B8 Ref. Ares(2025)790590 - 01/02/2025

N
(EMPYREAN

TRUSTWORTHY, COGNITIVE AND AI-DRIVEN
COLLABORATIVE ASSOCIATIONS OF IOT DEVICES AND
EDGE RESOURCES FOR DATA PROCESSING

Grant Agreement no. 101136024

Deliverable D2.3
Final EMPYREAN architecture, use cases analysis

and KPIs
Programme: HORIZON-CL4-2023-DATA-01-04
Project number: 101136024
Project acronym: EMPYREAN
Start/End date: 01/02/2024 - 31/01/2027
Deliverable type: Report
Related WP: WP2
Responsible Editor: RYAX
Due date: 31/01/2025
Actual submission date: 31/01/2025
Dissemination level: Public
Revision: FINAL
L This project has received funding from the European Union’s
A Horizon Europe research and innovation programme under grant

g agreement No 101136024

(EMPYREAN
D2.3 — Final EMPYREAN architecture, use cases analysis and KPls N7

Revision History

Date Editor Status | Version Changes
17.11.24 RYAX Draft 0.1 Initial ToC
20.12.24 RYAX Draft 0.2 Integrate initial contributions in Sections 3, 4
09.01.95 RYAX Draft 0.3 Isr:i?;tse;f:ted partners contributions in
20.01.25 ICCS Draft 0.4 Integrate final contributions in Sections 5, 6, 7, 8
23.01.25 RYAX Draft 0.5 Complete version for internal review
29.01.25 RYAX Draft 0.6 Revised version after internal review
31.01.25 RYAX Final 1.0

Author List

Organization Author

RYAX Yiannis Georgiou, Michael Mercier, Pedro Velho, Yugiang Ma

ICCS Aristotelis Kretsis, Panagiotis Kokkinos, Fotis Kouzinos, Emmanouel Varvarigos

CcC Marton Sipos, Marcell Fehér, Daniel E. Lucani

NVIDIA Dimitris Syrivelis

umu Antonio Skarmeta, Eduardo Canovas

ZSCALE Ivan Paez

NUBIS Anastassios Nanos, Charalampos Mainas, Georgios Ntoutsos, llias Lagomatis,
Konstantinos Papazafeiropoulos, Apostolos Giannousas

IDEKO Aitor Fernandez, Javier Martin

NEC Jaime Fuster, Roberto Gonzalez

EV ILVO Jan Bauwens, Theodoros Chalazas

TRAC Keshav Chintamani

Internal Reviewers
Eduardo Canovas, UMU

Ivan Paez, ZSCALE

empyrean-horizon.eu 2/129

(EIMPYREAN
D2.3 — Final EMPYREAN architecture, use cases analysis and KPls I

Abstract: EMPYREAN introduces an innovative vision for an loT-edge-cloud continuum,
seamlessly integrating loT devices, robots, and computational resources into dynamic, self-
organizing collectives known as Associations. This deliverable presents the final outcomes of
Task 2.2 “Concept, Use Cases and Requirements Analysis” and Task 2.3 “Architecture
Specification”. It builds upon previous reports (D2.1 and D2.2), presenting key updates on
EMPYREAN components, their interactions, and the finalized architecture. A significant
contribution is the introduction of detailed system operation flows, providing insights into the
internal workings of the platform and its innovative functionalities. Finally, it outlines the
implementation and delivery plan, along with an analysis of requirements coverage, setting a
clear path for the next phases of development and evaluation within the project.

Keywords: EMPYREAN Architecture, EMPYREAN Platform, EMPYREAN Components, System
Operation Flows, Associations, Tracking KPIs, Edge-Cloud Continuum, Cognitive Orchestration,
Trustworthy, Al-Driven Data Processing

empyrean-horizon.eu 3/129

(EIMPYREAN
D2.3 — Final EMPYREAN architecture, use cases analysis and KPls N

Disclaimer: The information, documentation and figures available in this deliverable are written by the
EMPYREAN Consortium partners under EC co-financing (project HORIZON-CL4-2023-DATA-01-04-
101136024) and do not necessarily reflect the view of the European Commission. The information in
this document is provided “as is”, and no guarantee or warranty is given that the information is fit for
any particular purpose. The reader uses the information at his/her sole risk and liability.

Copyright © 2025 the EMPYREAN Consortium. All rights reserved. This document may not be copied,
reproduced or modified in whole or in part for any purpose without written permission from the
EMPYREAN Consortium. In addition to such written permission to copy, reproduce or modify this
document in whole or part, an acknowledgement of the authors of the document and all applicable
portions of the copyright notice must be clearly referenced.

empyrean-horizon.eu 4/129

(EIMPYREAN
D2.3 — Final EMPYREAN architecture, use cases analysis and KPls I

Table of Contents

1 EXECULIVE SUMMIAIY .o 14
B 14} o Yo [T ot [o 1 PRSP 15
2.1 Purpose of this dOCUMENTcccoviiiiiiie e 15
2.2 [DToTol8] 0 0 =T 0 LA A f 8ol (| = 15
2.3 AN E o 1= o ol =PSRRI 15

3 EMPYREAN COMPONENES ciiiiiiiiiiiii 16
3.1 (@Y= VT Y PP PP 16
3.2 ComMPOoNENTS UPAates.....uuiiiiiiiiee ettt are e e s e e s ssaaeeesenns 16
3.2.1 Privacy and SecUrity MAnager......ccccevcuueeiiriiiieeeiriiieeeesrtee e ssieee e s sree e e s sraee s s naeees 16
3.2.2 Edge Storage Gateway and Edge STOragecccoccvveeievireeeicniieee e 17
3.2.3 Decentralized and Distributed Data Managercccccceeeeeiieccciiiieeeee e, 19
3.2.4 Local Orchestration and Autoscaling Optimizations........c.ccceeeevvvieeeeeeieveccnninneen, 20
3.2.5 ANAIYEICS ENGINE ..uveiiiiiee ettt e e e e e e e e e e e e e e e e e e 21
3.2.6 Cyber Threat Intelligence ENGINEcceeeeriiiiieiie e 22
3.2.7 DeCiSION ENGING cciiiiiiiiiiieiiiee 23
3.2.8 WOrKFIOW IMAN@EEN ..oeeieiiiiei ettt ettt e e et e s e e e e e aeaes 24
3.2.9 Dataflow Programmingcccoecuiieiiiiiiee it e s s e e e e s 25
3.2.10 ACtION PACKAGING 1vvviieeieiiiee ettt e e e e e s abae e e e naeeeeenns 27
3.2.11 811 =T 0 1= E 2 UT1 o 1T SRR 28
3.2.12 Analytics-friendly Distributed Storageccccveee e 28
3.2.13 Service Orchestrator and EMPYREAN Controller.......ccccoeveecciieeeee e, 30
3.2.14 TelEMELIY SEIVICE ... ettt e e e e e e e e e e e e e snrrrereeeaaeeenn 31
3.2.15 EMPYREAN ABEregator .cuuuuieie it e ettt e e e e e e e e e aaaeee e e e e eeees 32
3.2.16 EMPYREAN REEISTIY..cieiieiiiiieie ittt e e e e e e ettt e e e e e e e e e e annne e e e eeeens 33

3.3 Components INtEracClioNS.......cuveuiiiie e e e e e e e eeees 34
3.3.1 Decision Engine with Telemetry SErviCecccciouviciiiieeeee e, 34
3.3.2 Workflow Manager with Service Orchestrator.........cccccceeiiiieiccciiieeee e, 37
3.3.3 Workflow Manager and Dataflow Programming.........cccccceeiveiciiiieeeeee e e, 39
3.3.4 Application Packaging and Unikernels Builder...........ccccceeeiieecciiiieeeeee e, 41
3.3.5 Workflow Manager and EAZe STOragecccveveeieeiccinireeiee e 42
3.3.6 EMPYREAN Aggregator with Security and Privacy Managerccccccceeveevnvnnnenn. 44

4 EMPYREAN System Operation FIOWS.........uiiiiiiiiiiiieieeeeeeeeccirreeeee e eeeitreeeee e e e e e eenrreeeees 47
4.1 (@Y= VT YRR PP PPPPPPPPPPPRE 47
4.2 EMPYREAN ECOSYSTEM «.iiiiiiiiieiii ettt ee et s s e e e e e eaabbsa s s e e e e eeaeaenan 47
4.3 Generic OPeration FIOW ...t e e et e e e e 52
4.4 AsSSOCIATIONS MANAZEMENT ...uvvviiiiiiiiiiitiieeieerrrrrrrerrrerere . 53
o R X o Yol - o] H Y= AU | o TP 53
4.4.2 AsSOCIAtioN DEIETION......cciiiiiee e e 56
4.4.3 ASSOCIAtION UPAALE wuvveieiiiiiiiiiiiiiiie ettt et e e e e eeaarrer e e e e e e sennnraeeeeas 58

4.5 Infrastructure Resources and Users Managementcccveeeeeeeeeiecnnieeeeeeeeeeeennnneen. 60

empyrean-horizon.eu 5/129

(EIMPYREAN
D2.3 — Final EMPYREAN architecture, use cases analysis and KPls I

4.5.1 Computing Resources OnNboardingcccccveeeeiiiiieiiiiiiieeee e 60
4.5.2 Computing Resources Offboarding........ccccoeciieeiiiiiiiiiiiieec e 61
4.5.3 Storage Resources Onboarding / Offboarding..........ccccccuveviiivieiiecciesiecceecs 62
4.5.4 Entity ENrolImMeNnt. .o et 64
4.6 Application DeveloOpMENT.........uviiieiii e 66
4.6.1 Low-Code Application Developmentcccceeevieiieciciiiieee e 66
4.6.2 ACtion PaCKaginguvvieeiiiiiiiiieeee et 67
4.6.3 Integration of Data SPacCEScccccueieeiiiiee e e 68
4.7 Application DePIOYMENT.....ccoiiiiiiiiiiie et s e e s e e s are e e e aes 70
4.7.1 Cloud-Native Application Deployment.........ccceeiiriiieeiiiiieee e e 70
4.7.2 Intra-Association Workload and Data Migrationcccccceeevvviieeeiniieeesincinee e 75
4.7.3 Data FIOWS and Data ACCESS...cccevuuirieiiiieeeiiiiieeeesitieeeessieeeesesraeeeesraeeesssaeaeeeennns 77
4.7.4 Isolated and Trusted EXECULIONccciei it e 79
4.7.5 Software-Defined Interconnect over RDMA and Hardware Accelerated Workloads
80

4.7.6 Cloud-Native Unikernels EXECULION.........cc.uvvieeiieiieciieeeee e 81
4.7.7 Analytics-Friendly Data Storage and QUENYccccuveeeiiiiieeeieiiieeecsieee e seieee e 82
4.7.8 Workload AULOSCAlING ...ccooueiieeieiiiee et e e s e eaae e e e aes 83
4.8 Inter-AssocCiation OPerationso 84
4.8.1 Inter-Association Workload and Data Migrationccccceeeeveciiiieeee e, 84
4.9 Telemetry and Service ASSUIANCEccieeeieicevriireieeeeeeeccirrreeeeeeeessnnrreeeeeeeeseennssneenes 87
49.1 Telemetry and Observabilitycccccceieieciiiiieec e 87
4.9.2 SEIVICE ASSUIANCE . ceuvertree......—....... 89
4.9.3 Cyber-SECUIITY ASPECES..ciiiiiiicciiteeeiee e e e ettt e e e e eeerrrrre e e e e e e e e eetarreeeeeeeeeenanrreeeens 90

5 EMPYREAN ArChit@CtUIrE DESISN .uvveeeeeeeeieiitieeeeeeeeeecccirree e e e e e e seeeatreeeeeeeeeessetnrseseeeeessennnes 92
5.1 EMPYREAN Final Archit@CtUre.......oiiieiiiee et e 92
5.2 EMPYREAN Detailed Archit@Cture.......uueeieeiiie e 94
5.3 = ol T Y= < 1 SRR 97
5.3.1 Methodology for Tracking KPIScooeeeiiiiiieee e 97
ST T A =Yoo Yo YTt | I SR 97
5.3.3 USE CASE KPIS cuiiiiiiiiiiiiitiiiiieis ettt eaaaaaan 99

I U N O 1 T Y g = | 1Y PR 100
6.1 Anomaly Detection in Robotic Machining Cells (UCL)cccceevvviiiivreeeeeeeeieiinnneen. 100
B.1.1 OVEIVIBW. ittt 100
6.1.2 Development and Deployment Updatesccooccviiiiieiiiiieccciieeeee e, 100
6.1.3 Leveraging EMPYREAN Components and Featuresc.ccccoeeccvvieeeeeeeeccccnnnnnnn. 102
6.2 Proximal Sensing in Agriculture Fields (UC2)cccooueeeeiciiieeecieee e 104
B.2.1 OVEIVIEBW. o 104
6.2.2 Development and Deployment Updatesccccoeecurrveeeiieeieiicineeeeee e, 104
6.2.2.1 Devices, equipment and commMUNICAtioNS.......eeeeveeeiiiiciiiieeeeeeeeeeerirreeeeee e 105
6.2.2.2 Adjustments from D2.1vveeeeiiiiiiiiiiiieeiee e 106
6.2.2.3 Al models training/developmentcoovvieeeeeeeceieeieee e 106

empyrean-horizon.eu 6/129

(EIMPYREAN
D2.3 — Final EMPYREAN architecture, use cases analysis and KPls N

6.2.2.4 Workflows identified within the Use €Case.......cccccceeevieeiciciiiee e, 107
6.2.3 Leveraging EMPYREAN Components and Featurescccceecevvveeeeeeeeeccccnnnnnnn. 109
6.3 Advanced Inference and Coordinated Behaviors for Warehouse Automation Robots
(ucs) 111
B.3.1 OVBIVIBW. ittt 111
6.3.2 Development and Deployment updates....cccccceeveccniiiiieiee e, 111
6.3.2.1 Devices, equipment and communicationsS........cccccveereerieiccciieeeee e, 111
6.3.2.2 Workflows identified within the Use €Case.......cccccceeeiiee e, 112
6.3.2.3 DEVEIOPMENTS oottt naa e e e eaes 112
6.3.3 Leveraging EMPYREAN Components and FEAtUresccccovvveereirivieeeiriineeennns 114
6.4 Security in Smart Factories - S. Korea International Collaboration (UC4) 115
R O O 1Y o V1= U PPPS 115
6.4.2 Development and Deployment Updatesccooeveeiiiiieeiiie i, 115
6.4.3 Leveraging EMPYREAN Components and Featurescccccceeeccvvveeeeeeeeeeccnnnnnnen, 116
7 Implementation and DeliVery Plan ... 117
S T 6o Tl [N [o TSR 118
9 Appendix - ReEQUIrEMENtS COVEIAGEuiviiirriieieiireeeesitieeeeeireeeeseeeeessraeeesssreeeeessneeees 119

empyrean-horizon.eu 7/129

D2.3 -Fina

(EMPYREAN
| EMPYREAN architecture, use cases analysis and KPls I

List of Figures

Figure 1:
Figure 2:
Figure 3:
Figure 4.
Figure 5:
Figure 6:
Figure 7:
Figure 8:

Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24.
Figure 25:
Figure 26:

Figure 27:

Privacy and Security Manager interaction with other EMPYREAN services............. 17

Overview of the main components of the EMPYREAN platform’s storage solution.18

Eclipse Zenoh NetWOrk STACKceeieiieiccieiiiiiee e 19
Local Orchestration and Autoscaling Optimization dependencies...........ccccvveeene.n. 21
Analytics Engine core components and dependencies.........cccccvveeeeeeeeiecccinrieeeeeenn. 22
Architecture of the CTIENGINE ...cciiviiiiiieiiiee ettt e s s eaee e 22
Example of the Trending Elements functionality.........ccccceeeeeiiniicciiieiee e, 23
Decision Engine core components and dependenciesccccceeeevccvvireeeeeeeeeeccnvvenenn. 24
Workflow Manager components and dependencies........ccccveveeeeeeieccciiieeeeeeeeeeeens 25
Example of dataflow application deployed across the continuum 26
NIX-based Environment Packaging components and dependenciescccc...... 27
Unikernels Builder - High-level overview of the Bunny workflowcccc.cc...... 28
Comparing replication with erasure coding........cccceeeieiecciiieeee e, 29
Analytics-friendly Distributed StOrageccccceeiieecciiiieeeee e 29
Service Orchestrator and EMPYREAN Controller components and dependencies 30
EMPYREAN Telemetry Service components and dependencies........cccccccvvveeeeenn. 31
EMPYREAN Aggregator core components and dependencies.......cccccoeeccvvvvveeeennnn. 33
EMPYREAN Registry core components and dependencies........cccccceeeeeeccvvvieeeeeennn. 34
EMPYREAN Association-based loT-Edge-Cloud continuum........cccccoeevviiiviiennennnn. 48
EMPYREAN ecosystem, key stakeholders, their roles, and interactions 49
EMPYREAN generic operation floW........ccceeeiiiiiiiiiiiiieeiec et 53
Association setup operation flow — Steps involved and interactions..................... 55
Association deletion operation flow — Steps involved and interactions 57
Association update operation flow — Steps involved and interactions 59
Entity enrollment operation flOW........cccuvveeiiii e 65
Data Spaces integration within the EMPYREAN platformcccccceeveeiveiicnnveennneenn. 70

Initial assignment of cloud-native application’s microservices to Associations..... 72

empyrean-

horizon.eu 8/129

(EIMPYREAN
D2.3 — Final EMPYREAN architecture, use cases analysis and KPls I

Figure 28: Hierarchical and cognitive orchestration at the Association level 73
Figure 29: Selection of worker nodes and seamless application deployment 74
Figure 30: Intra-Association workload and data migrationcccccceeeeeiieiiccciineee e, 76
Figure 31: Seamless access of object-based storage resources through Zenoh 77

Figure 32: Decentralized and distributed interaction and data distribution with secure storage
1ol o NI AN Yo T =) o] o U UUPPPPRN 78

Figure 33: Workflow for creating a dataflow descriptor file using Eclipse zenoh-flow........... 79

Figure 34: Inter-Association workload and data migration operation flow — Steps involved and
INEEIACTIONS. .o 86

Figure 35: Telemetry and observability operation flow — Steps involved and interactions.... 88

Figure 36: Service assurance operation flow — Steps involved and interactions..................... 90
Figure 37: CTI Engine core components and dependencies.cccvveeereevereeriieeeeesiveeeeesnnens 91
Figure 38: EMPYREAN high-level architeCture........cccooeuiieeiiciiiie e 92
Figure 39: EMPYREAN detailed architecture, final version..........cccocveeviiiiniieiniieeneeeneeee 96

Figure 40: The typical architecture employed by machine tool clients, consisting of deep-edge
devices integrated with the robots and far-edge resources hosted on-premise by the
(ol 1= 3 PSRRIt 100

Figure 41: Current production WOrKFIOW.ceeeiiiiiiiiiiiee e e 101
Figure 42: Possible breakdown in EMPYREAN of current behavior into three workflows.... 102
Figure 43: Planned UC2 architecture with the EMPYREAN componentscccccceeeeeeenennns 109
Figure 44: A Tractonomy’s autonomous towing robot (ATR) collecting point cloud data.... 113
Figure 45: A two carts automatic locking System.ccccovvvveeiiiiieicceeee e, 114

Figure 46: EMPYREAN development roadmapccoooveeiiiiieeiie e 117

empyrean-horizon.eu 9/129

(EIMPYREAN
D2.3 — Final EMPYREAN architecture, use cases analysis and KPls I

List of Tables

Table 1: Decision ENGINe INTEIrfaCeuuiiiiiiiiie et e e e e e 36
Table 2: Telemetry Service INterfaceoocueeee i e 36
Table 3: PIMIDS INTEITACE ...c..uiiiieiieeieee ettt 36
Table 4: Workflow Manager INterfacecuueeeeciiiie e 38
Table 5: Service Orchestrator INterfaceoooieiiiiiiiie e 38
Table 6: Privacy and Security Manager INterfaces.......ccccvvvviieeeieiiieei et 45
Table 7: EMPYREAN Aggregator INtErface ...ttt e e e 46
Table 8: Overview of Association setup operation flowccoeocveeeiiiiii e, 54
Table 9: Overview of Association deletion operation flow.........ccccceeeeiiieiicciee e, 56
Table 10: Overview of Association update operation flow.......cccccveeiiiiiiiiiiciiiee e, 58
Table 11: Overview of computing resources onboarding operation flow..........cccccceeevvnneennn. 60
Table 12: Overview of computing resources offboarding operation flow...........ccccceveennneen.n. 61
Table 13: Overview of storage resources onboarding and offboarding operation flow 63
Table 14: Overview of entity enrollment operation flowcccccveeeiiiiii i, 64
Table 15: Overview of low-code application development operation flowccoeeunnneenn. 66
Table 16: Overview of application and action packaging operation flowcccccceeeveennnnnenn. 68
Table 17: Overview of data spaces integration operation flow........ccccceeeiccciiiieiee e, 69
Table 18: Overview of cloud-native application deployment operation flow......................... 71
Table 19: Overview of intra-association workload and data migration operation flow.......... 75
Table 20: Overview of intra-association workload and data migration operation flow.......... 77
Table 21: Overview of isolated and trusted execution operation flowccccceeeeeieeieicnnnneeen. 80

