehicles

UC Use Case

UI User Interface

URL Uniform Resource Locator

VC Verifiable Credentials

Vis-NIR Visible and Near-Infrared Spectrum

VM Virtual Machine

VP Verifiable Presentations

VRAM Video Random Access Memory

WAN Wide Area Network

WP Work Package

ZKP Zero-Knowledge Proofs

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 14/129

1 Executive Summary

EMPYREAN introduces a groundbreaking vision for an IoT-edge-cloud continuum, seamlessly

integrating IoT devices, robots, and computational resources into collaborative collectives

termed "Associations." These dynamically formed Associations operate autonomously across

diverse infrastructures, spanning multiple providers, geographical regions, and connectivity

types, forming a unified and interconnected ecosystem. This Association-based continuum

enables a harmonious blend of edge and cloud capabilities, fostering innovation in hyper-

distributed, dynamic, and time-critical applications.

At the core of EMPYREAN’s vision lies an AI-enabled control and management plane designed

to autonomously balance computing tasks and data distribution. This distributed

infrastructure empowers efficient and adaptive operations by optimizing resource utilization,

performance, and resiliency within individual Associations and across federated ones.

EMPYREAN’s approach addresses the growing demands of modern applications, ensuring

ubiquitous computing, storage, and communication capabilities across a highly dynamic IoT-

edge-cloud ecosystem.

This deliverable continues the work reported in D2.1 (M6) and D2.2 (M7), introducing key

updates on the various EMPYREAN components. In addition, it provides descriptions and

details of some specific, noteworthy component interactions. A major contribution of this

deliverable is the “System Operation Flows” section, which provides detailed presentations

and diagrams of the platform’s internals, bringing forward how the various EMPYREAN

components interact to provide the innovative functionalities developed in the context of the

EMPYREAN project.

Furthermore, this deliverable finalizes the EMPYREAN architecture and provides a structured

approach for tracking Key Performance Indicators (KPIs), allowing consortium to prepare the

terrain for further advancements in technical KPIs. Finally, it outlines the implementation and

delivery plan, along with an analysis of requirements coverage, ensuring a clear roadmap for

the project’s next development and evaluation phases.

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 15/129

2 Introduction

2.1 Purpose of this document

This deliverable presents the final EMPYREAN architecture, detailing components’

interactions, and system operation flows within the EMPYREAN platform. Additionally, it

provides high-level information about the use cases, illustrating how they apply the proposed

architecture and leverage the related functionalities.

In particular, the deliverable reports on the work done under tasks T2.2 “Use Case &

Requirements Analysis” and T2.3 “Architecture Specification”, which have been further

enriched by the initial progress made in WP3 and WP4. The deliverables builds upon and

advances the work previously presented in D2.1 (M6) and D2.2 (M7).

Section 3 offers updates on EMPYREAN components, providing detailed insights into

noteworthy interactions between them. Section 4 presents high-level details on system

operation flows, bringing new details on how different users of EMPYREAN interact with the

platform. Both efforts upon the component interactions and system operation flows are then

used as a base in Section 5, where the finalized architecture is presented. Furthermore,

Section 5 presents the technical and use case KPIs, along with a methodology for tracking them

during the project’s lifecycle. Section 7 outlines the implementation and delivery plan, while

the appendix includes a comprehensive analysis of requirements coverage.

2.2 Document Structure

The present deliverable is organized into six major chapters:

• EMPYREAN Components and Interactions

• System Operation flows

• Architecture Design and Tracking KPIs

• Use Case Analysis

• Implementation and Delivery Plan

• Requirements Coverage

2.3 Audience

This document is publicly available and is intended for anyone interested in gaining a high-

level understanding of the EMPYREAN architecture and how it is applied within the project’s

use cases. In addition, this document can also help the general public grasp the system

operation flows of the EMPYREAN project and how users can interact with the platform.

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 16/129

3 EMPYREAN Components

3.1 Overview

This section provides a detailed overview of the different EMPYREAN components. Initially,

we present the latest updates of each component, related to their high-level functionality and

their positioning in the final EMPYREAN architecture. Then, we describe some noteworthy

interactions between components that play an important role in the way the different

operation flows are defined in Section 4, as well as in the EMPYREAN architecture described

in Section 5.

3.2 Components Updates

This subsection provides updates on the descriptions of EMPYREAN components, initially

introduced in deliverable D2.2 (M7). These updates show the progress made in their

development, highlighting changes in functionality, enhancements in design, and refinements

in their roles within the platform. The complete list of all EMPYREAN components is available

in Section 3 and Section 4 within deliverable D2.2.

3.2.1 Privacy and Security Manager

The Privacy and Security Manager (PSM) enforces privacy and security in decentralized

ecosystems, particularly for IoT environments. It leverages Self-Sovereign Identity (SSI)

systems and Decentralized Identifiers (DIDs) to offer secure, user-controlled identity solutions.

Key Features:

1. Verifiable Credentials (VCs) & Verifiable Presentations (VPs):

PSM manages VCs and generates VPs using advanced cryptography, such as the p-ABC

module, enabling Zero-Knowledge Proofs (ZKPs) and selective disclosure. This ensures

that only necessary data is shared, protecting user privacy.

2. JWT Signing with DIDs: Enables secure and verifiable identity management by signing

JSON Web Tokens (JWTs), facilitating fast and secure access to resources.

3. Integration with Distributed Ledger Technologies (DLTs): Verifies credentials with

transparency and immutability while using smart contracts to automate DID retrieval

and storage, enhancing security and reducing manual risks.

Due to emerging necessities and project requirements, the Privacy and Security Manager

(PSM) will incorporate a mechanism for storing policies on the Distributed Ledger through

smart contracts. This enhancement will enable dynamic policy installation across the

EMPYREAN architecture (Figure 1), ensuring secure interactions and enhanced governance of

resources, IoT devices, and associated access. By implementing this capability, the PSM will

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 17/129

facilitate the traceability of all interactions within the ecosystem, providing enhanced

transparency, security, and accountability while supporting seamless policy enforcement

across distributed components.

Figure 1: Privacy and Security Manager interaction with other EMPYREAN services

3.2.2 Edge Storage Gateway and Edge Storage

The main storage solution of the EMPYREAN platform is an enhanced extension of CC’s SkyFlok

S3 service. The service offers an S3-compatible interface, a de facto standard when it comes

to (cloud-based) object storage solutions. This compatibility comes with the benefit of simple

and quick integration with existing applications, courtesy of the large number of clients and

SDKs spanning most programming languages built for Amazon’s S3. The service supports all

S3 CRUD operations related to buckets and objects, as well as advanced features such as

multipart uploads and ranged downloads.

A special, unique feature of SkyFlok and SkyFlok S3 is its core storage architecture. Files are

erasure-coded and distributed to different cloud locations. This approach offers several key

benefits in terms of security, reliability, availability, and cost-effectiveness. In EMPYREAN,

association-local storage locations will also be supported, enhancing the overall flexibility.

Moreover, users can customize exactly how and where their data is stored. They can define

through a storage policy a list of storage locations, the redundancy level, the encryption

scheme used, and so on. Each S3 bucket is then associated with a storage policy, making it

possible to customize the storage to the specific requirements of each application. This

approach enables users to benefit from cloud, edge, and hybrid storage solutions, offering

adaptability and flexibility.

To support the temporary autonomous operation of a cluster when the Association becomes

isolated from the outside world, basic S3 PUT and GET object functionality will be maintained

for appropriately configured buckets.

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 18/129

The main components that provide the aforementioned functionality are depicted in Figure 2.

Each Association will have an On-premises Storage Gateway that provides the S3-compatible

API to platform applications. This component performs all data processing related to erasure

coding, encryption, and compression as well as the uploading and downloading of file

fragments to and from storage locations. It also plays an important part in providing

autonomous operation, building on a local metadata database.

The metadata storage and management backbone is provided by the SkyFlok.com backend. It

is deployed on Google Cloud Platform and is made up of a set of microservices. To facilitate

the newly introduced features of the EMPYREAN project, CC is extending the SkyFlok S3

service with new microservices and new endpoints on existing microservices.

Two types of storage locations are supported: cloud backends (50+ covering the EU and US

across major cloud providers) and edge storage. The Edge Storage component is an

abstraction over association-local storage resources, provided through a containerized

instance of MinIO. It is able to utilize any type of storage resource that can be mounted as a

K8s volume.

Figure 2: Overview of the main components of the EMPYREAN platform’s storage solution.

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 19/129

3.2.3 Decentralized and Distributed Data Manager

EMPYREAN’s decentralized and distributed data management framework is built on top of the

Eclipse Zenoh1 project. Zenoh is a Pub/Sub/Query protocol that provides a set of unified

abstractions to seamlessly manage data in motion, data at rest, and computations across the

Internet scale. Zenoh operates efficiently on server-grade hardware and networks as well as

on microcontroller and constrained networks. This adaptability ensures that the framework

meets the diverse demands of modern IoT and edge computing environments.

Additionally, Zenoh supports peer-to-peer, routed, and brokered communication models,

enabling the selection of an optimal communication model at each stage of the system.

Eclipse Zenoh offers a two folds approach to facilitate seamless integration and operation in
distributed systems. First, a networking protocol that is agnostic to the underlying technology,
implementing a versatile networking layer capable of running above the Data Link, Network,
or Transport layers of the OSI stack, as shown in Figure 3.

Figure 3: Eclipse Zenoh network stack

Moreover, Zenoh provides a set of APIs enabling EMPYREAN’s application developers to build

large-scale distributed systems. These APIs allow for the integration of Operational

Technology (OT) protocols with the datacentre world and/or integrate IT protocols with the

embedded world. Thus, it offers the capability to seamlessly bridge IT and OT protocols across

different systems and networks.

Some of the main features of Eclipse Zenoh in EMPYREAN:

• Openness and Interoperability: Zenoh enables diverse technologies to collaborate. For

instance, the new Querier API supports efficient and optimized data retrieval.

Enhanced support for ROS 2, a widely used framework in robotics, strengthens

connections between Zenoh and other platforms, facilitating interoperability.

• Adaptability and Scalability: Zenoh’s features are designed to adapt to varying

technological requirements. The stabilization of Liveliness API support ensures real-

time monitoring of active participants in the network. The inclusion of Zenoh-Pico2,

1 https://github.com/eclipse-zenoh/zenoh
2 https://github.com/eclipse-zenoh/zenoh-pico

https://github.com/eclipse-zenoh/zenoh
https://github.com/eclipse-zenoh/zenoh-pico

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 20/129

which is made for small IoT devices, offers huge improvements in performance and

extends its scope to devices like the Raspberry Pi Pico series.

• Security and Privacy: Eclipse Zenoh protocol addresses critical issues such as

fragmentation and message integrity, ensuring secure and reliable data transmission.

These features safeguard interactions across the network, whether between IoT

devices or cloud services.

• Performance Optimization: New advanced publisher/subscriber mechanisms

complement the Querier API to improve data throughput and reliability. These

optimizations enhance system performance while minimizing resource consumption,

key to efficient IoT-to-cloud integration.

• Technology Agnosticism, EMPYREAN’s components are committed to supporting

diverse hardware and software platforms, including new features for QNX operating

systems, which highlights its technology-agnostic approach. This openness reduces

dependence on specific vendors and encourages widespread adoption.

3.2.4 Local Orchestration and Autoscaling Optimizations

This component is responsible for implementing advanced features to enhance local cluster

orchestration in the edge-cloud continuum (Figure 4). The first one focuses on the

development of AI/ML-driven vertical autoscaling mechanisms within Kubernetes-based

clusters to enable autonomous and adaptive workload management in the continuum. While

Kubernetes already supports horizontal autoscaling, vertical autoscaling offers the potential

to optimize resource allocation by dynamically setting container limits based on telemetry

data. This approach aims to (i) enhance container bin-packing efficiency, (ii) reduce the

number of active nodes, and (iii) lower overall energy consumption. Additionally, the work

explores extending vertical autoscaling techniques to GPU resources, addressing a growing

need for hyper-distributed AI applications. This is particularly critical given the current lack of

mature GPU fractioning technologies in Kubernetes.

Complementing this, the second advanced feature is related to optimizations upon

Kubernetes to minimize cold start delays. To this end, this component introduces task place

optimizations. By favouring the placement of tasks on nodes that have more container layers

related to the task being deployed this approach further improves efficiency and

responsiveness in the edge-cloud continuum.

The AI-enabled Workload Autoscaling that provides vertical pod autoscaling optimization will

be developed as a microservice integrated with Kubernetes. To maximize effectiveness, it will

be tightly integrated with the Ryax Workflow Manager in order to take advantage of the

execution-related data stored within the Ryax’s database. This data can be used to train the

ML model used to inform autoscaling decisions. The Container Layers Locality Scheduler will

provide the second feature that will be implemented directly within Kubernetes as a dedicated

plugin.

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 21/129

Figure 4: Local Orchestration and Autoscaling Optimization dependencies

3.2.5 Analytics Engine

Service assurance mechanisms are critical for enabling the self-driven adaptability of the IoT-

edge-cloud continuum, ensuring optimal performance, reliability, and efficiency across this

complex and dynamic infrastructure. To address this, EMPYREAN is developing a highly

automated and intelligent IoT-edge-cloud continuum powered by AI-enabled distributed

management through its Service Assurance service. This system will guarantee optimal

application performance through autonomous adaptations operating within an infinite time

horizon control loop.

EMPYREAN’s approach integrates distributed service assurance mechanisms into each

Association by utilizing real-time telemetry data and advanced algorithms within its Analytics

Engine. The Analytics Engines employ continuous analysis techniques—such as machine

learning, machine reasoning, swarm intelligence, and robust adaptive optimization—to drive

orchestration mechanisms to (i) adapt resources within the Associations, (ii) provide dynamic

load balancing of processing workloads, and data within and across Associations, (iii) migrate

workloads to optimize energy efficiency, and (iv) mitigate resource fragmentation and

connectivity issues.

Figure 5 illustrates the key building blocks of the EMPYREAN Analytics Engine and their

interactions with other components of the EMPYREAN platform. The Data Connector

processes collected monitoring data, applying various transformations to prepare them for

the Event Detection Engine. The Data Manager provides local storage for processed data,

trained models, and results, while also enabling the exchange of events and data with external

components within the EMPYREAN platform. The Event Detection Engine implements the core

functionality of EMPYREAN’s distributed service assurance mechanisms. It facilitates the

execution of developed data-driven algorithms designed to ensure that deployed applications

and Associations consistently perform as intended.

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 22/129

Figure 5: Analytics Engine core components and dependencies

3.2.6 Cyber Threat Intelligence Engine

Figure 6 illustrates the operational infrastructure of the Cyber Threat Intelligence (CTI) Engine.

Data is collected from the CTA cloud and sent in JSON format to a MongoDB database, where

it is stored and managed. Through the Report Generation module, this data, which includes

detailed threat reports, indicators of compromise, and other essential metrics, is updated

daily through automated scripts that connect to the CTA. The data will also be supplemented

by information from UMU's MISP platform.

Figure 6: Architecture of the CTI Engine

The collected data undergoes rigorous analysis using advanced algorithms designed to detect

patterns, trends, and anomalies. Before being stored in the MongoDB database, the data is

thoroughly checked to ensure integrity and proper formatting. The database is optimized for

fast queries and efficient data retrieval. It powers the CTI Web platform, a user-friendly

interface that allows users to search, access detailed reports, and set up customized alerts.

The platform also features data visualizations that facilitate the interpretation of threat trends

and enable agile responses to security threats.

A recently introduced visualization feature enables users to identify trending elements within

the database, providing insights into various data metrics. This feature categorizes and ranks

trending and popular malware, malware families, attack patterns, and vulnerabilities, offering

a comprehensive overview of the threat landscape. An example of this visualization is

illustrated in Figure 7.

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 23/129

Figure 7: Example of the Trending Elements functionality

3.2.7 Decision Engine

The Decision Engine integrates distributed and multi-objective algorithms within the

EMPYREAN platform, implementing the “decide” phase of the envisioned closed-loop control

process based on the principles of observing, deciding, and acting. It will provide the

EMPYREAN Aggregator and Service Orchestrator with the intelligence needed to (i) support

the efficient operation of Associations, (ii) orchestrate hyper-distributed applications and

allocate their workloads by considering local resource states and characteristics while meeting

their objectives, and (iii) coordinate effective load-balancing of data and workload within and

across Associations.

The Decision Engine will leverage the open-source Resource Optimization Toolkit (ROT)

framework, initially developed by ICCS during the H2020 SERRANO3 EU project. Within the

EMPYREAN project, efforts will focus on enhancing the Decision Engine to enable distributed

decision-making in a cloud-native environment. This will empower the Decision Engine to

deliver robust, efficient decisions for dynamic resource allocation, workload balancing, and

energy-efficient operations across the Association-based IoT-edge-cloud continuum.

Figure 8 depicts the key building blocks of the Decision Engine and its interactions with other

EMPYREAN components. The Decision Engine Controller manages interactions with the

available Decision Engine Workers, coordinating their operations. It also communicates with

the Telemetry Service to retrieve necessary data and interfaces with other services within the

platform, such as the Service Orchestrator.

3 https://ict-serrano.eu

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 24/129

Figure 8: Decision Engine core components and dependencies

The Decision Engine Worker receives instructions from the Controller to start or stop the

execution of algorithms, carries out the assigned tasks, and monitors their progress. It also

reports relevant information back to the Controller. The architecture consists of a single

Decision Engine Controller overseeing multiple Decision Engine Workers, which perform the

computational tasks. Integrated within the workers are the Decision Algorithms that offer

different trade-offs between optimality and complexity, ensuring efficient performance while

meeting the diverse and strict applications requirements.

3.2.8 Workflow Manager

The Workflow Manager component (Figure 9) will be provided by the open-source Ryax

workflow engine. Specific enhancements have been planned to be brought in EMPYREAN at

the workflow management level. Initially, the goal is to enhance Ryax to efficiently support

both long-running microservices and short-duration serverless functions for data analytics and

AI applications in the edge-cloud continuum. Ryax leverages YAML-based abstractions which

will be adopted in the project to facilitate the development of data analytics applications upon

distributed systems.

Another important enhancement is to introduce multi-site workflow support, enabling

workflows to execute across multiple clusters at both the edge and cloud. This capability

requires particular networking and storage configurations to ensure seamless execution of

workflows across distributed sites. Furthermore, the platform will support user-defined

constraints and objectives to optimize workload placement. These features will be achieved

through integrations with the Decision Engine and Service Orchestrator components.

Additionally, Ryax will integrate with EMPYREAN Associations by interacting with the

Aggregator and incorporating a native dataflow programming framework like Zenoh-Flow.

This integration will provide fine-grained, real-time data communication capabilities, which is

essential for IoT-based EMPYREAN use cases. To implement and support these capabilities,

two new components will be introduced into the EMPYREAN architecture: the Ryax Runner,

which will operate at the Association level, and the Ryax Worker that will function at the

platform level.

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 25/129

The first feature related to the support of long-duration microservices will enable direct

support of Docker containers and the definition of how they can be run individually or within

a workflow. This will greatly benefit users who can bring their containers and run them directly

without any changes or adaptations to the different underlying infrastructures. The second

feature related to the support of multi-site workflow executions will utilize specialized

networking abstractions to link a Kubernetes namespace with node pools spanning different

sites. This innovation will enable the seamless execution of actions on different sites. The

support of the dataflow programming framework will be enabled through the integration of

the Zenoh-Flow open-source platform into Ryax. This will be done through an initial

integration of Zenoh networking protocol on Ryax, enabling robust dataflow programming

and efficient real-time communication, essential for IoT and edge applications.

Figure 9: Workflow Manager components and dependencies

3.2.9 Dataflow Programming

EMPYREAN Dataflow Programming component will be built on top of the Eclipse Zenoh Flow

open-source project to provide a framework for developing and deploying applications across

the Cloud-to-Thing continuum. This framework aims to simplify and structure application

creation while ensuring efficient deployment across distributed systems.

In this context, a dataflow application (Figure 10) is represented as a collection of nodes

interconnected with links, forming a directed acyclic graph (DAG). These graphs are described

using a human-readable descriptor file, referred to as a contract. The EMPYREAN Dataflow

Programming component’s primary objective is to enforce this contract. Starting from the

descriptor file, Zenoh-Flow facilitates the instantiation of the application along with the

placement of its components across the available infrastructures located at the thing, edge or

cloud.

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 26/129

Figure 10: Example of dataflow application deployed across the continuum

Using EMPYREAN’s Dataflow Programming component simplifies the role of the application

developer to two primary tasks: (i) creating the different nodes that compose the application

and (ii) describing the connections between them. Other steps are efficiently managed by the

Zenoh-Flow framework and the other orchestration and deployment mechanisms within the

EMPYREAN platform.

Key features of this component are:

• Declarative approach: Through its descriptor file, application developers know

precisely the structure of what will be deployed and how it will be connected. Its

human-readable format lowers the entry barrier for non-technical application

designers.

• Optimized communications: Being aware of the application’s topology from the

descriptor file, Zenoh-Flow will adapt communication channels for efficiency. Nodes

located on the same Zenoh-Flow runtime instance will communicate through specific

channels that add negligible overhead.

• Unified abstractions: Regardless of where a node will be deployed, a developer only

codes it once: Zenoh-Flow nodes implement a single interface. The result is a shared

library that is later dynamically loaded by a Zenoh-Flow runtime.

• Location transparency: As Zenoh-Flow uses Zenoh as its communication medium,

application developers do not need to know ahead of deployment where their nodes

will be running. Communications are based on key expressions that Zenoh routes

transparently.

• Data isolation: Zenoh-Flow associates each instance of an application with an

identifier that is transparently leveraged in the communications. This ensures that if

the same application is deployed twice on the same infrastructure or if several

applications use the same “topics”, no collision will occur. The same technique is used

for each link, further allowing nodes to expose the same key expressions.

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 27/129

• High-performance: Benchmarks show that Zenoh-Flow can achieve high throughput

and low latency. A port of an Autonomous Driving System over to Zenoh-Flow further

illustrated its capabilities, allowing for real-time control of a car in a simulated

environment.

3.2.10 Action Packaging

Applications in the EMPYREAN platform are defined as a single workflow or combination of

workflows. Each workflow is composed of one or more actions and each action is packaged as

OCI-compatible images, making them ready for deployment using standard cloud-native tools

(e.g., containerd, CRI-O, podman). These images can represent generic containers, lightweight

application kernels (such as unikernels or libOS applications), or IoT firmware blobs.

EMPYREAN offers a novel tool that can package any workload into an OCI-compatible image,

enabling transparent storage, distribution, and deployment using standard cloud-native

techniques. These capabilities are essential to the application design process, providing the

system with the modularity and flexibility to support a wide range of application types.

By building on the NIX-based Environment Packaging tool, RYAX's workflow engine packaging,

and NUBIS' unikernels builder, EMPYREAN introduces a unified packaging tool. This tool

leverages the OCI specification to define crucial metadata for action binaries that can be used

by the runtime environment to prepare and eventually implement the required execution

environment.

This unified approach is a critical element for modular and flexible application design,

empowering users to define microservices or serverless functions in any programming

language while remaining agnostic to architectures (e.g., x86 or ARM). By leveraging the NIX

functional package manager, it provides a declarative and reproducible process for building

lightweight, OCI-compliant containers. This guarantees seamless polyglot workflows and

supports diverse software and hardware infrastructures across the edge-cloud continuum.

Figure 11: NIX-based Environment Packaging components and dependencies

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 28/129

3.2.11 Unikernels Builder

EMPYREAN aims to deliver an end-to-end software stack for application deployment based on

unikernels. To achieve this, EMPYREAN introduces Bunny, a suite of system software

components designed to enable the deployment of applications as unikernels in cloud-native

environments.

Bunny is a libOS-based application building and packaging tool developed by NUBIS to

streamline the creation and deployment of lightweight application images. By leveraging the

powerful NIX package manager, Bunny simplifies the construction of slim, reproducible

application images tailored for various unikernel frameworks, including Rumprun, Unikraft,

OSv, MirageOS, and NanoVMs. These unikernel-based applications are optimized for

performance and minimal resource usage, making them ideal for highly efficient and secure

environments.

Bunny integrates seamlessly into the cloud-native ecosystem by packaging these lightweight

application images into OCI-compliant images. This compatibility allows EMPYREAN to

leverage standard container orchestration and deployment platforms, such as containerd and

Kubernetes (K8s). When combined with the RYAX's workflow engine, Bunny provides a robust,

efficient, and flexible solution for developers looking to harness the benefits of unikernels

without compromising on compatibility or scalability. This integration ensures that developers

can deploy unikernel-based applications with ease, leveraging the benefits of cloud-native

technologies while achieving exceptional performance and resource efficiency.

Figure 12: Unikernels Builder - High-level overview of the Bunny workflow

3.2.12 Analytics-friendly Distributed Storage

Storing large volumes of IoT data reliably and cost-effectively is a significant challenge for

current state-of-the-art systems. Given the need to efficiently query the data, replication has

so far been seen as the only way to provide the required redundancy. Figure 14 illustrates the

cost implications of using replication. To achieve the industry-standard requirement of

tolerating the loss of two copies, 3x replication is typically used, causing a tripling of storage

costs. In contrast, erasure coding provides a comparable level of reliability at exactly half the

storage cost in this case. The cost difference becomes even greater when higher levels of

reliability are required.

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 29/129

Unfortunately, time-series IoT data is only useful if it can be queried efficiently. In the case of

cloud storage, providers charge a premium price for data egress. Thus, it is imperative to

minimize the amount of data transferred when evaluating a query. Given that erasure coding

mixes the original data, byte-level access has so far been impractical. The same problem arises

with compression, most schemes make it impossible to know where each byte of the original

data is stored and thus typically all data must be downloaded and decompressed. These are

the two core challenges we address in EMPYREAN, aiming to go beyond the state of the art

with this component.

Figure 13: Comparing replication with erasure coding

The Analytics-Friendly Distributed Storage System will be implemented through the IoT Query

Engine and will incorporate the following key features:

● Use of erasure coding and data distribution to multiple storage locations.

● Efficient erasure-coded analytics queries that transfer comparable amounts of data to

replication-based queries.

● Use of a specialized form of deduplication to compress data both at rest and in-flight.

To achieve these objectives, the system will build upon the Edge Storage Gateway as well as

a set of cloud-based components, deployed using cloud lambda functions to the three main

cloud provider’s infrastructures.

Figure 14: Analytics-friendly Distributed Storage

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 30/129

3.2.13 Service Orchestrator and EMPYREAN Controller

The orchestration process within EMPYREAN consists of two primary stages and involves two

key components of the platform: the Service Orchestrator and the EMPYREAN Controller

(Figure 15). At the Association level, multiple Service Orchestrators operate as high-level

orchestrators, while various Local Orchestrators manage the individual edge and cloud

platforms integrated within the EMPYREAN framework. This distributed orchestration model

enables efficient and intelligent resource and task management across the entire IoT-edge-

cloud continuum, ensuring seamless coordination and optimization of workloads throughout

the platform.