Table 22: Overview of software-defined interconnect over RDMA and hardware accelerated

WOTKIoads Operation fIOWuuveeiiiiiiiiiiieee e e e e e e e e e e e eanens 81
Table 23: Overview of cloud-native unikernels execution operation flow........ccccccceeeuunnnneeen. 82
Table 24: Overview of analytics-friendly data storage and query operation flow 83
Table 25: Overview of workload autoscaling operation flowccceevveieeiiciiiieeeee e, 84
Table 26: Overview of inter-Association workload and data migration operation flow 85
Table 27: Overview of telemetry and observability operation flow.......ccccecevvveveeiieeincccnnnnnen. 87

empyrean-horizon.eu 10/129

(EMPYREAN
D2.3 — Final EMPYREAN architecture, use cases analysis and KPls N7

Table 28: Overview of service assurance operation flowccccccveeericiii e, 89
Table 29: Overview of cyber-security Operation.........ccceeeiecieeeieciiee e 91
Table 30: EMPYREAN TeChNical KPIScoiiiiiiiiiiiiiiieecee e 98
Table 31: The different hardware components and their key features of UC2..................... 105
Table 32: Functional requirements coverage in the final EMPYREAN architecture and

OPEIATION FIOWS ...t e e e s e e e s rrae e e s ssreeeeenaes 119
Table 33: Analysis of overall non-functional requirements.......cccccveeiiviiieeicicieee e, 123

empyrean-horizon.eu 11/129

D2.3 — Final EMPYREAN architecture, use cases analysis and KPls

%@MPYREAN

Abbreviations
Al Artificial Intelligence
AMQP Advanced Message Queuing Protocol
APC Attribute-Based Credentials
API Application Programming Interface
ATR Autonomous Towing Robots
AWS Amazon Web Services
CL Command Line Interface
CRI Container Runtime Interface
CRUD Create, Read, Update, Delete
CTA Cyber Threat Alliance
CTI Cyber Threat Intelligence
cv Computer Vision
CVEs Common Vulnerabilities and Exposures
D Deliverable
DAG Directed Acyclic Graph
DB Database
DDS Data Distribution Service
DID Decentralized Identifier
DKMA Distributed Key Management and Authentication
DLT Distributed Ledger Technology
DoA Description of Action
EAT Entity Attestation Token
EC European Commission
ETL Extract, Transform, Load
EUs End Users
FCS Fleet Control System
FL Federated Learning
FPGA Field Programmable Gate Arrays
GPU Graphics Processing Unit
GUI Graphical User Interface
HW Hardware
IDS Intrusion Detection System
IEC International Electrotechnical Commission
lloT Industrial Internet of Things
loC Indicators of Compromise
loT Internet of Things
JWT JSON Web Tokens
K8s Kubernetes
KMS Key Management System
KPI Key Performance Indicator
M Month
ML Machine Learning
MQTT Message Queueing Telemetry Transport
MTTR Mean Time to Repair
NBS Nash Bargaining Solution

empyrean-horizon.eu

12/129

D2.3 — Final EMPYREAN architecture, use cases analysis and KPls

Li@M PYREAN

NIR
OocCl
OF
OooM
oT
PDP
PEP
PMDS
PoC
PPFL
PSM
PVC
QoS
RAM
RDMA
REST
RL
RLNC
ROT
SDK
SLA
ole
SSI
SwW
TPU
UAV
ucC

ul
URL
VC
Vis-NIR
VM
VP
VRAM
WAN
WP
ZKP

Near-Infrared Spectrum

Open Container Initiative
Operation Flow
Out-of-Memory

Operational Technology

Policy Decision Point

Policy Enforcement Point
Persistent Monitoring Data Storage
Proof of Concept
Privacy-Preserving Federated Learning
Privacy and Security Manager
Persistent Volume Claim
Quality of Service

Random Access Memory
Remote Direct Memory Access
REpresentational State Transfer
Reinforcement Learning
Random Linear Network Coding
Resource Optimization Toolkit
Service Development Kit
Service Level Agreement

Soil Organic Carbon
Self-Sovereign ldentity
Software

Tensor Processing Unit
Unmanned Aerial Vehicles

Use Case

User Interface

Uniform Resource Locator
Verifiable Credentials

Visible and Near-Infrared Spectrum
Virtual Machine

Verifiable Presentations

Video Random Access Memory
Wide Area Network

Work Package

Zero-Knowledge Proofs

empyrean-horizon.eu

13/129

(EMPYREAN
D2.3 — Final EMPYREAN architecture, use cases analysis and KPls I

1 Executive Summary

EMPYREAN introduces a groundbreaking vision for an loT-edge-cloud continuum, seamlessly
integrating loT devices, robots, and computational resources into collaborative collectives
termed "Associations." These dynamically formed Associations operate autonomously across
diverse infrastructures, spanning multiple providers, geographical regions, and connectivity
types, forming a unified and interconnected ecosystem. This Association-based continuum
enables a harmonious blend of edge and cloud capabilities, fostering innovation in hyper-
distributed, dynamic, and time-critical applications.

At the core of EMPYREAN'’s vision lies an Al-enabled control and management plane designed
to autonomously balance computing tasks and data distribution. This distributed
infrastructure empowers efficient and adaptive operations by optimizing resource utilization,
performance, and resiliency within individual Associations and across federated ones.
EMPYREAN’s approach addresses the growing demands of modern applications, ensuring
ubiquitous computing, storage, and communication capabilities across a highly dynamic loT-
edge-cloud ecosystem.

This deliverable continues the work reported in D2.1 (M6) and D2.2 (M7), introducing key
updates on the various EMPYREAN components. In addition, it provides descriptions and
details of some specific, noteworthy component interactions. A major contribution of this
deliverable is the “System Operation Flows” section, which provides detailed presentations
and diagrams of the platform’s internals, bringing forward how the various EMPYREAN
components interact to provide the innovative functionalities developed in the context of the
EMPYREAN project.

Furthermore, this deliverable finalizes the EMPYREAN architecture and provides a structured
approach for tracking Key Performance Indicators (KPIs), allowing consortium to prepare the
terrain for further advancements in technical KPls. Finally, it outlines the implementation and
delivery plan, along with an analysis of requirements coverage, ensuring a clear roadmap for
the project’s next development and evaluation phases.

empyrean-horizon.eu 14/129

(EMPYREAN
D2.3 — Final EMPYREAN architecture, use cases analysis and KPls I

2 Introduction

2.1 Purpose of this document

This deliverable presents the final EMPYREAN architecture, detailing components’
interactions, and system operation flows within the EMPYREAN platform. Additionally, it
provides high-level information about the use cases, illustrating how they apply the proposed
architecture and leverage the related functionalities.

In particular, the deliverable reports on the work done under tasks T2.2 “Use Case &
Requirements Analysis” and T2.3 “Architecture Specification”, which have been further
enriched by the initial progress made in WP3 and WP4. The deliverables builds upon and
advances the work previously presented in D2.1 (M6) and D2.2 (M7).

Section 3 offers updates on EMPYREAN components, providing detailed insights into
noteworthy interactions between them. Section 4 presents high-level details on system
operation flows, bringing new details on how different users of EMPYREAN interact with the
platform. Both efforts upon the component interactions and system operation flows are then
used as a base in Section 5, where the finalized architecture is presented. Furthermore,
Section 5 presents the technical and use case KPIs, along with a methodology for tracking them
during the project’s lifecycle. Section 7 outlines the implementation and delivery plan, while
the appendix includes a comprehensive analysis of requirements coverage.

2.2 Document Structure

The present deliverable is organized into six major chapters:

e EMPYREAN Components and Interactions
e System Operation flows

e Architecture Design and Tracking KPls

e Use Case Analysis

¢ Implementation and Delivery Plan

e Requirements Coverage

2.3 Audience

This document is publicly available and is intended for anyone interested in gaining a high-
level understanding of the EMPYREAN architecture and how it is applied within the project’s
use cases. In addition, this document can also help the general public grasp the system
operation flows of the EMPYREAN project and how users can interact with the platform.

empyrean-horizon.eu 15/129

(EMPYREAN
D2.3 — Final EMPYREAN architecture, use cases analysis and KPls I

3 EMPYREAN Components

3.1 Overview

This section provides a detailed overview of the different EMPYREAN components. Initially,
we present the latest updates of each component, related to their high-level functionality and
their positioning in the final EMPYREAN architecture. Then, we describe some noteworthy
interactions between components that play an important role in the way the different
operation flows are defined in Section 4, as well as in the EMPYREAN architecture described
in Section 5.

3.2 Components Updates

This subsection provides updates on the descriptions of EMPYREAN components, initially
introduced in deliverable D2.2 (M7). These updates show the progress made in their
development, highlighting changes in functionality, enhancements in design, and refinements
in their roles within the platform. The complete list of all EMPYREAN components is available
in Section 3 and Section 4 within deliverable D2.2.

3.2.1 Privacy and Security Manager

The Privacy and Security Manager (PSM) enforces privacy and security in decentralized
ecosystems, particularly for loT environments. It leverages Self-Sovereign Identity (SSI)
systems and Decentralized Identifiers (DIDs) to offer secure, user-controlled identity solutions.

Key Features:

1. Verifiable Credentials (VCs) & Verifiable Presentations (VPs):
PSM manages VCs and generates VPs using advanced cryptography, such as the p-ABC
module, enabling Zero-Knowledge Proofs (ZKPs) and selective disclosure. This ensures
that only necessary data is shared, protecting user privacy.

2. JWT Signing with DIDs: Enables secure and verifiable identity management by signing
JSON Web Tokens (JWTs), facilitating fast and secure access to resources.

3. Integration with Distributed Ledger Technologies (DLTs): Verifies credentials with
transparency and immutability while using smart contracts to automate DID retrieval
and storage, enhancing security and reducing manual risks.

Due to emerging necessities and project requirements, the Privacy and Security Manager
(PSM) will incorporate a mechanism for storing policies on the Distributed Ledger through
smart contracts. This enhancement will enable dynamic policy installation across the
EMPYREAN architecture (Figure 1), ensuring secure interactions and enhanced governance of
resources, loT devices, and associated access. By implementing this capability, the PSM will

empyrean-horizon.eu 16/129

(EMPYREAN
D2.3 — Final EMPYREAN architecture, use cases analysis and KPls I

facilitate the traceability of all interactions within the ecosystem, providing enhanced
transparency, security, and accountability while supporting seamless policy enforcement
across distributed components.

Privacy and Securll'

Manager

\ 4

PEP

Empyrean Service
Components Orchestration

Figure 1: Privacy and Security Manager interaction with other EMPYREAN services

3.2.2 Edge Storage Gateway and Edge Storage

The main storage solution of the EMPYREAN platform is an enhanced extension of CC’s SkyFlok
S3 service. The service offers an S3-compatible interface, a de facto standard when it comes
to (cloud-based) object storage solutions. This compatibility comes with the benefit of simple
and quick integration with existing applications, courtesy of the large number of clients and
SDKs spanning most programming languages built for Amazon’s S3. The service supports all
S3 CRUD operations related to buckets and objects, as well as advanced features such as
multipart uploads and ranged downloads.

A special, unique feature of SkyFlok and SkyFlok S3 is its core storage architecture. Files are
erasure-coded and distributed to different cloud locations. This approach offers several key
benefits in terms of security, reliability, availability, and cost-effectiveness. In EMPYREAN,
association-local storage locations will also be supported, enhancing the overall flexibility.

Moreover, users can customize exactly how and where their data is stored. They can define
through a storage policy a list of storage locations, the redundancy level, the encryption
scheme used, and so on. Each S3 bucket is then associated with a storage policy, making it
possible to customize the storage to the specific requirements of each application. This
approach enables users to benefit from cloud, edge, and hybrid storage solutions, offering
adaptability and flexibility.

To support the temporary autonomous operation of a cluster when the Association becomes
isolated from the outside world, basic S3 PUT and GET object functionality will be maintained
for appropriately configured buckets.

empyrean-horizon.eu 17/129

s
o7

f(EIMPYREAN
D2.3 — Final EMPYREAN architecture, use cases analysis and KPls N

The main components that provide the aforementioned functionality are depicted in Figure 2.
Each Association will have an On-premises Storage Gateway that provides the S3-compatible
API to platform applications. This component performs all data processing related to erasure
coding, encryption, and compression as well as the uploading and downloading of file
fragments to and from storage locations. It also plays an important part in providing
autonomous operation, building on a local metadata database.

The metadata storage and management backbone is provided by the SkyFlok.com backend. It
is deployed on Google Cloud Platform and is made up of a set of microservices. To facilitate
the newly introduced features of the EMPYREAN project, CC is extending the SkyFlok S3
service with new microservices and new endpoints on existing microservices.

Two types of storage locations are supported: cloud backends (50+ covering the EU and US
across major cloud providers) and edge storage. The Edge Storage component is an
abstraction over association-local storage resources, provided through a containerized
instance of MinlO. It is able to utilize any type of storage resource that can be mounted as a
K8s volume.

Google Cloud Storage 10+ other cloud

’ providers

Amazon AWSS3 1 Microsoft Azure
S e
User
app i !
|
‘ !
1
1
|
1

SkyFlok.com backend

Association 1 Assaciation 2

app app

Figure 2: Overview of the main components of the EMPYREAN platform’s storage solution.

empyrean-horizon.eu 18/129

(EIMPYREAN
D2.3 — Final EMPYREAN architecture, use cases analysis and KPls I

3.2.3 Decentralized and Distributed Data Manager

EMPYREAN’s decentralized and distributed data management framework is built on top of the
Eclipse Zenoh! project. Zenoh is a Pub/Sub/Query protocol that provides a set of unified
abstractions to seamlessly manage data in motion, data at rest, and computations across the
Internet scale. Zenoh operates efficiently on server-grade hardware and networks as well as
on microcontroller and constrained networks. This adaptability ensures that the framework
meets the diverse demands of modern loT and edge computing environments.

Additionally, Zenoh supports peer-to-peer, routed, and brokered communication models,
enabling the selection of an optimal communication model at each stage of the system.

Eclipse Zenoh offers a two folds approach to facilitate seamless integration and operation in
distributed systems. First, a networking protocol that is agnostic to the underlying technology,
implementing a versatile networking layer capable of running above the Data Link, Network,
or Transport layers of the OSI stack, as shown in Figure 3.

Transoort QUIC TLS TCP
P UDP Unicast UDP Multicast
Network IPv4 IPv6 6LOWPAN
Data Link WiFi Ethernet Thread
Bluetooth Serial
Physical

*Unix Domain Socket are also supported

Figure 3: Eclipse Zenoh network stack

Moreover, Zenoh provides a set of APIs enabling EMPYREAN’s application developers to build
large-scale distributed systems. These APIs allow for the integration of Operational
Technology (OT) protocols with the datacentre world and/or integrate IT protocols with the
embedded world. Thus, it offers the capability to seamlessly bridge IT and OT protocols across
different systems and networks.

Some of the main features of Eclipse Zenoh in EMPYREAN:

e Openness and Interoperability: Zenoh enables diverse technologies to collaborate. For
instance, the new Querier APl supports efficient and optimized data retrieval.
Enhanced support for ROS 2, a widely used framework in robotics, strengthens
connections between Zenoh and other platforms, facilitating interoperability.

e Adaptability and Scalability: Zenoh’s features are designed to adapt to varying

technological requirements. The stabilization of Liveliness APl support ensures real-
time monitoring of active participants in the network. The inclusion of Zenoh-Pico?,

L https://github.com/eclipse-zenoh/zenoh
2 https://github.com/eclipse-zenoh/zenoh-pico

empyrean-horizon.eu 19/129

https://github.com/eclipse-zenoh/zenoh
https://github.com/eclipse-zenoh/zenoh-pico

(EMPYREAN
D2.3 — Final EMPYREAN architecture, use cases analysis and KPls I

which is made for small 10T devices, offers huge improvements in performance and
extends its scope to devices like the Raspberry Pi Pico series.

e Security and Privacy: Eclipse Zenoh protocol addresses critical issues such as
fragmentation and message integrity, ensuring secure and reliable data transmission.
These features safeguard interactions across the network, whether between loT
devices or cloud services.

e Performance Optimization: New advanced publisher/subscriber mechanisms
complement the Querier API to improve data throughput and reliability. These
optimizations enhance system performance while minimizing resource consumption,
key to efficient loT-to-cloud integration.

e Technology Agnosticism, EMPYREAN’s components are committed to supporting
diverse hardware and software platforms, including new features for QNX operating
systems, which highlights its technology-agnostic approach. This openness reduces
dependence on specific vendors and encourages widespread adoption.

3.2.4 Local Orchestration and Autoscaling Optimizations

This component is responsible for implementing advanced features to enhance local cluster
orchestration in the edge-cloud continuum (Figure 4). The first one focuses on the
development of Al/ML-driven vertical autoscaling mechanisms within Kubernetes-based
clusters to enable autonomous and adaptive workload management in the continuum. While
Kubernetes already supports horizontal autoscaling, vertical autoscaling offers the potential
to optimize resource allocation by dynamically setting container limits based on telemetry
data. This approach aims to (i) enhance container bin-packing efficiency, (ii) reduce the
number of active nodes, and (iii) lower overall energy consumption. Additionally, the work
explores extending vertical autoscaling techniques to GPU resources, addressing a growing
need for hyper-distributed Al applications. This is particularly critical given the current lack of
mature GPU fractioning technologies in Kubernetes.

Complementing this, the second advanced feature is related to optimizations upon
Kubernetes to minimize cold start delays. To this end, this component introduces task place
optimizations. By favouring the placement of tasks on nodes that have more container layers
related to the task being deployed this approach further improves efficiency and
responsiveness in the edge-cloud continuum.

The Al-enabled Workload Autoscaling that provides vertical pod autoscaling optimization will
be developed as a microservice integrated with Kubernetes. To maximize effectiveness, it will
be tightly integrated with the Ryax Workflow Manager in order to take advantage of the
execution-related data stored within the Ryax’s database. This data can be used to train the
ML model used to inform autoscaling decisions. The Container Layers Locality Scheduler will
provide the second feature that will be implemented directly within Kubernetes as a dedicated

plugin.

empyrean-horizon.eu 20/129

(EIMPYREAN
D2.3 — Final EMPYREAN architecture, use cases analysis and KPls

Workflow Manager
(Task 4.1}

I

Local Orchestration

Al-driven Autoscaling

Service Orchestrator I Telemetry Service
(Task 4.4] Kubernetes (Task 4.4)

Layers Locality Scheduler

Figure 4: Local Orchestration and Autoscaling Optimization dependencies

3.2.5 Analytics Engine

Service assurance mechanisms are critical for enabling the self-driven adaptability of the loT-
edge-cloud continuum, ensuring optimal performance, reliability, and efficiency across this
complex and dynamic infrastructure. To address this, EMPYREAN is developing a highly
automated and intelligent loT-edge-cloud continuum powered by Al-enabled distributed
management through its Service Assurance service. This system will guarantee optimal
application performance through autonomous adaptations operating within an infinite time
horizon control loop.

EMPYREAN’s approach integrates distributed service assurance mechanisms into each
Association by utilizing real-time telemetry data and advanced algorithms within its Analytics
Engine. The Analytics Engines employ continuous analysis techniques—such as machine
learning, machine reasoning, swarm intelligence, and robust adaptive optimization—to drive
orchestration mechanisms to (i) adapt resources within the Associations, (ii) provide dynamic
load balancing of processing workloads, and data within and across Associations, (iii) migrate
workloads to optimize energy efficiency, and (iv) mitigate resource fragmentation and
connectivity issues.

Figure 5 illustrates the key building blocks of the EMPYREAN Analytics Engine and their
interactions with other components of the EMPYREAN platform. The Data Connector
processes collected monitoring data, applying various transformations to prepare them for
the Event Detection Engine. The Data Manager provides local storage for processed data,
trained models, and results, while also enabling the exchange of events and data with external
components within the EMPYREAN platform. The Event Detection Engine implements the core
functionality of EMPYREAN’s distributed service assurance mechanisms. It facilitates the
execution of developed data-driven algorithms designed to ensure that deployed applications
and Associations consistently perform as intended.

empyrean-horizon.eu 21/129

(EIMPYREAN
D2.3 — Final EMPYREAN architecture, use cases analysis and KPls N

Analytics Engine

Service Orchestrator
(Task 4.4)

Data Connector

Telemetry Service
I (Task 4.4)
Data Manager
Data Distributor + o

(13.2) I

Event Detection Engine

Figure 5: Analytics Engine core components and dependencies

3.2.6 Cyber Threat Intelligence Engine

Figure 6 illustrates the operational infrastructure of the Cyber Threat Intelligence (CTI) Engine.
Data is collected from the CTA cloud and sent in JSON format to a MongoDB database, where
it is stored and managed. Through the Report Generation module, this data, which includes
detailed threat reports, indicators of compromise, and other essential metrics, is updated
daily through automated scripts that connect to the CTA. The data will also be supplemented
by information from UMU's MISP platform.

CTI Engine

CTA +—. Report Generation

CTl Web

UMU MISP
Platform

MongoDB

Figure 6: Architecture of the CTI Engine

The collected data undergoes rigorous analysis using advanced algorithms designed to detect
patterns, trends, and anomalies. Before being stored in the MongoDB database, the data is
thoroughly checked to ensure integrity and proper formatting. The database is optimized for
fast queries and efficient data retrieval. It powers the CTI Web platform, a user-friendly
interface that allows users to search, access detailed reports, and set up customized alerts.
The platform also features data visualizations that facilitate the interpretation of threat trends
and enable agile responses to security threats.

A recently introduced visualization feature enables users to identify trending elements within
the database, providing insights into various data metrics. This feature categorizes and ranks
trending and popular malware, malware families, attack patterns, and vulnerabilities, offering
a comprehensive overview of the threat landscape. An example of this visualization is
illustrated in Figure 7.

empyrean-horizon.eu 22/129

(EIMPYREAN
D2.3 — Final EMPYREAN architecture, use cases analysis and KPls I

A ot Securs oA ant-neirankings. el = barabilty o @ & =

1o
Ecormecmase Trmonc Emev: S Bicses \Orchestrating a brighter world N Ec

See: Malwares, Malware Famil

Trending

undarstuy. It ths st the ciferent sl rad Using & mix of popularty ., how dif re
populrit of hat specifc alemnt) they are in the wesk undsr siudy. 1 gives an indicton of tha recnt Imporiance of s siemnt

CVE-2002-0013 CVE-2002-1149

with respect o the average
.

CVE-2017-17215

CVE-2002-0012
L 4w

Figure 7: Example of the Trending Elements functionality

3.2.7 Decision Engine

The Decision Engine integrates distributed and multi-objective algorithms within the
EMPYREAN platform, implementing the “decide” phase of the envisioned closed-loop control
process based on the principles of observing, deciding, and acting. It will provide the
EMPYREAN Aggregator and Service Orchestrator with the intelligence needed to (i) support
the efficient operation of Associations, (ii) orchestrate hyper-distributed applications and
allocate their workloads by considering local resource states and characteristics while meeting
their objectives, and (iii) coordinate effective load-balancing of data and workload within and
across Associations.

The Decision Engine will leverage the open-source Resource Optimization Toolkit (ROT)
framework, initially developed by ICCS during the H2020 SERRANO? EU project. Within the
EMPYREAN project, efforts will focus on enhancing the Decision Engine to enable distributed
decision-making in a cloud-native environment. This will empower the Decision Engine to
deliver robust, efficient decisions for dynamic resource allocation, workload balancing, and
energy-efficient operations across the Association-based loT-edge-cloud continuum.

Figure 8 depicts the key building blocks of the Decision Engine and its interactions with other
EMPYREAN components. The Decision Engine Controller manages interactions with the
available Decision Engine Workers, coordinating their operations. It also communicates with
the Telemetry Service to retrieve necessary data and interfaces with other services within the
platform, such as the Service Orchestrator.

3 https://ict-serrano.eu

empyrean-horizon.eu 23/129

(EMPYREAN
D2.3 — Final EMPYREAN architecture, use cases analysis and KPls I

Decision Engine

Service Orchestrator . . . Telemetry Service
Decision Engine Controller
(Task 4.4) (Task 4.4)

Decision Engine Worker

!

Decision Algorithms

Figure 8: Decision Engine core components and dependencies

The Decision Engine Worker receives instructions from the Controller to start or stop the
execution of algorithms, carries out the assigned tasks, and monitors their progress. It also
reports relevant information back to the Controller. The architecture consists of a single
Decision Engine Controller overseeing multiple Decision Engine Workers, which perform the
computational tasks. Integrated within the workers are the Decision Algorithms that offer
different trade-offs between optimality and complexity, ensuring efficient performance while
meeting the diverse and strict applications requirements.

3.2.8 Workflow Manager

The Workflow Manager component (Figure 9) will be provided by the open-source Ryax
workflow engine. Specific enhancements have been planned to be brought in EMPYREAN at
the workflow management level. Initially, the goal is to enhance Ryax to efficiently support
both long-running microservices and short-duration serverless functions for data analytics and
Al applications in the edge-cloud continuum. Ryax leverages YAML-based abstractions which
will be adopted in the project to facilitate the development of data analytics applications upon
distributed systems.

Another important enhancement is to introduce multi-site workflow support, enabling
workflows to execute across multiple clusters at both the edge and cloud. This capability
requires particular networking and storage configurations to ensure seamless execution of
workflows across distributed sites. Furthermore, the platform will support user-defined
constraints and objectives to optimize workload placement. These features will be achieved
through integrations with the Decision Engine and Service Orchestrator components.
Additionally, Ryax will integrate with EMPYREAN Associations by interacting with the
Aggregator and incorporating a native dataflow programming framework like Zenoh-Flow.
This integration will provide fine-grained, real-time data communication capabilities, which is
essential for loT-based EMPYREAN use cases. To implement and support these capabilities,
two new components will be introduced into the EMPYREAN architecture: the Ryax Runner,
which will operate at the Association level, and the Ryax Worker that will function at the
platform level.

empyrean-horizon.eu 24/129

(EIMPYREAN
D2.3 — Final EMPYREAN architecture, use cases analysis and KPls

The first feature related to the support of long-duration microservices will enable direct
support of Docker containers and the definition of how they can be run individually or within
a workflow. This will greatly benefit users who can bring their containers and run them directly
without any changes or adaptations to the different underlying infrastructures. The second
feature related to the support of multi-site workflow executions will utilize specialized
networking abstractions to link a Kubernetes namespace with node pools spanning different
sites. This innovation will enable the seamless execution of actions on different sites. The
support of the dataflow programming framework will be enabled through the integration of
the Zenoh-Flow open-source platform into Ryax. This will be done through an initial
integration of Zenoh networking protocol on Ryax, enabling robust dataflow programming
and efficient real-time communication, essential for 1oT and edge applications.

Aggregator Decision Engine Service Orchestrator
(Task 4.4) (Task 4.1) (Task 4.4)

I I I

Workflow Manager

Multi-site Support
Hybrid PP

Microservices/Serverless
Runtime

Dataflow Support

I I I

Dataflow Programming Application Packaging Autoscaling & Local
(Task 4.2) (Task 4.3) Orchestration (Task 3.4)

Figure 9: Workflow Manager components and dependencies

3.2.9 Dataflow Programming

EMPYREAN Dataflow Programming component will be built on top of the Eclipse Zenoh Flow
open-source project to provide a framework for developing and deploying applications across
the Cloud-to-Thing continuum. This framework aims to simplify and structure application
creation while ensuring efficient deployment across distributed systems.

In this context, a dataflow application (Figure 10) is represented as a collection of nodes
interconnected with links, forming a directed acyclic graph (DAG). These graphs are described
using a human-readable descriptor file, referred to as a contract. The EMPYREAN Dataflow
Programming component’s primary objective is to enforce this contract. Starting from the
descriptor file, Zenoh-Flow facilitates the instantiation of the application along with the
placement of its components across the available infrastructures located at the thing, edge or
cloud.

empyrean-horizon.eu 25/129

D2.3 — Final EMPYREAN architecture, use cases analysis and KPls

{@MPYREAN

Figure 10: Example of dataflow application deployed across the continuum

Using EMPYREAN’s Dataflow Programming component simplifies the role of the application
developer to two primary tasks: (i) creating the different nodes that compose the application
and (ii) describing the connections between them. Other steps are efficiently managed by the
Zenoh-Flow framework and the other orchestration and deployment mechanisms within the
EMPYREAN platform.

Key features of this component are:

Declarative approach: Through its descriptor file, application developers know
precisely the structure of what will be deployed and how it will be connected. Its
human-readable format lowers the entry barrier for non-technical application
designers.

Optimized communications: Being aware of the application’s topology from the
descriptor file, Zenoh-Flow will adapt communication channels for efficiency. Nodes
located on the same Zenoh-Flow runtime instance will communicate through specific
channels that add negligible overhead.

Unified abstractions: Regardless of where a node will be deployed, a developer only
codes it once: Zenoh-Flow nodes implement a single interface. The result is a shared
library that is later dynamically loaded by a Zenoh-Flow runtime.

Location transparency: As Zenoh-Flow uses Zenoh as its communication medium,
application developers do not need to know ahead of deployment where their nodes
will be running. Communications are based on key expressions that Zenoh routes
transparently.

Data isolation: Zenoh-Flow associates each instance of an application with an
identifier that is transparently leveraged in the communications. This ensures that if
the same application is deployed twice on the same infrastructure or if several
applications use the same “topics”, no collision will occur. The same technique is used
for each link, further allowing nodes to expose the same key expressions.

empyrean-horizon.eu 26/129

(EIMPYREAN
D2.3 — Final EMPYREAN architecture, use cases analysis and KPls I

e High-performance: Benchmarks show that Zenoh-Flow can achieve high throughput
and low latency. A port of an Autonomous Driving System over to Zenoh-Flow further
illustrated its capabilities, allowing for real-time control of a car in a simulated
environment.

3.2.10 Action Packaging

Applications in the EMPYREAN platform are defined as a single workflow or combination of
workflows. Each workflow is composed of one or more actions and each action is packaged as
OCl-compatible images, making them ready for deployment using standard cloud-native tools
(e.g., containerd, CRI-O, podman). These images can represent generic containers, lightweight
application kernels (such as unikernels or libOS applications), or loT firmware blobs.
EMPYREAN offers a novel tool that can package any workload into an OCl-compatible image,
enabling transparent storage, distribution, and deployment using standard cloud-native
techniques. These capabilities are essential to the application design process, providing the
system with the modularity and flexibility to support a wide range of application types.

By building on the NIX-based Environment Packaging tool, RYAX's workflow engine packaging,
and NUBIS' unikernels builder, EMPYREAN introduces a unified packaging tool. This tool
leverages the OCI specification to define crucial metadata for action binaries that can be used
by the runtime environment to prepare and eventually implement the required execution
environment.

This unified approach is a critical element for modular and flexible application design,
empowering users to define microservices or serverless functions in any programming
language while remaining agnostic to architectures (e.g., x86 or ARM). By leveraging the NIX
functional package manager, it provides a declarative and reproducible process for building
lightweight, OCl-compliant containers. This guarantees seamless polyglot workflows and
supports diverse software and hardware infrastructures across the edge-cloud continuum.

Workflow Manager
(Task 4.1)

I

Lightweight Application

Packaging
Local Orchestrator Application Builder for
(Task 3.4) NIX Functional Package Unikernels (Task 4.3)
Manager

Figure 11: NIX-based Environment Packaging components and dependencies

empyrean-horizon.eu 27/129

(EIMPYREAN
D2.3 — Final EMPYREAN architecture, use cases analysis and KPls I

3.2.11 Unikernels Builder

EMPYREAN aims to deliver an end-to-end software stack for application deployment based on
unikernels. To achieve this, EMPYREAN introduces Bunny, a suite of system software
components designed to enable the deployment of applications as unikernels in cloud-native
environments.

Bunny is a libOS-based application building and packaging tool developed by NUBIS to
streamline the creation and deployment of lightweight application images. By leveraging the
powerful NIX package manager, Bunny simplifies the construction of slim, reproducible
application images tailored for various unikernel frameworks, including Rumprun, Unikraft,
OSv, MirageOS, and NanoVMs. These unikernel-based applications are optimized for
performance and minimal resource usage, making them ideal for highly efficient and secure
environments.

Bunny integrates seamlessly into the cloud-native ecosystem by packaging these lightweight
application images into OCl-compliant images. This compatibility allows EMPYREAN to
leverage standard container orchestration and deployment platforms, such as containerd and
Kubernetes (K8s). When combined with the RYAX's workflow engine, Bunny provides a robust,
efficient, and flexible solution for developers looking to harness the benefits of unikernels
without compromising on compatibility or scalability. This integration ensures that developers
can deploy unikernel-based applications with ease, leveraging the benefits of cloud-native
technologies while achieving exceptional performance and resource efficiency.

Bunnl{ﬂle Code mmlysis Framework S,ele_ction Fetch Bu'n[ol;v\g |aycr‘s Build Unike,r‘v\e_l '\Mmﬁ-e_ Produce OCT Tmaﬁe,

LwIP
@ musl
libpython3
< > rumpkern_bmktc
I i -= rumpnet
rumprunfs_base
\ S/ mirage-runtime

mirage-net

. tepip.ipvd
{:E B libblk.so
B OSVO libnet.so

libvfs.so

Figure 12: Unikernels Builder - High-level overview of the Bunny workflow

3.2.12 Analytics-friendly Distributed Storage

Storing large volumes of loT data reliably and cost-effectively is a significant challenge for
current state-of-the-art systems. Given the need to efficiently query the data, replication has
so far been seen as the only way to provide the required redundancy. Figure 14 illustrates the
cost implications of using replication. To achieve the industry-standard requirement of
tolerating the loss of two copies, 3x replication is typically used, causing a tripling of storage
costs. In contrast, erasure coding provides a comparable level of reliability at exactly half the
storage cost in this case. The cost difference becomes even greater when higher levels of
reliability are required.

empyrean-horizon.eu 28/129

A
f(EIMPYREAN
D2.3 — Final EMPYREAN architecture, use cases analysis and KPls N

Unfortunately, time-series loT data is only useful if it can be queried efficiently. In the case of
cloud storage, providers charge a premium price for data egress. Thus, it is imperative to
minimize the amount of data transferred when evaluating a query. Given that erasure coding
mixes the original data, byte-level access has so far been impractical. The same problem arises
with compression, most schemes make it impossible to know where each byte of the original
data is stored and thus typically all data must be downloaded and decompressed. These are
the two core challenges we address in EMPYREAN, aiming to go beyond the state of the art

with this component.

' ' Replication
m Q Q 3X * Storage efficiency: Poor
m * Byte-level access to data: Simple

Erasure coding
m * Storage efficiency: Optimal (MDS

f_; 'ii; ! ! 1.5X codes)

* Byte-level access to data: Impossible/

! ! Impractical (because of mixing)

Figure 13: Comparing replication with erasure coding

2
D
3

The Analytics-Friendly Distributed Storage System will be implemented through the loT Query
Engine and will incorporate the following key features:
e Use of erasure coding and data distribution to multiple storage locations.

e Efficient erasure-coded analytics queries that transfer comparable amounts of data to
replication-based queries.

o Use of a specialized form of deduplication to compress data both at rest and in-flight.

To achieve these objectives, the system will build upon the Edge Storage Gateway as well as
a set of cloud-based components, deployed using cloud lambda functions to the three main
cloud provider’s infrastructures.

Edge Storage Gateway (3.2) H loT Query Engine (T4.3)

Figure 14: Analytics-friendly Distributed Storage

empyrean-horizon.eu 29/129

(EIMPYREAN
D2.3 — Final EMPYREAN architecture, use cases analysis and KPls I

3.2.13 Service Orchestrator and EMPYREAN Controller

The orchestration process within EMPYREAN consists of two primary stages and involves two
key components of the platform: the Service Orchestrator and the EMPYREAN Controller
(Figure 15). At the Association level, multiple Service Orchestrators operate as high-level
orchestrators, while various Local Orchestrators manage the individual edge and cloud
platforms integrated within the EMPYREAN framework. This distributed orchestration model
enables efficient and intelligent resource and task management across the entire loT-edge-
cloud continuum, ensuring seamless coordination and optimization of workloads throughout
the platform.

AP| Gateway (Task 4.4)

Service Orchestrator
Analytics Engine Decision Engine
(Task 3.4) Orchestration APl Server (Task 4.1)
Secure Storage Orchestrati:n Manager Tele':Et;Y::mce
Service (Task 3.2) 1 i (Task 4.4)

-

EMPYREAN Controller

| Orchestration Interface |

:

| Orchestration Plug-ins |

.

Local Orchestrator (K8s, K3s)
(Task 3.4)

Figure 15: Service Orchestrator and EMPYREAN Controller components and dependencies

In the first stage, multiple Service Orchestrators act as cognitive agents, leveraging their local
knowledge to compete for the efficient and rapid mapping of application workloads. In the
second stage, each Service Orchestrator intelligently assigns its respective part of the overall
workflow to the Associations it manages. EMPYREAN adopts a hierarchical orchestration
approach to facilitate this process. High-level decisions are made by the Service Orchestrator
at the Association layer, while low-level scheduling (i.e., the actual assignment of workloads
to specific infrastructure resources) is handled by the native orchestration mechanisms (i.e.,
Local Orchestrator) of each platform (e.g., K8s, K3s).

These Local Orchestrators ensure compliance with platform specifications and provide fine-
grained workload management. The Service Orchestrator consists of two primary services (i)
the Orchestration APl Server that serves as the single entry point for other components to
access EMPYREAN's service orchestration functionalities and (ii) the Orchestration Manager
that implements the application logic, oversees the operation of internal components, and
coordinates resource allocation and application deployment.

empyrean-horizon.eu 30/129

(EMPYREAN
D2.3 — Final EMPYREAN architecture, use cases analysis and KPls I

The EMPYREAN Controller abstracts interactions with the specific edge and cloud
orchestration mechanisms at each EMPYREAN location. It processes requests from the Service
Orchestrator to deploy or adjust already deployed applications. The Controller comprises two
main the Orchestration Interface and Orchestration Plug-ins. The former provides an
infrastructure-agnostic interface for describing deployment descriptions and constraints to
diverse local orchestration mechanisms, while the latter translates generic instructions from
the Orchestration Interface into specific actions and procedures tailored to the selected local
orchestration mechanisms.

3.2.14 Telemetry Service

The EMPYREAN Telemetry Service addresses the challenges of monitoring federated loT-edge-
cloud platforms by providing robust observability and telemetry capabilities within
Associations. Traditional localized monitoring methods are insufficient for ensuring optimal
performance, security, and efficiency across interconnected services. Observability enables
gaining external insights into system behavior and performance, facilitating troubleshooting,
and answering questions like, “Why is this happening?” Telemetry focuses on the real-time
collection, measurement, and transmission of performance data, including CPU usage,
memory consumption, storage capacity, and network traffic. Together, they form the
foundation for effective monitoring, automation, and decision-making in the EMPYREAN
platform.

P-ABC Decision Engine Analytics Engine
(Task 3.1) (Task 4.1) (Task 3.4)

I I I

Telemetry Service

Telemetry Engines Persistent Monitoring
Data Storage

Monitoring Probes

I I I

CTI Engine Service Orchestrator Autoscaling & Local
(Task 4.1) (Task 4.4) Orchestration (Task 3.4)

Figure 16: EMPYREAN Telemetry Service components and dependencies

empyrean-horizon.eu 31/129

(EMPYREAN
D2.3 — Final EMPYREAN architecture, use cases analysis and KPls I

The telemetry service is built on a distributed infrastructure composed of key components:

e Telemetry Engines: Independently manage, collect, and analyze telemetry data from
various segments of the infrastructure, ensuring a unified view of system health.

® Monitoring Probes: Specialized components that collect real-time performance data
from specific resource types.

® Persistent Monitoring Data Storage (PMDS): A centralized repository for long-term
storage of telemetry data, enabling historical analysis, trend identification, and
resource optimization.

By integrating these components (Figure 16), the EMPYREAN telemetry service ensures end-
to-end visibility, enhanced security, scalability, and dynamic resource utilization across the
loT-edge-cloud continuum, facilitating data-driven decision-making and advanced analytics.

3.2.15 EMPYREAN Aggregator

An EMPYREAN Aggregator (Figure 17) manages and coordinates the operation of an
EMPYREAN Association. Each Aggregator is a logical component that integrates multiple core
components and services to provide the intelligence and orchestration logic needed to
operate an Association. Its key responsibilities include facilitating application deployment,
ensuring secure and trusted workload execution, and overseeing data storage across the
continuum. An Aggregator orchestrates its Associations, encompassing distinct or shared
computational and storage resources.

Multiple self-managed and cooperating Aggregators form the management fabric of the
EMPYREAN platform. Together, they transform the loT-edge-cloud continuum into an
autonomous, collaborative, composable, and self-organized ecosystem. Operating in a
distributed and autonomous manner, Aggregators utilize an internal two-level hierarchical
system to effectively manage resources within an Association.