Figure 15: Service Orchestrator and EMPYREAN Controller components and dependencies

In the first stage, multiple Service Orchestrators act as cognitive agents, leveraging their local

knowledge to compete for the efficient and rapid mapping of application workloads. In the

second stage, each Service Orchestrator intelligently assigns its respective part of the overall

workflow to the Associations it manages. EMPYREAN adopts a hierarchical orchestration

approach to facilitate this process. High-level decisions are made by the Service Orchestrator

at the Association layer, while low-level scheduling (i.e., the actual assignment of workloads

to specific infrastructure resources) is handled by the native orchestration mechanisms (i.e.,

Local Orchestrator) of each platform (e.g., K8s, K3s).

These Local Orchestrators ensure compliance with platform specifications and provide fine-

grained workload management. The Service Orchestrator consists of two primary services (i)

the Orchestration API Server that serves as the single entry point for other components to

access EMPYREAN’s service orchestration functionalities and (ii) the Orchestration Manager

that implements the application logic, oversees the operation of internal components, and

coordinates resource allocation and application deployment.

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 31/129

The EMPYREAN Controller abstracts interactions with the specific edge and cloud

orchestration mechanisms at each EMPYREAN location. It processes requests from the Service

Orchestrator to deploy or adjust already deployed applications. The Controller comprises two

main the Orchestration Interface and Orchestration Plug-ins. The former provides an

infrastructure-agnostic interface for describing deployment descriptions and constraints to

diverse local orchestration mechanisms, while the latter translates generic instructions from

the Orchestration Interface into specific actions and procedures tailored to the selected local

orchestration mechanisms.

3.2.14 Telemetry Service

The EMPYREAN Telemetry Service addresses the challenges of monitoring federated IoT-edge-

cloud platforms by providing robust observability and telemetry capabilities within

Associations. Traditional localized monitoring methods are insufficient for ensuring optimal

performance, security, and efficiency across interconnected services. Observability enables

gaining external insights into system behavior and performance, facilitating troubleshooting,

and answering questions like, “Why is this happening?” Telemetry focuses on the real-time

collection, measurement, and transmission of performance data, including CPU usage,

memory consumption, storage capacity, and network traffic. Together, they form the

foundation for effective monitoring, automation, and decision-making in the EMPYREAN

platform.

Figure 16: EMPYREAN Telemetry Service components and dependencies

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 32/129

The telemetry service is built on a distributed infrastructure composed of key components:

● Telemetry Engines: Independently manage, collect, and analyze telemetry data from

various segments of the infrastructure, ensuring a unified view of system health.

● Monitoring Probes: Specialized components that collect real-time performance data

from specific resource types.

● Persistent Monitoring Data Storage (PMDS): A centralized repository for long-term

storage of telemetry data, enabling historical analysis, trend identification, and

resource optimization.

By integrating these components (Figure 16), the EMPYREAN telemetry service ensures end-

to-end visibility, enhanced security, scalability, and dynamic resource utilization across the

IoT-edge-cloud continuum, facilitating data-driven decision-making and advanced analytics.

3.2.15 EMPYREAN Aggregator

An EMPYREAN Aggregator (Figure 17) manages and coordinates the operation of an

EMPYREAN Association. Each Aggregator is a logical component that integrates multiple core

components and services to provide the intelligence and orchestration logic needed to

operate an Association. Its key responsibilities include facilitating application deployment,

ensuring secure and trusted workload execution, and overseeing data storage across the

continuum. An Aggregator orchestrates its Associations, encompassing distinct or shared

computational and storage resources.

Multiple self-managed and cooperating Aggregators form the management fabric of the

EMPYREAN platform. Together, they transform the IoT-edge-cloud continuum into an

autonomous, collaborative, composable, and self-organized ecosystem. Operating in a

distributed and autonomous manner, Aggregators utilize an internal two-level hierarchical

system to effectively manage resources within an Association.

The API Gateway facilitates seamless communication between Aggregators, general edge, or

(multi-) cloud providers. Key components of the EMPYREAN Aggregator include:

● Service Orchestrator: Enables efficient resource and workload orchestration.

● Decision Engine: Provides intelligent decision-making for optimized operations.

● Edge Storage Gateway: Provides distributed, hybrid, and encrypted data storage.

● Data Distributor: Ensures decentralized interconnection and seamless data

distribution.

● Security and Privacy Manager: Delivers distributed trust and identity management.

● Telemetry Engine and Analytics Engine: Support the monitoring of heterogeneous

resources and deployed applications while providing service assurance mechanisms.

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 33/129

In its updated version, the EMPYREAN Aggregator also integrates the Ryax Runner, which acts

as the execution engine for user workflows within a specific Association. This component

bridges the Workflow Manager with the computing resources of individual edge and cloud

platforms, enabling the seamless execution of actions and workflows. The Ryax Runner

operates in collaboration with the EMPYREAN Controller to deploy, execute, and manage the

hyper-distributed application workflows across the EMPYREAN Associations, ensuring

seamless deployment and efficient, coordinated operation within the IoT-edge-cloud

continuum.

Figure 17: EMPYREAN Aggregator core components and dependencies

3.2.16 EMPYREAN Registry

The EMPYREAN Registry facilitates the registration and management of IoT devices, edge, and

cloud resources within Associations. It serves as a unified entry point for both core platform

services and third-party entities, enabling the discovery, cataloguing, and advertising of

Associations and services across the Association-based continuum. The EMPYREAN registry

keeps track of the available Associations and services, the mapping of infrastructure resources

to Associations, and the relationships between users and Associations.

Figure 18 shows the updated version of the EMPYREAN Registry. The API Gateway facilitates

seamless interaction and the exchange of events between the EMPYREAN services and core

components of the Registry. The Registry Manager oversees the operation of the Registry and

manages its interactions with the other services within the EMPYREAN platform. The Service

Catalogue maintains critical information about software packages, container images, service

descriptors, and other metadata essential for service deployment and management. It also

stores and manages descriptors of hyper-distributed applications and services available for

EMPYREAN Aggregator

EMPYREAN Registry

(Task 4.4)
Aggregator(s)

EMPYREAN Controller

(Task 4.4)

API Gateway

Workflow Manager

(Task 4.2)

Telemetry Engine

(Task 4.4)

Edge Storage Gateway

(Task 3.2)

Analytics Engine

(Task 3.4)

Security & Trust

Manager (Task 3.1)

Service Orchestrator

(Task 4.4)

Decision Engine

(Task 4.1)

Data Distributor

(Task 3.2)

Ryax Runner

(Task 4.2)

Generic Cloud

Platforms

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 34/129

deployment on the EMPYREAN infrastructure. The Container Image Repository stores OCI-

compatible images of hyper-distributed applications, built and packaged using EMPYREAN’s

dedicated mechanisms.

The Association Metadata Store contains high-level metadata about the available

Associations, including details on participating resources, their ownership, and sharing

policies. This information supports orchestration and load-balancing decisions made by the

platform’s distributed decision-making mechanisms. The Data Connectors collect metadata

and information from diverse systems, including data stores, external catalogues, data

pipelines, and other relevant data sources. Moreover, the integration of Security and Trust

Manager services establishes a trust anchor to support trust, identity, and credential

management operations across the distributed Associations. This ensures secure interactions,

enhances reliability and promotes seamless collaboration within the EMPYREAN ecosystem.

Figure 18: EMPYREAN Registry core components and dependencies

3.3 Components Interactions

3.3.1 Decision Engine with Telemetry Service

3.3.1.1 Functionality Unlocking

The Decision Engine integrates and executes several decision-making algorithms. To extend

its capabilities, the Decision Engine will be enhanced to enable multi-agent speculative

intelligent scheduling across EMPYREAN Associations. This enhancement also includes the

ability to operate in a distributed manner, with multiple independent instances deployed

across different Associations. Each Decision Engine instance will be designed to support multi-

agent algorithmic solutions that accommodate various levels of cooperation, from full

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 35/129

collaboration to partial or competitive operation. This flexibility enables dynamic and

intelligent decision-making tailored to the unique needs and constraints of the platform.

A key enabler of these capabilities is the interaction with the Telemetry Service, which

provides the Decision Engine with the necessary data for real-time decision-making and

adaptive resource management. The Telemetry Service will also be tightly coupled with

observability mechanisms by integrating monitoring, metrics, distributed tracing, and logging.

This integration will ensure that the Decision Engine receives high-fidelity data streams and

diagnostic feedback for continuous improvement. The Telemetry Service will deliver a

detailed, granular view of the continuum, allowing the Decision Engine to execute distributed

algorithms that dynamically balance workloads and manage resources to optimize

performance, energy efficiency, and fault tolerance across the Associations.

3.3.1.2 High-Level Design

The updated design of the Decision Engine will incorporate a lightweight and scalable

communication layer (e.g., a message broker like Zenoh or gRPC). This middleware will serve

as the backbone for inter-agent communication, facilitating the exchange of state

information, coordination signals, and messages between Decision Engine instances. The real-

time synchronization will ensure that instances can collaborate or compete effectively, even

in highly dynamic environments.

There will also be a shared repository to store global states, shared objectives, and metadata

that Decision Engine instances can access as needed, providing a centralized reference point

for coordination across multiple Associations. Moreover, the Decision Engine Controller will

be extended to support the dynamic instantiation of new Decision Engine instances. Instances

can be deployed or decommissioned based on workload demand or new Association

formations, enabling adaptive instance deployment. The Decision Engine will integrate closely

with the Telemetry Service to receive real-time updates on resource states, workload metrics,

and system performance. Finally, the Decision Engine instances will integrate a range of multi-

agent algorithms, enabling instances to collaborate or compete depending on the scenario to

achieve Association-specific goals.

By incorporating these features, the Decision Engine can evolve into a multi-agent system

capable of cooperative and competitive operation, significantly enhancing its flexibility and

performance in managing the hyper-distributed environments of the EMPYREAN platform.

3.3.1.3 Interfaces

Next, we provide a high-level description of the interfaces required for the communication

between the involved components that will be developed and integrated within the technical

work packages (WP 3-5). The interfaces are defined jointly between the interface implementer

and interface user while being implemented in the context of the respective technical tasks.

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 36/129

Table 1: Decision Engine Interface

Interface ID WP4T1DE-I

Description The interface will enable orchestration entities to retrieve optimized

deployment plans for workloads across Associations, support methods

to manage decision-making processes and offer access to detailed log

messages. It will also facilitate the operation between Decision Engine

instances.

Component providing

the interface

Decision Engine

Consumer components Service Orchestrator, Decision Engine

Type of interface REST and AMQP

State Synchronous and Asynchronous

Responsibilities ICCS

Table 2: Telemetry Service Interface

Interface ID WP4T4TS-I

Description This interface will provide real-time telemetry data, including resource

utilization metrics, workload statuses, and resource characteristics,

ensuring informed decision-making. It will support various query and

filtering operations along with notifications.

Component providing

the interface

Telemetry Service, Telemetry Engine

Consumer components Decision Engine, Analytics Engine, Service Orchestrator, EMPYREAN

Aggregator

Type of interface REST and AMQP

State Synchronous and Asynchronous

Responsibilities ICCS, UMU

Table 3: PMDS Interface

Interface ID WP4T4PMDS-I

Description It will enable a storage service for the historical monitoring data using

a time-series data store. It will expose methods to interact with the data

store, supporting insert and various query and filtering operations.

Component providing

the interface

Persistent Monitoring Data Storage

Consumer components Decision Engine, Analytics Engine,

Type of interface REST

State Synchronous

Responsibilities ICCS, UMU

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 37/129

3.3.2 Workflow Manager with Service Orchestrator

3.3.2.1 Functionality Unlocking

The Workflow Manager in EMPYREAN will be enhanced to support multi-site workflow

executions, addressing the inherent complexities of the Association-based IoT-edge-cloud

continuum. By default, the Workflow Manager utilizes first-fit policies for resource allocation

and is limited to operating within a single Association. However, the integration of the Service

Orchestrator will overcome these limitations by, enabling the adoption of intelligent best-fit

policies capable of efficiently utilize resources across multiple Associations. Moreover, the

Service Orchestrator will be extended and enhanced to facilitate decentralized and

cooperative operations. This will empower the EMPYREAN platform to orchestrate edge-cloud

resources efficiently, enabling dynamic application deployment across multiple, autonomous

Associations.

These enhancements will ensure that workflows can be seamlessly and dynamically

distributed across multiple edge-cloud sites and Associations, enhancing the platform’s

scalability, flexibility, and overall performance and resource efficiency. By collaborating with

the Service Orchestrator, the Workflow Manager will be able to intelligently evaluate resource

availability, operational constraints, and workload requirements to make optimized decisions

on resource allocation.

3.3.2.2 High-Level Design

The integration design takes into account the architectures of the Workflow Manager and

Service Orchestrator to enable communication between their internal components. The

primary objective is to facilitate the exchange of necessary information, allowing the Service

Orchestrator to execute the first stage of the EMPYREAN orchestration process, which

involves intelligently distributing application workloads across the Associations.

By default, the Ryax Workflow Manager includes a single user interface, the Ryax Studio, which

interacts with one Ryax Runner service to schedule and manage computing resources. To

support multiple Associations, the user interface will be decoupled from a single Runner.

Instead, the updated design will include one Runner service per Association, enabling each

Runner to communicate independently with the user interface and its respective Service

Orchestrator. This decoupling ensures that multiple Runners can operate concurrently, with

each managing a distinct Association without interference.

When a deployment request is initiated from the user interface, it will first be routed to the

EMPYREAN Aggregator of the user’s default Association. Then, the Aggregator, in

collaboration with the respective Service Orchestrator, will execute the multi-agent decision-

making process to assign workloads across Associations. Once the high-level workload

distribution is determined, these services will forward the deployment tasks to the

appropriate Ryax Runner within the selected Associations.

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 38/129

To further enhance multi-site support, the Workflow Manager will introduce the concept of

Ryax Worker services. Each Worker will be responsible for managing workflows on specific

underlying resources, working in coordination with the EMPYREAN Controller. This approach

assigns Workers per K8s/K3s cluster, ensuring efficient resource management and workflow

execution across the infrastructure.

3.3.2.3 Interfaces

The following provides a high-level description of the exposed interfaces by the Workflow

Manager and Service Orchestrator.

Table 4: Workflow Manager Interface

Interface ID WP4T2WF-I

Description The Workflow Manager interface will communicate with the Service

Orchestrator through a set of well-defined APIs to facilitate seamless

information exchange for workload distribution across multiple

Associations. It will support bidirectional communication, allowing the

Workflow Manager to send workload execution requests, resource

availability queries, and operational constraints to the Service

Orchestrator while receiving optimized resource allocation decisions

and deployment instructions. The interface will also support

asynchronous messaging and event-driven triggers to ensure dynamic

adaptation to changing resource conditions.

Component providing

the interface

 Workflow Manager

Consumer components EMPYREAN Aggregator, Service Orchestrator

Type of interface combinations of REST, gRPC and RabbitMQ

State Synchronous and Asynchronous

Responsibilities RYAX, ICCS

Table 5: Service Orchestrator Interface

Interface ID WP4T4SO-I

Description This interface enables the deployment and management of cloud-

native applications and abstracts the interaction of the Service

Orchestrator with the EMPYREAN Controllers. Moreover, it allows the

service assurance mechanisms to trigger dynamic re-configurations of

the already deployed applications.

Component providing

the interface

Service Orchestrator

Consumer components Workflow Manager, EMPYREAN Aggregator, Analytics Engine,

EMPYREAN Controller

Type of interface REST and gRPC

State Synchronous and Asynchronous

Responsibilities ICCS, RYAX

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 39/129

3.3.3 Workflow Manager and Dataflow Programming

3.3.3.1 Functionality Unlocking

The integration of dataflow programming through Zenoh-Flow within Ryax introduces

advanced functionalities that transform how workflows handle data communication and real-

time processing. Users will be able to define precise dataflows between various actions within

a workflow, ensuring seamless and efficient exchanges of information. This capability allows

users to go beyond traditional input-output exchanges, providing fine-grained control over

movement of data throughout complex workflows. Such precision is particularly valuable in

IoT-based use cases, where the timing and accuracy of data exchanges across multi-

infrastructure environments are critical to ensuring reliable and actionable outcomes.

Additionally, the integration enhances the platform's ability to handle real-time

communication across diverse infrastructures, addressing the challenges posed by distributed

systems in edge-cloud continuums. By leveraging Zenoh-Flow's inherent strengths in low-

latency and high-throughput dataflow management capabilities, Ryax equips developers with

tools to build workflows that are optimized for dynamic, time-sensitive applications. These

advanced functionalities empower users to develop applications that are not only efficient but

also inherently adaptable to the needs of modern IoT and AI-driven ecosystems, supporting

scenarios where data must be processed and acted upon with minimal delays.

3.3.3.2 High-Level Design

The integration between Ryax and Zenoh-Flow focuses on seamlessly embedding a dataflow

programming framework into workflow-based application development. At its core, this

integration establishes a connection between Ryax workflows and Zenoh-Flow dataflows,

allowing users to define the specific paths through which data moves between different

actions in a workflow. Hence, the design allows the actions of the workflows to be further

analyzed by how the data flows within actions. Ryax’s workflow abstraction is enhanced to

include dataflow-specific configurations, enabling users to specify data dependencies,

communication protocols, and the expected real-time behavior of their applications. This

enhanced design ensures that workflows remain intuitive while gaining the flexibility and

power of fine-grained dataflow control.

The integration leverages Zenoh-Flow’s capabilities to address the challenges of real-time

communication across diverse and distributed infrastructures. By integrating Zenoh-Flow's

low-latency communication primitives and its ability to support heterogeneous environments,

Ryax workflows can efficiently manage data exchanges between edge, cloud, and hybrid

setups in real-time. The design includes the deployment of Zenoh-Flow nodes as part of the

Ryax runtime, ensuring that dataflow orchestration occurs transparently and efficiently. This

approach allows the platform to handle time-sensitive data exchanges required by IoT and AI

applications, without users requiring to configure complex networking setups manually.

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 40/129

To ensure scalability and robustness, the integration employs a modular architecture where

dataflow components can be dynamically instantiated using high-level abstractions. This

modularity allows developers to design workflows that are adaptable to varying workloads

and infrastructures, while Zenoh-Flow’s underlying engine ensures consistent and reliable

data communication.

3.3.3.3 Interfaces

The following tables provide a high-level description of the exposed interfaces by the
Workflow Manager and the Dataflow programming component.

Interface ID WP4T2WFR-I

Description This communication interface facilitates low-latency data transfer between
Zenoh-Flow nodes and Ryax actions. It is a messaging protocol that leverages
Zenoh’s native real-time capabilities, ensuring efficient data transmission
across distributed infrastructures. It serves as the backbone for real-time, low-
latency data communication between Ryax and Zenoh-Flow nodes.

Component
providing the
interface

Zenoh-Flow Dataflow programming residing upon Zenoh communication
protocol

Consumer
components

Ryax Workflow Manager

Type of interface Zenoh's native protocol

State Synchronous

Responsibilities ZSCALE, RYAX

Interface ID WP4T2CM-I

Description This Configuration and Monitoring Interface provides tools for configuring
dataflow parameters, visualizing dataflows, and monitoring their performance
within workflows, enabling users to fine-tune and debug integrated
applications effectively. These interfaces collectively establish a cohesive
integration, with Zenoh's communication layer ensuring robust real-time
interactions.

Component
providing the
interface

Zenoh-Flow Dataflow programming residing upon Zenoh communication
protocol

Consumer
components

Ryax Workflow Manager

Type of interface REST or GraphQL API

State Synchronous and Asynchronous

Responsibilities ZSCALE, RYAX

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 41/129

3.3.4 Application Packaging and Unikernels Builder

3.3.4.1 Functionality Unlocking

The integration of the Action Packaging with the Unikernels Builder components unlocks

functionalities that streamline application development, deployment, and execution. By

combining the modularity and flexibility of OCI-compatible action packaging with the

efficiency and performance of unikernels, EMPYREAN allows developers to create powerful,

secure, lightweight, reproducible, and architecture-agnostic application components. The

unified packaging tool ensures that any application component, regardless of its programming

language or runtime requirements, can be seamlessly packaged into OCI-compliant images.

This approach guarantees compatibility with diverse deployment environments spanning the

edge-cloud continuum.

In addition, the platform ensures that unikernels can be effortlessly encapsulated within OCI-

compliant images, allowing their seamless deployment via Kubernetes. This integration

establishes a robust development pipeline that balances the performance and security

benefits of unikernels with the scalability and standardization offered by cloud-native

technologies. The result is a system that empowers developers to build and deploy highly

efficient, secure, and portable applications.

3.3.4.2 High-Level Design

The integration of Action Packaging with the Unikernels Builder in the EMPYREAN platform

will leverage the NIX-based Environment Packaging tool embedded within the Ryax Workflow

Manager. This packaging tool will define and prepare action binaries in a declarative and

reproducible manner while ensuring compatibility with the OCI specification. By incorporating

Bunny, the Unikernels Builder, Ryax can generate lightweight, OCI-compliant images

optimized for various unikernel frameworks like Unikraft and MirageOS. This integration

ensures that actions within workflows are seamlessly packaged and reproducibly managed

using the NIX functional package manager, enabling compatibility across diverse

infrastructures.

To improve interoperability, Ryax will extend its capabilities to support HTTP protocol along

with gRPC for the action wrapper. The action wrapper is a lightweight intermediary between

the Ryax Workflow Engine and user code that creates a (gRPC) server with a simple interface

for initializing action and running executions. The support of HTTP along with gRPC

significantly facilitates the integration of Unikernels Builder with Ryax.

Moreover, Ryax will be upgraded to offer users the ability to specify the desired container

runtime for executing actions, including support for the urunc runtime, which is designed for

deploying unikernel-based workloads. This enhancement ensures that OCI-compliant images

generated by the Unikernels Builder can be executed in optimal runtime environments,

maximizing their performance and efficiency.

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 42/129

3.3.4.3 Interfaces

Interface ID WP4T3PKG-I

Description This interface ensures seamless communication for packaging actions into
OCI-compliant unikernel images. It allows Ryax to submit build requests,
including the action's NIX-based metadata, runtime specifications, and
target unikernel framework.

Component
providing the
interface

Unikernels Builder

Consumer
components

Ryax Workflow Manager

Type of interface REST

State Asynchronous

Responsibilities NUBIS, RYAX

3.3.5 Workflow Manager and Edge Storage

3.3.5.1 Functionality Unlocking

Integrating the Edge Storage Gateway with the Ryax Workflow Manager will unlock advanced

functionalities that significantly enhance the flexibility and efficiency of workflow execution in

distributed, hybrid environments. One key functionality is the ability to dynamically allocate

storage resources tailored to the specific requirements of each workflow. Each S3 bucket in

Edge Storage is governed by a storage policy, enabling Ryax workflows to seamlessly direct

data to edge resources for low-latency access, cloud storage for scalability, or a hybrid

combination of both.

Another critical functionality is the enhanced adaptability of workflows to varying operational

conditions. This integration enables Ryax workflows to align with the autonomous operation

features of Edge Storage, ensuring uninterrupted execution even in isolated environments. By

leveraging the metadata and erasure coding capabilities provided by the Edge Storage

Gateway, workflows can reliably access, process, and store data on local edge resources

during periods of disconnection from cloud storage.

3.3.5.2 High-Level Design

The Workflow Manager is a highly intuitive tool aimed at application developers. It empowers

users to define data workflows for their applications, automating the assignment of

computing and storage resources that serve the workflows. Through the fine integration of

the Ryax Workflow Manager with the Edge Storage Gateway, users will gain enhanced control

over the placement of ephemeral and persistent storage for their actions or services.

In the background, each S3 bucket accessed through the Edge Storage Gateway adheres to a

storage policy that dictates how and where the data is stored. Data may be distributed to an

Association’s Edge Storage resources, cloud locations, or a combination of the two. The

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 43/129

storage policy also defines other characteristics, such as redundancy level, encryption, and

compression. On the Ryax side, the platform will be enhanced to support the configurable

definition of ephemeral and persistent storage. This includes the ability to mount particular

Persistent Volume Claims (PVCs) or storage volumes4 mounting object store (S3 equivalent)

buckets. As a result, storage requirements for each action can be closely matched, ensuring

workflows benefit from optimal resource allocation and performance.

3.3.5.3 Interfaces

The fine integration between the Edge Storage Gateway and the Ryax Workflow Manager will

make use of the following interfaces.

Interface ID WP3T2ESG-I

Description This interface enables Ryax to retrieve and interpret metadata and storage
policies from the Edge Storage Gateway. It allows Ryax to query bucket
configurations, including redundancy, encryption, and data distribution,
ensuring workflows are aligned with predefined storage policies.

Component
providing the
interface

Edge Storage Gateway

Consumer
components

Ryax Workflow Manager

Type of interface REST

State Asynchronous

Responsibilities CC, RYAX

Interface ID WP3T2ST-I

Description This interface allows Ryax workflows to interact with the Edge Storage
Gateway for CRUD operations on objects, enabling real-time data access and
synchronization. It also supports runtime adjustments to storage policies and
facilitates autonomous operation in network-isolated environments by
utilizing local edge resources.

Component
providing the
interface

Edge Storage Gateway

Consumer
components

Ryax Workflow Manager

Type of interface REST

State Asynchronous

Responsibilities CC, RYAX

4 Systems such as https://github.com/awslabs/mountpoint-s3-csi-driver will be explored and possible adaptation
with MinIO may be proposed

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 44/129

3.3.6 EMPYREAN Aggregator with Security and Privacy Manager

3.3.6.1 Functionality Unlocking

The interaction between the EMPYREAN Aggregator and the Privacy and Security Manager

(PSM) is pivotal for unlocking secure and seamless operations within the EMPYREAN platform.

Each Aggregator within an Association hosts its own PSM instance, which collaborates with

PSMs across other entities in the ecosystem. The PSM oversees the secure onboarding,

authentication, and authorization of all entities, including users, devices, and workflows

interacting with the Aggregator. By leveraging Decentralized Identifiers (DIDs) and Verifiable

Credentials (VCs), the PSM enforces robust identity management and enables privacy-

preserving interactions. The Aggregator, in turn, orchestrates resource allocation, workload

execution, and data management while relying on the PSM to validate and secure all

operations. This collaboration ensures that only authenticated and authorized entities gain

access to resources, data, and services within the Association.

A key functionality unlocked through this interaction is the dynamic policy management

provided by the PSM. By using Distributed Ledger Technology (DLT) and smart contracts, the

PSM facilitates real-time installation and enforcement across the architecture, ensuring

compliance with access control rules. Within the Aggregator, the PSM serves as both a Policy

Decision Point (PDP) and a Policy Enforcement Point (PEP), evaluating and enforcing access

policies for the resources managed by the Aggregator. These policies are stored publicly in the

DLT, ensuring secure and transparent access to resources between Associations across the

EMPYREAN platform. This capability guarantees traceable, secure, and trusted operations

across the IoT-edge-cloud continuum.

3.3.6.2 High-Level Design

The EMPYREAN Aggregator and PSM interact through a well-defined framework that

integrates their functionalities into the broader architecture of the EMPYREAN platform. The

design involves the following:

● Authentication and Authorization: When a user, device, or application interacts with

the Aggregator, the PSM validates the entity's identity using DIDs and VCs. The PSM

also generates Verifiable Presentations (VPs) that the Aggregator uses to verify access

rights and trust levels.

● Policy Enforcement: The Aggregator relies on the PSM to enforce policies dynamically

installed via smart contracts. These policies define access permissions, data usage

constraints, and workload execution rules, and are stored in the DLT to ensure

transparency.

● Secure Data Exchange: The PSM ensures the secure exchange of data between entities

by signing and encrypting messages using advanced cryptographic techniques, such as

Zero-Knowledge Proofs (ZKPs) and JSON Web Tokens (JWTs).

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 45/129

● Traceability and Auditing: The PSM records all interactions and policy changes in the

DLT, enabling the Aggregator to maintain a transparent and auditable operation

environment.

The Aggregator and PSM operate cohesively to provide a secure, scalable, and resilient

Association capable of dynamic adaptation to evolving conditions.

3.3.6.3 Interfaces

Table 6: Privacy and Security Manager Interfaces

Interface ID WP34PSMAGG

Description Acts as a Policy Decision Point (PDP) and Policy Enforcement Point (PEP)

for access authorization to resources managed by the Aggregator.

Component providing

the interface

 Privacy and Security Manager

Consumer components Empyrean entities, Aggregator

Type of interface Authorization

State Synchronous

Responsibilities UMU, ICCS

Interface ID WP34PSMAGG-2

Description Facilitates the verification of DIDs and VCs for all entities attempting to

access the Aggregator.

Component providing

the interface

Privacy and Security Manager

Consumer components Aggregator

Type of interface Authentication

State Synchronous

Responsibilities UMU, ICCS

Interface ID WP34PSMAGG-3

Description Enables entities to request Verifiable Credentials (VCs) from the Privacy

and Security Manager.

Component providing

the interface

Privacy and Security Manager

Consumer components Aggregator, Empyrean entities

Type of interface Credential Issuance

State Synchronous

Responsibilities UMU, ICCS

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 46/129

Table 7: EMPYREAN Aggregator Interface

Interface ID WP4T4AGGR-I

Description It supports scalable, efficient, and secure integration of distributed

services and resources, ensuring the platform's interoperability and

robust performance. The interface enables seamless interaction

between the various components of the Aggregator, facilitates data

exchange and workflows orchestration across the continuum.

Component providing

the interface

EMPYREAN Aggregator

Consumer components EMPYREAN Registry, Privacy and Security Manager, Service

Orchestrator, Other Aggregators

Type of interface REST and gRPC

State Synchronous and Asynchronous

Responsibilities ICCS, UMU

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 47/129

4 EMPYREAN System Operation Flows

4.1 Overview

This section presents the EMPYREAN system operation flows, organized into different sections

based on the category to which the various operation flows belong, to ensure seamless

integration of the platform’s components. These flows detail the inter-components processes

and methodologies enabling the system's functionality and supporting user interactions. The

system operation flows provide a comprehensive description of the system’s logic, the roles

of individual components, and how data and actions are orchestrated to deliver the

Association-based operation of the IoT-edge-cloud continuum. They form the backbone of the

system’s robustness, supporting its adaptability and efficiency across diverse applications.

4.2 EMPYREAN Ecosystem

The IoT-edge-cloud continuum integrates on-device, edge, and cloud resources to enhance

application performance and address the limitations of centralized systems. This approach can

significantly enhance application performance and infrastructure efficiency, effectively

addressing the critical bottlenecks of data collection, transmission, and processing in

centralized systems. However, many works oversimplify this continuum by treating it as a

unified pipeline of universally accessible resources. In reality, the ecosystem is fragmented,

with resources owned by different entities, leading to underutilization and limited integration

of edge resources (e.g., on-device, on-premise, near-edge, far-edge, fog, etc.) with cloud

infrastructures and markets.

EMPYREAN introduces a transformative approach to the IoT-edge-cloud continuum through

the innovative concept of Associations. An Association represents a collaborative collective of

IoT devices, robots, and resources spanning from the edge to the cloud. Each Association

aggregates and shares computing and storage resources of diverse characteristics and

capabilities, including both general-purpose and specialized units. In practice, an Association

is operationally defined as one or more interconnected Kubernetes or K3s clusters, unified

under shared administrative and security policies. EMPYREAN calls this novel framework the

Association-based continuum (Figure 19), since it enables multiple Associations to operate

simultaneously across space and time, creating a dynamic, scalable, and resilient continuum.

These Associations are not static; they are dynamically formed, reconfigured, and updated

based on resource owners' participation. Central cloud resources are integrated as needed to

complement and enhance the capabilities of edge and IoT devices. This paradigm significantly

enhances the flexibility, efficiency, and collaborative potential within the IoT-edge-cloud

continuum, providing an ecosystem for innovative applications and services.

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 48/129

Figure 19: EMPYREAN Association-based IoT-Edge-Cloud continuum

In particular, EMPYREAN’s Associations notion:

● Supports Collaborative Continuum: Empower organizations to build a collaborative

IoT-edge-cloud continuum utilizing self-owned resources.

● Enables Scalability: Allows an Association to scale by involving multiple

users/organizations and facilitating resource sharing between them.

● Abstracts Complexity: Simplifies the complexity and dynamicity of the underlying

infrastructures which usually belong to different administrative domains.

● Maximizes Resource Utilization: Overcomes the isolation and underutilization of edge

resources.

● Promotes Self-Sufficiency: Advocates for a self-sufficient IoT-edge continuum,

acknowledging that the cloud may not always be available or its use may be prohibited

for various reasons.

● Facilitates Inter-Association Cooperation: Supports cooperation between different

Associations, enabling the use of resources under stricter access and security rules

compared to resources belonging to an Association.

EMPYREAN’s Association does not aim to introduce a disruptive greenfield change in the

domain but instead provides a practical and viable way to organize existing and future

resources within a brownfield context. By structuring the IoT-edge-cloud continuum as an

Association-based continuum, EMPYREAN ensures that its software components, platform

mechanisms, and decision-making algorithms are fully reusable and adaptable. This design

enhances the EMPYREAN platform's flexibility and scalability, making it a robust solution for

diverse and evolving resource management needs.

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 49/129

Figure 20 depicts the EMPYREAN ecosystem, highlighting the key stakeholders, their roles, and

interactions. This ecosystem promotes the composability of infrastructures and services

across the IoT-edge-cloud continuum. At its core are Associations, which enable the

collaborative operation and management of virtual execution environments by pooling

computational, storage, networking, and other resources. The ecosystem encompasses

diverse stakeholders that interconnect seamlessly to maximize resource utilization, foster

collaboration, and drive innovation across the IoT-edge-cloud continuum. These stakeholders

are categorized based on their contributions and roles, including (i) infrastructure providers,

(ii) service providers, (iii) system administrators, (iv) application developers, (v) application

operators, and (vi) end users.

Figure 20: EMPYREAN ecosystem, key stakeholders, their roles, and interactions

The infrastructure providers include:

● IoT providers that supply IoT infrastructures distributed across the continuum,

including IoT and Industry IoT (IIoT) devices, as well as on-premise low-capacity edge

resources. These infrastructures serve as the primary source of data generation and

the origin of service requests. Through the EMPYREAN platform, IoT providers can

offer their resources to multiple vertical applications, enabling their reuse and

optimizing infrastructure utilization.

● Edge providers that offer computational and storage resources located at the deep

and far edge, close to or further away from the end-users and IoT devices. The offered

resources can also be equipped with hardware acceleration capabilities, such as GPUs

and TPUs, designed for demanding AI/ML workloads. These resources are critical for

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 50/129

time-sensitive operations and resource-demanding workloads, ensuring low latency

and high throughput.

● Cloud providers that contribute centralized computational and storage resources to

the continuum. These resources can be seamlessly integrated into the Association-

based continuum to increase overall system robustness and reduce cost by efficiently

handling computationally intensive and latency-tolerant workloads. They also can

serve as a backbone for long-term data storage, replication, and large-scale analytics.

System administrators manage and operate the EMPYREAN platform and its underlying

distributed systems. With specialized expertise in platform management and distributed

systems, they ensure the seamless integration and operation of infrastructures and resources

within the Association-based continuum. Their responsibilities include association

management, resources onboarding and offboarding, system configuration, and user

management. They ensure the integrity and reliability of the ecosystem.

Service providers deliver domain-specific, generic platforms and services built upon the

Association-based continuum. Their platforms will enable the efficient deployment and

autonomous adaptations of continuum-native applications, ensuring that extreme-scale

distributed AI/ML workflows operate seamlessly over heterogeneous and trusted resources.

By leveraging EMPYREAN’s AI-enabled management mechanisms and trustworthy techniques,

service providers can automate internal operations, optimize resource usage, and enable

collaboration with infrastructure providers. This collaboration supports the seamless

deployment of services and distributed data processing across the entire continuum,

unlocking new opportunities for scalability and efficiency.

Application developers create hyper-distributed, continuum-native applications that fully

leverage the potential of the EMPYREAN platform. They are skilled users with expertise in both

coding and business, responsible for developing use cases and vertical application code, as

well as building, upgrading, and maintaining them. They use EMPYREAN’s workflow-based

design tools, lightweight environment packaging, and low-code interfaces to develop

infrastructure-agnostic applications. Additionally, developers oversee the deployment of

these applications and debug any issues during execution. In cases of complex applications,

developers may also serve as integrators, combining multiple components into fully functional

solutions.

Application operators represent entities or organizations responsible for deploying hyper-

distributed applications using the EMPYREAN platform. These users have business expertise

and either deploy pre-existing applications or design custom application workflows based on

packaged code already available within the platform. They also define deployment objectives

in a generic manner, handle the deployment, manage execution, and collect results. These

users benefit from the platform’s advanced features, including trustworthy, autonomous,

scalable, and collaborative data processing capabilities. By leveraging the Association-based

continuum, they have access to a dynamic and flexible environment that supports their

application needs across diverse resources within the continuum. This ensures optimal

performance, adaptability, and scalability for their operational needs.

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 51/129

End users are individuals or entities that interact with the hyper-distributed applications

deployed on the EMPYREAN platform. They use these applications to fulfil specific needs or

tasks, remaining completely unaware of the underlying infrastructures, internal mechanisms,

and complexities of the Association-based continuum. At the end, they benefit from advanced

applications and services without requiring any technical expertise or knowledge of the

platform's intricate operations.

The EMPYREAN ecosystem will offer tailored interfaces for each stakeholder role, aligning with

their specific needs and expertise levels. Application developers will have access to (i) a user-

friendly web-based interface for rapid prototyping, workflow management, and resource

access, (ii) a command-line interface (CLI) for advanced users, enabling precise control over

application development and debugging tasks, and (iii) the EMPYREAN Service Development

Kit (SDK), which facilitates the implementation of infrastructure-agnostic applications by

leveraging EMPYREAN’s APIs and frameworks. Application operators will primarily use a

streamlined web-based UI designed to allow application deployment, performance

monitoring, execution management, and result collection without requiring technical

expertise. System administrators will have high-level control over resource integration and

platform customization via (i) a CLI for tasks such as Association management and node

onboarding/offboarding, and (ii) configuration files and scripts for automating configurations

and fine-tuning system parameters. The infrastructure providers and EMPYREAN service

providers will perform their operations using (i) a CLI for direct interaction with EMPYREAN’s

core functionalities, (ii) the SDK for programmatic interaction with the platform, and (iii)

configuration files and scripts for low-level setup, configuration, and management of

infrastructure resources and services. Finally, the end users will interact directly with the

applications deployed on the EMPYREAN platform, accessing them through their exposed

interfaces.

The EMPYREAN ecosystem is inherently flexible, enabling stakeholders to take on multiple

roles based on their needs and capabilities. For example, an organization can act as both an

infrastructure provider and an application operator. In this dual role, it can contribute a

portion of its infrastructure resources to the EMPYREAN platform through an Association,

making those resources available to other EMPYREAN customers. At the same time, as an

application operator, the organization can utilize the platform's decentralized intelligence and

advanced application development and deployment capabilities to enhance its applications.

Serving as a bridge, EMPYREAN connects infrastructure and service providers (supply side) and

application developers and end users (demand side) who require high-performing, low-

latency, hyper-distributed applications. The platform aims to achieve an optimal balance by

maximizing resource utilization and fostering collaboration among stakeholders, generating

revenue opportunities for the supply side while ensuring the highest quality of service and

user experience for the demand side.

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 52/129

4.3 Generic Operation Flow

The EMPYREAN platform’s operational flow seamlessly integrates stakeholders, resources,

and applications within the EMPYREAN platform, ensuring collaboration and enabling efficient

deployment and management of Associations and applications across the continuum. This

high-level flow (Figure 21) outlines the formation, management, and operation of the

Association-based continuum, while subsequent sections provide specific platform-level

flows.

Below is a step-by-step description of the generic operation flow:

● System Initialization: The EMPYREAN system administrator initiates the platform by

(i) creating the Registry, establishing the core infrastructure for the platform, (ii)

bootstrapping the Identity and Authorization Engine, setting up mechanisms for

managing stakeholder identities, and implementing policies for secure access and

interactions, and (iii) onboarding initial stakeholders, adding the initial infrastructure

and service providers by creating their identities, roles, and associated access policies.

● Association and Aggregator Initialization: The administrators and service providers

create Associations, establishing a collaborative environment. They set up and

initialize the EMPYREAN Aggregators to manage and coordinate data workflow and

application deployments across the resources contributed by the infrastructure

providers.

● Resource Onboarding: The infrastructure providers integrate their resources into the

EMPYREAN platform by: (i) onboarding resources, adding physical and virtual

resources, such as IoT devices, robots, computing units, storage, and networking

infrastructures to the Association, (ii) providing resource descriptions, using templates

to describe resource capabilities, configurations, and constraints, and (iii)

authorization configuration, establishing policies and processes to control access to

their resources.

● Application Development: The system administrator adds application developers

within the platform, who begin creating hyper-distributed applications by (i) designing

workflows using EMPYREAN’s workflow-based design tools, and (ii) packaging

lightweight environments and defining infrastructure-agnostic deployment objectives

using low-code interfaces.

● Application Deployment: The application operators handle the deployment and

management of applications. Their responsibilities include (i) deploying applications

created by developers across the Association-based continuum and (ii) managing

application execution and monitoring their performance.

● System Automation and Optimization: The EMPYREAN platform handles system-

related operations automatically, including (i) monitoring, through continuous

observation of resource and application performance across the continuum, (ii)

autoscaling by dynamically adjusting resource allocation to meet application demands,

and (iii) optimization by improving resource utilization, minimizing latency, and

enhancing application performance through AI-enabled mechanisms.

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 53/129

Figure 21: EMPYREAN generic operation flow

4.4 Associations Management

4.4.1 Association Setup

This operation flow is executed by EMPYREAN administrators and authorized infrastructure

providers with the necessary permissions. It utilizes the core components of the EMPYREAN

control and security planes already deployed within the platform. Dedicated operation flows

(Section 4.5) manage the onboarding of users and the integration of IoT, edge, and cloud

resources into each Association. Table 8 provides an overview of the operation flow, including

its unique identifier, name, involved EMPYREAN components, associated interfaces,

EMPYREAN platform requirements coverage, as well as the enabling project technologies that

support its execution.

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 54/129

Table 8: Overview of Association setup operation flow

Op. Flow ID OF 1.1

Name Association Setup

Collaborators5

● EMPYREAN Registry (WP4.4.13)

○ API Gateway (WP4.4.14)

○ Service Catalogue (WP4.4.15)

○ Container Image Repository (WP4.4.16)

○ Association Metadata Store (WP4.4.17)

● EMPYREAN Aggregator (WP4.4.11)

● Privacy and Security Manager (WP3.1.1)

● Telemetry Service (WP4.4.7)

● EMPYREAN Controller (WP4.4.4)

Requirements
Coverage6

F_GR.1, F_GR.2, F_GR.4, F_GR.5, F_ST.1, F_ST.2, F_SO.6, F_ASSOC.1, F_ASSOC.8,

F_ASSOC.10

Enablers7 EN_1, EN_9, EN_10, EN_11

Figure 22 presents the operation flow, with the steps outlined as follows:

1. An administrator or infrastructure provider, enrolled with Verifiable Credentials

(VCredentials) and JSON Web Token (JWT) access token generated with permissions

to perform the operation, initiates the creation of an Association entity by specifying

its core capabilities and embedding their access token in the request.

2. The API Gateway of the EMPYREAN Registry receives and processes the request,

performing an initial validation to ensure the completeness of the information

provided.

3. The API Gateway invokes its Privacy and Security Manager to authorize the requested

operation, (in this case the Policy Decision Point (PDP) component that will validate

through policies if the permissions to perform the operation are correct and validated),

ensuring compliance with predefined policies and access control rules. After this, the

Policy Enforcement Point (PEP) Proxy grant access to the request depending on the

decisions of PDP.

4. Upon successful authorization, control is passed to the Registry Manager, which

handles all subsequent interactions for setting up the Association.

5. The Registry Manager stores the Association’s information, along with essential

operational parameters, in the Association Metadata Store, enabling easy access for

further interactions.

6. The Registry Manager registers the new Association in the Service Catalogue, making

it discoverable and accessible to other services and stakeholders within the EMPYREAN

platform.

5 The identifiers refer to the EMPYREAN components descriptions as presented in deliverable D2.2 (M7).
6 Requirements identifiers introduced in D2.1 (M6) and their descriptions are also available in the appendix.
7 These identifiers refer to EMPYREAN enablers as described in deliverable D2.1 (M6).

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 55/129

7. The next step is to assign the new Association to an EMPYREAN Aggregator for

management. The EMPYREAN platform supports two approaches for this operation,

either using an existing Aggregator or automatically deploying a new Aggregator and

assigning it to the newly created Association.

o Scenario A (7.1.ii): An existing Aggregator is assigned:

▪ The Aggregator’s PSM validates the assignment request.

▪ A Smart Contract installs policies in the Aggregator's PDP/PEP, and the

DLT is updated with the new Association.

o Scenario B (7.2.ii): A new Aggregator is provisioned:

▪ The Registry Manager deploys a new Aggregator using blueprints and

contacts the EMPYREAN Controller.

▪ The Aggregator configures policies through its PSM, registers them in

the DLT, and integrates with the new Association.

8. After assigning the Association to an Aggregator, the Privacy and Security Manager of

the Aggregator setups the rules and policies about onboarding and resource usage

within the Association through its Policy Administration Point (PAP) component.

9. Next, the Registry Manager updates the Service Catalogue to reflect the assignment.

10. The Registry Manager notifies the Storage Service about the new Association, enabling

onboarding storage resources within the Association.

11. Finally, the Registry Manager informs the Telemetry Service about the new

Association, enabling relevant data collection and monitoring processes to begin.

12. The Association is successfully created and available for use within the platform.

Figure 22: Association setup operation flow – Steps involved and interactions

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 56/129

4.4.2 Association Deletion

EMPYREAN administrators and authorized infrastructure providers with the necessary

ownership permissions carry out this operation flow. The operation flow utilizes the platform’s

core control, management, and security components, which are already deployed and

operational within EMPYREAN. Compared to OF1.1, this operation flow is more complex, as it

must account for existing interconnections, active workloads, and stored data within the

Association. It delivers a detailed and secure deletion process, ensuring all associated

workloads, data, and resources are appropriately managed to prevent unauthorized access or

data leaks. Table 9 outlines the operation flow and Figure 23 depicts the steps and interactions

involved.

Table 9: Overview of Association deletion operation flow

Op. Flow ID OF 1.2

Name Association Deletion

Collaborators

● EMPYREAN Registry (WP4.4.13)

o API Gateway (WP4.4.14)
o Service Catalogue (WP4.4.15)
o Association Metadata Store (WP4.4.17)

● EMPYREAN Aggregator (WP4.4.11)
● Privacy and Security Manager (WP3.1.1)
● Telemetry Service (WP4.4.7)
● Service Orchestrator (WP4.4.1)

● Decision Engine (WP4.1.3, WP4.1.4.)

● EMPYREAN Controller (WP4.4.4)

● Decentralized and Distributed Data Manager (WP3.2.3)

● Edge Storage Gateway (WP3.2.1)

Requirements
Coverage

F_GR.1, F_GR.2, F_GR.4, F_GR.5, F_ST.1, F_ST.2, F_SO.6, F_ASSOC.1, F_ASSOC.8,
F_ASSOC.10

Enablers EN_1, EN_9, EN_10, EN_11

Operation flow steps:

1. An authorized administrator or infrastructure provider initiates the deletion of an

Association by specifying the Association’s unique identifier.

2. The API Gateway of the EMPYREAN Registry receives and validates the deletion

request, confirming among others the existence and current state of the specified

Association.

3. The API Gateway interacts with the Privacy and Security Manager to authorize the

deletion request, ensuring it complies with EMPYREAN’s security policies and deletion

control rules defined for the Association.

4. Upon successful authorization, the deletion process is handed over to the Registry

Manager, which orchestrates the following steps to manage and coordinate the

deletion process.

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 57/129

5. The Registry Manager marks the Association as “non-schedulable” in the Association

Metadata Store, preventing the service assurance mechanisms at the upcoming steps

to redeploy any affecting workloads in the specific Association.

6. The next steps focus on handling the deployed workloads and data within the

Association. The Registry Manager requests the EMPYREAN Aggregator to terminate

or migrate the deployed workloads that use resources from this Association. OF5.1

details this process.

7. The EMPYREAN Aggregator triggers the corresponding Decentralized and Distributed

Data Manager and Edge Storage Gateway to manage Association’s data according to

established data retention policies.

8. The EMPYREAN Aggregator disassociates and releases all resources connected to the

Association, ensuring devices are securely removed and made available for

reallocation. Operation flows OF2.2 and OF2.3 detail these processes.

9. The EMPYREAN Aggregator requests from the Privacy and Security Manager to

remove any policies, control rules, and access permissions linked to the Association.

10. The EMPYREAN Aggregator informs the Telemetry Service to stop monitoring and

collecting metrics for the deleted Association.

11. The Registry Manager updates the Service Catalogue, removing the Association’s entry

to ensure it is no longer discoverable or accessible within the platform.

12. The Registry Manager deletes all metadata associated with the Association from the

Association Metadata Store, finalizing the entity removal from the platform.

13. The Association is successfully deleted and the user is notified.

Figure 23: Association deletion operation flow – Steps involved and interactions

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 58/129

4.4.3 Association Update

This operation flow outlines the process of updating participation policies within an existing

Association. It is carried out by EMPYREAN administrators and authorized infrastructure

providers. The operation flow is structured to manage complex operations, including the

eviction of resources, workload, and data migration to ensure seamless integration of updated

policies. Updates to available resources and participating users within an Association are also

possible. For these updates, the EMPYREAN platform provides supplementary, detailed

operation flows (Section 4.5) tailored to specific operations. Table 10 provides an overview of

the operation flow and Figure 24 illustrates the steps and interactions involved.

Table 10: Overview of Association update operation flow

Op. Flow ID OF 1.3

Name Association Update

Collaborators

● EMPYREAN Registry (WP4.4.13)

○ API Gateway (WP4.4.14)

○ Service Catalogue (WP4.4.15)

○ Association Metadata Store (WP4.4.17)

● EMPYREAN Aggregator (WP4.4.11)

● Privacy and Security Manager (WP3.1.1)

● Service Orchestrator (WP4.4.1)

● Decentralized and Distributed Data Manager (WP3.2.3)

● Edge Storage Gateway (WP3.2.1)

Requirements

Coverage

F_GR.1, F_GR.2, F_GR.3, F_GR.4, F_GR.5, F_GR.6, F_ST.1, F_ST.2, F_DCM.1,

F_DI.1, F_DI.2, F_DI.4, F_SO.6, F_SO.7, F_SO.8, F_ASSOC.1, F_ASSOC.2,

F_ASSOC.3, F_ASSOC.4, F_ASSOC.6, F_ASSOC.7, F_ASSOC.8, F_ASSOC.10

Enablers EN_1, EN_2, EN_4, EN_9, EN_10, EN_11

Operation flow steps:

1. An authorized administrator or infrastructure provider initiates the update request,

specifying the unique identifier of the target Association and detailing the desired

changes. These changes may include updating access policies, modifying resource-

sharing rules, and modifying configurations.

2. The API Gateway of the EMPYREAN Registry receives the update request and performs

a preliminary validation to verify the existence and current status of the specified

Association.

3. The API Gateway interacts with the Privacy and Security Manager to authorize the

update request, ensuring compliance with security policies and access control rules.

4. Upon successful authorization, the Registry Manager takes control, coordinating the

necessary steps to update the Association according to the specified changes.

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 59/129

5. The Registry Manager requests from the respective EMPYREAN Aggregator to

evaluate whether requested updates will disrupt or require adjustments to currently

running applications and available resources within the Association.

6. If the analysis identifies workloads and data that need relocation due to the changes,

the workflow triggers the workload and data migration process as outlined in

operation flows OF4.2 and OF5.1. This ensures a smooth transition, maintaining

workload availability and data integrity across the platform.

7. If any resources or nodes have to be removed from the Association, the Registry

Manager initiates the resource offboarding process (operation flows OF2.2 and OF2.3).

8. The Registry Manager is notified upon the completion of the migration and offload.

9. Upon the successful handling of affected workloads and resources, the Privacy and

Security Manager enforces the updated control and access policies to align with the

new Association setup.

10. The EMPYREAN Aggregator is informed for the update in the Association

configuration. This ensures that the Aggregator can adapt its resource management

strategies to accommodate the changes.

11. The Registry Manager updates the Service Catalogue to reflect the new configuration,

making the changes discoverable and accessible to other components and

stakeholders within the EMPYREAN platform.

12. The Registry Manager revises the Association Metadata Store to record the

modifications, ensuring an accurate, up-to-date repository of all Association

configurations and operational parameters.

13. Finally, the request initiator is informed of the successful completion of the process.

Figure 24: Association update operation flow – Steps involved and interactions

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 60/129

4.5 Infrastructure Resources and Users Management

4.5.1 Computing Resources Onboarding

This operation flow enables the integration of computing resources into Associations, enabling

their utilization by the EMPYREAN platform for the deployment of applications. An Association

will have to be populated with at least one cluster composed by at least one computing

resource. The onboarding process can be initiated either manually by a designated user or

performed automatically after a periodic resource discovery phase. Components such as the

Privacy and Security Manager, Telemetry Service, and Service Orchestrator are involved in

order to verify user authorization and ensure the eligibility of computing resources.