The APl Gateway facilitates seamless communication between Aggregators, general edge, or
(multi-) cloud providers. Key components of the EMPYREAN Aggregator include:

e Service Orchestrator: Enables efficient resource and workload orchestration.
® Decision Engine: Provides intelligent decision-making for optimized operations.
® Fdge Storage Gateway: Provides distributed, hybrid, and encrypted data storage.

e Data Distributor: Ensures decentralized interconnection and seamless data
distribution.

e Security and Privacy Manager: Delivers distributed trust and identity management.

e Telemetry Engine and Analytics Engine: Support the monitoring of heterogeneous
resources and deployed applications while providing service assurance mechanisms.

empyrean-horizon.eu 32/129

(EIMPYREAN
D2.3 — Final EMPYREAN architecture, use cases analysis and KPls

In its updated version, the EMPYREAN Aggregator also integrates the Ryax Runner, which acts
as the execution engine for user workflows within a specific Association. This component
bridges the Workflow Manager with the computing resources of individual edge and cloud
platforms, enabling the seamless execution of actions and workflows. The Ryax Runner
operates in collaboration with the EMPYREAN Controller to deploy, execute, and manage the
hyper-distributed application workflows across the EMPYREAN Associations, ensuring
seamless deployment and efficient, coordinated operation within the loT-edge-cloud
continuum.

EMPYREAN Registry Workflow Manager Generic Cloud
Aggregator(s)
(Task 4.4) (Task 4.2) Platforms
EMPYREAN Aggregator

API Gateway Ryax Runner || Service Orchestrator | | Decision Engine | | Analytics Engine
(Task 4.2) (Task 4.4) (Task 4.1) (Task 3.4)

Edge Storage Gateway Security & Trust Telemetry Engine Data Distributor
(Task 3.2) Manager (Task 3.1) (Task 4.4) (Task 3.2)

I

EMPYREAN Controller
(Task 4.4)

Figure 17: EMPYREAN Aggregator core components and dependencies

3.2.16 EMPYREAN Registry

The EMPYREAN Registry facilitates the registration and management of loT devices, edge, and
cloud resources within Associations. It serves as a unified entry point for both core platform
services and third-party entities, enabling the discovery, cataloguing, and advertising of
Associations and services across the Association-based continuum. The EMPYREAN registry
keeps track of the available Associations and services, the mapping of infrastructure resources
to Associations, and the relationships between users and Associations.

Figure 18 shows the updated version of the EMPYREAN Registry. The AP/ Gateway facilitates
seamless interaction and the exchange of events between the EMPYREAN services and core
components of the Registry. The Registry Manager oversees the operation of the Registry and
manages its interactions with the other services within the EMPYREAN platform. The Service
Catalogue maintains critical information about software packages, container images, service
descriptors, and other metadata essential for service deployment and management. It also
stores and manages descriptors of hyper-distributed applications and services available for

empyrean-horizon.eu 33/129

(EIMPYREAN
D2.3 — Final EMPYREAN architecture, use cases analysis and KPls I

deployment on the EMPYREAN infrastructure. The Container Image Repository stores OCI-
compatible images of hyper-distributed applications, built and packaged using EMPYREAN'’s
dedicated mechanisms.

The Association Metadata Store contains high-level metadata about the available
Associations, including details on participating resources, their ownership, and sharing
policies. This information supports orchestration and load-balancing decisions made by the
platform’s distributed decision-making mechanisms. The Data Connectors collect metadata
and information from diverse systems, including data stores, external catalogues, data
pipelines, and other relevant data sources. Moreover, the integration of Security and Trust
Manager services establishes a trust anchor to support trust, identity, and credential
management operations across the distributed Associations. This ensures secure interactions,
enhances reliability and promotes seamless collaboration within the EMPYREAN ecosystem.

Workflow Manager Lightweight EMPYREAN SDK
(Task 4.2) Packaging (Task 4.3) (Task 5.1)

I I I

EMPYREAN Registry

API Registry Data Service
Gateway Manager Connectors Catalogue

Container Image Association Security & Trust
Repository Metadata Store Manager (Task 3.1)

I I

Data Sources, Data EMPYREAN
Catalogue, Data Stores Aggregator (Task 4.4)

Figure 18: EMPYREAN Registry core components and dependencies

3.3 Components Interactions

3.3.1 Decision Engine with Telemetry Service

3.3.1.1 Functionality Unlocking

The Decision Engine integrates and executes several decision-making algorithms. To extend
its capabilities, the Decision Engine will be enhanced to enable multi-agent speculative
intelligent scheduling across EMPYREAN Associations. This enhancement also includes the
ability to operate in a distributed manner, with multiple independent instances deployed
across different Associations. Each Decision Engine instance will be designed to support multi-
agent algorithmic solutions that accommodate various levels of cooperation, from full

empyrean-horizon.eu 34/129

(EMPYREAN
D2.3 — Final EMPYREAN architecture, use cases analysis and KPls I

collaboration to partial or competitive operation. This flexibility enables dynamic and
intelligent decision-making tailored to the unique needs and constraints of the platform.

A key enabler of these capabilities is the interaction with the Telemetry Service, which
provides the Decision Engine with the necessary data for real-time decision-making and
adaptive resource management. The Telemetry Service will also be tightly coupled with
observability mechanisms by integrating monitoring, metrics, distributed tracing, and logging.
This integration will ensure that the Decision Engine receives high-fidelity data streams and
diagnostic feedback for continuous improvement. The Telemetry Service will deliver a
detailed, granular view of the continuum, allowing the Decision Engine to execute distributed
algorithms that dynamically balance workloads and manage resources to optimize
performance, energy efficiency, and fault tolerance across the Associations.

3.3.1.2 High-Level Design

The updated design of the Decision Engine will incorporate a lightweight and scalable
communication layer (e.g., a message broker like Zenoh or gRPC). This middleware will serve
as the backbone for inter-agent communication, facilitating the exchange of state
information, coordination signals, and messages between Decision Engine instances. The real-
time synchronization will ensure that instances can collaborate or compete effectively, even
in highly dynamic environments.

There will also be a shared repository to store global states, shared objectives, and metadata
that Decision Engine instances can access as needed, providing a centralized reference point
for coordination across multiple Associations. Moreover, the Decision Engine Controller will
be extended to support the dynamic instantiation of new Decision Engine instances. Instances
can be deployed or decommissioned based on workload demand or new Association
formations, enabling adaptive instance deployment. The Decision Engine will integrate closely
with the Telemetry Service to receive real-time updates on resource states, workload metrics,
and system performance. Finally, the Decision Engine instances will integrate a range of multi-
agent algorithms, enabling instances to collaborate or compete depending on the scenario to
achieve Association-specific goals.

By incorporating these features, the Decision Engine can evolve into a multi-agent system
capable of cooperative and competitive operation, significantly enhancing its flexibility and
performance in managing the hyper-distributed environments of the EMPYREAN platform.

3.3.1.3 Interfaces

Next, we provide a high-level description of the interfaces required for the communication
between the involved components that will be developed and integrated within the technical
work packages (WP 3-5). The interfaces are defined jointly between the interface implementer
and interface user while being implemented in the context of the respective technical tasks.

empyrean-horizon.eu 35/129

D2.3 — Final EMPYREAN architecture, use cases analysis and KPls

%ijMPYREAN

Table 1: Decision Engine Interface

Interface ID

WPAT1DE-I

Description

The interface will enable orchestration entities to retrieve optimized
deployment plans for workloads across Associations, support methods
to manage decision-making processes and offer access to detailed log
messages. It will also facilitate the operation between Decision Engine
instances.

Component providing
the interface

Decision Engine

Consumer components

Service Orchestrator, Decision Engine

Type of interface REST and AMQP
State Synchronous and Asynchronous
Responsibilities ICCS

Table 2: Telemetry Service Interface

Interface ID

WPATATS-|

Description

This interface will provide real-time telemetry data, including resource
utilization metrics, workload statuses, and resource characteristics,
ensuring informed decision-making. It will support various query and
filtering operations along with notifications.

Component providing
the interface

Telemetry Service, Telemetry Engine

Consumer components

Decision Engine, Analytics Engine, Service Orchestrator, EMPYREAN
Aggregator

Type of interface

REST and AMQP

State

Synchronous and Asynchronous

Responsibilities

ICCS, UMU

Table 3: PMDS Interface

Interface ID

WPA4T4PMDS-

Description

It will enable a storage service for the historical monitoring data using
atime-series data store. It will expose methods to interact with the data
store, supporting insert and various query and filtering operations.

Component providing
the interface

Persistent Monitoring Data Storage

Consumer components

Decision Engine, Analytics Engine,

Type of interface REST
State Synchronous
Responsibilities ICCS, UMU

empyrean-horizon.eu

36/129

(EMPYREAN
D2.3 — Final EMPYREAN architecture, use cases analysis and KPls I

3.3.2 Workflow Manager with Service Orchestrator

3.3.2.1 Functionality Unlocking

The Workflow Manager in EMPYREAN will be enhanced to support multi-site workflow
executions, addressing the inherent complexities of the Association-based loT-edge-cloud
continuum. By default, the Workflow Manager utilizes first-fit policies for resource allocation
and is limited to operating within a single Association. However, the integration of the Service
Orchestrator will overcome these limitations by, enabling the adoption of intelligent best-fit
policies capable of efficiently utilize resources across multiple Associations. Moreover, the
Service Orchestrator will be extended and enhanced to facilitate decentralized and
cooperative operations. This will empower the EMPYREAN platform to orchestrate edge-cloud
resources efficiently, enabling dynamic application deployment across multiple, autonomous
Associations.

These enhancements will ensure that workflows can be seamlessly and dynamically
distributed across multiple edge-cloud sites and Associations, enhancing the platform’s
scalability, flexibility, and overall performance and resource efficiency. By collaborating with
the Service Orchestrator, the Workflow Manager will be able to intelligently evaluate resource
availability, operational constraints, and workload requirements to make optimized decisions
on resource allocation.

3.3.2.2 High-Level Design

The integration design takes into account the architectures of the Workflow Manager and
Service Orchestrator to enable communication between their internal components. The
primary objective is to facilitate the exchange of necessary information, allowing the Service
Orchestrator to execute the first stage of the EMPYREAN orchestration process, which
involves intelligently distributing application workloads across the Associations.

By default, the Ryax Workflow Manager includes a single user interface, the Ryax Studio, which
interacts with one Ryax Runner service to schedule and manage computing resources. To
support multiple Associations, the user interface will be decoupled from a single Runner.
Instead, the updated design will include one Runner service per Association, enabling each
Runner to communicate independently with the user interface and its respective Service
Orchestrator. This decoupling ensures that multiple Runners can operate concurrently, with
each managing a distinct Association without interference.

When a deployment request is initiated from the user interface, it will first be routed to the
EMPYREAN Aggregator of the user’s default Association. Then, the Aggregator, in
collaboration with the respective Service Orchestrator, will execute the multi-agent decision-
making process to assign workloads across Associations. Once the high-level workload
distribution is determined, these services will forward the deployment tasks to the
appropriate Ryax Runner within the selected Associations.

empyrean-horizon.eu 37/129

D2.3 — Final EMPYREAN architecture, use cases analysis and KPls

%@MPYREAN

To further enhance multi-site support, the Workflow Manager will introduce the concept of
Ryax Worker services. Each Worker will be responsible for managing workflows on specific
underlying resources, working in coordination with the EMPYREAN Controller. This approach
assigns Workers per K8s/K3s cluster, ensuring efficient resource management and workflow

execution across the infrastructure.

3.3.2.3 Interfaces

The following provides a high-level description of the exposed interfaces by the Workflow
Manager and Service Orchestrator.

Table 4: Workflow Manager Interface

Interface ID

WPAT2WE-I

Description

The Workflow Manager interface will communicate with the Service
Orchestrator through a set of well-defined APIs to facilitate seamless
information exchange for workload distribution across multiple
Associations. It will support bidirectional communication, allowing the
Workflow Manager to send workload execution requests, resource
availability queries, and operational constraints to the Service
Orchestrator while receiving optimized resource allocation decisions
and deployment instructions. The also support
asynchronous messaging and event-driven triggers to ensure dynamic

interface will

adaptation to changing resource conditions.

Component providing
the interface

Workflow Manager

Consumer components

EMPYREAN Aggregator, Service Orchestrator

Type of interface

combinations of REST, gRPC and RabbitMQ

State

Synchronous and Asynchronous

Responsibilities

RYAX, ICCS

Table 5: Service Orchestrator Interface

Interface ID

WP4T4S0-I

Description

This interface enables the deployment and management of cloud-
native applications and abstracts the interaction of the Service
Orchestrator with the EMPYREAN Controllers. Moreover, it allows the
service assurance mechanisms to trigger dynamic re-configurations of
the already deployed applications.

Component providing
the interface

Service Orchestrator

Consumer components

Workflow Manager, EMPYREAN Aggregator, Analytics Engine,
EMPYREAN Controller

Type of interface REST and gRPC
State Synchronous and Asynchronous
Responsibilities ICCS, RYAX

empyrean-horizon.eu

38/129

(EMPYREAN
D2.3 — Final EMPYREAN architecture, use cases analysis and KPls I

3.3.3 Workflow Manager and Dataflow Programming

3.3.3.1 Functionality Unlocking

The integration of dataflow programming through Zenoh-Flow within Ryax introduces
advanced functionalities that transform how workflows handle data communication and real-
time processing. Users will be able to define precise dataflows between various actions within
a workflow, ensuring seamless and efficient exchanges of information. This capability allows
users to go beyond traditional input-output exchanges, providing fine-grained control over
movement of data throughout complex workflows. Such precision is particularly valuable in
loT-based use cases, where the timing and accuracy of data exchanges across multi-
infrastructure environments are critical to ensuring reliable and actionable outcomes.

Additionally, the integration enhances the platform's ability to handle real-time
communication across diverse infrastructures, addressing the challenges posed by distributed
systems in edge-cloud continuums. By leveraging Zenoh-Flow's inherent strengths in low-
latency and high-throughput dataflow management capabilities, Ryax equips developers with
tools to build workflows that are optimized for dynamic, time-sensitive applications. These
advanced functionalities empower users to develop applications that are not only efficient but
also inherently adaptable to the needs of modern loT and Al-driven ecosystems, supporting
scenarios where data must be processed and acted upon with minimal delays.

3.3.3.2 High-Level Design

The integration between Ryax and Zenoh-Flow focuses on seamlessly embedding a dataflow
programming framework into workflow-based application development. At its core, this
integration establishes a connection between Ryax workflows and Zenoh-Flow dataflows,
allowing users to define the specific paths through which data moves between different
actions in a workflow. Hence, the design allows the actions of the workflows to be further
analyzed by how the data flows within actions. Ryax’s workflow abstraction is enhanced to
include dataflow-specific configurations, enabling users to specify data dependencies,
communication protocols, and the expected real-time behavior of their applications. This
enhanced design ensures that workflows remain intuitive while gaining the flexibility and
power of fine-grained dataflow control.

The integration leverages Zenoh-Flow’s capabilities to address the challenges of real-time
communication across diverse and distributed infrastructures. By integrating Zenoh-Flow's
low-latency communication primitives and its ability to support heterogeneous environments,
Ryax workflows can efficiently manage data exchanges between edge, cloud, and hybrid
setups in real-time. The design includes the deployment of Zenoh-Flow nodes as part of the
Ryax runtime, ensuring that dataflow orchestration occurs transparently and efficiently. This
approach allows the platform to handle time-sensitive data exchanges required by loT and Al
applications, without users requiring to configure complex networking setups manually.

empyrean-horizon.eu 39/129

D2.3 — Final EMPYREAN architecture, use cases analysis and KPls

%@MPYREAN

To ensure scalability and robustness, the integration employs a modular architecture where
dataflow components can be dynamically instantiated using high-level abstractions. This
modularity allows developers to design workflows that are adaptable to varying workloads
and infrastructures, while Zenoh-Flow’s underlying engine ensures consistent and reliable
data communication.

3.3.3.3 Interfaces

The following tables provide a high-level description of the exposed interfaces by the
Workflow Manager and the Dataflow programming component.

Interface ID WPAT2WEFR-|

Description This communication interface facilitates low-latency data transfer between
Zenoh-Flow nodes and Ryax actions. It is a messaging protocol that leverages
Zenoh'’s native real-time capabilities, ensuring efficient data transmission
across distributed infrastructures. It serves as the backbone for real-time, low-
latency data communication between Ryax and Zenoh-Flow nodes.

Component Zenoh-Flow Dataflow programming residing upon Zenoh communication

providing the protocol

interface

Consumer Ryax Workflow Manager

components

Type of interface

Zenoh's native protocol

State

Synchronous

Responsibilities

ZSCALE, RYAX

Interface ID WPA4T2CM-I

Description This Configuration and Monitoring Interface provides tools for configuring
dataflow parameters, visualizing dataflows, and monitoring their performance
within workflows, enabling users to fine-tune and debug integrated
applications effectively. These interfaces collectively establish a cohesive
integration, with Zenoh's communication layer ensuring robust real-time
interactions.

Component Zenoh-Flow Dataflow programming residing upon Zenoh communication

providing the protocol

interface

Consumer Ryax Workflow Manager

components

Type of interface

REST or GraphQL API

State

Synchronous and Asynchronous

Responsibilities

ZSCALE, RYAX

empyrean-horizon.eu

40/129

(EMPYREAN
D2.3 — Final EMPYREAN architecture, use cases analysis and KPls I

3.3.4 Application Packaging and Unikernels Builder

3.3.4.1 Functionality Unlocking

The integration of the Action Packaging with the Unikernels Builder components unlocks
functionalities that streamline application development, deployment, and execution. By
combining the modularity and flexibility of OCl-compatible action packaging with the
efficiency and performance of unikernels, EMPYREAN allows developers to create powerful,
secure, lightweight, reproducible, and architecture-agnostic application components. The
unified packaging tool ensures that any application component, regardless of its programming
language or runtime requirements, can be seamlessly packaged into OCl-compliant images.
This approach guarantees compatibility with diverse deployment environments spanning the
edge-cloud continuum.

In addition, the platform ensures that unikernels can be effortlessly encapsulated within OCI-
compliant images, allowing their seamless deployment via Kubernetes. This integration
establishes a robust development pipeline that balances the performance and security
benefits of unikernels with the scalability and standardization offered by cloud-native
technologies. The result is a system that empowers developers to build and deploy highly
efficient, secure, and portable applications.

3.3.4.2 High-Level Design

The integration of Action Packaging with the Unikernels Builder in the EMPYREAN platform
will leverage the NIX-based Environment Packaging tool embedded within the Ryax Workflow
Manager. This packaging tool will define and prepare action binaries in a declarative and
reproducible manner while ensuring compatibility with the OCl specification. By incorporating
Bunny, the Unikernels Builder, Ryax can generate lightweight, OCl-compliant images
optimized for various unikernel frameworks like Unikraft and MirageOS. This integration
ensures that actions within workflows are seamlessly packaged and reproducibly managed
using the NIX functional package manager, enabling compatibility across diverse
infrastructures.

To improve interoperability, Ryax will extend its capabilities to support HTTP protocol along
with gRPC for the action wrapper. The action wrapper is a lightweight intermediary between
the Ryax Workflow Engine and user code that creates a (gRPC) server with a simple interface
for initializing action and running executions. The support of HTTP along with gRPC
significantly facilitates the integration of Unikernels Builder with Ryax.

Moreover, Ryax will be upgraded to offer users the ability to specify the desired container
runtime for executing actions, including support for the urunc runtime, which is designed for
deploying unikernel-based workloads. This enhancement ensures that OCl-compliant images
generated by the Unikernels Builder can be executed in optimal runtime environments,
maximizing their performance and efficiency.

empyrean-horizon.eu 41/129

(EMPYREAN
D2.3 — Final EMPYREAN architecture, use cases analysis and KPls I

3.3.4.3 Interfaces

Interface ID WPAT3PKG-I

Description This interface ensures seamless communication for packaging actions into
OCl-compliant unikernel images. It allows Ryax to submit build requests,
including the action's NIX-based metadata, runtime specifications, and
target unikernel framework.

Component Unikernels Builder
providing the

interface

Consumer Ryax Workflow Manager
components

Type of interface REST

State Asynchronous
Responsibilities NUBIS, RYAX

3.3.5 Workflow Manager and Edge Storage

3.3.5.1 Functionality Unlocking

Integrating the Edge Storage Gateway with the Ryax Workflow Manager will unlock advanced
functionalities that significantly enhance the flexibility and efficiency of workflow execution in
distributed, hybrid environments. One key functionality is the ability to dynamically allocate
storage resources tailored to the specific requirements of each workflow. Each S3 bucket in
Edge Storage is governed by a storage policy, enabling Ryax workflows to seamlessly direct
data to edge resources for low-latency access, cloud storage for scalability, or a hybrid
combination of both.

Another critical functionality is the enhanced adaptability of workflows to varying operational
conditions. This integration enables Ryax workflows to align with the autonomous operation
features of Edge Storage, ensuring uninterrupted execution even in isolated environments. By
leveraging the metadata and erasure coding capabilities provided by the Edge Storage
Gateway, workflows can reliably access, process, and store data on local edge resources
during periods of disconnection from cloud storage.

3.3.5.2 High-Level Design

The Workflow Manager is a highly intuitive tool aimed at application developers. It empowers
users to define data workflows for their applications, automating the assignment of
computing and storage resources that serve the workflows. Through the fine integration of
the Ryax Workflow Manager with the Edge Storage Gateway, users will gain enhanced control
over the placement of ephemeral and persistent storage for their actions or services.

In the background, each S3 bucket accessed through the Edge Storage Gateway adheres to a
storage policy that dictates how and where the data is stored. Data may be distributed to an
Association’s Edge Storage resources, cloud locations, or a combination of the two. The

empyrean-horizon.eu 42/129

D2.3 — Final EMPYREAN architecture, use cases analysis and KPls

%@MPYREAN

storage policy also defines other characteristics, such as redundancy level, encryption, and
compression. On the Ryax side, the platform will be enhanced to support the configurable
definition of ephemeral and persistent storage. This includes the ability to mount particular
Persistent Volume Claims (PVCs) or storage volumes* mounting object store (S3 equivalent)
buckets. As a result, storage requirements for each action can be closely matched, ensuring
workflows benefit from optimal resource allocation and performance.

3.3.5.3 Interfaces

The fine integration between the Edge Storage Gateway and the Ryax Workflow Manager will
make use of the following interfaces.

Interface ID WP3T2ESG-|
Description This interface enables Ryax to retrieve and interpret metadata and storage
policies from the Edge Storage Gateway. It allows Ryax to query bucket
configurations, including redundancy, encryption, and data distribution,
ensuring workflows are aligned with predefined storage policies.
Component Edge Storage Gateway
providing the
interface
Consumer Ryax Workflow Manager
components
Type of interface REST
State Asynchronous
Responsibilities CC, RYAX
Interface ID WP3T2ST-I
Description This interface allows Ryax workflows to interact with the Edge Storage
Gateway for CRUD operations on objects, enabling real-time data access and
synchronization. It also supports runtime adjustments to storage policies and
facilitates autonomous operation in network-isolated environments by
utilizing local edge resources.
Component Edge Storage Gateway
providing the
interface
Consumer Ryax Workflow Manager
components
Type of interface REST
State Asynchronous
Responsibilities CC, RYAX

4 Systems such as https://github.com/awslabs/mountpoint-s3-csi-driver will be explored and possible adaptation
with MinlO may be proposed

empyrean-horizon.eu

43/129

(EMPYREAN
D2.3 — Final EMPYREAN architecture, use cases analysis and KPls I

3.3.6 EMPYREAN Aggregator with Security and Privacy Manager

3.3.6.1 Functionality Unlocking

The interaction between the EMPYREAN Aggregator and the Privacy and Security Manager
(PSM) is pivotal for unlocking secure and seamless operations within the EMPYREAN platform.
Each Aggregator within an Association hosts its own PSM instance, which collaborates with
PSMs across other entities in the ecosystem. The PSM oversees the secure onboarding,
authentication, and authorization of all entities, including users, devices, and workflows
interacting with the Aggregator. By leveraging Decentralized Identifiers (DIDs) and Verifiable
Credentials (VCs), the PSM enforces robust identity management and enables privacy-
preserving interactions. The Aggregator, in turn, orchestrates resource allocation, workload
execution, and data management while relying on the PSM to validate and secure all
operations. This collaboration ensures that only authenticated and authorized entities gain
access to resources, data, and services within the Association.

A key functionality unlocked through this interaction is the dynamic policy management
provided by the PSM. By using Distributed Ledger Technology (DLT) and smart contracts, the
PSM facilitates real-time installation and enforcement across the architecture, ensuring
compliance with access control rules. Within the Aggregator, the PSM serves as both a Policy
Decision Point (PDP) and a Policy Enforcement Point (PEP), evaluating and enforcing access
policies for the resources managed by the Aggregator. These policies are stored publicly in the
DLT, ensuring secure and transparent access to resources between Associations across the
EMPYREAN platform. This capability guarantees traceable, secure, and trusted operations
across the loT-edge-cloud continuum.

3.3.6.2 High-Level Design

The EMPYREAN Aggregator and PSM interact through a well-defined framework that
integrates their functionalities into the broader architecture of the EMPYREAN platform. The
design involves the following:

e Authentication and Authorization: When a user, device, or application interacts with
the Aggregator, the PSM validates the entity's identity using DIDs and VCs. The PSM
also generates Verifiable Presentations (VPs) that the Aggregator uses to verify access
rights and trust levels.

o Policy Enforcement: The Aggregator relies on the PSM to enforce policies dynamically
installed via smart contracts. These policies define access permissions, data usage
constraints, and workload execution rules, and are stored in the DLT to ensure
transparency.

e Secure Data Exchange: The PSM ensures the secure exchange of data between entities
by signing and encrypting messages using advanced cryptographic techniques, such as
Zero-Knowledge Proofs (ZKPs) and JSON Web Tokens (JWTs).

empyrean-horizon.eu 44/129

(EIMPYREAN
D2.3 — Final EMPYREAN architecture, use cases analysis and KPls

e Traceability and Auditing: The PSM records all interactions and policy changes in the
DLT, enabling the Aggregator to maintain a transparent and auditable operation
environment.

The Aggregator and PSM operate cohesively to provide a secure, scalable, and resilient
Association capable of dynamic adaptation to evolving conditions.

3.3.6.3 Interfaces

Table 6: Privacy and Security Manager Interfaces

Interface ID

WP34PSMAGG

Description

Acts as a Policy Decision Point (PDP) and Policy Enforcement Point (PEP)
for access authorization to resources managed by the Aggregator.

Component providing
the interface

Privacy and Security Manager

Consumer components

Empyrean entities, Aggregator

Type of interface

Authorization

State

Synchronous

Responsibilities

UMU, ICCS

Interface ID

WP34PSMAGG-2

Description

Facilitates the verification of DIDs and VCs for all entities attempting to
access the Aggregator.

Component providing
the interface

Privacy and Security Manager

Consumer components

Aggregator

Type of interface

Authentication

State

Synchronous

Responsibilities

UMU, ICCS

Interface ID

WP34PSMAGG-3

Description

Enables entities to request Verifiable Credentials (VCs) from the Privacy
and Security Manager.

Component providing
the interface

Privacy and Security Manager

Consumer components

Aggregator, Empyrean entities

Type of interface

Credential Issuance

State

Synchronous

Responsibilities

UMU, ICCS

empyrean-horizon.eu

45/129

D2.3 — Final EMPYREAN architecture, use cases analysis and KPls

%@MPYREAN

Table 7: EMPYREAN Aggregator Interface

Interface ID

WPAT4AGGR-

Description

It supports scalable, efficient, and secure integration of distributed
services and resources, ensuring the platform's interoperability and
robust performance. The interface enables seamless interaction
between the various components of the Aggregator, facilitates data
exchange and workflows orchestration across the continuum.

Component providing
the interface

EMPYREAN Aggregator

Consumer components

EMPYREAN Registry, Privacy and Security Manager, Service
Orchestrator, Other Aggregators

Type of interface

REST and gRPC

State

Synchronous and Asynchronous

Responsibilities

ICCS, UMU

empyrean-horizon.eu

46/129

(EMPYREAN
D2.3 — Final EMPYREAN architecture, use cases analysis and KPls I

4 EMPYREAN System Operation Flows

4.1 Overview

This section presents the EMPYREAN system operation flows, organized into different sections
based on the category to which the various operation flows belong, to ensure seamless
integration of the platform’s components. These flows detail the inter-components processes
and methodologies enabling the system's functionality and supporting user interactions. The
system operation flows provide a comprehensive description of the system’s logic, the roles
of individual components, and how data and actions are orchestrated to deliver the
Association-based operation of the loT-edge-cloud continuum. They form the backbone of the
system’s robustness, supporting its adaptability and efficiency across diverse applications.

4.2 EMPYREAN Ecosystem

The loT-edge-cloud continuum integrates on-device, edge, and cloud resources to enhance
application performance and address the limitations of centralized systems. This approach can
significantly enhance application performance and infrastructure efficiency, effectively
addressing the critical bottlenecks of data collection, transmission, and processing in
centralized systems. However, many works oversimplify this continuum by treating it as a
unified pipeline of universally accessible resources. In reality, the ecosystem is fragmented,
with resources owned by different entities, leading to underutilization and limited integration
of edge resources (e.g., on-device, on-premise, near-edge, far-edge, fog, etc.) with cloud
infrastructures and markets.

EMPYREAN introduces a transformative approach to the loT-edge-cloud continuum through
the innovative concept of Associations. An Association represents a collaborative collective of
loT devices, robots, and resources spanning from the edge to the cloud. Each Association
aggregates and shares computing and storage resources of diverse characteristics and
capabilities, including both general-purpose and specialized units. In practice, an Association
is operationally defined as one or more interconnected Kubernetes or K3s clusters, unified
under shared administrative and security policies. EMPYREAN calls this novel framework the
Association-based continuum (Figure 19), since it enables multiple Associations to operate
simultaneously across space and time, creating a dynamic, scalable, and resilient continuum.
These Associations are not static; they are dynamically formed, reconfigured, and updated
based on resource owners' participation. Central cloud resources are integrated as needed to
complement and enhance the capabilities of edge and loT devices. This paradigm significantly
enhances the flexibility, efficiency, and collaborative potential within the loT-edge-cloud
continuum, providing an ecosystem for innovative applications and services.

empyrean-horizon.eu 47/129

A
f(EIMPYREAN
D2.3 — Final EMPYREAN architecture, use cases analysis and KPls N

— - - T T = - T—
- “~ EMPYREAN —_——— EMPYREAN
EMPYREAN _- EMPYREAN £ — -~

Associgston putsitionn Assegigtionn —_ Rssagiation
2 B 0O (B %) & O i‘i‘@@

Edge &
Operstion Interconnection intelligance oum lvwwmlm
oumun m:-w«mb« uuu..m Cogitve leT-Edgn Anahytics &

Intarcenaction

® O @ :I; & @) PO @

iy Securityh Data Storage & s.....;. swn:yt n-uscwl nwa
!-um\«l Dats Storage & Cv-m{ {’(1"(m!‘ D"I.
Frocmming Secwrity& DutaStoraped Green &

B E T . €3 B = /’: E E
| E =\ E /|

& ~ oy
»_’).. F1 _E o) b / - -
s Ry | \ L h / &=
=5 g_é \ @_‘/ YA N S —
~— | —— .. \\ s /
" " -
EMPYREAN T //
Regist - . et _ e _| on-premise/micro edge
= M:m ST et _ -~ E deep edge
s ~ __
% {‘;J:} EEE faredge

S«HN& Data Storage & cmna —

Procesing

Figure 19: EMPYREAN Association-based loT-Edge-Cloud continuum

In particular, EMPYREAN’s Associations notion:

e Supports Collaborative Continuum: Empower organizations to build a collaborative
loT-edge-cloud continuum utilizing self-owned resources.

e Enables Scalability: Allows an Association to scale by involving multiple
users/organizations and facilitating resource sharing between them.

e Abstracts Complexity: Simplifies the complexity and dynamicity of the underlying
infrastructures which usually belong to different administrative domains.

e Maximizes Resource Utilization: Overcomes the isolation and underutilization of edge
resources.

o Promotes Self-Sufficiency: Advocates for a self-sufficient loT-edge continuum,
acknowledging that the cloud may not always be available or its use may be prohibited
for various reasons.

e Facilitates Inter-Association Cooperation: Supports cooperation between different
Associations, enabling the use of resources under stricter access and security rules
compared to resources belonging to an Association.

EMPYREAN’s Association does not aim to introduce a disruptive greenfield change in the
domain but instead provides a practical and viable way to organize existing and future
resources within a brownfield context. By structuring the loT-edge-cloud continuum as an
Association-based continuum, EMPYREAN ensures that its software components, platform
mechanisms, and decision-making algorithms are fully reusable and adaptable. This design
enhances the EMPYREAN platform's flexibility and scalability, making it a robust solution for
diverse and evolving resource management needs.

empyrean-horizon.eu 48/129

A
f(EIMPYREAN
D2.3 — Final EMPYREAN architecture, use cases analysis and KPls N

Figure 20 depicts the EMPYREAN ecosystem, highlighting the key stakeholders, their roles, and
interactions. This ecosystem promotes the composability of infrastructures and services
across the loT-edge-cloud continuum. At its core are Associations, which enable the
collaborative operation and management of virtual execution environments by pooling
computational, storage, networking, and other resources. The ecosystem encompasses
diverse stakeholders that interconnect seamlessly to maximize resource utilization, foster
collaboration, and drive innovation across the loT-edge-cloud continuum. These stakeholders
are categorized based on their contributions and roles, including (i) infrastructure providers,
(ii) service providers, (iii) system administrators, (iv) application developers, (v) application
operators, and (vi) end users.

Application
Operators

u m Build & Application
LS € Integrate Developers

Low-code lightweight EMPYREAN

Application Description & Design Packaging SDK

Deployment Objectives
Publish Images
Association Paas / Saas

Cognitive loT-Edge Anal & Security & Processing & Energy-sware H ¥
i i i Privacy Dans:o‘:ct Operation | EMPYREAN-based ~ Cooperative, Trusted,

Deploy
f i Utilize EMPYREAN Y s
Applications & Service ! SN QD I & ‘:} :
End Users [@T EMPYREAN % @D G s :
N

Hyper-Distributed
Services

Al-enabled Distributed Control

Manage ; C & Management Plane ;

Associations H .
AAAAAAAAAAAAAAAAAAA JTT Build upon
EMPYREAN

Offer Offer Offer
System Resources Resources Resources
Administrators
1oT Providers Edge Providers Cloud Providers

Service Providers

Figure 20: EMPYREAN ecosystem, key stakeholders, their roles, and interactions

The infrastructure providers include:

e |oT providers that supply loT infrastructures distributed across the continuum,
including loT and Industry loT (lloT) devices, as well as on-premise low-capacity edge
resources. These infrastructures serve as the primary source of data generation and
the origin of service requests. Through the EMPYREAN platform, loT providers can
offer their resources to multiple vertical applications, enabling their reuse and
optimizing infrastructure utilization.

e Edge providers that offer computational and storage resources located at the deep
and far edge, close to or further away from the end-users and loT devices. The offered
resources can also be equipped with hardware acceleration capabilities, such as GPUs
and TPUs, designed for demanding Al/ML workloads. These resources are critical for

empyrean-horizon.eu 49/129

(EMPYREAN
D2.3 — Final EMPYREAN architecture, use cases analysis and KPls I

time-sensitive operations and resource-demanding workloads, ensuring low latency
and high throughput.

o Cloud providers that contribute centralized computational and storage resources to
the continuum. These resources can be seamlessly integrated into the Association-
based continuum to increase overall system robustness and reduce cost by efficiently
handling computationally intensive and latency-tolerant workloads. They also can
serve as a backbone for long-term data storage, replication, and large-scale analytics.

System administrators manage and operate the EMPYREAN platform and its underlying
distributed systems. With specialized expertise in platform management and distributed
systems, they ensure the seamless integration and operation of infrastructures and resources
within the Association-based continuum. Their responsibilities include association
management, resources onboarding and offboarding, system configuration, and user
management. They ensure the integrity and reliability of the ecosystem.

Service providers deliver domain-specific, generic platforms and services built upon the
Association-based continuum. Their platforms will enable the efficient deployment and
autonomous adaptations of continuum-native applications, ensuring that extreme-scale
distributed Al/ML workflows operate seamlessly over heterogeneous and trusted resources.
By leveraging EMPYREAN’s Al-enabled management mechanisms and trustworthy techniques,
service providers can automate internal operations, optimize resource usage, and enable
collaboration with infrastructure providers. This collaboration supports the seamless
deployment of services and distributed data processing across the entire continuum,
unlocking new opportunities for scalability and efficiency.

Application developers create hyper-distributed, continuum-native applications that fully
leverage the potential of the EMPYREAN platform. They are skilled users with expertise in both
coding and business, responsible for developing use cases and vertical application code, as
well as building, upgrading, and maintaining them. They use EMPYREAN’s workflow-based
design tools, lightweight environment packaging, and low-code interfaces to develop
infrastructure-agnostic applications. Additionally, developers oversee the deployment of
these applications and debug any issues during execution. In cases of complex applications,
developers may also serve as integrators, combining multiple components into fully functional
solutions.

Application operators represent entities or organizations responsible for deploying hyper-
distributed applications using the EMPYREAN platform. These users have business expertise
and either deploy pre-existing applications or design custom application workflows based on
packaged code already available within the platform. They also define deployment objectives
in a generic manner, handle the deployment, manage execution, and collect results. These
users benefit from the platform’s advanced features, including trustworthy, autonomous,
scalable, and collaborative data processing capabilities. By leveraging the Association-based
continuum, they have access to a dynamic and flexible environment that supports their
application needs across diverse resources within the continuum. This ensures optimal
performance, adaptability, and scalability for their operational needs.

empyrean-horizon.eu 50/129

(EMPYREAN
D2.3 — Final EMPYREAN architecture, use cases analysis and KPls I

End users are individuals or entities that interact with the hyper-distributed applications
deployed on the EMPYREAN platform. They use these applications to fulfil specific needs or
tasks, remaining completely unaware of the underlying infrastructures, internal mechanisms,
and complexities of the Association-based continuum. At the end, they benefit from advanced
applications and services without requiring any technical expertise or knowledge of the
platform's intricate operations.

The EMPYREAN ecosystem will offer tailored interfaces for each stakeholder role, aligning with
their specific needs and expertise levels. Application developers will have access to (i) a user-
friendly web-based interface for rapid prototyping, workflow management, and resource
access, (ii) a command-line interface (CLI) for advanced users, enabling precise control over
application development and debugging tasks, and (iii) the EMPYREAN Service Development
Kit (SDK), which facilitates the implementation of infrastructure-agnostic applications by
leveraging EMPYREAN’s APIs and frameworks. Application operators will primarily use a
streamlined web-based Ul designed to allow application deployment, performance
monitoring, execution management, and result collection without requiring technical
expertise. System administrators will have high-level control over resource integration and
platform customization via (i) a CLI for tasks such as Association management and node
onboarding/offboarding, and (ii) configuration files and scripts for automating configurations
and fine-tuning system parameters. The infrastructure providers and EMPYREAN service
providers will perform their operations using (i) a CLI for direct interaction with EMPYREAN’s
core functionalities, (ii) the SDK for programmatic interaction with the platform, and (iii)
configuration files and scripts for low-level setup, configuration, and management of
infrastructure resources and services. Finally, the end users will interact directly with the
applications deployed on the EMPYREAN platform, accessing them through their exposed
interfaces.

The EMPYREAN ecosystem is inherently flexible, enabling stakeholders to take on multiple
roles based on their needs and capabilities. For example, an organization can act as both an
infrastructure provider and an application operator. In this dual role, it can contribute a
portion of its infrastructure resources to the EMPYREAN platform through an Association,
making those resources available to other EMPYREAN customers. At the same time, as an
application operator, the organization can utilize the platform's decentralized intelligence and
advanced application development and deployment capabilities to enhance its applications.

Serving as a bridge, EMPYREAN connects infrastructure and service providers (supply side) and
application developers and end users (demand side) who require high-performing, low-
latency, hyper-distributed applications. The platform aims to achieve an optimal balance by
maximizing resource utilization and fostering collaboration among stakeholders, generating
revenue opportunities for the supply side while ensuring the highest quality of service and
user experience for the demand side.

empyrean-horizon.eu 51/129

D2.3 — Final EMPYREAN architecture, use cases analysis and KPls

%@MPYREAN

4.3 Generic Operation Flow

The EMPYREAN platform’s operational flow seamlessly integrates stakeholders, resources,
and applications within the EMPYREAN platform, ensuring collaboration and enabling efficient
deployment and management of Associations and applications across the continuum. This
high-level flow (Figure 21) outlines the formation, management, and operation of the
Association-based continuum, while subsequent sections provide specific platform-level

flows.

Below is a step-by-step description of the generic operation flow:

System Initialization: The EMPYREAN system administrator initiates the platform by
(i) creating the Registry, establishing the core infrastructure for the platform, (ii)
bootstrapping the Identity and Authorization Engine, setting up mechanisms for
managing stakeholder identities, and implementing policies for secure access and
interactions, and (iii) onboarding initial stakeholders, adding the initial infrastructure
and service providers by creating their identities, roles, and associated access policies.
Association and Aggregator Initialization: The administrators and service providers
create Associations, establishing a collaborative environment. They set up and
initialize the EMPYREAN Aggregators to manage and coordinate data workflow and
application deployments across the resources contributed by the infrastructure
providers.