Table 11: Overview of computing resources onboarding operation flow

Op. Flow ID OF 2.1

Name Computing Resource Onboarding

Collaborators

● Privacy and Security Manager (WP3.1.1)

● Aggregator API Gateway (WP4.4.12)
● Service Orchestrator (WP4.4.1)
● Telemetry Service (WP4.4.7)
● Containers Layer Locality Scheduler (WP3.4.2)

Requirements
Coverage

F_GR.1, F_GR.6, F_ASSOC.1, F_ASSOC.2, F_ASSOC.8, F_ASSOC.9, F_ST.1, F_ST.2,
F_DI.6

Enablers En_1, EN_2, EN_10, EN_11

The following steps detail the process for onboarding an entire cluster or computing resources

(from the far or deep edge or the cloud) to a particular Association:

1. Initially, the resource owner must be identified and validated through the Security and

Privacy Manager to ensure it has the necessary rights to onboard statically or

dynamically resources or a cluster into the particular Association. If the owner is not

already part of the Association, it has to go first through the Entity Enrolment

operation flow (OF2.4).

2. The onboarding phase then begins which is performed through a mechanism or script

to install the necessary packages and initiate the setup process. Resource onboarding

can be performed either statically or dynamically. Moreover, the Privacy and Security

Manager performs necessary validations during this phase.

a. Static Onboarding: the designated user manually registers specific resources to

a particular Association and triggers the onboarding process.

b. Dynamic Onboarding: The resource uses a token for self-registration into one

or multiple Associations. Once establishing network communication, it can

query the EMPYREAN Registry to identify suitable Association(s) to register,

based on parameters such as capacity, available data, HW accelerators, IoT

devices, energy consumption, latency, and security requirements.

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 61/129

3. During registration, the resource owner defines the percentage of the resource to be

shared within the Association. Different parameters such as energy consumption may

play a role in the allocation. For dynamic onboarding, a default low percentage will be

initially assigned, which the owner can adjust later.

4. The Privacy and Security Manager is involved during the onboarding to ensure the

integrity and authenticity of resource-related data and verify the entity’s credentials.

5. The Telemetry Service in the Association level is updated accordingly.

6. The Aggregator, Service Orchestrator, and Local Orchestrators are also informed to

integrate the resource into their operational frameworks and workload distribution

mechanisms.

7. Individual resources can be connected either as additional nodes to existing K8s/K3s

clusters or participate as a new K8s/K3s cluster. The platform will also enable to some

extent IoT resources to connect under the control of existing Association resources,

enhancing flexibility.

Once the onboarding process is complete, the resources are fully integrated into the

Association and available for workload assignments, contributing to the overall computational

and operational capacity of the ecosystem.

4.5.2 Computing Resources Offboarding

This operation flow manages the removal of computing resources from the Associations. The

offboarding process is initiated manually by an authorized user.

Table 12: Overview of computing resources offboarding operation flow

Op. Flow ID OF 2.2

Name Computing Resources Offboarding

Collaborators

● Privacy and Security Manager (WP3.1.1)

● EMPYREAN Registry (WP4.4.13)

● Aggregator API Gateway (WP4.4.12)
● Service Orchestrator (WP4.4.1)
● Telemetry Service (WP4.4.7)
● EMPYREAN Controller (WP4.4.4)
● Containers Layer Locality Scheduler (WP3.4.2)

Requirements
Coverage

F_GR.1, F_GR.6, F_ASSOC.1, F_ASSOC.2, F_ASSOC.8, F_ASSOC.9, F_ST.1, F_ST.2,
F_DI.6

Enablers EN_1, EN_2, EN_10, EN_11

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 62/129

The offboarding process in EMPYREAN ensures a smooth and controlled removal of resources

or clusters from an Association. The following steps outline this operation:

1. A computing resource or cluster offboarding from an Association when the resource’s

owner requests it from the respective EMPYREAN Aggregator, either after a certain

period of time (lease time), or after an event is detected (e.g., the resource does not

provide the requested capacity).

2. The Privacy and Security Manager is then notified for this explicit request or triggered

event. It will then validate the integrity of the message and allow the offboarding to

take place.

3. Active tasks or workloads on the affected resources are allowed to be completed

before the offboarding proceeds. For tasks not yet started, the system ensures their

migration to other resources within the same or different Association. More details

are available in operation flows OF4.2 and OF5.1.

4. The Service Orchestrator, Local Orchestrator, EMPYREAN Controller, Telemetry Service,

and Privacy and Security Manager are informed of the offboarding event. This ensures

system-wide awareness and preparation for the resource's removal.

5. After all tasks are resolved and components updated, the resource or cluster is

officially unregistered from the Association and the EMPYREAN Aggregator is notified.

6. The EMPYREAN Registry removes the relevant metadata and configurations to ensure

consistency.

Once the offboarding is complete, the resource is successfully detached from the Association

and is no longer available for workload assignment or participation.

4.5.3 Storage Resources Onboarding / Offboarding

To enable the use of storage resources at the Association level, these resources must first be

registered with the CC’s storage service. This operation is performed through a dedicated web

application. Once a resource is successfully onboarded, it becomes available for use as a

storage location within a storage policy. These policies define how the storage resources will

be utilized and managed. Users can create S3 buckets and associate them with specific storage

policies.

The Edge Storage Gateway works in conjunction with the Privacy and Security Manager to

ensure the integrity and authenticity of storage resource identities. If a quota needs to be

defined (e.g., to restrict the percentage of a resource that a "3rd party" user can utilize), this

can be enforced through a distributed ledger.

The onboarding and offboarding processes are designed to ensure secure and seamless

integration of storage resources into the EMPYREAN platform.

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 63/129

Table 13: Overview of storage resources onboarding and offboarding operation flow

Op. Flow ID OF 2.3

Name Storage Resources Onboarding and Offboarding

Collaborators

● Edge Storage (WP3.2.2)

● Privacy and Security Manager (WP3.1.1)

● EMPYREAN Registry (WP4.4.13)

● EMPYREAN Aggregator (WP4.4.12)
● Telemetry Service (WP4.4.7)

Requirements
Coverage

F_GR.1, F_GR.4, F_ASSOC.1, F_ASSOC.2, F_ASSOC.7, F_ASSOC.8, F_ASSOC.9,
F_ASSOC.10, F_DCM.1, F_DI.4, F_SO.4, F_SO.8

Enablers EN_1, EN_5, EN_9, EN_10

Onboarding process:

1. The storage resource is configured to run inside the Association. For example, a helm

chart that defines the containerized service that exposes the storage resource is

installed in a K8s cluster. The service (a Min.IO instance) is provided by CC with a basic

configuration that can be changed as needed (e.g. credentials should be changed).

2. A member of the association (user) that owns the resource logs into a web application

provided by CC.

3. The member specifies the URL and credentials needed to access the resource.

4. The user can optionally set a quota on resource usage for other users. This policy is

stored and managed via the Privacy and Security Manager.

5. The Skyflok.com backend stores this information as an EMPYREAN Edge Storage

device, making it a part of the appropriate association.

6. The EMPYREAN Aggregator is updated to include the new storage resource in its

available resources, while the Telemetry Service is updated for monitoring purposes.

7. The EMPYREAN Registry records the storage resource as active and accessible within

the Association.

Offboarding process:

1. A member of the Association with the appropriate authorization logs into the web

application provided by CC.

2. The member schedules the edge device for removal.

3. Affected storage policies are disabled, S3 buckets with these policies must also be

disabled for writing until a new, valid storage policy is specified for them.

4. The actual removal should only take place once data has been migrated from the edge

device.

5. The EMPYREAN Aggregator and Service Orchestrator within the Association, and the

EMPYREAN Registry are informed for the resource offboarding.

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 64/129

4.5.4 Entity Enrollment

The entity enrolment operation flow facilitates the seamless onboarding and lifecycle

management of entities, including users, IoT devices, robots, and resources, within the

EMPYREAN ecosystem. Central to this process is the Privacy and Security Manager (PSM),

which supports the issuance of Decentralized Identifiers (DIDs) and Verifiable Credentials

(VCs), enabling secure and privacy-preserving interactions.

Entities can join the trusted participant list maintained by the Distributed Ledger Technology

(DLT) by providing sufficient identity proofs, ensuring compliance with the required trust

standards for participation. In alignment with a Zero Trust model, guest users can be enrolled

with self-generated DIDs and assigned the lowest trust score, allowing limited interaction

capabilities with the platform. Their access and permissions are dynamically managed through

policies defined by smart contracts and tailored to their roles and trust levels.

The operation flow also includes robust offboarding mechanisms, ensuring secure and reliable

decommissioning of entities. This includes the revocation of Verifiable Credentials and

removal of DIDs from the trusted participant list in the DLT, guaranteeing that access rights

are fully terminated and the integrity of the system is preserved.

This approach enables comprehensive traceability, secure interactions, and adherence to the

platform’s access control policies throughout the lifecycle of all entities.

Table 14: Overview of entity enrollment operation flow

Op. Flow ID OF 2.4

Name Entity Enrollment

Collaborators

● EMPYREAN Registry (WP4.4.13)
● EMPYREAN Aggregator (WP4.4.11)

● Privacy and Security Manager (WP3.1.1)

Requirements
Coverage

F_GR.1, F_ASSOC.2, F_ASSOC.3, F_ST.1, F_ST.2

Enablers EN_1, EN_10, EN_11

Figure 25 illustrates the steps and interactions that take place during the entity enrollment

operation.

1. An entity begins the process by generating a Decentralized Identifier (DID).

2. The generated DID is automatically stored in the Verifiable Data Registry (VDR)

through a smart contract.

3. The entity requests a Verifiable Credential (VC) from the Privacy and Security Manager

(PSM), including attributes necessary for its intended role.

4. The PSM verifies the request, processes the attributes, and issues the requested

Verifiable Credential.

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 65/129

5. The entity presents the Verifiable Credential as a Verifiable Presentation (VP) to the

EMPYREAN Registry for authentication and enrollment.

6. The EMPYREAN Registry interacts with the PSM to validate the VP, ensuring that the

attributes and credentials comply with the platform's trust policies.

7. Upon successful validation, the PSM returns an "Authorized" status, along with a DID-

signed session JWT token.

Example of Authorized Flow:

• The entity submits an Association setup request, using the session token to

authenticate and authorize its access.

• The association setup request is authorized by validating it against policies stored in

the Distributed Ledger Technology (DLT).

• Smart contracts in the DLT are triggered to create and enforce policies that govern the

entity's interaction within the association.

• The association setup is completed, and the entity is successfully enrolled and ready

to operate within the EMPYREAN platform.

Figure 25: Entity enrollment operation flow

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 66/129

4.6 Application Development

4.6.1 Low-Code Application Development

The low-code application development process enables users to create and deploy

applications through a user-friendly Web UI provided by the EMPYREAN Workflow Manager

component. This operation flow supports different designated users with specific roles (e.g.,

application developers, operators, service providers) by offering high-level abstractions and

pre-built tools for efficient application design and deployment.

Users log into the Web UI through the Privacy and Security Manager, ensuring secure

authentication and access control. Then, they can make use of the Workflow Manager’s high-

level abstractions to build hyper-distributed applications by selecting pre-built actions and

connecting them sequentially to define the application’s global logic. Connections between

actions are made by linking the outputs of one action to the inputs of the successive action,

creating a clear and logical workflow. Furthermore, users can define dataflows for the actions,

specifying how data moves from one part of the application to another. Expert users will have

the ability to directly define the required computing and storage resources for their

application through the Web UI. The non-expert users can opt for the system to automatically

allocate the most suitable resources during the deployment phase, ensuring ease of use and

optimal performance.

The Decentralized and Distributed Data Manager component is utilized to configure the

necessary edge and cloud storage resources for the application. If resources are not explicitly

defined, the system dynamically selects the most appropriate resources during the

deployment phase, leveraging EMPYREAN's intelligent decision-making capabilities. The

application development lifecycle also contains the phase of tracking the logs and debugging

during the application execution. These functionalities are accessible directly within the

Workflow Manager Web UI, enabled through integration with the Telemetry Service.

Table 15: Overview of low-code application development operation flow

Op. Flow ID OF 3.1

Name Low-code Application Development

Collaborators

● Workflow Engine (WP4.2.1)
● Privacy and Security Manager (WP3.1.1)
● Decentralized and Distributed Data Manager (WP3.2.3)

● Edge Storage Gateway (WP3.2.1)

● NIX-based Environment Packaging (WP4.3.1) & Application Packaging
(WP4.3.3)

● Telemetry Service (WP4.4.7)
● Dataflow Programming Component (WP4.2.5)

Requirements
Coverage

F_GR.4, F_GR.5, F_SO.1, F_SO.2, F_SO.3, F_SO.6, F_SO.13, F_SO.14, F_SO.15

Enablers EN_4, EN_6, EN_9, EN_11, EN_14

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 67/129

The following operation flow steps will take place for the low-code application development:

1. The designated EMPYREAN application developer connects to the platform. The

Privacy and Security Manager validates the user’s permissions and access policies,

granting access to specific Associations, features, and capabilities. These application

development permissions include user rights and agreed-upon usage percentages.

2. The user defines an application in the form of one or multiple workflows that may

include extract, transform, load (ETL) processes, AI/ML tasks (training or inference),

data storage, and data movement between generation, processing, and storage units.

This can be accomplished using either the Web UI or the CLI.

3. The user (as part of an Association or as a guest) has the ability to create a workflow,

a microservice, or a batch container and deploy an application either through the UI,

the CLI or the SDK/API. The workflow can be created from existing “actions”, which are

available in the repository. The creation of new “actions” is done during the action

packaging (OF 3.2).

4. Besides defining the workflows, the actions composing the workflows, and expressing

which inputs and outputs should be exchanged; the user has the ability to define how

data should flow between the different actions of the workflow.

5. During the application design phase, the user can define the characteristics needed for

application execution. For this, the characteristics of Associations can be retrieved to

adapt the application to available resources effectively. These deployment definitions

can include hard constraints or objective-based requirements for each action. These

features allow users to define application needs during both development and

deployment phases.

6. The platform supports storage operations (based on S3), including independent

storage and retrieval tasks or storage-related operations as part of a workflow.

4.6.2 Action Packaging

The action packaging operation flow within the EMPYREAN platform provides a structured

process for building, packaging, and deploying hyper-distributed applications. Applications in

EMPYREAN are composed by one or multiple workflows, each comprising one or more actions

designed to perform specialized tasks. The actions can be either pre-available in the platform

or custom-made by the user, allowing for flexibility and adaptability across diverse use cases.

In the case of custom-made actions, users can develop actions tailored to specific

requirements, preparing the code following predefined specifications and using any

programming language of their choice. This operation flow leverages advanced EMPYREAN

tooling, including the Action Packaging, NIX-based Environment Packaging, and Unikernels

Builder components, to prepare and containerize actions for deployment, ensuring

compatibility with modern cloud-native infrastructure.

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 68/129

Table 16: Overview of application and action packaging operation flow

Op. Flow ID OF 3.2

Name Action Packaging

Collaborators

● Workflow Engine (WP4.2.1)
● EMPYREAN Registry (WP4.4.13)
● EMPYREAN Aggregator (WP4.4.11)
● Privacy and Security Manager (WP3.1.1)
● NIX-based Environment Packaging (WP4.3.1)
● Unikernels Builder (WP4.3.2)

Requirements
Coverage

F_GR.4, F_GR.5, F_SO.1, F_SO.6, F_SO.13, F_SO.14, F_SO.15

Enablers EN_6, EN_9, EN_13, EN_14, EN_15

The following operation flow steps will take place for the action packaging:

1. The user prepares its code following specifications related to the action packaging

component providing: a YAML descriptor defining inputs, outputs, the programming

language that the action is developed and other information related to the action. It

also provides the action code and the dependencies of the code that will all be used to

build a container.

2. The user pushes the YAML descriptor, code, and dependency definitions to an online

Git repository (e.g, GitLab, GitHub, Bitbucket).

3. The user authenticates through the Privacy and Security Manager to validate its

identity and permissions. The action packaging tool scans the repository, which after

an eligibility test will start building the action.

4. Once validated, the action goes through the NIX-based Environment Packaging tool for

typical containers and through the Unikernels Builder if the action is targeted for

unikernels-based deployment. Both processes result in the creation of OCI-compliant

containers, ensuring seamless integration into EMPYREAN’s cloud-native ecosystem.

5. Once the OCI container is built, it is uploaded in the EMPYREAN Registry and both the

Workflow Engine and the EMPYREAN Aggregator are updated and can use this new

image. In particular the Workflow Engine will offer a specific view to provide high-level

details about the action built.

4.6.3 Integration of Data Spaces

The EMPYREAN platform integrates Data Spaces to enable secure, federated data sharing and

collaboration across Associations. This workflow describes the process of integrating and

managing Data Spaces within the EMPYREAN architecture, ensuring compliance with

standards such as Gaia-X while supporting interoperability, data sovereignty, and privacy. The

EMPYREAN trust framework, built on verifiable credentials and advanced trust mechanisms,

guarantees privacy and secure in interactions, maintaining transparency and accountability

among stakeholders.

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 69/129

Table 17: Overview of data spaces integration operation flow

Op. Flow ID OF 3.3

Name Data spaces

Collaborators

● EMPYREAN Registry (WP4.4.13)

o API Gateway (WP4.4.14)

o Registry Manager (WP4.4.19)

o Service Catalogue (WP4.4.15)

o Data Connectors (WP4.4.18)

o Association Metadata Store (WP4.4.17)

● EMPYREAN Aggregator (WP4.4.11)
● Privacy and Security Manager (WP3.1.1)
● Telemetry Service (WP4.4.7)
● Decentralized and Distributed Data Manager (WP3.2.3)

Requirements
Coverage / UCs

F_GR.1, F_ASSOC.1, F_ASSOC.2, F_ASSOC.3, F_ASSOC.7, F_ASSOC.8, F_ST.1,
F_ST.2, F_ST3, F_DCM.1, F_DI.4, F_SO.8

Enablers EN_1, EN_2, EN_3, EN_4, EN_5, EN_10, EN_11

Operation flow steps:

1. An EMPYREAN administrator submits a request to integrate a new Data Space into the

EMPYREAN platform via the API Gateway component of the EMPYREAN Registry. The

request also includes the definition of data-sharing policies, specifying access control

and usage terms.

2. The API Gateway invokes the Privacy and Security Manager to authorize the requested

operation (through PDP/PEP proxy), ensuring compliance with predefined policies and

access control rules.

3. Upon successful authorization, the Registry Manager takes control of the operation to

manage all subsequent interactions for registering the Data Space.

4. The Registry Manager utilizes the Privacy and Security Manager triggering a smart

contract to create and enforce the specified data-sharing and access policies. Data

consumers are also added to the Data Space, their credentials and permissions for

accessing data are issued.

5. The Registry Manager registers the new Data Space in the Service Catalogue, making

it discoverable and accessible to services and stakeholders within the EMPYREAN

platform. It also updates accordingly the Association Metadata Store.

6. The Data Connectors component is then engaged to verify the availability of the new

Data Space by interacting with the respective Data Source Connector.

7. The Registry Manager notifies the Telemetry Service to monitor the availability of the

Data Space at predefined intervals. Feedback by the Data Connectors component is

also relayed to the Telemetry Service to ensure updated information about the Data

Space’s status.

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 70/129

8. Storage resources and data are seamlessly integrated via the Decentralized and

Distributed Data Manager services across the EMPYREAN Associations, enabling

collaborative processing and analysis while preserving data sovereignty.

Figure 26: Data Spaces integration within the EMPYREAN platform

4.7 Application Deployment

4.7.1 Cloud-Native Application Deployment

The deployment of cloud-native applications within the EMPYREAN platform is structured into

three distinct phases. The first phase involves decentralized and speculative resource

orchestration, where application workloads are strategically distributed to specific

Associations according to deployment objectives (OF4.1.1). The second phase encompasses

hierarchical cognitive resource orchestration within the selected Associations (OF4.1.2),

further refining the deployment plan based on platform-specific deployment objectives. The

final phase, executed by the local orchestrator and optimized by the Containers Layer Locality

Scheduler component, selects specific worker nodes across the utilized K8s/K3s clusters and

also executes the actual deployment procedures as outlined in the declarative descriptions

from the previous phases (OF4.1.3). Furthermore, the Workload Autoscaling component can

perform continuous optimizations by adjusting further the resources allocation.

The first two phases facilitate collaborative and intelligent resource orchestration, while the

third phase ensures seamless deployment across the EMPYREAN platform. Throughout these

phases, the orchestration mechanisms consider various key criteria, including latency

constraints, performance objectives, energy efficiency, and security requirements, guiding the

optimal allocation of workloads to Associations, clusters, and underlying infrastructure

resources.

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 71/129

This operation flow is initiated and managed by an EMPYREAN application operator who is a

member of at least one Association. Before the execution of the operation flow, the

application developer must provide an application description as described in OF3.1. This

description includes manifests that describe the application components and their specific

requirements, such as resource characteristics, network configurations, performance needs,

required data, provided security, and hardware acceleration.

Table 18: Overview of cloud-native application deployment operation flow

Op. Flow ID OF 4.1

Name Cloud-Native Application Deployment

Collaborators

● Workflow Engine (WP4.2.1)
● EMPYREAN Registry (WP4.4.13)
● EMPYREAN Aggregator (WP4.4.11)
● Privacy and Security Manager (WP3.1.1)
● Service Orchestrator (WP4.4.1)
● Decision Engine (WP4.1.3, WP4.1.4)
● EMPYREAN Controller (WP4.4.4)
● Telemetry Service (WP4.4.7)
● Analytics Engine (WP3.4.3)
● Containers Layer Locality Scheduler (WP3.4.2)
● Decentralized and Distributed Data Manager (WP3.2.3)

● Edge Storage Gateway (WP3.2.1)

● Container Runtime (WP4.3.4)

● NIX-based Environment Packaging (WP4.3.1) & Application Packaging
(WP4.3.3)

Requirements
Coverage

F_GR.1, F_GR.2, F_GR.3, F_GR.4, F_GR.5, F_GR.6, F_ASSOC.1, F_ASSOC.5,
F_ASSOC.8, F_ASSOC.9, F_ASSOC.10, F_ST.1, F_ST.2, F_ST.3, F_ST.6, F_DI.1,
F_DI.2, F_DI.3, F_DI.5, F_DI.9, F_SO.1, F_SO.2, F_SO.3, F_SO.4, F_SO.5, F_SO.6,
F_SO.9, F_SO.10, F_SO.13, F_SO.14, F_SO.15

Enablers EN_1, EN_2, EN_4, EN_6, EN_9, EN_10, EN_11, EN_14, EN_15, EN_17

Initial assignment of cloud-native application’s microservices to EMPYREAN Associations

(OF4.1.1):

1. The application operator initiates a deployment request through the Workflow

Manager, providing the application descriptor along with deployment objectives and

requirements.

2. The Workflow Manager retrieves the user’s default EMPYREAN Aggregator from the

EMPYREAN Registry. This Aggregator corresponds to one of the Associations in which

the user participates and is authorized to utilize their resources (or part of them).

3. The EMPYREAN Aggregator receives the request and invokes its Privacy and Security

Manager to validate it against the security policies and compliance rules of the

involved Associations.

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 72/129

4. The request is forwarded to the Service Orchestrator which analyses the application

descriptor and requests the Decision Engine, located at the same Aggregator, to

initiate the multi-agent decision-making process for assigning the application’s

workloads to Associations within the platform.

5. The Decision Engine queries the EMPYREAN Registry to identify Associations with

particular characteristics that meet the requirements for deploying application

workloads. It then forwards the deployment request to the Associations’ Decision

Engines.

6. Each Decision Engine retrieves updated information on available resources from the

Telemetry Service across its Associations. By utilizing multi-agent speculative

algorithms, the Decision Engines provide high-level workload placement decisions that

meet user requirements while optimizing resource utilization.

7. The default EMPYREAN Aggregator is informed of these decisions and, if necessary,

coordinates with the other Aggregators. During this step, the EMPYREAN Aggregator

also generates the execution blueprint for the application’s microservices, augmenting

and segmenting the initial application descriptor with infrastructure-specific

instructions for each selected Association.

8. The default Aggregator updates the EMPYREAN Registry with the high-level

assignment for tracking and compliance.

9. The successful completion of these steps triggers workflow WF4.1.2, which is executed

concurrently across all selected Associations.

Figure 27: Initial assignment of cloud-native application’s microservices to Associations

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 73/129

Hierarchical and cognitive orchestration at the Association level (OF4.1.2):

1. The Service Orchestrator receives the application description, including infrastructure-

specific deployment requirements and constraints, from its EMPYREAN Aggregator. At

this step, the application description may encompass the entire application or specific

microservices, depending on the outcome of decision-making mechanisms in OF4.1.1.

2. It then requests its Decision Engine to determine the optimal assignment of the

application workloads to individual platforms within the Association where the user is

authorized to access.

3. The Decision Engine retrieves detailed monitoring data for the candidate edge and

cloud platforms from the Telemetry Service.

4. Utilizing multi-objective resource allocation algorithms, the Decision Engine identifies

the best allocation of application workloads to specific K8s and K3s clusters within the

Association. This includes infrastructure-specific deployment requirements for the

final phase.

5. The Service Orchestrator informs the EMPYREAN Aggregator with the application’s

platform-specific assignments. The EMPYREAN Aggregator updates accordingly its

Ryax Runner, Orchestration Drivers, and the EMPYREAN Registry.

6. The Ryax Runner then notifies the Ryax Worker at the selected clusters to deploy the

relevant components of the overall cloud-native application, including also any low-

level deployment objectives specified by the Decision Engine.

7. Upon successful completion of these steps, operation flow OF4.1.3 is triggered and

executed across all selected K8s and K3s clusters within the Association.

Figure 28: Hierarchical and cognitive orchestration at the Association level

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 74/129

Selection of worker nodes and seamless application deployment (OF4.1.3):

1. Each RYAX Worker dynamically generates the necessary descriptors for local-level

orchestration mechanisms, specifying also the use of the Container Layers Locality

Scheduler for assigning workloads to specific worker nodes.

2. The RYAX Worker interfaces with the K8s or K3s API server of the underlying cluster to

deploy the containerized application components.

3. The Local Orchestrator along with the Container Layers Locality Scheduler makes the

final assignment of application workloads to worker nodes within the specific cluster,

ensuring that pods are scheduled based on the resource plans developed by the

Decision Engine, including node affinity, tolerations, and resource limits.

4. Within EMPYREAN, each application component is deployed as a container, unifying

software delivery across the IoT-edge-cloud continuum. The Container Runtime

component is involved in this process. Additional details are covered in operation flows

OF4.4 and OF4.6.

5. The Decentralized and Distributed Data Manager configures data pathways to provide

application components with the necessary access to storage resources. This process

is further detailed in operation flow OF4.3.

6. After deployment, the EMPYREAN Controller informs the Service Orchestrator

regarding the application’s microservices assignment to worker nodes.

7. The Service Orchestrator updates its EMPYREAN Aggregator and the EMPYREAN

Registry. It also notifies the Telemetry Service and Analytics Engine to automatically

monitor and analyze the performance of the specific application’s microservices.

8. During application execution, the Workload Autoscaling component dynamically

engages as needed to optimize resource allocation and ensure application

performance.

Figure 29: Selection of worker nodes and seamless application deployment

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 75/129

4.7.2 Intra-Association Workload and Data Migration

This operation flow is initiated by service assurance mechanisms at the Association level,
either to automatically balance workloads and data within the Association or in response to
events that may affect the security and performance of deployed workloads and associated
data. It ensures that workloads and data are redistributed in an automated and intelligent
manner to maintain performance, availability, and security within an Association.

Additionally, this operation flow can also be triggered by explicit user requests to update their
deployed applications. In such cases, operation flow execution begins at step 3 and continues
through to completion.

Table 19: Overview of intra-association workload and data migration operation flow

Op. Flow ID OF 4.2

Name Intra-Association Workload and Data Migration

Collaborators

● Privacy and Security Manager (WP3.1.1)
● Analytics Engine (WP3.4.3)
● EMPYREAN Aggregator (WP4.4.11)
● Telemetry Service (WP4.4.7)
● Service Orchestrator (WP4.4.1)
● Decision Engine (WP4.1.3, WP4.1.4)
● EMPYREAN Controller (WP4.4.4)
● Edge Storage Gateway (WP3.2.1)
● Decentralized and Distributed Data Manager (WP3.2.3)
● EMPYREAN Registry (WP4.4.13)

Requirements
Coverage

F_GR.3, F_GR.4, F_GR.6, F_GR.7, F_ST.1, F_ST.2, F_ST.3, F_ST.5, F_ST.6,

F_ASSOC.1, F_ASSOC.4, F_ASSOC.8, F_ASSOC.10, F_DCM.1, F_DI.1, F_DI.3, F_DI.4,

F_DI.5, F_DI.6, F_DI.7, F_DI.8, F_SO.3, F_SO.5, F_SO.6, F_SO.7, F_SO.8, F_SO.9,

F_SO.10, F_SO.13, F_SO.14, F_SO.15

Enablers EN_1, EN_2, EN_3, EN_4, EN_9, EN_14, EN_15, EN_17

Operation flow steps:

1. Each Association’s Analytics Engine continuously monitors the state of available

resources and deployed workloads to identify potential issues or events. It also

receives notifications from the Service Orchestrator regarding newly deployed

workloads.

2. If performance optimization is required or event detected, the Analytics Engine

notifies the EMPYREAN Aggregator to trigger appropriate remediation actions.

Application operators are also informed of any impending migrations to keep them

updated on system changes.

3. The EMPYREAN Aggregator instructs the corresponding Service Orchestrator to adjust

the deployment of affected workloads to address the detected issues. It also shares

feedback from the Analytics Engines and generates a unique identifier to track the

migration process.

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 76/129

4. The Privacy and Security Manager is contacted to ensure compliance with data

governance policies and access control rules for the candidate infrastructure

resources.

5. The Service Orchestrator requests the Decision Engine to devise an optimal migration

plan that minimizes downtime and maximizes resource utilization. The Decision Engine

is also directed to exclude any affected infrastructure resources from consideration.

This workflow corresponds to cases where the Decision Engine can manage the request

using resources solely within the same Association. A more complex workflow with

inter-Association migration is outlined in operation flow OF5.1.

6. If data migration is necessary, the Edge Storage Gateway updates the secure storage

policies.

7. The Service Orchestrator coordinates with the appropriate EMPYREAN Controllers to

execute workload migration, terminating the affected workloads and redeploying

them on the newly selected resources.

8. The Decentralized and Distributed Data Manager reconfigures the interconnection

between migrating workloads to redirect traffic and maintain service availability after

the migration.

9. The Service Orchestrator updates the related Telemetry Engine and Analytics Engine to

adjust their configurations to continue monitoring and analysing the migrated

workloads.

10. The EMPYREAN Aggregator receives updates from the Service Orchestrator regarding

the migration progress and updates its internal information accordingly.

11. The EMPYREAN Aggregator updates the EMPYREAN Registry with the latest

information related to the migration.

Figure 30: Intra-Association workload and data migration

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 77/129

4.7.3 Data Flows and Data Access

This operation flow illustrates the edge storage capabilities of the EMPYREAN platform

emphasizing its integration with Associations, data management, authentication and

authorization. By integrating secure storage capabilities through the Edge Storage Gateways

with advanced communication frameworks such as Zenoh, EMPYREAN provides an efficient

and flexible approach to data management in modern distributed environments.

Table 20: Overview of intra-association workload and data migration operation flow

Op. Flow ID OF 4.3

Name Data Flows and Data Access

Collaborators

● Decentralized & Distributed Data Manager (WP3.2.3)
● Edge Storage Gateway (WP3.2.1)
● Edge Storage (WP3.2.2)

● Workflow Manager (WP4.2.1)
● Dataflow Programming (WP4.2.5)
● EMPYREAN Aggregator (WP4.4.11)

● Service Orchestrator & Decision Engine (WP4.4.1, WP4.1.3)

Requirements
Coverage

F_GR.1, F_GR.4, F_GR.5, F_ASSOC.1, F_ASSOC.5, F_ASSOC.6, F_ST.1, F_ST.2,
F_ST.3, F_DCM.1, F_DI.4, F_SO.1, F_SO.6

Enablers EN_4, EN_5, EN_6, EN_9

Figure 31: Seamless access of object-based storage resources through Zenoh

The Edge Storage Gateway offers an S3-compatible API to the platform’s applications,

enabling flexible data storage and retrieval. Applications can either directly interact with this

API or access it indirectly through dataflows defined within the Workflow Manager. This

flexibility allows developers to choose the most suitable interaction model based on their

application requirements. In both cases, the authentication and authorization are managed

by the Privacy and Security Manager, ensuring secure access. When applications utilize the

storage service through a dataflow, the Zenoh and Zenoh-Flow frameworks enable seamless

communication between processing nodes and S3-based data sources and sinks. The Zenoh

S3-based backend8 storage is also fully compatible with MinIO object storage (Figure 31),

enabling seamless integration with the EMPYREAN Edge Storage components built on MinIO.

8 https://github.com/eclipse-zenoh/zenoh-backend-s3

https://github.com/eclipse-zenoh/zenoh-backend-s3

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 78/129

The integration of the Edge Storage Gateway and Edge Storage components with the Zenoh

and Zenoh-Flow frameworks through the Decentralized and Distributed Data Manager and

Dataflow Programming components implement EMPYREAN’s data management capabilities,

showcasing its ability to support decentralized and distributed interconnection, secure data

distribution, and reliable storage. Through its S3-compatible API, the platform offers versatile

storage solutions that cater to a wide range of application needs, whether for immediate

processing, forwarding results, or long-term storage.

Figure 32: Decentralized and distributed interaction and data distribution with secure storage across

Associations

As illustrated in Figure 32, these integrations enable seamless integration of IoT devices within

a specific Association with other devices and edge resources across the EMPYREAN platform.

These devices can generate data and send output to designated locations, which in turn can

trigger specific operations. This dynamic interaction allows the system to process and manage

data efficiently while ensuring secure and efficient data handling. Different data categories

can be managed by this operation flow including (i) application data that generated by

deployed application during runtime, (ii) results that need to be forwarded to other services

or application components for further processing or integration, and (iii) data that is intended

for later use, which can be securely stored in the S3-compatible storage locations.

Next, we provide additional details regarding the operations required for distributed

interconnection and data management across multiple Associations. These operations (Figure

33) are an essential and additional step in generating the application deployment and

execution blueprint, as outlined in OF4.1.1. Their objective is to automatically generate (i) the

topics (referred to as “key expressions” in the Eclipse Zenoh terminology) and (ii) the

encryption keys that will be used to exchange data while the application is running.

The topics are constructed based on the application descriptor and the unique identifier

returned by the Privacy and Security Manager (if the user is authorized to deploy the

application). The default EMPYREAN Aggregator, after received inputs from other involved

Aggregators, crafts a global view of the application and determines interconnection

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 79/129

requirements across Associations and infrastructure platforms. For each identified

interconnection (whether at the Association or platform level), it generates an encryption key

and a topic name. To enable data to cross the process boundary effectively, a serialisation

schema is also required (e.g. Protocol Buffers (Protobuf)) enabling seamless communication

between components, regardless of their location within the distributed environment.

Figure 33: Workflow for creating a dataflow descriptor file using Eclipse zenoh-flow

4.7.4 Isolated and Trusted Execution

To address the increasing demand for secure and isolated execution environments,

EMPYREAN employs a sandboxed deployment approach for applications across the cloud-

edge continuum. This mode ensures that applications operate within highly isolated and

trusted execution environments, leveraging advanced hardware and software techniques to

guarantee confidentiality, integrity, and controlled resource access.

This operation flow includes three key features: (i) cloud-native sandbox deployment, (ii)

unikernel-based optimization, and (iii) attestation framework.

EMPYREAN utilizes sandboxed container runtimes, such as gVisor9 and Kata Containers10, to

enable sandboxed execution environments. These technologies isolate workloads from the

host and other applications, providing enhanced security while maintaining efficient

operation. To further optimize system utilization and reduce the overall system overhead from

additional abstraction layers, EMPYREAN introduces a pure unikernel container runtime

(urunc11), further eliminating the additional overhead associated with sandboxed enclaves.

9 https://gvisor.dev
10 https://katacontainers.io
11 https://github.com/nubificus/urunc

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 80/129

This pure unikernel approach eliminates the overhead of traditional sandboxing mechanisms

while preserving isolation, offering a highly optimized solution for secure execution.

In addition to the cloud-native deployment approaches, EMPYREAN leverages common

practices for application/container attestation, extending their functionality to IoT devices. By

employing cryptographic container signatures, Entity Attestation Tokens (EATs) and open-

DICE, EMPYREAN provides a unified attestation base for all workloads and ensures trusted

execution across the entire EMPYREAN platform, whether it is a simple container, a unikernel

or an IoT firmware blob.

Through this operation flow, EMPYREAN provides a scalable, secure, and efficient solution for

isolated and trusted application execution, addressing the challenges of modern IoT-edge-

cloud ecosystems while maintaining high performance and adaptability.

Table 21: Overview of isolated and trusted execution operation flow

Op. Flow ID OF 4.4

Name Isolated and Trusted Execution

Collaborators

• Application Builder for Unikernels (WP4.3.2)

• Container Runtime (WP4.3.4)

• Privacy and Security Manager (WP3.1.1)

• EMPYREAN Controller (WP4.4.4)

Requirements
Coverage

F_GR.4, F_GR.5, F_ASSOC.3, F_ST.6, F_SO.13, F_SO.14

Enablers EN_9, EN_13, EN_15, EN_16

4.7.5 Software-Defined Interconnect over RDMA and Hardware

Accelerated Workloads

This operation flow in the EMPYREAN platform introduces a transformative approach to

integrating hardware accelerators across the IoT-cloud-edge continuum. By leveraging

NVIDIA’s new disaggregated circular-buffer communication primitive over Remote Direct

Memory Access (RDMA) and versatile vAccel12 framework developed by NUBIS, this operation

flow optimizes the use of specialized hardware accelerators across disaggregated

environments.

The first key feature is the utilization of NVIDIA’s disaggregated circular buffer primitive over

RDMA that enables efficient communication for small message transfers across disaggregated

systems. This subsystem facilitates the seamless integration of hardware accelerators located

beyond server boundaries, enabling them to function as if they were local to the host system.

The primitive significantly advances the aggregation and performance of small message

transfers and reduces latency for data-intensive workloads in tightly coupled systems.

12 https://docs.vaccel.org

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 81/129

The second key feature is the integration with the vAccel, a hardware-agnostic framework

designed to unify the use of hardware accelerators such as GPUs, TPUs, FPGAs, and other

specialized hardware across cloud, edge, and IoT infrastructures. By abstracting hardware-

specific APIs, vAccel provides developers with a consistent interface to offload

computationally intensive tasks to specialized accelerators without being tied to specific

hardware or vendors, ensuring portability and performance optimization regardless of the

underlying infrastructure. The integration of NVIDIA’s circular-buffer primitive allows vAccel

to extend its capabilities, enabling the use of remote accelerators over RDMA without

compromising performance.

The VirtIO backend currently used by vAccel will be the integration point for this operation

flow. NVIDIA’s disaggregated circular-buffer primitive will replace the existing VirtIO backend,

bridging VirtIO calls over the network and enabling the disaggregation of vAccel. This

replacement ensures that workloads can access remote accelerators as efficiently as local

ones, enhancing system flexibility and scalability.

By leveraging RDMA, the operation flow minimizes data transfer overhead between nodes

and accelerators, enabling low-latency communication. This approach is particularly beneficial

for workloads requiring high throughput and low latency, such as AI/ML training, inference,

and real-time data processing.

Table 22: Overview of software-defined interconnect over RDMA and hardware accelerated workloads

operation flow

Op. Flow ID OF 4.5

Name Software-Defined Interconnect over RDMA

Collaborators

• Software-defined Edge Interconnect (WP3.3.1)

• EMPYREAN Controller (WP4.4.4)

• Decentralized and Distributed Data Manager (WP3.2.3)

• vAccel (WP3.3.4)

• Container Runtime (WP4.3.4)

Requirements
Coverage

F_GR.4, F_GR.5, F_ASSOC.1, F_ASSOC.5, F_SO.6, F_SO.10, F_SO.11, F_SO.12

Enablers EN_3, EN_9, EN_12, EN_15

4.7.6 Cloud-Native Unikernels Execution

This operation flow introduces a seamless method for deploying and managing unikernel-

based applications within the EMPYREAN platform, leveraging the Kubernetes-native

Container Runtime, urunc, that is developed in the context of the project along with other

core platform components. This approach bridges the gap between traditional unikernels and

containerized environments, providing flexibility, security, and performance optimization.

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 82/129

The operation flow considers building and registering the appropriate unikernel-based images

in the EMPYREAN platform (OF3.2). Once built, these images are made available in the

Container Image Repository at the EMPYREAN Registry or other container image repositories,

allowing seamless access for deployment. During the deployment, the EMPYREAN Controller

orchestrates the execution of unikernel-based workloads, leveraging the container runtime

urunc. The urunc provides seamless compatibility with Kubernetes workflows and practices,

enabling operators to seamlessly integrate unikernels alongside traditional containers. It

serves as the container runtime for unikernel-based applications, offering full compatibility

with Kubernetes’ Container Runtime Interface (CRI) and leveraging the container semantics

and benefits from the OCI tools and methodology. Thus, urunc embeds unikernel images into

K8s/K3s clusters as generic containers, enabling developers to leverage the robust

orchestration, scaling, and monitoring capabilities of these platforms. Unlike traditional

container runtimes, urunc is optimized for unikernels, reducing overhead while maintaining

the lightweight and secure properties inherent to unikernel architectures.

This operation flow enhances the adoption of unikernels within the IoT-edge-cloud

continuum, providing a cutting-edge, cloud-native approach to hyper-distributed application

deployment and management.

Table 23: Overview of cloud-native unikernels execution operation flow

Op. Flow ID OF 4.6

Name Cloud-Native Unikernels Execution

Collaborators

• Application Builder for Unikernels (WP4.3.2)

• Application Packaging (WP4.3.3)

• Container Runtime (WP4.3.4)

• Container Image Repository (WP4.4.16)

• EMPYREAN Controller (WP4.4.4)

Requirements
Coverage

F_GR.4, F_GR.5, F_SO.3, F_SO.6, F_SO.13, F_SO.14, F_SO.15

Enablers EN_9, EN_13, EN_14, EN_15

4.7.7 Analytics-Friendly Data Storage and Query

This operation flow showcases a novel storage schema specifically designed for IoT time series

data, optimizing storage, retrieval, and analysis processes to meet the demands of hyper-

distributed environments like the EMPYREAN platform.

IoT time series data is stored using erasure coded approach, which balances data redundancy,

fault tolerance, and storage efficiency. It is particularly advantageous for edge environments

where storage resources are constrained. The Edge Storage and Edge Storage Gateway

components provide efficient data storage with erasure coding. Next, the IoT Query Engine

enables the query execution for time series analysis. These queries, similar to SQL SELECT

statements, are run against the stored datasets. The efficiency in terms of data transfers is

evaluated during query execution, enhancing performance particularly in edge environments.

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 83/129

The operation flow interactions will be enabled through a custom REST API exposed by the

Edge Storage Gateway, enabling seamless storage and query operations.

The integration of this operation flow in the EMPYREAN platform provides a novel approach

to managing IoT time-series data, enabling efficient storage and analytics while adhering to

the high standards of performance and security expected within the EMPYREAN ecosystem.

Table 24: Overview of analytics-friendly data storage and query operation flow

Op. Flow ID OF 4.7

Name Analytics-Friendly Data Storage and Query

Collaborators
• IoT Query Engine (WP4.3.5)

• Edge Storage Gateway (WP3.2.1)

• Edge Storage (WP3.2.2)

Requirements
Coverage

F_GR.1, F_GR.5, F_GR.6, F_ASSOC.1, F_DCM.1, F_DCM.2

Enablers EN_1, EN_5

4.7.8 Workload Autoscaling

This operation flow shows the dynamic resource allocation updates that take place during the

lifecycle and execution of applications, particularly focusing on the individual actions that

compose them. More specifically, after the initial placement of actions on cluster nodes and

the allocation of necessary resources, the Workload Autoscaling component ensures optimal

resource utilization by right-sizing allocations to meet the exact needs of the executions.

The Workload Autoscaling functions in accordance with the EMPYREAN Aggregator, which

provides the rules for how the workload autoscaling of the K8s/K3s clusters should perform

optimizations. These rules define parameters such as the number of retries, the incremental

amount RAM allocation in case of Out-Of-Memory events, timeout durations, and other

critical configurations.

At the management level, the Workflow Manager orchestrates operations by controlling the

Ryax Runner, while Ryax Workers (one per K8S/K3S cluster) perform the necessary

adjustments on each cluster’s resources. For each workflow, the Workload Autoscaling

dynamically provides resource recommendations for each action based on the automatically

collected utilization metrics from the past executions. Details such as the action image,

hardware type being executed, and input specifications are some of the references that will

be used for applying these recommendations to future occurrences. These details are

provided through the collaboration between the Workflow Manager, Service Orchestrator,

and EMPYREAN Aggregator.

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 84/129

The power of the Workload Autoscaling component comes from the internal ML-based

algorithms. These algorithms analyze past executions data to identify resource utilization

patterns for each action and adapt dynamically to execution variations. For past executions’

insights, the component connects directly to the Telemetry Service to retrieve data related to

the actual usage of resources, such as CPU, RAM, GPU and VRAM. For dynamic adaptations,

the follow-up by the Workflow Engine and in particular by services such as the Ryax Runner

and Worker is necessary to allow the service of retrying of failed actions to be efficient.

Table 25: Overview of workload autoscaling operation flow

Op. Flow ID OF 4.8

Name Workload Autoscaling

Collaborators

• EMPYREAN Aggregator (WP4.4.11)

• Workflow Engine (WP4.2.1)

• Telemetry Service (WP4.4.7)

• Service Orchestrator (WP4.4.1)

Requirements
Coverage

F_GR.2, F_GR.3, F_GR.6, F_GR.7, F_ASSOC.4, F_DI.5, F_DI.6, F_DI.7, F_DI.8, F_DI.9,
F_SO.5

Enablers EN_2, EN_6, EN_7, EN_9, EN_17

4.8 Inter-Association Operations

4.8.1 Inter-Association Workload and Data Migration

This operation flow is executed when workloads and data require migration between different

Associations. This migration process ensures that performance, security, and data integrity

are maintained across diverse infrastructures. Migration may be prompted by performance

optimization, resource balancing, or responses to events affecting workload performance or

security. Additionally, migration can be explicitly initiated by EMPYREAN users seeking to

modify their deployed applications. In this case, the operation flow begins at step 3 and

proceeds to completion.

Key operational scenarios related to this operation flow include (i) autonomous offloading

computations by migrating non-sensitive or time-critical computations to reduce load or

energy consumption on some specific Association, (ii) transient workload and data storage

where a temporary user, such as a drone or moving robot, uses an Association under specific

conditions to submit workload and store data, and (iii) distributed erasure-coded storage

provisioning, by moving and storing data fragments across multiple Associations to enhance

data availability, security, and redundancy.

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 85/129

Table 26: Overview of inter-Association workload and data migration operation flow

Op. Flow ID OF 5.1

Name Inter-Association Workload and Data Migration

Collaborators

● EMPYREAN Registry (WP4.4.13)
● EMPYREAN Aggregator (WP4.4.11)
● Privacy and Security Manager (WP3.1.1)
● Analytics Engine (WP3.4.3)
● Telemetry Service (WP4.4.7)
● Service Orchestrator (WP4.4.1)
● Decision Engine (WP4.1.3, WP4.1.4)
● Edge Storage Gateway (WP3.2.1)
● Decentralized and Distributed Data Manager (WP3.2.3)
● EMPYREAN Controller (WP4.4.4)

Requirements
Coverage

F_GR.1, F_GR.2, F_GR.3, F_GR.4, F_GR.5, F_GR.6, F_GR.7, F_ST.1, F_ST.2, F_ST.5,

F_ST.6, F_ASSOC.1, F_ASSOC.3, F_ASSOC.4, F_ASSOC.6, F_ASSOC.7, F_ASSOC.8,

F_ASSOC.9, F_ASSOC.10, F_DCM.1, F_DI.1, F_DI.2, F_DI.3, F_DI.4, F_DI.5, F_DI.6,

F_DI.7, F_DI.8, F_SO.3, F_SO.4, F_SO.5, F_SO.6, F_SO.7, F_SO.8, F_SO.9, F_SO.10,

F_SO.13, F_SO.14, F_SO.15

Enablers EN_1, EN_2, EN_3, EN_4, EN_5, EN_9, EN_11, EN_14, EN_15, EN_17

Operation flow steps:

1. Each Association’s Analytics Engine continuously monitors the state of available

resources and deployed workloads to identify potential issues or events.

2. If performance optimization is required or an event is detected, the Analytics Engine

notifies the EMPYREAN Aggregator to initiate appropriate remediation actions.

3. The Privacy and Security Manager in the source Association validates the migration

request to ensure compliance with data governance policies and access control rules.

4. The EMPYREAN Aggregator instructs its Service Orchestrator to adjust the deployment

of affected workloads to address the identified issues. It also shares feedback from the

Analytics Engines and generates a unique identifier to track the migration process.

5. The Service Orchestrator requests the Decision Engine to generate an optimal

migration plan, explicitly directing it to exclude any affected infrastructure resources

from consideration. This operation flow corresponds to scenarios where resources

within the Association are insufficient and Decision Engine responds without a valid

migration plan.

6. The Service Orchestrator then instructs its Decision Engine to initiate the multi-agent

decision-making process, aiming to reassign the affected workloads to other

Associations within the platform.

7. The Decision Engine in the source Association queries the EMPYREAN Registry to

identify Associations with specific characteristics, such as geographic location,

hardware type, or other criteria. The orchestration mechanisms leverage the

information by the Association Metadata Store within the EMPYREAN Registry.

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 86/129

Deployment requests are then forwarded to the Decision Engines of the identified

Associations.

8. The Decision Engines across the Associations collaboratively evaluate resource

availability, current workload distribution, and inter-Association network constraints

to determine the most efficient allocation of resources and migration paths.

9. The source Association’s EMPYREAN Aggregator is informed of the decisions resulting

from the multi-agent orchestration.

10. If data migration is necessary, the Edge Storage Gateway updates accordingly the

secure storage policies, and the Decentralized and Distributed Data Manager oversees

the secure transfer of data to new locations.

11. At the source Association, the Service Orchestrator coordinates with the respective

EMPYREAN Controllers to terminate the affected workloads. It also updates the

EMPYREAN Registry to reflect the revised high-level assignment for tracking and

compliance purposes.

12. The Service Orchestrator informs the relevant Telemetry Engine and Analytics Engine

to stop monitoring and analysing the migrated workloads.

13. The initial EMPYREAN Aggregator coordinates with other selected resources. Upon

successful completion of the above steps, operation flows OF3.1.2 and OF3.1.3 are

triggered and executed across all selected Associations.

Figure 34: Inter-Association workload and data migration operation flow – Steps involved and interactions

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 87/129

4.9 Telemetry and Service Assurance

4.9.1 Telemetry and Observability

This operation flow outlines the telemetry and observability processes across Associations in

the EMPYREAN platform, enabling seamless real-time monitoring, comprehensive data

collection, and the generation of actionable insights to optimize platform performance.

By leveraging EMPYREAN’s distributed telemetry infrastructure, it continuously and

automatically discovers and monitors resources, including infrastructure components, robots,

IoT devices, and deployed workloads. Additionally, it tracks and collects energy consumption

metrics for all platform resources, contributing to energy efficiency insights. The collected

telemetry data is a critical input to the distributed decision-making mechanisms within the

EMPYREAN platform, enabling dynamic optimization and intelligent resource management.

Table 27: Overview of telemetry and observability operation flow

Op. Flow ID OF6.1

Name Telemetry and Observability

Collaborators

● Telemetry Service (WP4.4.7)

● Telemetry Engine (WP4.4.8)

● Monitoring Probes (WP4.4.10)

● Persistent Monitoring Data Storage (WP4.4.9)

● EMPYREAN Registry (WP4.4.13)

● EMPYREAN Aggregator (WP4.4.11)

● Service Orchestrator (WP4.4.1)

● Analytics Engine (WP3.4.3)

● CTI Engine (WP4.1.1)

Requirements
Coverage / UCs

F_GR.2, F_GR.3, F_GR.6, F_GR.7, F_ASSOC.4, F_ASSOC.5, F_ASSOC.7, F_ASSOC.9,
F_DI.1, F_DI.2, F_DI.5, F_DI.6, F_DI.7, F_DI.8, F_DI.9, F_SO.2, F_SO.4, F_SO.6,
F_SO.7, F_SO.8

Enablers EN_2, EN_4, EN_5, EN_7, EN_8, EN_9, EN_10, EN_11, EN_17

Operation flow steps:

1. Monitoring Probes are deployed across the Association-based continuum to

continuously discover and collect real-time telemetry data, including metrics, logs, and

events. Each probe is tailored to monitor specific platform resources.

2. Multiple Telemetry Engines within each Association continuously gather raw telemetry

data from the Monitoring Probes. These engines pre-process the data, filtering and

structuring it to ensure only relevant information is available through the telemetry

infrastructure.

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 88/129

3. Pre-processed telemetry data is then stored in the Persistent Monitoring Data Storage,

providing a repository for long-term reference and historical analysis.

4. The EMPYREAN Aggregator consolidates telemetry insights across all the Association

it manages, providing a unified view of system health, resource utilization, and

performance.

5. The EMPYREAN Aggregator also forwards high-level information to the EMPYREAN

Registry. The EMPYREAN Registry maintains metadata and configuration information

about monitored resources, applications, and their associations.