Resource Onboarding: The infrastructure providers integrate their resources into the
EMPYREAN platform by: (i) onboarding resources, adding physical and virtual
resources, such as loT devices, robots, computing units, storage, and networking
infrastructures to the Association, (ii) providing resource descriptions, using templates
to describe resource capabilities, configurations, and constraints, and (iii)
authorization configuration, establishing policies and processes to control access to
their resources.

Application Development: The system administrator adds application developers
within the platform, who begin creating hyper-distributed applications by (i) designing
workflows using EMPYREAN’s workflow-based design tools, and (ii) packaging
lightweight environments and defining infrastructure-agnostic deployment objectives
using low-code interfaces.

Application Deployment: The application operators handle the deployment and
management of applications. Their responsibilities include (i) deploying applications
created by developers across the Association-based continuum and (ii) managing
application execution and monitoring their performance.

System Automation and Optimization: The EMPYREAN platform handles system-
related operations automatically, including (i) monitoring, through continuous
observation of resource and application performance across the continuum, (ii)
autoscaling by dynamically adjusting resource allocation to meet application demands,
and (iii) optimization by improving resource utilization, minimizing latency, and
enhancing application performance through Al-enabled mechanisms.

empyrean-horizon.eu 52/129

N
EMPYREAN
D2.3 — Final EMPYREAN architecture, use cases analysis and KPls g

4 2

System Initialization

1. Create Registry

2. Bootstrap Identiry and Authorization Engine
3. Onboard Initial Stakeholders

\4. Enroll in EMPYREAN Trust Infrastructure

v

(G At SR
Association and Aggregator Initialization

J

1. Create Associations
2 Setup and Initialize Aggregators

v

Resource Onboarding

1. Onboard Resources

2. Enroll in EMPYREAN Trust Infrastructure
3. Resource Description

\4. Configure Authorization

v

Application Development

-~

1. Design Workflows
2. Package Lightweight Environments
-

v

(Application Deployment B

1. Deploy Application

2. Manage Execution & Monitor Performance
8)

v

System Automation & Optimization
1. Monitor Performance
2. Autoscale Resources
\3. Optimize Utilization and Latency

4

Figure 21: EMPYREAN generic operation flow

4.4 Associations Management

4.4.1 Association Setup

This operation flow is executed by EMPYREAN administrators and authorized infrastructure
providers with the necessary permissions. It utilizes the core components of the EMPYREAN
control and security planes already deployed within the platform. Dedicated operation flows
(Section 4.5) manage the onboarding of users and the integration of loT, edge, and cloud
resources into each Association. Table 8 provides an overview of the operation flow, including
its unique identifier, name, involved EMPYREAN components, associated interfaces,

EMPYREAN platform requirements coverage, as well as the enabling project technologies that
support its execution.

empyrean-horizon.eu 53/129

(EMPYREAN
D2.3 — Final EMPYREAN architecture, use cases analysis and KPls I

Table 8: Overview of Association setup operation flow

Op. Flow ID OF1.1
Name Association Setup
e EMPYREAN Registry (WP4.4.13)

o API Gateway (WP4.4.14)

o Service Catalogue (WP4.4.15)

o Container Image Repository (WP4.4.16)
Collaborators® O Association Metadata Store (WP4.4.17)
e EMPYREAN Aggregator (WP4.4.11)
® Privacy and Security Manager (WP3.1.1)

e Telemetry Service (WP4.4.7)

e EMPYREAN Controller (WP4.4.4)

Requirements | F_GR.1, F_GR.2, F_GR.4, F_GR.5, F_ST.1, F_ST.2, F_SO.6, F_ASSOC.1, F_ASSOC.8,
Coverage® F_ASSOC.10

Enablers’ EN_1,EN_9,EN_10,EN_11

Figure 22 presents the operation flow, with the steps outlined as follows:

1. An administrator or infrastructure provider, enrolled with Verifiable Credentials
(VCredentials) and JSON Web Token (JWT) access token generated with permissions
to perform the operation, initiates the creation of an Association entity by specifying
its core capabilities and embedding their access token in the request.

2. The APl Gateway of the EMPYREAN Registry receives and processes the request,
performing an initial validation to ensure the completeness of the information
provided.

3. The API Gateway invokes its Privacy and Security Manager to authorize the requested
operation, (in this case the Policy Decision Point (PDP) component that will validate
through policies if the permissions to perform the operation are correct and validated),
ensuring compliance with predefined policies and access control rules. After this, the
Policy Enforcement Point (PEP) Proxy grant access to the request depending on the
decisions of PDP.

4. Upon successful authorization, control is passed to the Registry Manager, which
handles all subsequent interactions for setting up the Association.

5. The Registry Manager stores the Association’s information, along with essential
operational parameters, in the Association Metadata Store, enabling easy access for
further interactions.

6. The Registry Manager registers the new Association in the Service Catalogue, making
it discoverable and accessible to other services and stakeholders within the EMPYREAN
platform.

5 The identifiers refer to the EMPYREAN components descriptions as presented in deliverable D2.2 (M7).
5 Requirements identifiers introduced in D2.1 (M6) and their descriptions are also available in the appendix.
7 These identifiers refer to EMPYREAN enablers as described in deliverable D2.1 (M6).

empyrean-horizon.eu 54/129

D2.3 — Final EMPYREAN architecture, use cases analysis and KPls

‘{@MPYREAN

0.

10.

11.

12.

The next step is to assign the new Association to an EMPYREAN Aggregator for
management. The EMPYREAN platform supports two approaches for this operation,
either using an existing Aggregator or automatically deploying a new Aggregator and
assigning it to the newly created Association.

o Scenario A (7.1.ii): An existing Aggregator is assigned:
» The Aggregator’s PSM validates the assignment request.

= A Smart Contract installs policies in the Aggregator's PDP/PEP, and the
DLT is updated with the new Association.

o Scenario B (7.2.ii): A new Aggregator is provisioned:

» The Registry Manager deploys a new Aggregator using blueprints and
contacts the EMPYREAN Controller.

» The Aggregator configures policies through its PSM, registers them in
the DLT, and integrates with the new Association.

After assigning the Association to an Aggregator, the Privacy and Security Manager of
the Aggregator setups the rules and policies about onboarding and resource usage
within the Association through its Policy Administration Point (PAP) component.

Next, the Registry Manager updates the Service Catalogue to reflect the assignment.

The Registry Manager notifies the Storage Service about the new Association, enabling
onboarding storage resources within the Association.

Finally, the Registry Manager informs the Telemetry Service about the new
Association, enabling relevant data collection and monitoring processes to begin.

The Association is successfully created and available for use within the platform.

EMPYREAN Registry i '
Privacy & | Smart | PAP/
Security | Contract | PDP/

AP Registry Association Service Container Images

' ' EMPYREAN Storage Telemetry
Store Catal Y Lo] e ar 0 3 Aggregator Service Engine
A '
Assaciati
creation req t
EMPYREAN Admin / 1
Infrastrructure Provider :l 2 3
Unauthorized
request 4
response
iR
5
6
7
Aggregator PSM. 710
7.2 to Registry PSA 7X3
TR i 7.XA4
Smart Contract § =g
Seup
Cloud 9
component - 8.1
Association 10

is geady 12 i

Figure 22: Association setup operation flow — Steps involved and interactions

empyrean-horizon.eu 55/129

(EMPYREAN
D2.3 — Final EMPYREAN architecture, use cases analysis and KPls I

4.4.2 Association Deletion

EMPYREAN administrators and authorized infrastructure providers with the necessary
ownership permissions carry out this operation flow. The operation flow utilizes the platform’s
core control, management, and security components, which are already deployed and
operational within EMPYREAN. Compared to OF1.1, this operation flow is more complex, as it
must account for existing interconnections, active workloads, and stored data within the
Association. It delivers a detailed and secure deletion process, ensuring all associated
workloads, data, and resources are appropriately managed to prevent unauthorized access or
data leaks. Table 9 outlines the operation flow and Figure 23 depicts the steps and interactions
involved.

Table 9: Overview of Association deletion operation flow

Op. Flow ID OF 1.2

Name Association Deletion

e EMPYREAN Registry (WP4.4.13)

o API Gateway (WP4.4.14)

o Service Catalogue (WP4.4.15)

o0 Association Metadata Store (WP4.4.17)
EMPYREAN Aggregator (WP4.4.11)
Privacy and Security Manager (WP3.1.1)
Telemetry Service (WP4.4.7)
Service Orchestrator (WP4.4.1)

Decision Engine (WP4.1.3, WP4.1.4.)

EMPYREAN Controller (WP4.4.4)

Decentralized and Distributed Data Manager (WP3.2.3)
Edge Storage Gateway (WP3.2.1)

Requirements | F_GR.1, F_GR.2, F_GR.4, F_GR.5, F_ST.1, F_ST.2, F_SO.6, F_ASSOC.1, F_ASSOC.8,
Coverage F_ASSOC.10

Enablers EN_1, EN_9, EN_10, EN_11

Collaborators

Operation flow steps:

1. An authorized administrator or infrastructure provider initiates the deletion of an
Association by specifying the Association’s unique identifier.

2. The APl Gateway of the EMPYREAN Registry receives and validates the deletion
request, confirming among others the existence and current state of the specified
Association.

3. The API Gateway interacts with the Privacy and Security Manager to authorize the
deletion request, ensuring it complies with EMPYREAN'’s security policies and deletion
control rules defined for the Association.

4. Upon successful authorization, the deletion process is handed over to the Registry
Manager, which orchestrates the following steps to manage and coordinate the
deletion process.

empyrean-horizon.eu 56/129

(EMPYREAN
D2.3 — Final EMPYREAN architecture, use cases analysis and KPls N7

5. The Registry Manager marks the Association as “non-schedulable” in the Association
Metadata Store, preventing the service assurance mechanisms at the upcoming steps
to redeploy any affecting workloads in the specific Association.

6. The next steps focus on handling the deployed workloads and data within the
Association. The Registry Manager requests the EMPYREAN Aggregator to terminate
or migrate the deployed workloads that use resources from this Association. OF5.1
details this process.

7. The EMPYREAN Aggregator triggers the corresponding Decentralized and Distributed
Data Manager and Edge Storage Gateway to manage Association’s data according to
established data retention policies.

8. The EMPYREAN Aggregator disassociates and releases all resources connected to the
Association, ensuring devices are securely removed and made available for
reallocation. Operation flows OF2.2 and OF2.3 detail these processes.

9. The EMPYREAN Aggregator requests from the Privacy and Security Manager to
remove any policies, control rules, and access permissions linked to the Association.

10. The EMPYREAN Aggregator informs the Telemetry Service to stop monitoring and
collecting metrics for the deleted Association.

11. The Registry Manager updates the Service Catalogue, removing the Association’s entry
to ensure it is no longer discoverable or accessible within the platform.

12. The Registry Manager deletes all metadata associated with the Association from the
Association Metadata Store, finalizing the entity removal from the platform.

13. The Association is successfully deleted and the user is notified.

EMPYREAN Registry

[API ‘ Registry ‘ Association ‘Service Privacy &

Association
delete request
(1)
_—

EMPYREAN Admin /
Infrastrructure Provider] 2)

EMPYREAN De_ceptrallzed & Edge Telemetry
M. M Store G Security Manager | Aggregator S HIEEE EEE Storage Service
AN SR . = Broker Gateway

(3a)

L ized

request € (3b)
(4)
(5)

(6a)

y
@
g

R ———
(7b)
(7¢)
® : (7d)
1E=
OF2.3
(9)
-—

(10)

(11a)

(11b)

(120) (12a)

Association _(13) i<

deleted

Figure 23: Association deletion operation flow — Steps involved and interactions

empyrean-horizon.eu 57/129

(EMPYREAN
D2.3 — Final EMPYREAN architecture, use cases analysis and KPls I

4.4.3 Association Update

This operation flow outlines the process of updating participation policies within an existing
Association. It is carried out by EMPYREAN administrators and authorized infrastructure
providers. The operation flow is structured to manage complex operations, including the
eviction of resources, workload, and data migration to ensure seamless integration of updated
policies. Updates to available resources and participating users within an Association are also
possible. For these updates, the EMPYREAN platform provides supplementary, detailed
operation flows (Section 4.5) tailored to specific operations. Table 10 provides an overview of
the operation flow and Figure 24 illustrates the steps and interactions involved.

Table 10: Overview of Association update operation flow

Op. Flow ID OF 1.3

Name Association Update

e EMPYREAN Registry (WP4.4.13)
O API Gateway (WP4.4.14)
O Service Catalogue (WP4.4.15)
O Association Metadata Store (WP4.4.17)

Collaborators e EMPYREAN Aggregator (WP4.4.11)
e Privacy and Security Manager (WP3.1.1)
e Service Orchestrator (WP4.4.1)
e Decentralized and Distributed Data Manager (WP3.2.3)
e FEdge Storage Gateway (WP3.2.1)

F GR.1, F_GR.2, F_GR.3, F_GR.4, F_GR.5, F_GR.6, F_ST.1, F_ST.2, F_DCM.1,
F_DI1, F_DI.2, F_DI.4, F_SO.6, F_SO.7, F_SO.8, F_ASSOC.1, F_ASSOC.2,
F_ASSOC.3, F_ASSOC.4, F_ASSOC.6, F_ASSOC.7, F_ASSOC.8, F_ASSOC.10
Enablers EN_1,EN_2,EN_4,EN_9,EN_10,EN_11

Requirements
Coverage

Operation flow steps:

1. An authorized administrator or infrastructure provider initiates the update request,
specifying the unique identifier of the target Association and detailing the desired
changes. These changes may include updating access policies, modifying resource-
sharing rules, and modifying configurations.

2. The APl Gateway of the EMPYREAN Registry receives the update request and performs
a preliminary validation to verify the existence and current status of the specified
Association.

3. The API Gateway interacts with the Privacy and Security Manager to authorize the
update request, ensuring compliance with security policies and access control rules.

4. Upon successful authorization, the Registry Manager takes control, coordinating the
necessary steps to update the Association according to the specified changes.

empyrean-horizon.eu 58/129

(EMPYREAN
D2.3 — Final EMPYREAN architecture, use cases analysis and KPls N7

5. The Registry Manager requests from the respective EMPYREAN Aggregator to
evaluate whether requested updates will disrupt or require adjustments to currently
running applications and available resources within the Association.

6. If the analysis identifies workloads and data that need relocation due to the changes,
the workflow triggers the workload and data migration process as outlined in
operation flows OF4.2 and OF5.1. This ensures a smooth transition, maintaining
workload availability and data integrity across the platform.

7. If any resources or nodes have to be removed from the Association, the Registry
Manager initiates the resource offboarding process (operation flows OF2.2 and OF2.3).

oo

The Registry Manager is notified upon the completion of the migration and offload.

©

Upon the successful handling of affected workloads and resources, the Privacy and
Security Manager enforces the updated control and access policies to align with the
new Association setup.

10. The EMPYREAN Aggregator is informed for the update in the Association
configuration. This ensures that the Aggregator can adapt its resource management
strategies to accommodate the changes.

11. The Registry Manager updates the Service Catalogue to reflect the new configuration,
making the changes discoverable and accessible to other components and
stakeholders within the EMPYREAN platform.

12. The Registry Manager revises the Association Metadata Store to record the
modifications, ensuring an accurate, up-to-date repository of all Association
configurations and operational parameters.

13. Finally, the request initiator is informed of the successful completion of the process.

EMPYREAN Registry Privacy & Security
Manager
API gistry Associati Service pent ! Smart | ppp | | EMPYREAN
Gateway Manager Metadata Store | Catalogue 1 c"/'g[;“ 1 /PEP | | Aggregator
J J J J L] 1
Assaciation
update request
—_—
(1)
(2)
EMPYREAN Admin / 2 (3a)
Infrastrructure Provider] 13b)
Unauthorized < (3¢)
request €——————: (a)
response cs)
A
If migration OF4.2
—_—
(6b) required OF5.1
(7) Offboarding OF2.2
(8) DFI2.3
-) |
e
(10a)
(11) - Ji10b)
12
Association is (13) 12
updated
(13b)

Figure 24: Association update operation flow — Steps involved and interactions

empyrean-horizon.eu 59/129

D2.3 — Final EMPYREAN architecture, use cases analysis and KPls

%@MPYREAN

4.5 Infrastructure Resources and Users Management

4.5.1 Computing Resources Onboarding

This operation flow enables the integration of computing resources into Associations, enabling
their utilization by the EMPYREAN platform for the deployment of applications. An Association
will have to be populated with at least one cluster composed by at least one computing
resource. The onboarding process can be initiated either manually by a designated user or
performed automatically after a periodic resource discovery phase. Components such as the
Privacy and Security Manager, Telemetry Service, and Service Orchestrator are involved in

order to verify

user authorization and ensure the eligibility of computing resources.

Table 11: Overview of computing resources onboarding operation flow

Op. Flow ID

OF2.1

Name

Computing Resource Onboarding

Collaborators

e Privacy and Security Manager (WP3.1.1)

e Aggregator APl Gateway (WP4.4.12)

e Service Orchestrator (WP4.4.1)

e Telemetry Service (WP4.4.7)

e Containers Layer Locality Scheduler (WP3.4.2)

Requirements
Coverage

F_GR.1, F_GR.6, F_ASSOC.1, F_ASSOC.2, F_ASSOC.8, F_ASSOC.9, F_ST.1, F_ST.2,
F_DI.6

Enablers

En_1,EN_2, EN_10, EN_11

The following steps detail the process for onboarding an entire cluster or computing resources
(from the far or deep edge or the cloud) to a particular Association:

1. Initially, the resource owner must be identified and validated through the Security and
Privacy Manager to ensure it has the necessary rights to onboard statically or
dynamically resources or a cluster into the particular Association. If the owner is not
already part of the Association, it has to go first through the Entity Enrolment
operation flow (OF2.4).

2. The onboarding phase then begins which is performed through a mechanism or script
to install the necessary packages and initiate the setup process. Resource onboarding

can be

performed either statically or dynamically. Moreover, the Privacy and Security

Manager performs necessary validations during this phase.

a.

Static Onboarding: the designated user manually registers specific resources to
a particular Association and triggers the onboarding process.

Dynamic Onboarding: The resource uses a token for self-registration into one
or multiple Associations. Once establishing network communication, it can
query the EMPYREAN Registry to identify suitable Association(s) to register,
based on parameters such as capacity, available data, HW accelerators, loT
devices, energy consumption, latency, and security requirements.

empyrean-horizon.eu 60/129

(EMPYREAN
D2.3 — Final EMPYREAN architecture, use cases analysis and KPls I

3. During registration, the resource owner defines the percentage of the resource to be
shared within the Association. Different parameters such as energy consumption may
play a role in the allocation. For dynamic onboarding, a default low percentage will be
initially assigned, which the owner can adjust later.

4. The Privacy and Security Manager is involved during the onboarding to ensure the
integrity and authenticity of resource-related data and verify the entity’s credentials.

5. The Telemetry Service in the Association level is updated accordingly.

6. The Aggregator, Service Orchestrator, and Local Orchestrators are also informed to

integrate the resource into their operational frameworks and workload distribution
mechanisms.

7. Individual resources can be connected either as additional nodes to existing K8s/K3s
clusters or participate as a new K8s/K3s cluster. The platform will also enable to some
extent loT resources to connect under the control of existing Association resources,
enhancing flexibility.

Once the onboarding process is complete, the resources are fully integrated into the
Association and available for workload assignments, contributing to the overall computational
and operational capacity of the ecosystem.

4.5.2 Computing Resources Offboarding

This operation flow manages the removal of computing resources from the Associations. The
offboarding process is initiated manually by an authorized user.

Table 12: Overview of computing resources offboarding operation flow

Op. Flow ID OF 2.2

Name Computing Resources Offboarding

Privacy and Security Manager (WP3.1.1)

EMPYREAN Registry (WP4.4.13)

Aggregator APl Gateway (WP4.4.12)

Service Orchestrator (WP4.4.1)

Telemetry Service (WP4.4.7)

EMPYREAN Controller (WP4.4.4)

Containers Layer Locality Scheduler (WP3.4.2)

Requirements | F_GR.1, F_GR.6, F_ASSOC.1, F_ASSOC.2, F_ASSOC.8, F_ASSOC.9, F_ST.1, F_ST.2,
Coverage F_DI.6

Enablers EN_1, EN_2, EN_10, EN_11

Collaborators

empyrean-horizon.eu 61/129

(EMPYREAN
D2.3 — Final EMPYREAN architecture, use cases analysis and KPls I

The offboarding process in EMPYREAN ensures a smooth and controlled removal of resources
or clusters from an Association. The following steps outline this operation:

1. A computing resource or cluster offboarding from an Association when the resource’s
owner requests it from the respective EMPYREAN Aggregator, either after a certain
period of time (lease time), or after an event is detected (e.g., the resource does not
provide the requested capacity).