6. The Service Orchestrator within the same Association notifies the Telemetry Engine for

changes such as workload deployments, migrations, or terminations. The engine

coordinates with the respective Monitoring Probes to automatically adjust monitoring

configurations.

7. The Analytics Engine in each Association and the CTI Engine subscribe to telemetry

streams via exposed interfaces of Telemetry Engine. These engines analyze the

collected data, detecting anomalies and security issues, observing trends, and

identifying performance bottlenecks. Operation flows OF 6.2 and OF 6.3 provide

detailed descriptions of these functionalities.

Figure 35: Telemetry and observability operation flow – Steps involved and interactions

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 89/129

4.9.2 Service Assurance

This operation flow represents the final step in the distributed closed-loop control system

designed to maintain the desired state across the EMPYREAN Associations through self-driven,

continuous adaptations. It performs AI/ML-assisted continuous analysis to detect critical

situations (i.e., events, anomalies, malicious behaviours) and triggers reactively or proactively

re-optimization actions within the EMPYREAN platform.

Leveraging real-time telemetry data, AI-based decision-making mechanisms, and advanced

analytics, the system ensures performance, reliability, and resilience across the IoT-edge-

cloud continuum. By integrating monitoring probes, telemetry engines, and automated

orchestration workflows, it guarantees adherence to predefined SLAs, detecting anomalies

and triggering appropriate corrective actions dynamically.

Table 28 provides an overview of the operation flow and Figure 36 illustrates the steps

involved and interactions.

Table 28: Overview of service assurance operation flow

Op. Flow ID OF 6.2

Name Service Assurance

Collaborators

● Analytics Engine (WP3.4.3)
● Telemetry Engine (WP4.4.8)
● CTI Engine (WP4.1.1)
● EMPYREAN Aggregator (WP4.4.11)
● Service Orchestrator (WP4.4.1)
● Persistent Monitoring Data Storage (WP4.4.9)
● Autoscaling Optimizations (WP3.4.1) / Local Orchestrator (WP3.4.2)

Requirements
Coverage

F_GR.3, F_GR.6, F_ASSOC.4, F_ST.4, F_ST.5, F_ST.6, F_DI.7, F_DI.8, F_DI.9

Enablers EN_2, EN_4, EN_8, EN_9

Operation flow steps:

1. The Analytics Engine within each Association subscribes to available Telemetry

Engine(s) and CTI Engine via the Data Connector component. This enables continuous

retrieval of real-time telemetry and cyber threat intelligence data, which is pre-

processed and ingested into the internal data bus for further analysis.

2. The Analytics Engine obtains the application execution plan by its EMPYREAN

Aggregator. This plan includes details about the committed resources and mappings

of service components to resources.

3. If necessary, the Analytics Engine can also query the Persistent Monitoring Data

Storage service for historical telemetry data to support its analysis.

4. The Analytics Engine continuously analyzes the current state of available resources and

deployed applications through the Event Detection Engine component.

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 90/129

5. Upon detecting a performance issue, the Analytics Engine issues alerts and forwards

them to the Association’s resource orchestration mechanisms via the EMPYREAN

Aggregator, triggering remediation actions.

6. The Service Orchestrator contacts the Local Orchestrator at the affected platform.

Using the current state of resources and feedback from the Analytics Engine, based on

telemetry data the Local Orchestrator readjusts the initial deployment of the affected

application.

7. Operation flows OF 3.1.2 and OF 3.1.3 detail the specific steps for mitigating the

detected issue.

Figure 36: Service assurance operation flow – Steps involved and interactions

4.9.3 Cyber-Security Aspects

This operation flow is dedicating to enhancing the security of the EMPYREAN platform by

utilizing advanced Cyber Threat Intelligence (CTI). It ensures that EMPYREAN remains resilient,

adaptive, and well-prepared to defend against the sophisticated threats within the IoT-edge-

cloud ecosystem.

The EMPYREAN CTI Engine collects and analyzes Cyber Threat Intelligence (CTI) from trusted

sources such as the Cyber Threat Alliance (CTA) and UMU’s MISP repositories to extract trends

and critical information. Additionally, it integrates with the Telemetry Service to gather

monitoring data across the entire EMPYREAN platform. By integrating data from these

prominent sources, the engine will compile a comprehensive repository of Indicators of

Compromise (IoCs), including, malicious IP addresses, domain names, file hashes, URLs, and

more. This extensive dataset will serve as a foundation for thorough threat analysis and

proactive defence strategies.

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 91/129

A user-friendly interface will streamline information retrieval, enabling security professionals

to quickly search, filter, and visualize relevant threat information and intelligence.

Furthermore, the CTI Engine will feature a REST API, enabling integration with orchestration

and analysis tools, such as the EMPYREAN Aggregator and Analytics Engine. This integration

supports the automation of threat intelligence operation flows, enabling seamless monitoring,

analytics, and response.

Table 29: Overview of cyber-security operation

Op. Flow ID OF 6.3

Name Cyber-Security Aspects

Collaborators

● CTI Engine (WP4.1.1)

● Privacy and Security Manager (WP3.1.1)

● Telemetry Service (WP4.4.7)

● EMPYREAN Aggregator (WP4.4.11)

● Analytics Engine (WP3.4.3)

Requirements
Coverage

F_ASSOC.3, F_ASSOC.4, F_ST.4, F_ST.5, F_DI.8

Enablers EN_2, EN_8, EN_9

Figure 37: CTI Engine core components and dependencies.

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 92/129

5 EMPYREAN Architecture Design

5.1 EMPYREAN Final Architecture

EMPYREAN adopts a layered architecture, where each layer consists of discrete components

that interact using well-defined and open interfaces. These interactions occur both

horizontally, within the same layer, and vertically, between layers, forming the EMPYREAN

platform. The final version of the high-level architecture is illustrated in Figure 38, providing a

clear and structured view of the platform’s design.

Figure 38: EMPYREAN high-level architecture

The consortium followed a top-down, iterative approach to define the EMPYREAN

architecture, starting with the development of the high-level architecture that offers a

conceptual overview of the platform. This high-level design identifies the key components and

their functionalities without focusing on the implementation specifics. Building upon this

foundation, the consortium created the logical architecture, detailed in Section 5.2, which

elaborates on the logical components of the platform and aligns them with the technological

solutions developed during the project.

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 93/129

This iterative design process incorporated the analysis and functional requirements gathered

through two key tasks “T2.1: State-of-the-Art Analysis”, which provided a comprehensive

evaluation of existing technologies and identified gaps to address, and task “T2.2: Concept,

Use Cases and Requirements Analysis”, which ensured alignment of the architecture with the

platform’s objectives and use case scenarios. This work is documented in deliverable D2.1

(M6), with the initial architecture outlined in deliverable D2.2 (M7). The process concluded

with a refined version of the initial EMPYREAN architecture, as presented in this deliverable.

The resulting design not only encapsulates the project’s conceptual and logical components

but also establishes a robust framework for the implementation and scaling of the EMPYREAN

platform.

The Service Layer encompasses components that facilitate the development of Association-

native applications, offering robust support for application-level adaptations, interoperability,

elasticity, and scalability across the IoT-edge-cloud continuum. This layer focuses on key

aspects such as: (a) workflow design and management, simplifying the creation and

orchestration of hyper-distributed applications, (b) cloud-native unikernel application

development, supporting lightweight, secure, and efficient deployment models, and (c)

dataflow description, enabling precise and scalable data management within applications.

The Association Management Layer dynamically manages Associations within the IoT-edge-

cloud continuum. By forming resource federations, it enables seamless collaboration,

resource sharing, and data distribution across various segments within the continuum.

Together with the Multi-Cluster Orchestration Layer, it is central to EMPYREAN’s distributed

and autonomous management, establishing a resilient Association-based continuum.

The Multi-Cluster Orchestration Layer handles service orchestration and resource

management across EMPYREAN's disaggregated infrastructure. Using autonomous,

distributed decision-making mechanisms, it orchestrates dynamic, hyper-distributed

applications while enabling self-driven adaptations. Multiple instances of this layer’s

components provide decentralized operation, optimize resource utilization, and ensure

scalability, resiliency, energy efficiency, and high service quality.

The Resource Management Layer unifies the management of IoT, edge, and cloud platforms

under the EMPYREAN platform. It integrates software mechanisms for both platform-level

scheduling (e.g., EMPYREAN Controller, AI-enabled Workload Autoscaling) and low-level

mechanisms (e.g., Unikernel Deployment). This layer operates within Kubernetes or K3s

clusters and offers modularity, simplifying the integration of new hardware and software.

The Data Management and Interconnection Layer ensures dynamic communication and

secure data storage between IoT devices and computing resources. Operating at both cluster

and Association levels, it provides flexible and scalable data management and seamless

integration of IoT, edge, and cloud resources. It also supports distributed operation,

facilitating efficient operation in complex, distributed environments.

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 94/129

The Security, Trust, and Privacy Layer ensures secure access, privacy, and trusted execution

across the EMPYREAN platform. Operating at both the cluster and Association levels, it

delivers distributed trust services, enables secure and trusted execution environments, and

provides controlled data access for guaranteeing data confidentiality and continuous

validation of trust among entities.

5.2 EMPYREAN Detailed Architecture

Following the second iteration of the requirements analysis and design (M8-M12), a more

detailed and comprehensive design of the EMPYREAN platform has been developed, as

presented in Figure 39. This refined architecture incorporates insights from initial

implementation efforts and further feedback from stakeholders, ensuring alignment with the

platform’s objectives and technical requirements.

The architecture integrates all components to be developed by the project’s technical work

packages (WP3–WP5), as initially introduced in deliverable D2.2 (M7). These components

form the backbone of the EMPYREAN platform, enabling capabilities such as dynamic resource

management, intelligent orchestration, and federated data sharing. Updated descriptions of

these components, including their roles and functionalities, are provided in Section 3.

The architecture diagram in Figure 39 highlights the core interactions and essential

information exchanges between components. These interactions outline the operational

flows necessary for the platform’s seamless functionality, which are further elaborated in

Section 4. These system operation flows ensure efficient coordination across the IoT-edge-

cloud continuum, supporting advanced features such as seamless deployment, enhanced

security and trust, autonomous decision-making, service assurance, and data sovereignty.

The detailed architecture outlines a sophisticated system comprising three distinct platforms,

each tailored to address specific operational needs across the IoT-edge-cloud continuum. A

K3s cluster integrating IoT devices and on-premises resources, designed for lightweight and

resource-constrained environments. This platform focuses on real-time data collection and

localized processing. Two K8s clusters encompassing deep edge, far edge, and cloud

resources. These platforms support scalable computing and storage capabilities, enabling the

execution of complex workflows and resource-intensive tasks.

The architecture includes three Associations, dynamically built upon the resources provided

by these platforms. Each Association represents a logical grouping of resources, designed to

facilitate collaborative operations and workload optimization across the distributed

environment. The operation of the three Associations is managed by two EMPYREAN

Aggregators, which form the platform’s core coordination layer. These Aggregators are

responsible for orchestrating data flows, managing resource allocation, and ensuring seamless

interaction between components within each Association. Additionally, the Aggregators

interface with higher-level components to guarantee adherence to service-level agreements

(SLAs) and alignment with overall platform objectives.

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 95/129

This detailed architecture underscores the EMPYREAN platform’s capability to integrate

diverse resources into a unified framework while maintaining:

• Flexibility: tailored support for varied operational needs.

• Scalability: adaptability to changing workloads and infrastructure demands.

• Operational Efficiency: optimized use of resources and seamless coordination.

By integrating these components, operation flows, and the coordination capabilities of the

EMPYREAN Aggregators, the platform provides a modular, scalable, collaborative, and

resilient framework. This design effectively addresses the challenges of managing hyper-

distributed environments.

Figure 39: EMPYREAN detailed architecture, final version

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 97/129

5.3 Tracking KPIs

5.3.1 Methodology for Tracking KPIs

Tracking the Key Performance Indicators (KPIs) for the EMPYREAN project involves a

structured systematic approach to measure, analyze, share, and optimize performance

metrics. The proposed methodology ensures KPIs are monitored in a consistent and organized

way. The following steps outline this methodology:

1. Centralize KPIs Tracking: The consortium will use a centralized repository for storing

and managing KPI data. A shared spreadsheet will be created and used for centralizing

KPIs tracking among the partners of the consortium. The initial version of the KPI

tables, provided in the following sections (5.3.2 Technical KPIs and 5.3.3 Use case KPIs),

will act as a starting point. These KPIs will be extended with additional data to capture

the analysis, evaluation and different milestones of KPIs tracking in the context of work

packages 5 and 6.

2. Monitor and Analyze Performance: The shared spreadsheets will provide additional

data to express the ways to monitor and analyze performance in order to evaluate

whether the success criteria are being met. Lead partners assigned to each KPI will

define the evaluation methods and, if needed, establish additional metrics. Once this

is done, then regular reviews of the collected data will be conducted to monitor

performance against predefined targets.

3. Communicate Results: Following the specific milestones, the consortium will share

insights and progress, both internally among the partners of the consortium and

externally with stakeholders through reports and presentations. During these results

we will highlight key achievements, risks, mitigation plans and areas for improvement.

4. Implement Corrective Actions: Based on performance analysis, the consortium will

identify and implement corrective actions to address any challenges or problems. If

evaluations indicate that progress is not going as expected, strategies will be adjusted,

and different evaluation procedures will be adopted to optimize performance and

ensure KPI objectives are achieved.

5.3.2 Technical KPIs

The following table provides a grouping of the technical KPIs, featuring their success criteria

and the Lead Partners responsible for tracking, coordinating evaluation, and validation efforts.

These KPIs form the foundation for assessing the technical achievements and milestones of

the EMPYREAN project.

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 98/129

Table 30: EMPYREAN Technical KPIs

ID Indicator Success Criteria
Lead

Partners

T1.1
Reduce cloud and increase edge utilization via
workload balancing optimization.

50% reduction in core
cloud

ICCS,
RYAX

T1.2 Increase reliability in the edge.
>50% increase

compared to SotA
UMU, NEC

T1.3
Increase statistical multiplexing gains through
associations.

x2 compared to
standard execution

NUBIS, CC

T1.4
Provide low and predictable latency for hyper-
distributed applications.

<1 ms for delay-sensitive
apps

ZSCALE,
NVIDIA

T2.1
Improve overall performance compared to
SotA.

by 40%
 RYAX,
ICCS

T2.2
Reduce energy consumption on Associations
compared to standard execution.

>25%
RYAX,
ICCS

T2.3
React fast to rapid changes in computational
and data demands so as to maximize the
number of demands served.

between x2 and x10
increase

ICCS,
RYAX

T2.4 Boost AI-driven decision-making accuracy. >25% compared to SotA ICCS, NEC

T2.5
Increase the robustness of the algorithms,
ensuring consistent performance even under
uncertain or noisy conditions.

>25% compared to SotA
ICCS,
UMU

T3.1
Number of trustworthy identity and trust
management processes enabled by smart
contracts.

>=3
UMU,
ICCS

T3.2
Accuracy of user and device verification and
authentication.

> 99%;
NUBIS,
UMU

T3.3
Reduction of privacy violation incidents in data
sharing.

> 50%;
 NEC,
UMU

T3.4
Time reduction to read/write data when
storing data purely on the edge compared to
storage on the cloud.

by 40%
CC,

ZSCALE

T3.5
Ability to access data stored on the edge when
the link to the cloud is severed.

-
ZSCALE,

CC

T4.1
Increase small-message transfer performance
measured at the application level.

by 3x
NVIDIA,

ICCS

T4.2
Improve the RDMA programming efficiency of
edge applications.

-
NVIDIA,
NUBIS

T4.3
Decrease the wired overhead over today’s
protocols like MQTT and Kafka.

by 50%
ZSCALE,

ICCS

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 99/129

T4.4
Ensure that the amount of erasure-coded data
retrieved for a query scales linearly.

-
CC,

ZSCALE

T4.5
Provide an upper limit on the overhead
incurred, that is either constant or a linear
function.

-
CC,

ZSCALE

T5.1
Reduce the development time of continuum-
native applications

>20% decrease
compared to SotA

RYAX,
NUBIS

T5.2
Number of supported hardware architectures
for seamless deployment of an application.

>3
NUBIS,
RYAX

T5.3
Reduce memory and space required for
deploying applications in resource-constrained
IoT/Edge devices.

>70% decrease of
footprint

NUBIS,
RYAX

T5.4
Offload acceleration functionality to nearby
devices.

>1 ΙοΤ device, >3 Edge
devices

NVIDIA,
NUBIS

5.3.3 Use case KPIs

The following table provides a grouping of the use case KPIs featuring success criteria and the

Lead Partner responsible to track them down while coordinating their validation.

No Indicator Success Criteria
Lead

Partners

U1.1
Transition from offline operation analysis to
real-time operation fingerprint analysis.

-
IDEKO

U1.2 Ability to process real-time data
3 robots / 200

operations
IDEKO

U1.3 Ability to alert an abnormal operation
max 2sec after it

occurs
IDEKO

U2.1
Development of processes that support the
transition from subjective to objective,
accurate and harmonised soil health data sets

-
EL ILVO

U2.2

Transition to a real- or near real-time
assessment of soil, crop, and water
parameters, allowing cooperated integrated
farm management;

-

EL ILVO

U2.3
Reduce the time and effort needed to
develop soil data-driven models.

by 25%
EL ILVO

U3.1

Fleet of heterogeneous robots working
collaboratively on specific warehouse tasks
with the aim of achieving human parity
performance

(i.e. payback in less
than 1 year).

TRAC

U3.2
Uptime of fleet despite variable network
conditions

(i.e. packet loss
1%,lat> 500ms).

TRAC

U3.3
Real-time detection of network threats and
efficient storage and retrieval of data.

-
TRAC

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 100/129

6 Use Cases Analysis

6.1 Anomaly Detection in Robotic Machining Cells (UC1)

6.1.1 Overview

In the manufacturing sector, the adoption of robots for machining tasks offers significant

advantages by enhancing flexibility and reducing costs compared to traditional machine tools.

Robots enable rapid adjustments to production processes and product designs, providing a

high level of adaptability. This flexibility is particularly valuable in dynamic markets, where

manufacturers must quickly respond to evolving consumer demands and technological

advancements while maintaining precision and efficiency. However, integrating robots into

machining operations necessitates rigorous process monitoring to address challenges such as

precision loss, tool breakage, and other common defects encountered when machining

composite materials. Effectively managing these issues is critical to improving operational

efficiency and maintaining quality standards in the manufacturing industry.

The use case "Process Monitoring and Anomaly Detection in Robotic Machining Cells" aims to

develop a system capable of real-time monitoring within robotic machining cells performing

composite manufacturing operations using high-frequency data. These operations include

turning, milling, and drilling. The system focuses on real-time signal monitoring and the

detection of abnormal machining activities, enabling rapid identification and response to

deviations in the machining process. This approach aims to enhance production efficiency and

minimize potential losses.

6.1.2 Development and Deployment Updates

The development and deployment strategy for this use case is grounded in the typical

architecture utilized by machine tool clients (Figure 40). The proposed architecture is

structured into two main layers: deep-edge devices integrated with the robots and far-edge

resources hosted on the client’s premises. This layered design ensures an efficient allocation

of computational workloads, assigning tasks to the layers best suited to handle them.

Figure 40: The typical architecture employed by machine tool clients, consisting of deep-edge devices

integrated with the robots and far-edge resources hosted on-premise by the client.

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 101/129

In the initial deployment phase, the focus will be on setting up a single EMPYREAN Association

for one robot, managed by an Aggregator. This phased approach is intended to validate the

fundamental architecture and its components, providing a strong foundation for future

scalability. The robots will be equipped with deep-edge devices offering various CPU, RAM,

and storage configurations. Although these devices do not include GPU support, they can run

containerized applications, enabling the efficient and flexible deployment of EMPYREAN

components.

The far-edge devices, located on the client’s premises, will manage more computationally

intensive tasks. These resources will support advanced processing activities, such as real-time

analytics, ensuring the seamless execution of high-demand workloads. EMPYREAN’s

distributed architecture features, including multi-clustering support and real-time dataflow

management, will enable efficient coordination and communication between deep and far-

edge layers.

During Task 5.2, "Anomaly Detection in Robotic Machining Cells Technological

Developments," the current production workflows will be tailored to align with the

EMPYREAN distributed architecture, as detailed in Deliverable D2.1 (Section 4.1.3, Figure 9).

This alignment will take place as part of WP5 activities (M13-M28). The current production

workflows will be restructured into distinct Ryax workflows (WF), as described in D2.2 (Section

6.1, Figure 25), to fully harness EMPYREAN’s advanced capabilities (Figure 41, Figure 42).

Figure 41: Current production workflow.

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 102/129

Figure 42: Possible breakdown in EMPYREAN of current behavior into three workflows

This incremental deployment strategy, beginning with a single robot, ensures a

comprehensive validation and optimization process before scaling to scenarios involving

multiple robots and associations. Development and deployment updates will systematically

build upon previous steps, guaranteeing a smooth transition to a fully operational monitoring

solution. By leveraging EMPYREAN’s extensive feature set (including support for resilience,

scalability, and operational efficiency) the deployment will address the demands of this highly

distributed, on-premise use case effectively.

6.1.3 Leveraging EMPYREAN Components and Features

The deployment of this use case will leverage the EMPYREAN architecture to establish a robust

and efficient system tailored to the requirements of advanced manufacturing operations.

EMPYREAN’s distributed components will play a pivotal role in addressing the unique

characteristics of this scenario, including the fully on-premise setup (without Cloud

interaction), the need for online, real-time operations, and the limited computational capacity

at the deep edge. Processing will be divided across layers, with complex, high-computation

tasks performed at the far and deep edge focused on data collection and minimal pre-

processing before forwarding data for further analysis.

In this deployment, multiple Kubernetes clusters, potentially using different distributions to

accommodate the constraints of lower compute power, will orchestrate containerized

workloads across infrastructure layers. EMPYREAN’s multi-cluster scheduling capabilities will

be implemented to ensure seamless coordination and optimal resource utilization across the

different edge layers.

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 103/129

The deep edge layer will employ Edge Smart Boxes equipped with 8GB of RAM. These devices

will run lightweight Kubernetes distributions and host EMPYREAN components such as the

Ryax Workflow Engine Worker and the Zeno-Flow daemon. These components will enable

real-time dataflow management and facilitate communication between the deep and far edge

layers. While some basic pre-processing may occur here, the primary function of the deep

edge will be to collect sensor data and forward it to the far edge for advanced processing.

EMPYREAN’s telemetry service will be crucial in ensuring consistent monitoring and

management of this distributed layer.

At the far edge, the deployment will rely on high-performance nodes equipped with 16 to

32GB of RAM, potentially complemented by GPUs for compute-intensive tasks such as training

machine learning models for the Fingerprint Generation System. EMPYREAN’s analytics-

friendly distributed storage will ensure efficient data management during these operations,

while the far edge will also host the majority of EMPYREAN’s computational components,

enabling scalable and advanced real-time analytics. This layer will act as the system’s

backbone, executing processes that demand high computational power and supporting

complex real-time decision-making.

EMPYREAN’s multi-clustering support within the Ryax Workflow Engine will be a key feature,

enabling workload orchestration across different infrastructure layers. This will include

optimized scheduling at both the local and multi-cluster levels to ensure efficient use of

resources while maintaining strict real-time operational standards. The integration of the

Dataflow programming framework within the Ryax Workflow Engine will enable real-time

data communication and processing across the system, ensuring responsiveness to the high-

frequency demands of this use case.

To ensure security and privacy in this highly distributed architecture, EMPYREAN’s Privacy and

Security Manager will be deployed to safeguard interactions between layers. Additionally, the

application builder for unikernels will enable the deployment of lightweight binaries for IoT

devices, allowing remote execution and simplified management at the deep-edge and on-

premises layers. At the on-premises edge, lightweight devices such as Edge Smart Boxes with

2 to 4GB of RAM will handle the initial data collection from robotic sensors, running

lightweight executables orchestrated by EMPYREAN’s deep-edge microservices.

EMPYREAN’s comprehensive feature set, including telemetry services, distributed storage,

and real-time dataflow management will ensure that the architecture can scale to meet these

challenges while maintaining efficiency and operational reliability.

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 104/129

6.2 Proximal Sensing in Agriculture Fields (UC2)

6.2.1 Overview

This use case focuses on the dynamic assessment of Soil Organic Carbon (SOC) to evaluate and

manage soil conditions in agricultural fields. By combining proximal sensing technology with

edge computing, the system enables real-time SOC assessment without relying on centralized

data processing. This innovative approach supports integrative farm management and

sustainable agricultural practices by providing timely and actionable insights for soil health.

The EMPYREAN platform revolutionizes soil health assessment workflows, enabling real-time

Soil Organic Carbon (SOC) evaluation through advanced sensing and edge computing

technologies. The system facilitates efficient and dynamic SOC analysis directly in the field, by

integrating UAVs and robots equipped with cutting-edge sensors, including spectrometers and

soil moisture devices. High-resolution data is processed locally using distributed AI and edge

computing, ensuring accurate results with reduced latency, enhanced data privacy, and

minimal data transfer. This approach supports sustainable agricultural practices by optimizing

resource use, increasing yields, and minimizing environmental impacts. Through a decision

support platform, farmers receive actionable insights and strategies for SOC improvement,

empowering informed, adaptive farm management.

The use case begins with a drone capturing high-resolution multispectral images of the field,

forming the foundation of the SOC assessment. These images are processed through advanced

workflows, including image stitching and the creation of management zones, which enable

precise SOC predictions either locally or on remote infrastructure, depending on resource

availability. Secondly, a robot performs complementary ground operations, focusing on

detailed SOC analysis at specific points of interest. Equipped with a portable spectrometer and

a moisture sensor, it collects precise soil data to generate a comprehensive SOC map. This

map provides a granular view of soil health, guiding key decisions such as fertilization,

irrigation, and weed management. At the heart of the system lies a decision support platform

that integrates all data from drones, robots, optional satellite imagery, and farmer inputs.

Through a user-friendly interface, the platform offers actionable recommendations and SOC

improvement strategies. This seamless integration of technologies empowers farmers with

real-time monitoring and informed decision-making, transforming agricultural practices to

prioritize both productivity and sustainability. One or more Associations will be set up for the

realization of the use case.

6.2.2 Development and Deployment Updates

This section provides further details on the development of the use case. A preliminary

selection of the edge hardware has been made. Additionally, some adjustments have been

made to the initial plans described in D2.1, specifically regarding the overall development of

the use case. Lastly, the different workflows within the use case are described, as well as the

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 105/129

decision support tool that will be presented to the farmer and their advisors to facilitate

informed decision-making.