2. The Privacy and Security Manager is then notified for this explicit request or triggered
event. It will then validate the integrity of the message and allow the offboarding to
take place.

3. Active tasks or workloads on the affected resources are allowed to be completed
before the offboarding proceeds. For tasks not yet started, the system ensures their
migration to other resources within the same or different Association. More details
are available in operation flows OF4.2 and OF5.1.

4. The Service Orchestrator, Local Orchestrator, EMPYREAN Controller, Telemetry Service,
and Privacy and Security Manager are informed of the offboarding event. This ensures
system-wide awareness and preparation for the resource's removal.

5. After all tasks are resolved and components updated, the resource or cluster is
officially unregistered from the Association and the EMPYREAN Aggregator is notified.

6. The EMPYREAN Registry removes the relevant metadata and configurations to ensure
consistency.

Once the offboarding is complete, the resource is successfully detached from the Association
and is no longer available for workload assignment or participation.

4.5.3 Storage Resources Onboarding / Offboarding

To enable the use of storage resources at the Association level, these resources must first be
registered with the CC’s storage service. This operation is performed through a dedicated web
application. Once a resource is successfully onboarded, it becomes available for use as a
storage location within a storage policy. These policies define how the storage resources will
be utilized and managed. Users can create S3 buckets and associate them with specific storage
policies.

The Edge Storage Gateway works in conjunction with the Privacy and Security Manager to
ensure the integrity and authenticity of storage resource identities. If a quota needs to be
defined (e.g., to restrict the percentage of a resource that a "3rd party" user can utilize), this
can be enforced through a distributed ledger.

The onboarding and offboarding processes are designed to ensure secure and seamless
integration of storage resources into the EMPYREAN platform.

empyrean-horizon.eu 62/129

D2.3 — Final EMPYREAN architecture, use cases analysis and KPls

%@MPYREAN

Table 13: Overview of storage resources onboarding and offboarding operation flow

Op. Flow ID OF23

Name

Storage Resources Onboarding and Offboarding

Collaborators

Edge Storage (WP3.2.2)
Privacy and Security Manager (WP3.1.1)
EMPYREAN Registry (WP4.4.13)

EMPYREAN Aggregator (WP4.4.12)
Telemetry Service (WP4.4.7)

Requirements | F_GR.1, F_GR.4, F_ASSOC.1, F_ASSOC.2, F_ASSOC.7, F_ASSOC.8, F_ASSOC.9,
Coverage F_ASSOC.10, F DCM.1, F_DI.4, F_S0O.4, F_SO.8

Enablers EN_1,EN_5,EN_9,EN_10

Onboarding process:

1.

The storage resource is configured to run inside the Association. For example, a helm
chart that defines the containerized service that exposes the storage resource is
installed in a K8s cluster. The service (a Min.IO instance) is provided by CC with a basic
configuration that can be changed as needed (e.g. credentials should be changed).

A member of the association (user) that owns the resource logs into a web application
provided by CC.

The member specifies the URL and credentials needed to access the resource.

The user can optionally set a quota on resource usage for other users. This policy is
stored and managed via the Privacy and Security Manager.

The Skyflok.com backend stores this information as an EMPYREAN Edge Storage
device, making it a part of the appropriate association.

The EMPYREAN Aggregator is updated to include the new storage resource in its
available resources, while the Telemetry Service is updated for monitoring purposes.

The EMPYREAN Registry records the storage resource as active and accessible within
the Association.

Offboarding process:

1.

A member of the Association with the appropriate authorization logs into the web
application provided by CC.

The member schedules the edge device for removal.

Affected storage policies are disabled, S3 buckets with these policies must also be
disabled for writing until a new, valid storage policy is specified for them.

The actual removal should only take place once data has been migrated from the edge
device.

The EMPYREAN Aggregator and Service Orchestrator within the Association, and the
EMPYREAN Registry are informed for the resource offboarding.

empyrean-horizon.eu 63/129

(EMPYREAN
D2.3 — Final EMPYREAN architecture, use cases analysis and KPls I

4.5.4 Entity Enrollment

The entity enrolment operation flow facilitates the seamless onboarding and lifecycle
management of entities, including users, loT devices, robots, and resources, within the
EMPYREAN ecosystem. Central to this process is the Privacy and Security Manager (PSM),
which supports the issuance of Decentralized Identifiers (DIDs) and Verifiable Credentials
(VCs), enabling secure and privacy-preserving interactions.

Entities can join the trusted participant list maintained by the Distributed Ledger Technology
(DLT) by providing sufficient identity proofs, ensuring compliance with the required trust
standards for participation. In alignment with a Zero Trust model, guest users can be enrolled
with self-generated DIDs and assigned the lowest trust score, allowing limited interaction
capabilities with the platform. Their access and permissions are dynamically managed through
policies defined by smart contracts and tailored to their roles and trust levels.

The operation flow also includes robust offboarding mechanisms, ensuring secure and reliable
decommissioning of entities. This includes the revocation of Verifiable Credentials and
removal of DIDs from the trusted participant list in the DLT, guaranteeing that access rights
are fully terminated and the integrity of the system is preserved.

This approach enables comprehensive traceability, secure interactions, and adherence to the
platform’s access control policies throughout the lifecycle of all entities.

Table 14: Overview of entity enrollment operation flow

Op. Flow ID OF 2.4

Name Entity Enrollment
e EMPYREAN Registry (WP4.4.13)
Collaborators e EMPYREAN Aggregator (WP4.4.11)

® Privacy and Security Manager (WP3.1.1)

Requirements
Coverage

Enablers EN_1,EN_10,EN_11

F_GR.1, F_ASSOC.2, F_ASSOC.3, F_ST.1, F_ST.2

Figure 25 illustrates the steps and interactions that take place during the entity enrollment
operation.

1. An entity begins the process by generating a Decentralized Identifier (DID).

2. The generated DID is automatically stored in the Verifiable Data Registry (VDR)
through a smart contract.

3. The entity requests a Verifiable Credential (VC) from the Privacy and Security Manager
(PSM), including attributes necessary for its intended role.

4. The PSM verifies the request, processes the attributes, and issues the requested
Verifiable Credential.

empyrean-horizon.eu 64/129

D2.3 — Final EMPYREAN architecture, use cases analysis and KPls

S
@MPYREAN

The entity presents the Verifiable Credential as a Verifiable Presentation (VP) to the
EMPYREAN Registry for authentication and enrollment.

The EMPYREAN Registry interacts with the PSM to validate the VP, ensuring that the
attributes and credentials comply with the platform's trust policies.

Upon successful validation, the PSM returns an "Authorized" status, along with a DID-
signed session JWT token.

Example of Authorized Flow:

The entity submits an Association setup request, using the session token to
authenticate and authorize its access.

The association setup request is authorized by validating it against policies stored in
the Distributed Ledger Technology (DLT).

Smart contracts in the DLT are triggered to create and enforce policies that govern the
entity's interaction within the association.

The association setup is completed, and the entity is successfully enrolled and ready
to operate within the EMPYREAN platform.

Verifiable Data Registry Trusted lssuers
gy Public Key Demain Participan Trusted Issuert
Ledger Storage List
=i [Trusted Issuers rusted participant
2 il B G- p—
- 1| v T Aggregator
EMPYREAN (trusted issuer)
Registry POPIPEP: !
Privacy & API i Association Privacy & P
Security) m'““ SV etadata Catalogue S°CHtY g
Empyrean Adin Manager < /A 9T store © © Manager our
ENROLMENT
GenerateDID
DID-
—Request Verifiable Credential(Admin Attributes)—
i—Reques! Verifiable Credential(Admin Altributes)-»

i—Request Verifiable Credential{Admin Atrributes)bi
«———Verifiable Credential(Admin Attributes)— ; -~ —

ENROLEMENT +

«——OK/KO DID Signed Session AUTH TOKEN

Authenticated/Authorised FLOW

rify(VP—5

(VP —

ferifi

ion Gr.

i«-----DID Signed Session AUTH TOKEN....

E.G ASSOCIATION SETUP REQUEST

OCIATION SETUP (AUTH SESSION

Authoriz

Policy Creation (Smart contract)——»

H Policy Creation (Smart contract)}————————>
ASSOCIATION READY. 1

Figure 25: Entity enrollment operation flow

empyrean-horizon.eu

65/129

(EMPYREAN
D2.3 — Final EMPYREAN architecture, use cases analysis and KPls I

4.6 Application Development

4.6.1 Low-Code Application Development

The low-code application development process enables users to create and deploy
applications through a user-friendly Web Ul provided by the EMPYREAN Workflow Manager
component. This operation flow supports different designated users with specific roles (e.g.,
application developers, operators, service providers) by offering high-level abstractions and
pre-built tools for efficient application design and deployment.

Users log into the Web Ul through the Privacy and Security Manager, ensuring secure
authentication and access control. Then, they can make use of the Workflow Manager’s high-
level abstractions to build hyper-distributed applications by selecting pre-built actions and
connecting them sequentially to define the application’s global logic. Connections between
actions are made by linking the outputs of one action to the inputs of the successive action,
creating a clear and logical workflow. Furthermore, users can define dataflows for the actions,
specifying how data moves from one part of the application to another. Expert users will have
the ability to directly define the required computing and storage resources for their
application through the Web Ul. The non-expert users can opt for the system to automatically
allocate the most suitable resources during the deployment phase, ensuring ease of use and
optimal performance.

The Decentralized and Distributed Data Manager component is utilized to configure the
necessary edge and cloud storage resources for the application. If resources are not explicitly
defined, the system dynamically selects the most appropriate resources during the
deployment phase, leveraging EMPYREAN's intelligent decision-making capabilities. The
application development lifecycle also contains the phase of tracking the logs and debugging
during the application execution. These functionalities are accessible directly within the
Workflow Manager Web Ul, enabled through integration with the Telemetry Service.

Table 15: Overview of low-code application development operation flow

Op. Flow ID OF 3.1

Name Low-code Application Development

Workflow Engine (WP4.2.1)
Privacy and Security Manager (WP3.1.1)
Decentralized and Distributed Data Manager (WP3.2.3)

Edge Storage Gateway (WP3.2.1)

NIX-based Environment Packaging (WP4.3.1) & Application Packaging
(WP4.3.3)

Telemetry Service (WP4.4.7)
Dataflow Programming Component (WP4.2.5)

Collaborators

Requirements
Coverage

Enablers EN_4,EN_6,EN_9, EN_11,EN_14

F_GR.4,F_GR.5,F_SO.1, F_SO.2, F_SO.3, F_SO.6, F_S0.13, F_SO.14, F_SO.15

empyrean-horizon.eu 66/129

(EMPYREAN
D2.3 — Final EMPYREAN architecture, use cases analysis and KPls I

The following operation flow steps will take place for the low-code application development:

1. The designated EMPYREAN application developer connects to the platform. The
Privacy and Security Manager validates the user’s permissions and access policies,
granting access to specific Associations, features, and capabilities. These application
development permissions include user rights and agreed-upon usage percentages.

2. The user defines an application in the form of one or multiple workflows that may
include extract, transform, load (ETL) processes, Al/ML tasks (training or inference),
data storage, and data movement between generation, processing, and storage units.
This can be accomplished using either the Web Ul or the CLI.

3. The user (as part of an Association or as a guest) has the ability to create a workflow,
a microservice, or a batch container and deploy an application either through the Ul,
the CLI or the SDK/API. The workflow can be created from existing “actions”, which are
available in the repository. The creation of new “actions” is done during the action
packaging (OF 3.2).

4. Besides defining the workflows, the actions composing the workflows, and expressing
which inputs and outputs should be exchanged; the user has the ability to define how
data should flow between the different actions of the workflow.

5. Duringthe application design phase, the user can define the characteristics needed for
application execution. For this, the characteristics of Associations can be retrieved to
adapt the application to available resources effectively. These deployment definitions
can include hard constraints or objective-based requirements for each action. These
features allow users to define application needs during both development and
deployment phases.

6. The platform supports storage operations (based on S3), including independent
storage and retrieval tasks or storage-related operations as part of a workflow.

4.6.2 Action Packaging

The action packaging operation flow within the EMPYREAN platform provides a structured
process for building, packaging, and deploying hyper-distributed applications. Applications in
EMPYREAN are composed by one or multiple workflows, each comprising one or more actions
designed to perform specialized tasks. The actions can be either pre-available in the platform
or custom-made by the user, allowing for flexibility and adaptability across diverse use cases.

In the case of custom-made actions, users can develop actions tailored to specific
requirements, preparing the code following predefined specifications and using any
programming language of their choice. This operation flow leverages advanced EMPYREAN
tooling, including the Action Packaging, NIX-based Environment Packaging, and Unikernels
Builder components, to prepare and containerize actions for deployment, ensuring
compatibility with modern cloud-native infrastructure.

empyrean-horizon.eu 67/129

D2.3 — Final EMPYREAN architecture, use cases analysis and KPls

%@MPYREAN

Table 16: Overview of application and action packaging operation flow

Op. Flow ID OF 3.2

Name

Action Packaging

Collaborators

e Workflow Engine (WP4.2.1)

EMPYREAN Registry (WP4.4.13)

EMPYREAN Aggregator (WP4.4.11)

Privacy and Security Manager (WP3.1.1)
NIX-based Environment Packaging (WP4.3.1)
Unikernels Builder (WP4.3.2)

Requirements
Coverage

F_GR.4, F_GR.5, F_S0.1, F_S0.6, F_S0.13, F_S0.14, F_S0.15

Enablers EN_6, EN_9, EN_13, EN_14, EN_15

The following operation flow steps will take place for the action packaging:

1.

The user prepares its code following specifications related to the action packaging
component providing: a YAML descriptor defining inputs, outputs, the programming
language that the action is developed and other information related to the action. It
also provides the action code and the dependencies of the code that will all be used to
build a container.

The user pushes the YAML descriptor, code, and dependency definitions to an online
Git repository (e.g, GitLab, GitHub, Bitbucket).

The user authenticates through the Privacy and Security Manager to validate its
identity and permissions. The action packaging tool scans the repository, which after
an eligibility test will start building the action.

Once validated, the action goes through the NIX-based Environment Packaging tool for
typical containers and through the Unikernels Builder if the action is targeted for
unikernels-based deployment. Both processes result in the creation of OCl-compliant
containers, ensuring seamless integration into EMPYREAN'’s cloud-native ecosystem.

Once the OCI container is built, it is uploaded in the EMPYREAN Registry and both the
Workflow Engine and the EMPYREAN Aggregator are updated and can use this new
image. In particular the Workflow Engine will offer a specific view to provide high-level
details about the action built.

4.6.3 Integration of Data Spaces

The EMPYREAN platform integrates Data Spaces to enable secure, federated data sharing and
collaboration across Associations. This workflow describes the process of integrating and
managing Data Spaces within the EMPYREAN architecture, ensuring compliance with
standards such as Gaia-X while supporting interoperability, data sovereignty, and privacy. The
EMPYREAN trust framework, built on verifiable credentials and advanced trust mechanisms,
guarantees privacy and secure in interactions, maintaining transparency and accountability
among stakeholders.

empyrean-horizon.eu 68/129

D2.3 — Final EMPYREAN architecture, use cases analysis and KPls

%@MPYREAN

Table 17: Overview of data spaces integration operation flow

Op. Flow ID OF3.3

Name

Data spaces

Collaborators

e EMPYREAN Registry (WP4.4.13)
o API Gateway (WP4.4.14)
o Registry Manager (WP4.4.19)
o Service Catalogue (WP4.4.15)
o Data Connectors (WP4.4.18)
o Association Metadata Store (WP4.4.17)

e EMPYREAN Aggregator (WP4.4.11)

® Privacy and Security Manager (WP3.1.1)

e Telemetry Service (WP4.4.7)

e Decentralized and Distributed Data Manager (WP3.2.3)

Requirements | F_GR.1, F_ASSOC.1, F_ASSOC.2, F_ASSOC.3, F_ASSOC.7, F_ASSOC.8, F_ST.1,
Coverage /UCs | F_ST.2, F ST3,F_DCM.1,F_DI.4,F_SO.8

Enablers EN_1,EN_2,EN_3, EN_4, EN_5, EN_10, EN_11

Operation flow steps:

1.

An EMPYREAN administrator submits a request to integrate a new Data Space into the
EMPYREAN platform via the API Gateway component of the EMPYREAN Registry. The
request also includes the definition of data-sharing policies, specifying access control
and usage terms.

The API Gateway invokes the Privacy and Security Manager to authorize the requested
operation (through PDP/PEP proxy), ensuring compliance with predefined policies and
access control rules.

Upon successful authorization, the Registry Manager takes control of the operation to
manage all subsequent interactions for registering the Data Space.

The Registry Manager utilizes the Privacy and Security Manager triggering a smart
contract to create and enforce the specified data-sharing and access policies. Data
consumers are also added to the Data Space, their credentials and permissions for
accessing data are issued.

The Registry Manager registers the new Data Space in the Service Catalogue, making
it discoverable and accessible to services and stakeholders within the EMPYREAN
platform. It also updates accordingly the Association Metadata Store.

The Data Connectors component is then engaged to verify the availability of the new
Data Space by interacting with the respective Data Source Connector.

The Registry Manager notifies the Telemetry Service to monitor the availability of the
Data Space at predefined intervals. Feedback by the Data Connectors component is
also relayed to the Telemetry Service to ensure updated information about the Data
Space’s status.

empyrean-horizon.eu 69/129

(EIMPYREAN
D2.3 — Final EMPYREAN architecture, use cases analysis and KPls N

8. Storage resources and data are seamlessly integrated via the Decentralized and
Distributed Data Manager services across the EMPYREAN Associations, enabling
collaborative processing and analysis while preserving data sovereignty.

Privacy & Security

EMPYREAN Registry Manager -
1 1
API Registry Data Service Association y Smart L ppp Telemetry Decentralized & Data Source
Gatewa Manager Connectors Catalogue Metadata Store PSM|, Contract ; /ppp Servi Distributed Data Connestor
y [s] g y /oIy ervice Manager @ Data Space
i (1
(2a) i
EMPYREAN Admin / a
Infrastrructure Provider (2b) H
(3)
(4a)
b) i
(5a)
isb) i
(6) N
(7a)
(7b) _
(7¢) i
H (8) i
H e
!

Figure 26: Data Spaces integration within the EMPYREAN platform

4.7 Application Deployment

4.7.1 Cloud-Native Application Deployment

The deployment of cloud-native applications within the EMPYREAN platform is structured into
three distinct phases. The first phase involves decentralized and speculative resource
orchestration, where application workloads are strategically distributed to specific
Associations according to deployment objectives (OF4.1.1). The second phase encompasses
hierarchical cognitive resource orchestration within the selected Associations (OF4.1.2),
further refining the deployment plan based on platform-specific deployment objectives. The
final phase, executed by the local orchestrator and optimized by the Containers Layer Locality
Scheduler component, selects specific worker nodes across the utilized K8s/K3s clusters and
also executes the actual deployment procedures as outlined in the declarative descriptions
from the previous phases (OF4.1.3). Furthermore, the Workload Autoscaling component can
perform continuous optimizations by adjusting further the resources allocation.

The first two phases facilitate collaborative and intelligent resource orchestration, while the
third phase ensures seamless deployment across the EMPYREAN platform. Throughout these
phases, the orchestration mechanisms consider various key criteria, including latency
constraints, performance objectives, energy efficiency, and security requirements, guiding the
optimal allocation of workloads to Associations, clusters, and underlying infrastructure
resources.

empyrean-horizon.eu 70/129

D2.3 — Final EMPYREAN architecture, use cases analysis and KPls

%@MPYREAN

This operation flow is initiated and managed by an EMPYREAN application operator who is a
member of at least one Association. Before the execution of the operation flow, the
application developer must provide an application description as described in OF3.1. This
description includes manifests that describe the application components and their specific
requirements, such as resource characteristics, network configurations, performance needs,
required data, provided security, and hardware acceleration.

Table 18: Overview of cloud-native application deployment operation flow

Op. Flow ID OF4.1

Name Cloud-Native Application Deployment

Collaborators

Workflow Engine (WP4.2.1)

EMPYREAN Registry (WP4.4.13)

EMPYREAN Aggregator (WP4.4.11)

Privacy and Security Manager (WP3.1.1)
Service Orchestrator (WP4.4.1)

Decision Engine (WP4.1.3, WP4.1.4)
EMPYREAN Controller (WP4.4.4)

Telemetry Service (WP4.4.7)

Analytics Engine (WP3.4.3)

Containers Layer Locality Scheduler (WP3.4.2)
Decentralized and Distributed Data Manager (WP3.2.3)

Edge Storage Gateway (WP3.2.1)
Container Runtime (WP4.3.4)

NIX-based Environment Packaging (WP4.3.1) & Application Packaging
(WP4.3.3)

F GR.1, F_ GR2, F GR3, F_GR.4, F_GR5, F GR6, F_ASSOC.1, F_ASSOC.5,
Requirements | F_ASSOC.8, F_ASSOC.9, F_ASSOC.10, F_ST.1, F ST.2, F_ST.3, F_ST.6, F_DI.1,

Coverage F_DI.2, F_DI.3, F_DL5, F_DI.9, F_SO.1, F_SO.2, F_SO.3, F_S0.4, F_SO.5, F_SO.6,
F_S0.9,F_SO.10, F_SO.13, F_SO.14, F_SO.15
Enablers EN_1,EN_2, EN_4, EN_6, EN_9, EN_10, EN_11, EN_14, EN_15, EN_17

Initial assignment of cloud-native application’s microservices to EMPYREAN Associations

(OF4.1.1):

1. The application operator initiates a deployment request through the Workflow
Manager, providing the application descriptor along with deployment objectives and

requirements.