6.2.2.1 Devices, equipment and communications

Device Component Key features Communication

UAV DJI M350 RTK drone - RTK GPS
- 5880 mAh battery: flight time
up to 55 minutes
- Max speed 23m/s
- IP55
- Power: 44.76V/5.88A

Wi-Fi 6
Bluetooth 5.1

Raspberry Pi 5 - CPU: 2.4GHz 64-bit Arm
Cortex-A76
- RAM: 8GB
- Memory: SD card
- Power: 5V/5A

Wi-Fi 5
Bluetooth 5.0

Hailo 8L AI accelerator - 13 TOPS
- Power: 1.5W

Not applicable

Micasense RedEdge
Multispectral camera

- 10 multispectral bands
- 1.6mp/band
- Up to 3fps
- Memory: SD card
- Power: 7V/2.85A

Wi-Fi

Robot ILVO Cimat robot - RTK GPS
- IMU, camera, lidar, sonar
- GPU
- FPGA

Wi-Fi
4G

Spectrometer To be selected

Moisture sensor To be selected

Table 31: The different hardware components and their key features of UC2.

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 106/129

6.2.2.2 Adjustments from D2.1

This list contains some alterations and updates to the initial planning provided in D2.1.

● Cover crops: Initially, we planned to use RGB and multispectral imaging to estimate

cover crop biomass and identify management zones. However, this plan has been

revised to focus on a different model that assesses Soil Organic Carbon (SOC). The new

model utilizes multispectral images of fields with bare soil to perform the SOC

assessment, providing valuable insights into soil health and composition.

● Decision support: After discussions with stakeholders, we have decided to broaden the

scope of the use case. Rather than focusing solely on providing farmers with a

prescription map based on SOC evaluations, we aim to develop a more complete

farmer advisor platform. This platform will enable farmers and their advisors to gain

valuable insights about the land using a variety of data sources, including SOC

management zones, yield maps, and NDVI/NDWI data from satellite imaging, among

others. By integrating these diverse data sources, the platform will guide users through

a decision support tool to make well-informed management decisions. Outputs may

include the aforementioned SOC-based prescription maps, as well as

recommendations for fertilization, weed control, irrigation activities, and more.

● Platform output: The original plan for the final stage of the use case involved guiding

fertilization through prescription maps generated from SOC assessments and other

collected data. To accommodate this, the last step of the use case will involve the

generation and download of the prescription map in an industry-standard format. The

farmer can then upload this file to the proprietary tractor’s system to carry out the

fertilization process.

6.2.2.3 AI models training/development

The development of AI models for this use case focuses on two distinct but complementary

approaches to assessing SOC levels, leveraging data from the drone-mounted multispectral

sensor and the robot's portable spectrometer. These models ensure a comprehensive and

dynamic assessment of SOC across the agricultural field.

The SOC Classification Model (Drone) will use multispectral images captured by the UAVs

camera during field surveys, which provide ten spectral bands with high spatial resolution. Its

objective is to classify SOC levels across the field into categories, such as low, medium, and

high, and generate management zones based on these classifications. The training process

involves collecting soil samples from ILVO fields that represent diverse conditions and SOC

levels. These samples will be analysed in the laboratory to determine their precise SOC

content. The resulting SOC data is then paired with the corresponding multispectral images to

create the training dataset. Once trained, the classification model will be deployed on edge

devices, allowing in-field SOC level predictions during drone flights. These outputs guide

subsequent workflows, including identifying points of interest for detailed analysis by the

robot.

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 107/129

The SOC Prediction Model (Robot) relies on data from a portable spectrometer and a soil

moisture sensor mounted on the robot. These devices capture precise measurements at

specific points of interest. The model's objective is to provide highly accurate SOC values for

particular locations within the field, offering granular insights and serving as a benchmark for

validating and refining the classification model. For training, soil samples will be collected from

ILVO fields and undergo detailed spectrometer analysis and laboratory testing to determine

their SOC levels and other relevant properties. The spectrometer readings are correlated with

the lab-analysed SOC values to train the model, with environmental factors such as soil

moisture levels included to ensure robustness under varying field conditions. After training,

the prediction model will operate on the robot’s computing infrastructure at the deep edge,

enabling real-time SOC predictions during field operations.

6.2.2.4 Workflows identified within the use case

The workflows for this use case are categorized into two groups: those executed on the drone

and those executed on the robot. This section provides a detailed overview of these

workflows, describing their inputs, processing steps, and outputs. By outlining these

workflows, we aim to highlight how the various components interact to achieve the objectives

of the use case. Additionally, some information is given regarding a decision support tool,

which can be used to make informed farming decisions based on data acquired in the

aforementioned workflows and other data sources.

Drone Workflows:

● 1st workflow [DroneWF1] - Multispectral image collection: During flight, the UAV

collects data using a multispectral camera, capturing ten distinct spectral bands. Data

from the relevant bands is compressed and stored, either locally or on remote storage.

This workflow is deployed on the drone’s computing infrastructure, allowing for real-

time processing and efficient collection of multispectral images at the deep edge. By

performing these tasks locally on the drone, the workflow minimizes latency and

optimizes the data pipeline for further analysis.

● 2nd workflow [DroneWF2] - Monitoring of drone characteristics: Throughout the

flight, the UAV provides detailed performance metrics about its operation, processing

unit, and multispectral sensor. These include flight data such as speed, altitude, and

position, as well as battery capacity, CPU/memory usage of its computing unit, and

more. This workflow could for example track the battery consumption, providing

different soft and hard thresholds and triggering alerts when necessary. Alerts may

need human intervention or trigger other specific actions, such as stopping data

collection or offloading computation to nearby computing units.

● 3rd workflow [DroneWF3] - Multispectral image stitching: In the DroneWF1 workflow,

the UAV captures multispectral images of the field, following a flight path designed

with specific image overlap in mind. This overlap is crucial for stitching the images from

different spectral bands into a single, multi-layered composite image that provides a

comprehensive overview of the entire field. Given the potential size of the dataset,

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 108/129

which depends on the field's dimensions, this process is computationally intensive and

demands significant resources for effective processing.

● 4th workflow [DroneWF4] - SOC assessment and creation of management zones

based on SOC assessment: The multi-layered stitched image serves as input for

evaluating SOC levels across the field. This evaluation is performed using a pre-trained

AI model, which is periodically updated with more precise data collected by the robot.

The SOC levels are then classified into management zones, categorized into different

levels (e.g., low, medium, high). These management zones represent the key output of

the UAV flight and provide critical insights for informed decision-making in field

management.

Robot Workflows:

● 1st workflow [RobotWF1] - Identification of points of interest for detailed SOC

assessment: Based on the management zone map, which is the primary output of the

UAV flight, specific points of interest are selected for more detailed analysis. These

points are primarily chosen to calibrate the SOC measurements captured by the

multispectral camera and to enhance the accuracy of the AI model. This targeted

approach ensures continuous improvement of the model and more precise SOC

evaluations in future workflows.

● 2nd workflow [RobotWF2] - Data collection: The ILVO Cimat robot conducts

complementary ground operations, focusing on detailed SOC analysis at designated

points of interest. Equipped with a portable spectrometer and a moisture sensor, the

robot gathers highly precise soil data. This data will feed into subsequent workflows,

contributing to the generation of a comprehensive and accurate SOC map.

● 3rd workflow [RobotWF3] - Monitoring of robot characteristics: Similar to the UAV,

the robot provided data that allows for monitoring its performance through metrics,

such as position, speed, battery status, and the resource usage of its onboard

computer. These data points help ensure the efficient operation of the robot during

its tasks.

● 4th workflow [RobotWF4] - Creation of SOC map of the field: This workflow will be

deployed on the robots computing infrastructure, using data from the robot’s

spectrometer and moisture-related sensors at the deep edge. The prediction phase

will primarily take place at the far edge, although lightweight ML models could be

executed at the deep edge. The processed data will then be stored at the far edge, and

the soil organic carbon assessments will be used as inputs for creating prescription

maps. These maps provide a granular view of soil health, guiding key decisions such as

fertilization, irrigation, and weed management.

Decision Support Platform: At the heart of the system lies a decision support platform that
integrates all data from drones, robots, optional satellite imagery, and farmer inputs. Through
a user-friendly interface, the platform offers actionable recommendations and SOC
improvement strategies. The platform allows uploading data sources, in addition to the SOC
maps, such as satellite images, yield maps, index, and others.

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 109/129

6.2.3 Leveraging EMPYREAN Components and Features

With the implementation of the EMPYREAN platform, the future state of soil health

assessment will see a significant transformation in workflows. Integrating various sensors and

data types, combined with edge computing, will enable dynamic and efficient SOC

assessment, allowing for near real-time analysis of soil conditions. This will create a more

responsive and adaptive agricultural management system. In the future state envisioned with

EMPYREAN, UAVs equipped with advanced sensors will play a crucial role. Robotic sensors will

further enhance soil assessment by performing detailed analyzes in the identified

management zones. The robot, equipped with visible and near-infrared (Vis-NIR)

spectrometers, RTK GPS, and soil moisture sensors, will conduct dynamic and efficient SOC

assessments directly in the field. The data collected will be processed on-site using edge

computing, ensuring timely and accurate results.

Figure 43: Planned UC2 architecture with the EMPYREAN components

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 110/129

By leveraging the EMPYREAN components, we can efficiently achieve the targets outlined in

this use case (Figure 43). Below is a list of the key components and features that will be utilized

during the use case development. Please note that this list is not exhaustive and additional

components, such as the Privacy and Security Manager, the Lightweight Application

Packaging, the Application Builder for Unikernels, etc are going to be included indirectly.

Workflow Manager: The end result of the use case is a decision support platform that allows

the farmer (advisors) to make informed decisions on the farm management based on data

presented to him. For this, the large amounts of raw data collected by the UAV, robot,

satellites, etc should be analyzed and converted to a format that can be interpreted by the

users. For this purpose, the EMPYREAN Workflow Manager will be used as it enables efficient

design and execution of data analytics applications. In section 6.2.2 we have identified a

number of workflows that could potentially be developed in the context of a Ryax workflow,

such as parsing of the multispectral drone images or parsing of the spectrometer/moisture

measurements.

Dataflow Programming: The Dataflow Programming component will play a key role in

defining and managing the various data flows within the system. This includes data exchanges

between edge devices, such as UAVs and the Cimat robot, the edge server, and the cloud

infrastructure. By orchestrating these data flows, the component ensures that raw data

collected at the edge is efficiently processed, transferred, and made available in the cloud for

visualisation to the end user.

Edge Storage (Gateway): Both the multispectral sensor and the spectrometer generate a high

volume of data during operation. Initially, most of this data is stored on edge storage, so it can

be easily processed on the edge. This limits the amount of data to be transferred to the cloud.

Once the analysis is performed, the resulting output data from the workflows is transferred

to the cloud storage. This processed data can be visualized and presented to the user in a clear

and accessible format, ensuring that insights are readily available for decision-making

purposes.

Decentralized and Distributed Data Manager: The use case relies on the data manager as the

primary mechanism for data exchange between edge devices and the cloud infrastructure.

This layer facilitates the efficient transfer of data collected from edge devices. Additionally,

the communication layer can trigger specific workflows to execute within the Workflow

Manager, enabling automated data processing and analysis.

Telemetry Engine: The edge devices provide a range of parameters that can be monitored to

ensure its optimal operation. For example, the UAV collects detailed flight data, including

speed, altitude, and position, as well as information about battery capacity and the

CPU/memory usage of its computing unit (Raspberry Pi). Similarly, the robot offers

comparable metrics, such as position, speed, battery status, and the resource usage of its

onboard computer.

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 111/129

6.3 Advanced Inference and Coordinated Behaviors for

Warehouse Automation Robots (UC3)

6.3.1 Overview

The particular use case centers around a robotic warehouse automation application, where a

fleet of Autonomous Towing Robots (ATRs) performs order-picking based on incoming orders.

Warehouse operators utilize a specialized software named the Fleet Control System (FCS),

which enables them to submit order-picking tasks to the ATRs. In this use case, the ATRs will

be equipped with on-board computational capabilities along with a variety of sensors (such as

lidars and radars), enabling them to perform the needed computations directly upon the

robots at the deep edge. The Fleet Control System is installed and operates mainly at the far

edge, where more substantial computational resources are available, including GPU node

pools that can offload ML inference tasks and potentially perform ML training. Additionally,

public or private cloud resources can be also used to offload even more compute-intensive

operations.

A key challenge of this use case is the collaboration and data exchange between robots, which

besides the adaptations needed on the Fleet Control System it requires efficient data transfer

among robots and with the FCS. This setup also demands increased computational power

across the different layers of the continuum. Moreover, the possible intermittent connectivity

of the ATRs within the warehouse needs also to be taken into account. To address these needs,

the use case leverages novel functionalities from the EMPYREAN platform. EMPYREAN’s ability

to enable seamless executions on different layers of the edge-cloud computing infrastructure

to facilitate the operation of the robots, while ensuring secure data transfers even under

intermittent networking connectivity, will significantly enhance the robot fleet’s operation.

6.3.2 Development and Deployment updates

This section provides further details on the development of the use case.

6.3.2.1 Devices, equipment and communications

The initial computing infrastructure setup for this use case will include: a) the ATR robots

equipped with onboard industrial PC units featuring Intel i5 CPUs and 16GB of RAM,

representing the deep-edge part. The robots will have various onboard sensors (such as lidars

and radars) to facilitate navigation and order-picking within the warehouse; b) intermediate

servers located in the warehouse office, consisting of PC’s, laptops, or GPU-equipped units

with around 32GB of RAM, representing the far-edge; and optionally c) a distant data-center

or cloud resources for offloading more demanding computations, offering more powerful

computation resources and diverse hardware sources along with access to GPU node pools.

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 112/129

6.3.2.2 Workflows identified within the use case

At this initial stage of the project, the following use case workflows are anticipated:

● 1st workflow: The FCS is connected to the EMPYREAN platform, and when a certain

order is submitted on the FCS, the workflow demands the collection of data at the

deep edge on the computing cluster of the ATR while performing an initial pre-

processing onboard and transferring data to the far edge for further data treatment

while enabling storage of insights and results on the FCS triggering specific alerts or

observability functions. This workflow can be duplicated and used for each different

ATR.

● 2nd workflow: The ATR retrieves data, and depending on the task’s computational

demands, it may offload the more compute-intensive tasks to the far edge (or the

cloud) featuring a GPU. The processed data is then transferred back to the ATR to use

it accordingly.

● 3rd workflow: The FCS operator submits a request for robot collaboration between two

ATR robots, such as jointly picking up a particular (heavier) cart. Based on that, the two

robots will receive the operation order, and data will be transferred to both for pre-

processing. This particular pre-processing process will be started on both robots

simultaneously. This may be managed by a single workflow executing across both

robots and waiting to aggregate insights from both or by two workflows coordinating

with each other.

6.3.2.3 Developments

The Tractonomy development team has been preparing the core robot technology for the

above integrations with the EMPYREAN platform. Tractonomy’s autonomous towing robot

(ATR) is a commercially ready robot designed for towing all sorts of existing carts. It has a

unique omnidirectional platform with a rotating gripping system for grabbing and pulling all

sorts of industrial carts. A number of areas had to be prepared within the hardware

architecture of the existing platform. A demo robot is used as a development platform and

showcase for the EMPYREAN project.

Distributed Zenoh Databases: To support the first workflow, the team has updated the robot

to the latest Zenoh 1.0.0 “Firesong” release. We have been experimenting with how data-in-

motion and data-at-rest geo-distributed storage can work. As there exist many ways for Zenoh

nodes to store values it may need to serve later, we have integrated the storage manager

plugin relying on dynamically loaded “backends” to provide this functionality. Typically, a

backend will leverage some third-party technology, such as databases, to handle storage. A

possibly convenient side effect of using databases as backends is that they may also be used

as an interface between the robot’s Zenoh infrastructure and the EMPYREAN infrastructure

and may interact independently with the database.

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 113/129

Point cloud compression: A key enabler for the second workflow is to stream real-time point

clouds from the on-board Intel Realsense D455 depth camera to the far edge where machine

learning and computer vision (CV) pipelines can process and return inferences from the data

the robot sees (Figure 44). In this case, we developed a containerized CV pipeline that can be

dynamically configured and deployed by the RYAX engine based on the relevant associations

for GPU resources. Currently, the latency has been tested on local loopback networks without

point-cloud compression at 1Hz. The next goal is to implement MPEG-PCC and evaluate the

benefits of point cloud compression in 5 GHz wireless networks, which are representative of

Tractonomy’s production deployment environments.

Figure 44: A Tractonomy’s autonomous towing robot (ATR) collecting point cloud data.

Automatic cart locking system: A key concept is the ATR’s unique cart docking system. The

cart docking system is a rotating turret enabled by a patented gripping system. The turret

allows Tractonomy to handle two types of popular carts:

1. Carts with fixed wheels in front and castor wheels in the rear.

2. Carts with castor wheels on all sides.

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 114/129

This property is already being exploited in commercial applications. We are now developing a

prototype to extend this property to manipulate very long carts with castor wheels on all sides

using two robots (Figure 45). Initially, a shared motion model has been partially developed in

simulation to establish a smooth and seamless motion control demonstrator with two robots

in simulation. A realization of a final demonstrator with two physical robots will also be

evaluated.

Figure 45: A two carts automatic locking system.

6.3.3 Leveraging EMPYREAN Components and Features

Based on this infrastructure setup, one EMPYREAN Association and Aggregator will be

explored initially to enable the execution of tasks from deep to far edge up to the cloud. Each

ATR robot will be an independent cluster in the Association, possibly using lightweight

Kubernetes distributions such as K3S. Initially, one robot will participate in the Association,

while afterwards, the participation of multiple robots will be realized. By the end of the

project, we will validate the functionality of defining multiple Associations for different

aspects where robots may participate in more than one Association.

Critical EMPYREAN features for the successful execution of this UC include: (i) the integration

of the dataflow programming (Zenoh-Flow) within the workflow management system (Ryax),

(ii) the cyber-threat intelligence engine and the privacy and security manager to guarantee

that operation will remain secure even in highly vulnerable contexts (such in 4G networks),

(iii) the support of unikernels for lightweight, secure, and reproducible deployment at the

edge, (iv) the support for intermittent connectivity, (v) the edge distributed storage, (vi) the

multi-clustering execution, and (vii) optimized offloading for GPU-based ML inference.

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 115/129

6.4 Security in Smart Factories - S. Korea International

Collaboration (UC4)

6.4.1 Overview

Smart factories are becoming more prevalent, and their operations rely heavily on network

connectivity. Private 5G networks are being used to provide the high-speed, low-latency

connectivity required by smart factories. However, as with any network, security is a critical

concern. This use case considers a situation-aware security orchestration model that can

effectively address security threats to smart factories that use private 5G networks. Towards

this end, situation-aware security and other applications are required, including but not

limited to Intrusion Detection Systems (IDS) and Firewall and Cyber Thread Intelligence (CTI)

modules. These provide an effective means of ensuring the security of the factory's

operations/services and physical assets.

This UC focuses on addressing these challenges by automating the deployment of security

applications that run inside smart factories Association(s). EMPYREAN’s advanced

orchestration and autoscaling mechanisms will ensure that the applications are executed

efficiently under any circumstances while utilizing both edge resources (inside and between

Association) and cloud resources. EMPYREAN’s employed security and trust functionalities will

ensure that the security application operates securely. The utilized AI-based procedures for

accurately recognizing and responding to security threats will take advantage of EMPYREAN’s

privacy-preserving Federated Learning (PPFL) mechanisms that support a fully privacy-

preserving and federated anomaly detection system.

6.4.2 Development and Deployment Updates

As indicated in D2.1, this use case was agreed originally with Prof. Ilsun You of the Department

of Information Security, Cryptology, and Mathematics, Kookmin University, Seoul, Korea

under the conditions of being funded by the South Korean government. As it was not the case,

it was decided to continue the collaboration in various ways. In this context, a joint workshop

was organized linked to the special session Secure and Cognitive Continuum (SECON) that was

held at the 8th International Conference on Mobile Internet Security (MobiSec 2024) Sapporo,

Japan, on December 17, 2024 (https://manuscriptlink-society-file.s3.ap-northeast-

1.amazonaws.com/kiisc/conference/mobisec2024/secon24-2.htm).

During this workshop, the EMPYREAN architecture and the different modules envisioned were

discussed among EMPYREAN and Korean partners. The Korean partners expressed their

interest in the work done and the possibility of collaboration, taking however into account

their funding limitations. It was decided to continue collaboration during 2025 (Y2) so as to

evaluate the use of key EMPYREAN components that could fit the needs of the Korean partner

threat management scenarios. Also, the University of Murcia’s 5G testbed can be used to

replicate these scenarios as an initial Proof of Concept (PoC), demonstrating EMPYREAN’s

https://manuscriptlink-society-file.s3.ap-northeast-1.amazonaws.com/kiisc/conference/mobisec2024/secon24-2.htm
https://manuscriptlink-society-file.s3.ap-northeast-1.amazonaws.com/kiisc/conference/mobisec2024/secon24-2.htm
https://manuscriptlink-society-file.s3.ap-northeast-1.amazonaws.com/kiisc/conference/mobisec2024/secon24-2.htm

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 116/129

capabilities. Towards this direction, another workshop was scheduled for Q2 of 2025 to

provide concrete planning based on a proposal provided by EMPYREAN on the components

ready to be tested during Y2.

6.4.3 Leveraging EMPYREAN Components and Features

Based on the above discussion, the focus of the use case will be centred around three major

achievements and features:

● Orchestration and deployment of secure enablers at the edge level to provide threat

identification and abnormal behaviours based on privacy-preserving Federated

Learning (PPFL).

● Use the telemetry component to aggregate information coming from the PPFL to

trigger events in the CTI components.

● Integrate the CTI component either to:

○ identify if possible identified threats related to the existing components

deployed in order to deploy the most suitable solution for the PPFL;

○ or to provide support to detect the misbehaviours identified and if needed to

exchange information with the privacy preserving MISP component to share

this situation awareness with the rest of the nodes.

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 117/129

7 Implementation and Delivery Plan

The overall implementation and delivery of the EMPYREAN project (Figure 46) are structured

into a series of well-defined and complementary phases, ensuring a systematic and iterative

approach to achieving the project’s objectives. These phases enable seamless progression

from requirement analysis to the delivery of a fully functional platform, incorporating

feedback and refinements at every stage. Deliverable D2.2 (M7) provides a more detailed

description of these plans and phases.

The present deliverable marks the successful completion of the first two phases:

Requirements Analysis (Phase 1) and Architecture Definition (Phase 2). Moving into the

second year, the consortium’s focus will shift towards the research and development activities

of the individual technological advancements (Phase 3). Initial outcomes from these activities

will be reported in M15 through the first set of technical deliverables from WP3 and WP4.

Simultaneously, WP5 will commence activities to support the continuous integration and

testing activities (Phase 4), preparing the initial platform release by M18. Moreover, efforts

will also focus on initiating the implementation of the project use cases.

Figure 46: EMPYREAN development roadmap

The initial platform release, resulting from the first project development iteration (M4-M15),

will provide a partial implementation of EMPYREAN components. This version will feature a

subset of the envisioned features and primary inter-component communication interfaces,

forming a functional prototype to support the core platform’s objectives. This prototype will

offer critical feedback to guide and enhance the second development iteration (M18–M36)

that will provide the full platform release (M30) and final platform release (M36).

By adopting this structured and iterative approach, the EMPYREAN consortium ensures a

systematic transition from concept to a fully functional and exploitable platform, aligning

technological developments with the project's objectives and stakeholder expectations.

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 118/129

8 Conclusions

This deliverable presents the final version of the EMPYREAN architecture, emphasizing the

critical technical aspects of component interactions and system operation flows. The

comprehensive analysis of how components interact within the IoT-edge-cloud continuum has

been pivotal in identifying and addressing key operational challenges. These interactions are

designed to enable seamless communication, efficient task distribution, and dynamic resource

allocation across Associations, ensuring the platform's ability to support diverse and time-

critical applications.

System operation flows have been meticulously designed to align with the needs of various

users and application scenarios. These flows outline the procedural dynamics of how tasks are

initiated, managed, and executed across the platform, providing clarity on the operational

alignment of system components. The iterative refinement of these flows informed necessary

adjustments to the architecture, ensuring it accurately reflects EMPYREAN operational

demands, particularly related to its use cases, while optimizing platform efficiency.

As a result, the finalized EMPYREAN architecture integrates these technical insights to serve

as the basis for measuring and achieving the project’s technical KPIs. By incorporating detailed

component interactions and well-defined system operation flows, the architecture sets a

robust foundation for tracking the platform’s performance and effectiveness throughout its

lifecycle.

Furthermore, the deliverable provides key updates on the use cases, illustrating how they will

leverage EMPYREAN’s new features to enhance their functionality. Additionally, the

implementation and delivery plan, along with the requirements coverage analysis provide

more context on the platform’s development roadmap and its alignment with project

objectives.

Finally, this document will also serve as a guideline during the iterative execution of the

implementation and evaluation phases supporting technical activities in WPs 3-4, UCs

development and platform integration activities in WP5, and project demonstrations in WP6.

By ensuring that technological developments remain relevant and aligned with EMPYREAN’s

ambitions, this deliverable reinforces the project’s vision of introducing a novel ecosystem of

trustworthy, cognitive, and AI-driven collaborative Associations of IoT devices and edge

resources for intelligent data processing.

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 119/129

9 Appendix - Requirements Coverage

This section outlines how the final set of functional requirements, collected, described, and

categorized within WP2, are addressed by the components of the EMPYREAN architecture and

the presented operation flows. Deliverable D2.2 (M7) introduced the initial mapping of

requirements in the context of the preliminary architecture release. This deliverable builds

upon that by expanding the initial mapping to include updates, detailing the operation flows

that implement these requirements, and providing an overall analysis of non-functional

requirements.

Throughout the architecture design process, all partners closely collaborated to analyze each

requirement and map it to the platform’s components. This iterative and cooperative

interaction between the technical and use case partners ensured that the EMPYREAN platform

is capable of realizing the desired functionalities, aligning the architecture with both the

project’s objectives and the specific needs of its use cases.

Table 32: Functional requirements coverage in the final EMPYREAN architecture and operation flows

ID Short Description Components Operation Flows

F_GR.1
Federate heterogeneous and
distributed IoT, edge, and
cloud resources.

EMPYREAN Aggregator, EMPYREAN Registry,
Service Orchestrator, Privacy and Security
Manager, Telemetry Engine, EMPYREAN
Controller, Decentralized and Distributed
Data Manager, Edge Storage Gateway

OF1.1, OF1.2, OF1.3,
OF2.1, OF2.2, OF2.3,
OF2.4, OF3.3, OF4.1,
OF4.3, OF4.7, OF5.1

F_GR.2
Enable collaborative
autonomy in the IoT-edge-
cloud continuum.

EMPYREAN Aggregator, EMPYREAN Registry,
Service Orchestrator, Decision Engine,
Telemetry Engine, Decentralized and
Distributed Data Manager, Privacy and
Security Manager

OF1.1, OF1.2, OF1.3,
OF4.1, OF4.8, OF5.1,

OF6.1

F_GR.3
Encompass autonomous and
continuous control loops.

Service Orchestrator, Decision Engine,
Analytics Engine, Telemetry Engine,
Persistent Monitoring Data Storage,
EMPYREAN Controller

OF1.3, OF4.1, OF4.2,
OF5.1, OF6.1, OF6.2

F_GR.4

Provide seamless
deployment of hyper-
distributed cloud-native
applications across a
collaborative IoT-edge-cloud
continuum.

Workflow Manager, Dataflow Programming
Component, Service Orchestrator, NIX-
based Environment Packaging, Application
Packaging, Container Runtime, Edge Storage
Gateway, Decentralized and Distributed
Data Manager

OF1.1, OF1.2, OF1.3,
OF2.3, OF3.1, OF3.2,
OF4.1, OF4.2, OF4.3,
OF4.4, OF4.5, OF4.6,

OF4.8, OF5.1

F_GR.5

Support hyper-distributed,
highly-demanding, and
dynamic applications from
diverse domains.

Workflow Manager, Dataflow Programming
Component, Software-Defined Edge
Interconnect, Decentralized & Distributed
Data Manager, Workload Autoscaling,
Hardware Acceleration Abstractions,
Application Packaging

OF1.1, OF1.2, OF1.3,
OF3.1, OF3.2, OF4.1,
OF4.3, OF4.4, OF4.5,
OF4.6, OF4.7, OF5.1

F_GR.6

Provide monitoring for
cloud-native applications and
heterogeneous
infrastructure resources.

Monitoring Probes, Telemetry Engine,
Persistent Monitoring Data Storage,
Container Runtime

OF1.3, OF2.1, OF2.2,
OF4.1, OF4.2, OF4.7,
OF4.8, OF5.1, OF6.1,

OF6.2

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 120/129

F_GR.7

Energy and power-aware
operation for optimal power
management, energy
efficiency and ecological
sustainability.

Monitoring Probes, Telemetry Engine,
Decision Engine, Workload Autoscaling,
Container Layers Locality Scheduler

OF4.2, OF4.8, OF5.1,
OF6.1

F_ASSOC.1

Combine heterogeneous
computational and storage
resources and different
connectivity resources.

EMPYREAN Registry, EMPYREAN Aggregator,
EMPYREAN Controller, Edge Storage
Gateway, Decentralized and Distributed
Data Manager

OF1.1, OF1.2, OF1.3,
OF2.1, OF2.2, OF2.3,
OF3.3, OF4.1, OF4.2,
OF4.3, OF4.5, OF4.7,

OF5.1

F_ASSOC.2

Facilitate secure onboarding
of IoT devices, robots, and
edge/cloud resources within
the EMPYREAN control and
management plane.

EMPYREAN Registry, Secure and Trusted
Execution Environment, Privacy and Security
Manager

OF1.3, OF2.1, OF2.2,
OF2.3, OF2.4, OF3.3

F_ASSOC.3
Constitute a secure and
trustworthy execution
environment.

Privacy and Security Manager, CTI Engine,
Secure and Trusted Execution Environment,
Edge Storage Gateway

OF1.3, OF2.4, OF3.3,
OF4.4, OF5.1, OF6.3

F_ASSOC.4

Support autonomous
operation and enhance
resiliency across the
continuum.

Workflow Manager, Analytics Engine,
Decentralized and Distributed Data
Manager, Decision Engine, Workload
Autoscaling, EMPYREAN Controller,
Software-Defined Edge Interconnect

OF1.3, OF4.2, OF4.8,
OF5.1, OF6.1, OF6.2,

OF6.3

F_ASSOC.5
Provide low and predictable
latency for hyper-distributed
applications.

EMPYREAN Aggregator, Software-Defined
Edge Interconnect, Decentralized and
Distributed Data Manager

OF4.1, OF4.3, OF4.5,
OF6.1

F_ASSOC.6
Provide inter-Association
communication and
exchange of events.

EMPYREAN Aggregator, Decentralized and
Distributed Data Manager OF1.3, OF4.3, OF5.1

F_ASSOC.7
Data-driven seamless
workload and data migration
across the Associations.

Telemetry Engine, Monitoring Probes,
Analytics Engine, Service Orchestrator, Edge
Storage Gateway

OF1.3, OF2.3, OF3.3,
OF5.1, OF6.1

F_ASSOC.8
Aggregators must maintain a
catalogue of the Association
resources.

EMPYREAN Registry, EMPYREAN Controller,
Telemetry Engine

OF1.1, OF1.2, OF1.3,
OF2.1, OF2.2, OF2.3,
OF3.3, OF4.1, OF4.2,

OF5.1

F_ASSOC.9

Aggregators must
dynamically discover
resources within the
registered infrastructures
and detect events.

EMPYREAN Registry, EMPYREAN Aggregator,
EMPYREAN Controller Telemetry Engine,
Monitoring Probes

OF2.1, OF2.2, OF2.3,
OF4.1, OF5.1, OF6.1

F_ASSOC.10
Aggregators must maintain
the state of the Association.

EMPYREAN Registry, EMPYREAN Aggregator,
Telemetry Engine, Persistent Monitoring
Data Storage

OF1.1, OF1.2, OF1.3,
OF2.3, OF4.1, OF4.2,

OF5.1

F_ST.1
Decentralized identity
management.

p-ABC Library, Privacy and Security Manager OF1.1, OF1.2, OF1.3,
OF2.1, OF2.2, OF2.4,
OF4.1, OF4.2, OF4.3,

OF5.1

F_ST.2
Privacy-Preserving
authentication and
authorization.

p-ABC Library, Privacy and Security Manager,
Secure and Trusted Execution Environment

OF1.1, OF1.2, OF1.3,
OF2.1, OF2.2, OF2.4,

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 121/129

OF3.3, OF4.1, OF4.2,
OF4.3, OF5.1

F_ST.3 Policy-Based Encryption. p-ABC Library, Privacy and Security Manager OF3.3, OF4.1, OF4.3

F_ST.4
Automated Cyber Threat
Analysis.

CTI Engine, Telemetry Engine, Persistent
Monitoring Data Storage

OF6.2, OF6.3

F_ST.5
ML for Anomaly Detection
and Cybersecurity.

CTI Engine, Telemetry Engine, Persistent
Monitoring Data Storage

OF4.2, OF5.1, OF6.2,
OF6.3

F_ST.6
Secure and Trusted
Execution.

Secure and Trusted Execution Environment,
Privacy and Security Manager, Container
Runtime, Unikernel Deployment

OF4.1, OF4.2, OF4.4,
OF5.1, OF6.2

F_DCM.1

Provide S3-compatible
storage service that
encompasses edge-cloud
continuum.

Edge Storage, Edge Storage Gateway
OF1.3, OF2.3, OF3.3,
OF4.2, OF4.3, OF4.7,

OF5.1

F_DCM.2
Provide an analytics-friendly
erasure-coded IoT storage
platform.

IoT Query Engine, Edge Storage, Edge
Storage Gateway

OF4.7

F_DI.1

Decentralized decision-
making, speculative and
multi-objective resource
orchestration.

EMPYREAN Registry, EMPYREAN Aggregator,
Decision Engine, Service Orchestrator,
EMPYREAN Controller

OF1.3, OF4.1, OF4.2,
OF5.1, OF6.1

F_DI.2

Multi-agent speculative
intelligent resource
orchestration across
EMPYREAN Associations.

Decision Engine, Service Orchestrator,
EMPYREAN Controller, Container Layers
Locality Scheduler

OF1.3, OF4.1, OF5.1,
OF6.1

F_DI.3

Hierarchical orchestration
and multi-objective
optimization for cognitive
resource orchestration
within Associations.

Decision Engine, Service Orchestrator,
EMPYREAN Controller, Container Layers
Locality Scheduler OF4.1, OF4.2, OF5.1

F_DI.4

AI-enhanced data
orchestration and storage
resource management
within and across
Associations.

Decision Engine, Service Orchestrator, Edge
Storage Gateway, Edge Storage,
Decentralized and Distributed Data Manager

OF1.3, OF2.3, OF3.3,
OF4.2, OF4.3, OF5.1

F_DI.5
Energy-aware workload and
data distribution
mechanisms.

Decision Engine, Service Orchestrator,
EMPYREAN Controller, Container Layers
Locality Scheduler

OF4.1, OF4.2, OF4.8,
OF5.1, OF6.1

F_DI.6

Monitoring and managing
power and energy
consumption in IoT devices
and edge nodes.

Monitoring Probes, Telemetry Engine,
Analytics Engine OF2.1, OF2.2, OF4.2,

OF4.8, OF5.1, OF6.1

F_DI.7
Decentralized and AI-
enabled service assurance
mechanisms.

Analytics Engine, Service Orchestrator,
Telemetry Engine, Persistent Monitoring
Data Storage

OF4.2, OF4.8, OF5.1,
OF6.1, OF6.2

F_DI.8

AI-enhanced self-healing for
enhanced resiliency,
adaptability, and
autonomous operation.

Workload Autoscaling, Analytics Engine, CTI
Engine, Service Orchestrator, EMPYREAN
Controller, Telemetry Engine, Persistent
Monitoring Data Storage

OF4.2, OF4.8, OF5.1,
OF6.1, OF6.2, OF6.3

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 122/129

F_DI.9
Autonomous and adaptive
workload autoscaling.

Workload Autoscaling, Analytics Engine,
Container Layers Locality Scheduling,
EMPYREAN Controller, Telemetry Engine,
Persistent Monitoring Data Storage

OF4.1, OF4.8, OF6.1,
OF6.2

F_SO.1

Continuum-native workflow-
based application design
considering dataflow
programming and low-code
techniques.

Workflow Manager, Dataflow Programming
Component, NIX-based Environment
Packaging, Application Packaging

OF3.1, OF3.2, OF4.1,
OF4.3

F_SO.2

Deployment objectives
(SLOs) definition for
continuum-native
applications

Workflow Manager, EMPYREAN Registry,
Service Orchestrator, Decision Engine

OF3.1, OF4.1, OF6.1

F_SO.3

Seamless and declarative
orchestration of self-
organized distributed
orchestration systems.

EMPYREAN Registry, Service Orchestrator,
Decision Engine, EMPYREAN Controller,
Container Layers Locality Scheduler

OF3.1, OF4.1, OF4.2,
OF4.6, OF5.1

F_SO.4
Policy-based orchestration
and efficient resource
allocation.

Workflow Manager, EMPYREAN Registry,
Service Orchestrator, Decision Engine,
EMPYREAN Controller, Telemetry Engine

OF2.3, OF4.1, OF5.1,
OF6.1

F_SO.5
Context awareness and
autonomous adaptive
response.

Workflow Manager, EMPYREAN Registry,
Analytics Engine, Workload Autoscaling

OF4.1, OF4.2, OF4.8,
OF5.1

F_SO.6

Transparent lifecycle
management of hyper-
distributed application
components.

Workflow Manager, Dataflow Programming,
Service Orchestrator, EMPYREAN Controller,
Container Runtime

OF1.1, OF1.2, OF1.3,
OF3.1, OF3.2, OF4.1,
OF4.2, OF4.3, OF4.5,
OF4.6, OF5.1, OF6.1

F_SO.7
Coordinate workload
migration within and across
Associations.

EMPYREAN Aggregator, Service
Orchestrator, Decision Engine, Analytics
Engine, EMPYREAN Controller

OF1.3, OF4.2, OF5.1,
OF6.1

F_SO.8
Support automatic data
migration operations within
and across Associations.

EMPYREAN Aggregator, Service
Orchestrator, Decision Engine, Analytics
Engine, EMPYREAN Controller, Edge Storage
Gateway, Decentralized & Distributed Data
Manager

OF1.3, OF2.3, OF3.3,
OF4.2, OF5.1, OF6.1

F_SO.9
Implementation and
integration of custom
scheduling policies.

Decision Engine, Container Layers Locality
Scheduler OF4.1, OF4.2, OF5.1

F_SO.10

Seamless orchestration and
management of both
container-based and
serverless workloads.

Workflow Manager, Service Orchestrator,
EMPYREAN Controller, NIX-based
Environment Packaging, Container Runtime

OF4.1, OF4.2, OF4.5,
OF5.1

F_SO.11
Flexible Hardware-
accelerated execution.

Hardware Acceleration Abstractions,
Container Runtime, Application Packaging,
EMPYREAN Controller

OF4.5

F_SO.12
Offload acceleration to
nearby devices.

Hardware Acceleration Abstractions,
Container Runtime, EMPYREAN Controller,
Software-Defined Edge Interconnect

OF4.5

F_SO.13
OCI-compatible container
images.

Unikernel Application Builder, NIX-based
Environment Packaging, Unikernel
Deployment, Container Runtime

OF3.1, OF3.2, OF4.1,
OF4.2, OF4.4, OF4.6,

OF5.1

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 123/129

F_SO.14
Support diverse execution
environments.

Unikernel Application Builder, NIX-based
Environment Packaging, Unikernel
Deployment, Container Runtime,
EMPYREAN Controller

OF3.1, OF3.2, OF4.1,
OF4.2, OF4.4, OF4.6,

OF5.1

F_SO.15
Reproducible Environment
Packaging

Unikernel Application Builder, NIX-based
Environment Packaging, Unikernel
Deployment

OF3.1, OF3.2, OF4.1,
OF4.2, OF4.6, OF5.1

The following table presents the relationship between the non-functional requirement

categories of ISO/IEC 25010 and all the functional requirements.

Table 33: Analysis of overall non-functional requirements

Requirement ID: NF_GR.1 Stakeholders Involved: All

Title: Performance Efficiency

Description:

This characteristic represents the performance relative to the number of

resources used under stated conditions. This characteristic is composed of the

following sub-characteristics:

• Time behaviour - Degree to which the response, processing times and

throughput rates of a product or system, when performing its functions,

meet the requirements.

• Resource utilization - Degree to which the amounts and types of resources

used by a product or system, when performing its functions, meet the

requirements.

• Capacity - Degree to which the maximum limits of a product or system

parameter meet requirements.

Related

Functional

Requirements

F_GR.4 Provide seamless deployment of hyper-distributed cloud-native

applications across a collaborative IoT-edge-cloud continuum.

F_GR.5 Support hyper-distributed, highly-demanding, and dynamic

applications from diverse domains.

F_GR.6 Provide monitoring for cloud-native applications and heterogeneous

infrastructure resources.

F_GR.7 Energy and power aware operation for optimal power management,

energy efficiency and ecological sustainability.

F_ASSOC.5 Provide low and predictable latency for hyper-distributed

applications.

F_ASSOC.8 Aggregators must maintain a catalogue of the Association resources.

F_ASSOC.9 Aggregators must dynamically discover resources within the

registered infrastructures and detect events.

F_ASSOC.10 Aggregators must maintain the state of the Association.

F_ST.4 Automated Cyber Threat Analysis.

F_ST.5 ML for Anomaly Detection and Cybersecurity.

F_DCM.1 Provide S3-compatible storage service that encompasses edge-cloud

continuum.

F_DI.4 AI-enhanced data orchestration and storage resource management

within and across Associations.

F_DI.5 Energy-aware workload and data distribution mechanisms.

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 124/129

F_DI.6 Monitoring and managing power and energy consumption in IoT devices

and edge nodes.

F_SO.4 Policy-based orchestration and efficient resource allocation.

F_SO.6 Transparent lifecycle management of hyper-distributed application

components.

F_SO.7 Coordinate workload migration within and across Associations.

F_SO.10 Seamless orchestration and management of both container-based and

serverless workloads.

F_SO.11 Flexible Hardware-accelerated execution.

F_SO.12 Offload acceleration to nearby devices.

Requirement ID: NF_GR.2 Stakeholders Involved: All

Title: Functional Suitability

Description:

This characteristic represents the degree to which a product or system provides

functions that meet stated and implied needs when used under specified

conditions. This characteristic is composed of the following sub-characteristics:

• Functional completeness - Degree to which the set of functions covers all

the specified tasks and user objectives.

• Functional correctness - Degree to which a product or system provides the

correct results with the needed degree of precision.

• Functional appropriateness - Degree to which the functions facilitate the

accomplishment of specified tasks and objectives.

Related

Functional

Requirements

F_GR.4 Provide seamless deployment of hyper-distributed cloud-native

applications across a collaborative IoT-edge-cloud continuum.

F_GR.5 Support hyper-distributed, highly-demanding, and dynamic

applications from diverse domains.

F_SO.1 Continuum-native workflow-based application design considering

dataflow programming and low-code techniques.

F_SO.2 Deployment objectives (SLOs) definition for continuum-native

applications.

F_IPDR.1 Expose well-defined APIs through EMPYREAN SDK.

F_IPDR.2 Build upon well-established open-source platforms and consortium

existing solutions.

F_IPDR.6 CI/CD guidelines.

Requirement ID: NF_GR.3 Stakeholders Involved: All

Title: Compatibility

Description:

Degree to which a product, system or component can exchange information

with other products, systems or components, and/or perform its required

functions while sharing the same hardware or software environment. This

characteristic is composed of the following sub-characteristics:

• Co-existence - Degree to which a product can perform its required

functions efficiently while sharing a common environment and resources

with other products, without detrimental impact on any other product.

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 125/129

• Interoperability - Degree to which two or more systems, products or

components can exchange information and use the information that has

been exchanged.

Related

Functional

Requirements

F_GR.1 Federate heterogeneous, distributed IoT, edge and cloud resources.

F_GR.2 Enable collaborative autonomy in the IoT-edge-cloud continuum.

F_ASSOC.1 Combine heterogeneous computational, storage resources,

different connectivity resources.

F_ASSOC.2 Facilitate secure onboarding of new IoT devices, robots,

edge/cloud resources within the EMPYREAN control and management plane.

F_ASSOC.6 Provide inter-Association communication and exchange of events.

F_SO.6 Transparent lifecycle management of hyper-distributed application

components.

F_SO.7 Coordinate workload migration within and across Associations.

F_SO.8 Support automatic data migration operations within and across

Associations.

F_SO.13 OCI-compatible container images.

F_SO.14 Support diverse execution environments.

F_SO.15 Reproducible Environment Packaging.

Requirement ID: NF_GR.4 Stakeholders Involved: All

Title: Usability

Description:

Degree to which a product or system can be used by specified users to achieve

specified goals with effectiveness and efficiency in a specified context of use.

This characteristic is composed of the following sub-characteristics:

• Appropriateness recognizability - Degree to which users can recognize

whether a product or system is appropriate to their needs.

• Learnability - Degree to which a product or system can be used by specified

users to achieve specified goals of learning to use the product or system

with effectiveness, efficiency, freedom from risk and satisfaction in a

specified context of use.

• Operability - Degree to which a product or system has attributes that make

it easy to operate and control.

• User error protection - Degree to which a system protects users against

making errors.

Related

Functional

Requirements

F_GR.4 Provide seamless deployment of hyper-distributed cloud-native

applications across a collaborative IoT-edge-cloud continuum.

F_ASSOC.1 Combine heterogeneous computational and storage resources and

different connectivity resources.

F_ASSOC.2 Facilitate secure onboarding of new IoT devices, robots and

edge/cloud resources within the EMPYREAN control and management plane.

F_DCM.2 Provide an analytics-friendly erasure-coded IoT storage platform.

F_SO.1 Continuum-native workflow-based application design considering

dataflow programming and low-code techniques.

F_SO.4 Policy-based orchestration and efficient resource allocation.

F_SO.6 Transparent lifecycle management of hyper-distributed application

components.

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 126/129

F_SO.10 Seamless orchestration and management of both container-based and

serverless workloads.

F_SO.15 Reproducible Environment Packaging.

F_IPDR.1 Expose well-defined APIs through EMPYREAN SDK.

F_IPDR.2 Build upon well-established open-source platforms and consortium

existing solutions.

F_IPDR.3 Documentation of all integration points.

Requirement ID: NF_GR.5 Stakeholders Involved: All

Title: Reliability

Description:

Degree to which a system, product or component performs specified functions

under specified conditions for a specified period of time. This characteristic is

composed of the following sub-characteristics:

• Maturity - Degree to which a system, product or component meets needs

for reliability under normal operation.

• Availability - Degree to which a system, product or component is

operational and accessible when required for use.

• Fault tolerance - Degree to which a system, product or component

operates as intended despite the presence of hardware or software faults.

• Recoverability - Degree to which, in the event of an interruption or a

failure, a product or system can recover the data directly affected and re-

establish the desired state of the system.

Related

Functional

Requirements

F_GR.2 Enable collaborative autonomy in the IoT-edge-cloud continuum.

F_GR.3 Encompass autonomous and continuous control loops.

F_GR.6 Provide monitoring for cloud-native applications and heterogeneous

infrastructure resources.

F_ASSOC.4 Support autonomous operation and enhance resiliency across the

continuum.

F_ASSOC.7 Data-driven seamless workload and data migration across the

Associations.

F_DI.1 Decentralized decision-making, speculative and multi-objective resource

orchestration.

F_DI.7 Decentralized and AI-enabled service assurance mechanisms.

F_DI.8 AI-enhanced self-healing for enhanced resiliency, adaptability, and

autonomous operation.

F_DI.9 Autonomous and adaptive workload autoscaling.

F_SO.6 Transparent lifecycle management of hyper-distributed application

components.

F_SO.7 Coordinate workload migration within and across Associations.

F_SO.8 Support automatic data migration operations within and across

Associations.

Requirement ID: NF_GR.6 Stakeholders Involved: All

Title: Security

Description:
Degree to which a product or system protects information and data so that

persons or other products or systems have the degree of data access

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 127/129

appropriate to their types and levels of authorization. This characteristic is

composed of the following sub-characteristics:

• Confidentiality - Degree to which a product or system ensures that data

are accessible only to those authorized to have access.

• Integrity - Degree to which a system, product or component prevents

unauthorized access to, or modification of, computer programs or data.

• Non-repudiation - Degree to which actions or events can be proven to have

taken place so that the events or actions cannot be repudiated later.

• Accountability - Degree to which the actions of an entity can be traced

uniquely to the entity.

• Authenticity - Degree to which the identity of a subject or resource can be

proved to be the one claimed.

Related

Functional

Requirements

F_GR.5 Support hyper-distributed, highly-demanding, and dynamic

applications from diverse domains.

F_ASSOC.3 Constitute a secure and trustworthy execution environment.

F_ASSOC.4 Support autonomous operation and enhance resiliency across the

continuum.

F_ST.1 Decentralized identity management.

F_ST.2 Privacy-Preserving authentication and authorization.
F_ST.3 Policy-Based Encryption.

F_ST.4 Automated Cyber Threat Analysis.

F_ST.5 ML for Anomaly Detection and Cybersecurity.

F_ST.6 Secure and Trusted Execution.

F_DI.7 Decentralized and AI-enabled service assurance mechanisms.

F_DI.8 AI-enhanced self-healing for enhanced resiliency, adaptability, and

autonomous operation.

F_IPDR.6 CI/CD guidelines.

Requirement ID: NF_GR.7 Stakeholders Involved: All

Title: Maintainability

Description:

This characteristic represents the degree of effectiveness and efficiency with

which a product or system can be modified to improve it, correct it or adapt it

to changes in environment, and in requirements. This characteristic is

composed of the following sub-characteristics:

• Modularity - Degree to which a system or computer program is composed

of discrete components, such that a change to one component has minimal

impact on other components.

• Reusability - Degree to which an asset can be used in more than one

system, or in building other assets.

• Analysability - Degree of effectiveness and efficiency with which it is

possible to assess the impact on a product or system of an intended change

to one or more of its parts, or to diagnose a product for deficiencies or

causes of failures, or to identify parts to be modified.

• Modifiability - Degree to which a product or system can be effectively and

efficiently modified without introducing defects or degrading existing

product quality.

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 128/129

• Testability - Degree of effectiveness and efficiency with which test criteria

can be established for a system, product or component and tests can be

performed to determine whether those criteria have been met.

Related

Functional

Requirements

F_GR.2 Enable collaborative autonomy in the IoT-edge-cloud continuum.

F_GR.3 Encompass autonomous and continuous control loops.

F_GR.6 Provide monitoring for cloud-native applications and heterogeneous

infrastructure resources.

F_ASSOC.8 Aggregators must maintain a catalogue of the Association resources.

F_ASSOC.10 Aggregators must maintain the state of the Association.

F_DI.6 Monitoring and managing power and energy consumption in IoT devices

and edge nodes.

F_SO.9 Implementation and integration of custom scheduling policies.

F_SO.10 Seamless orchestration and management of both container-based and

serverless workloads.

F_IPDR.1 Expose well-defined APIs through EMPYREAN SDK.

F_IPDR.2 Build upon well-established open-source platforms and consortium

existing solutions.

F_IPDR.3 Documentation of all integration points.

F_IPDR.4 Docker image of developed components for creating containers.

F_IPDR.5 EMPYREAN Git-based code repository.

F_IPDR.6 CI/CD guidelines.

Requirement ID: NF_GR.8 Stakeholders Involved: All

Title: Portability

Description:

Degree of effectiveness and efficiency with which a system, product or

component can be transferred from one hardware, software or other

operational or usage environment to another. This characteristic is composed

of the following sub-characteristics:

• Adaptability - Degree to which a product or system can effectively and

efficiently be adapted for different or evolving hardware, software or other

operational or usage environments.

• Installability - Degree of effectiveness and efficiency with which a product

or system can be successfully installed and/or uninstalled in a specified

environment.

• Replaceability - Degree to which a product can replace another specified

software product for the same purpose in the same environment.

Related

Functional

Requirements

F_GR.1 Federate heterogeneous and distributed IoT, edge and cloud resources.

F_GR.2 Enable collaborative autonomy in the IoT-edge-cloud continuum.

F_GR.4 Provide seamless deployment of hyper-distributed cloud-native

applications across a collaborative IoT-edge-cloud continuum.

F_ASSOC.4 Support autonomous operation and enhance resiliency across the

continuum.

F_ASSOC.9 Aggregators must dynamically discover resources within the

registered infrastructures and detect events.

F_DI.7 Decentralized and AI-enabled service assurance mechanisms.

D2.3 – Final EMPYREAN architecture, use cases analysis and KPIs

empyrean-horizon.eu 129/129

F_DI.8 AI-enhanced self-healing for enhanced resiliency, adaptability, and

autonomous operation.

F_DI.9 Autonomous and adaptive workload autoscaling.

F_SO.1 Continuum-native workflow-based application design considering

dataflow programming and low-code techniques.

F_SO.3 Seamless and declarative orchestration of self-organized distributed

orchestration systems.

F_SO.5 Context awareness and autonomous adaptive response.

F_SO.13 OCI-compatible container images.

F_SO.14 Support diverse execution environments.

F_SO.15 Reproducible Environment Packaging

F_IPDR.1 Expose well-defined APIs through EMPYREAN SDK.

F_IPDR.2 Build upon well-established open-source platforms and consortium

existing solutions.

F_IPDR.3 Documentation of all integration points.

F_IPDR.4 Docker image of developed components for creating containers.

F_IPDR.5 EMPYREAN Git-based code repository.

F_IPDR.6 CI/CD guidelines.