2. The Workflow Manager retrieves the user’s default EMPYREAN Aggregator from the
EMPYREAN Registry. This Aggregator corresponds to one of the Associations in which
the user participates and is authorized to utilize their resources (or part of them).

3. The EMPYREAN Aggregator receives the request and invokes its Privacy and Security
Manager to validate it against the security policies and compliance rules of the
involved Associations.

empyrean-horizon.eu

71/129

D2.3 — Final EMPYREAN architecture, use cases analysis and KPls

(EMPYREAN

—_—

Application
Operator

The request is forwarded to the Service Orchestrator which analyses the application
descriptor and requests the Decision Engine, located at the same Aggregator, to
initiate the multi-agent decision-making process for assigning the application’s
workloads to Associations within the platform.

The Decision Engine queries the EMPYREAN Registry to identify Associations with
particular characteristics that meet the requirements for deploying application
workloads. It then forwards the deployment request to the Associations’ Decision
Engines.

Each Decision Engine retrieves updated information on available resources from the
Telemetry Service across its Associations. By utilizing multi-agent speculative
algorithms, the Decision Engines provide high-level workload placement decisions that
meet user requirements while optimizing resource utilization.

The default EMPYREAN Aggregator is informed of these decisions and, if necessary,
coordinates with the other Aggregators. During this step, the EMPYREAN Aggregator
also generates the execution blueprint for the application’s microservices, augmenting
and segmenting the initial application descriptor with infrastructure-specific
instructions for each selected Association.

The default Aggregator updates the EMPYREAN Registry with the high-level
assignment for tracking and compliance.

The successful completion of these steps triggers workflow WF4.1.2, which is executed
concurrently across all selected Associations.

Default Association

Workflow
Manager

Privacy &
Security
Manager

Service
Orchestrator

Decision
Engine Service

EMPYREAN EMPYREAN
Registry Aggregator

Association 2
| i
(1)
(2)

(3a)

(3b)

(42)

:|(4b)
{ae)
(sa) >

< (5b)

(6a) T Decision Engines
H on selected

] (6b) : Associations

(7a) (Steps 6a & 6b)

< (72)

o
(8)
(10) OF3.1.2 on
selected Associations

Figure 27: Initial assignment of cloud-native application’s microservices to Associations

empyrean-horizon.eu 72/129

D2.3 — Final EMPYREAN architecture, use cases analysis and KPls

{@MPYREAN

Hierarchical and cognitive orchestration at the Association level (OF4.1.2):

1.

The Service Orchestrator receives the application description, including infrastructure-
specific deployment requirements and constraints, from its EMPYREAN Aggregator. At
this step, the application description may encompass the entire application or specific
microservices, depending on the outcome of decision-making mechanisms in OF4.1.1.

It then requests its Decision Engine to determine the optimal assignment of the
application workloads to individual platforms within the Association where the user is
authorized to access.

The Decision Engine retrieves detailed monitoring data for the candidate edge and
cloud platforms from the Telemetry Service.

Utilizing multi-objective resource allocation algorithms, the Decision Engine identifies
the best allocation of application workloads to specific K8s and K3s clusters within the
Association. This includes infrastructure-specific deployment requirements for the
final phase.

The Service Orchestrator informs the EMPYREAN Aggregator with the application’s
platform-specific assignments. The EMPYREAN Aggregator updates accordingly its
Ryax Runner, Orchestration Drivers, and the EMPYREAN Registry.

The Ryax Runner then notifies the Ryax Worker at the selected clusters to deploy the
relevant components of the overall cloud-native application, including also any low-
level deployment objectives specified by the Decision Engine.

Upon successful completion of these steps, operation flow OF4.1.3 is triggered and
executed across all selected K8s and K3s clusters within the Association.

Association 1

EMPYREAN EMPYREAN Service | | Decision Telemetry | Ryax | EMPYREAN Ryax
Registry Aggregator Crchestrator Engine Engine Runner Controller | Worker
(1)
> (2)
—_—
(3)
e
4b)
(a) (4b) _
(5b) “
B 5 (sq)
g (6) N
». (7). | oOF3.130n
" |selected clusters

Figure 28: Hierarchical and cognitive orchestration at the Association level

empyrean-horizon.eu 73/129

D2.3 — Final EMPYREAN architecture, use cases analysis and KPls

{@MPYREAN

Selection of worker nodes and seamless application deployment (OF4.1.3):

1.

Each RYAX Worker dynamically generates the necessary descriptors for local-level
orchestration mechanisms, specifying also the use of the Container Layers Locality
Scheduler for assigning workloads to specific worker nodes.

The RYAX Worker interfaces with the K8s or K3s API server of the underlying cluster to
deploy the containerized application components.

The Local Orchestrator along with the Container Layers Locality Scheduler makes the
final assignment of application workloads to worker nodes within the specific cluster,
ensuring that pods are scheduled based on the resource plans developed by the
Decision Engine, including node affinity, tolerations, and resource limits.

Within EMPYREAN, each application component is deployed as a container, unifying
software delivery across the loT-edge-cloud continuum. The Container Runtime
componentisinvolved in this process. Additional details are covered in operation flows
OF4.4 and OF4.6.

The Decentralized and Distributed Data Manager configures data pathways to provide
application components with the necessary access to storage resources. This process
is further detailed in operation flow OF4.3.

After deployment, the EMPYREAN Controller informs the Service Orchestrator
regarding the application’s microservices assignment to worker nodes.

The Service Orchestrator updates its EMPYREAN Aggregator and the EMPYREAN
Registry. It also notifies the Telemetry Service and Analytics Engine to automatically
monitor and analyze the performance of the specific application’s microservices.
During application execution, the Workload Autoscaling component dynamically
engages as needed to optimize resource allocation and ensure application
performance.

Controller /

‘ EMPYREAN
Ryax Worker

Decentralized)
& Distributed
Data Manager

EMPYREAN
Aggregator

Service
Orchestrator

Telemetry Analytics

K8s/K3s APy | | _Gontainer
Server Service Engine

Layers Locality

‘ Runtime
Scheduler

Component

EMPYREAN
Registry

(1a)

e

(2
(3a)

:|(sb) -

" ii4b)

:l OF44 & OF46| i

(5a)

> E(Shl
e

A A » -

(6)

(7a)

(7b)
(7¢)

(7d)

Figure 29: Selection of worker nodes and seamless application deployment

empyrean-horizon.eu 74/129

(EMPYREAN
D2.3 — Final EMPYREAN architecture, use cases analysis and KPls I

4.7.2 Intra-Association Workload and Data Migration

This operation flow is initiated by service assurance mechanisms at the Association level,
either to automatically balance workloads and data within the Association or in response to
events that may affect the security and performance of deployed workloads and associated
data. It ensures that workloads and data are redistributed in an automated and intelligent
manner to maintain performance, availability, and security within an Association.

Additionally, this operation flow can also be triggered by explicit user requests to update their
deployed applications. In such cases, operation flow execution begins at step 3 and continues
through to completion.

Table 19: Overview of intra-association workload and data migration operation flow

Op. Flow ID OF 4.2

Name Intra-Association Workload and Data Migration

Privacy and Security Manager (WP3.1.1)

Analytics Engine (WP3.4.3)

EMPYREAN Aggregator (WP4.4.11)

Telemetry Service (WP4.4.7)

Service Orchestrator (WP4.4.1)

Decision Engine (WP4.1.3, WP4.1.4)

EMPYREAN Controller (WP4.4.4)

Edge Storage Gateway (WP3.2.1)

Decentralized and Distributed Data Manager (WP3.2.3)
EMPYREAN Registry (WP4.4.13)

F GR.3, F._.GR4, F_ GR6, F GR7, F_ST.1, F.ST.2, F_ST.3, F ST.5 F ST,
Requirements | F_ASSOC.1, F_ASSOC.4, F_ASSOC.8, F_ASSOC.10, F_DCM.1, F_DI.1, F_DI.3, F_DI.4,

Collaborators

Coverage F_DI.5, F_DI.6, F_DI.7, F_DI.8, F_S0O.3, F_SO.5, F_S0.6, F_S0.7, F_S0.8, F_SO.9,
F_SO.10, F_SO.13, F_S0.14, F_SO.15
Enablers EN_1,EN_2,EN_3,EN_4,EN_9, EN_14, EN_15,EN_17

Operation flow steps:

1. Each Association’s Analytics Engine continuously monitors the state of available
resources and deployed workloads to identify potential issues or events. It also
receives notifications from the Service Orchestrator regarding newly deployed
workloads.

2. If performance optimization is required or event detected, the Analytics Engine
notifies the EMPYREAN Aggregator to trigger appropriate remediation actions.
Application operators are also informed of any impending migrations to keep them
updated on system changes.

3. The EMPYREAN Aggregator instructs the corresponding Service Orchestrator to adjust
the deployment of affected workloads to address the detected issues. It also shares
feedback from the Analytics Engines and generates a unique identifier to track the
migration process.

empyrean-horizon.eu 75/129

D2.3 — Final EMPYREAN architecture, use cases analysis and KPls

‘{@MPYREAN

10.

11

Telemetry Analytics EMPYREAN Service Decision
Service Engine Aggregator Orchestrator Engine

ion

The Privacy and Security Manager is contacted to ensure compliance with data
governance policies and access control rules for the candidate infrastructure
resources.

The Service Orchestrator requests the Decision Engine to devise an optimal migration
plan that minimizes downtime and maximizes resource utilization. The Decision Engine
is also directed to exclude any affected infrastructure resources from consideration.
This workflow corresponds to cases where the Decision Engine can manage the request
using resources solely within the same Association. A more complex workflow with
inter-Association migration is outlined in operation flow OF5.1.

If data migration is necessary, the Edge Storage Gateway updates the secure storage
policies.

The Service Orchestrator coordinates with the appropriate EMPYREAN Controllers to
execute workload migration, terminating the affected workloads and redeploying
them on the newly selected resources.

The Decentralized and Distributed Data Manager reconfigures the interconnection
between migrating workloads to redirect traffic and maintain service availability after
the migration.

The Service Orchestrator updates the related Telemetry Engine and Analytics Engine to
adjust their configurations to continue monitoring and analysing the migrated
workloads.

The EMPYREAN Aggregator receives updates from the Service Orchestrator regarding
the migration progress and updates its internal information accordingly.

. The EMPYREAN Aggregator updates the EMPYREAN Registry with the latest

information related to the migration.

Privacy & Edge Decentralized
Security Storage CIPHIEE & Distributed EMPY_REAN
Registry

Manager Gateway SETElEE) Data Manager

(1a)

](H’)

(1c)

(2a)

(2k)

(3)
(4)

(5a)

0 :| (5b)

(63)

(7a) :I (6}

o 1 (7b)
e 2 (sb)

(10)

(9b)

(11)

Figure 30: Intra-Association workload and data migration

empyrean-horizon.eu 76/129

(EMPYREAN
D2.3 — Final EMPYREAN architecture, use cases analysis and KPls N7

4.7.3 Data Flows and Data Access

This operation flow illustrates the edge storage capabilities of the EMPYREAN platform
emphasizing its integration with Associations, data management, authentication and
authorization. By integrating secure storage capabilities through the Edge Storage Gateways
with advanced communication frameworks such as Zenoh, EMPYREAN provides an efficient
and flexible approach to data management in modern distributed environments.

Table 20: Overview of intra-association workload and data migration operation flow

Op. Flow ID OF4.3

Name Data Flows and Data Access

o Decentralized & Distributed Data Manager (WP3.2.3)
Edge Storage Gateway (WP3.2.1)
Edge Storage (WP3.2.2)

Workflow Manager (WP4.2.1)
Dataflow Programming (WP4.2.5)
EMPYREAN Aggregator (WP4.4.11)

Service Orchestrator & Decision Engine (WP4.4.1, WP4.1.3)

Requirements | F_GR.1, F_GR.4, F_GR.5, F_ASSOC.1, F_ASSOC.5, F_ASSOC.6, F_ST.1, F_ST.2,
Coverage F_ST.3,F_DCM.1, F_DI.4, F_SO.1, F_SO.6

Enablers EN_4,EN_5,EN_6,EN_9

.(ﬂ

Figure 31: Seamless access of object-based storage resources through Zenoh

Collaborators

&

MINIO

S3 backend

S3

The Edge Storage Gateway offers an S3-compatible APl to the platform’s applications,
enabling flexible data storage and retrieval. Applications can either directly interact with this
API or access it indirectly through dataflows defined within the Workflow Manager. This
flexibility allows developers to choose the most suitable interaction model based on their
application requirements. In both cases, the authentication and authorization are managed
by the Privacy and Security Manager, ensuring secure access. When applications utilize the
storage service through a dataflow, the Zenoh and Zenoh-Flow frameworks enable seamless
communication between processing nodes and S3-based data sources and sinks. The Zenoh
S3-based backend?® storage is also fully compatible with MinlO object storage (Figure 31),
enabling seamless integration with the EMPYREAN Edge Storage components built on MinlO.

8 https://github.com/eclipse-zenoh/zenoh-backend-s3

empyrean-horizon.eu 77/129

https://github.com/eclipse-zenoh/zenoh-backend-s3

N
f(EIMPYREAN
D2.3 — Final EMPYREAN architecture, use cases analysis and KPls N7

The integration of the Edge Storage Gateway and Edge Storage components with the Zenoh
and Zenoh-Flow frameworks through the Decentralized and Distributed Data Manager and
Dataflow Programming components implement EMPYREAN’s data management capabilities,
showcasing its ability to support decentralized and distributed interconnection, secure data
distribution, and reliable storage. Through its S3-compatible API, the platform offers versatile
storage solutions that cater to a wide range of application needs, whether for immediate
processing, forwarding results, or long-term storage.

Visualise real time data ZP

MINIO
S3 backend
“ fleet/*/robot/*/position x
& c& fleet/1/*
ST
D

S3
€3
& ﬁ
& rg’q b fleet/1/robot/2/position
@ 4 s
® @

fleet/2/robot/1/position m
a» ¢

fleet/2/** g 2.5
fleet/2/robot/*/position
Store historical data &

Support sleep mode

Distributed storage

fleet/1/robot/*/position

Figure 32: Decentralized and distributed interaction and data distribution with secure storage across
Associations

As illustrated in Figure 32, these integrations enable seamless integration of loT devices within
a specific Association with other devices and edge resources across the EMPYREAN platform.
These devices can generate data and send output to designated locations, which in turn can
trigger specific operations. This dynamic interaction allows the system to process and manage
data efficiently while ensuring secure and efficient data handling. Different data categories
can be managed by this operation flow including (i) application data that generated by
deployed application during runtime, (ii) results that need to be forwarded to other services
or application components for further processing or integration, and (iii) data that is intended
for later use, which can be securely stored in the S3-compatible storage locations.

Next, we provide additional details regarding the operations required for distributed
interconnection and data management across multiple Associations. These operations (Figure
33) are an essential and additional step in generating the application deployment and
execution blueprint, as outlined in OF4.1.1. Their objective is to automatically generate (i) the
topics (referred to as “key expressions” in the Eclipse Zenoh terminology) and (ii) the
encryption keys that will be used to exchange data while the application is running.

The topics are constructed based on the application descriptor and the unique identifier
returned by the Privacy and Security Manager (if the user is authorized to deploy the
application). The default EMPYREAN Aggregator, after received inputs from other involved
Aggregators, crafts a global view of the application and determines interconnection

empyrean-horizon.eu 78/129

(EIMPYREAN
D2.3 — Final EMPYREAN architecture, use cases analysis and KPls I

requirements across Associations and infrastructure platforms. For each identified
interconnection (whether at the Association or platform level), it generates an encryption key
and a topic name. To enable data to cross the process boundary effectively, a serialisation
schema is also required (e.g. Protocol Buffers (Protobuf)) enabling seamless communication
between components, regardless of their location within the distributed environment.

EMPYREAN o Storage
i Application Development Broker Service

EMPYREAN
User/Degveloper

icreate a dataflow conf. file (*.yaml)

Define source, sinks

»> .
define data types

Define operators

declare logic
(ARIs supported Rust, Python)
Define links

»
»

validate acyclic graph

create data connectors

. >
E Define storages bindings N]GDmm stablished

»

load storage binding

create storage volumen

! Dataflow lifecycle management storage created

i (deploy, stop, remove, monitor)
H .

>

] update state

Figure 33: Workflow for creating a dataflow descriptor file using Eclipse zenoh-flow

4.7.4 Isolated and Trusted Execution

To address the increasing demand for secure and isolated execution environments,
EMPYREAN employs a sandboxed deployment approach for applications across the cloud-
edge continuum. This mode ensures that applications operate within highly isolated and
trusted execution environments, leveraging advanced hardware and software techniques to
guarantee confidentiality, integrity, and controlled resource access.

This operation flow includes three key features: (i) cloud-native sandbox deployment, (ii)
unikernel-based optimization, and (iii) attestation framework.

EMPYREAN utilizes sandboxed container runtimes, such as gVisor® and Kata Containers', to
enable sandboxed execution environments. These technologies isolate workloads from the
host and other applications, providing enhanced security while maintaining efficient
operation. To further optimize system utilization and reduce the overall system overhead from
additional abstraction layers, EMPYREAN introduces a pure unikernel container runtime
(urunc!?), further eliminating the additional overhead associated with sandboxed enclaves.

% https://gvisor.dev
10 https://katacontainers.io
11 https://github.com/nubificus/urunc

empyrean-horizon.eu 79/129

(EMPYREAN
D2.3 — Final EMPYREAN architecture, use cases analysis and KPls I

This pure unikernel approach eliminates the overhead of traditional sandboxing mechanisms
while preserving isolation, offering a highly optimized solution for secure execution.

In addition to the cloud-native deployment approaches, EMPYREAN leverages common
practices for application/container attestation, extending their functionality to loT devices. By
employing cryptographic container signatures, Entity Attestation Tokens (EATs) and open-
DICE, EMPYREAN provides a unified attestation base for all workloads and ensures trusted
execution across the entire EMPYREAN platform, whether it is a simple container, a unikernel
or an loT firmware blob.

Through this operation flow, EMPYREAN provides a scalable, secure, and efficient solution for
isolated and trusted application execution, addressing the challenges of modern loT-edge-
cloud ecosystems while maintaining high performance and adaptability.

Table 21: Overview of isolated and trusted execution operation flow

Op. Flow ID OF 4.4

Name Isolated and Trusted Execution

e Application Builder for Unikernels (WP4.3.2)
e Container Runtime (WP4.3.4)

e Privacy and Security Manager (WP3.1.1)

e EMPYREAN Controller (WP4.4.4)

Collaborators

Requirements
Coverage
Enablers EN_9,EN_13,EN_15,EN_16

F_GR.4, F_GR.5, F_ASSOC.3, F_ST.6, F_S0O.13, F_S0.14

4.7.5 Software-Defined Interconnect over RDMA and Hardware
Accelerated Workloads

This operation flow in the EMPYREAN platform introduces a transformative approach to
integrating hardware accelerators across the loT-cloud-edge continuum. By leveraging
NVIDIA’s new disaggregated circular-buffer communication primitive over Remote Direct
Memory Access (RDMA) and versatile vAccel*? framework developed by NUBIS, this operation
flow optimizes the use of specialized hardware accelerators across disaggregated
environments.

The first key feature is the utilization of NVIDIA’s disaggregated circular buffer primitive over
RDMA that enables efficient communication for small message transfers across disaggregated
systems. This subsystem facilitates the seamless integration of hardware accelerators located
beyond server boundaries, enabling them to function as if they were local to the host system.
The primitive significantly advances the aggregation and performance of small message
transfers and reduces latency for data-intensive workloads in tightly coupled systems.

12 https://docs.vaccel.org

empyrean-horizon.eu 80/129

(EMPYREAN
D2.3 — Final EMPYREAN architecture, use cases analysis and KPls I

The second key feature is the integration with the vAccel, a hardware-agnostic framework
designed to unify the use of hardware accelerators such as GPUs, TPUs, FPGAs, and other
specialized hardware across cloud, edge, and loT infrastructures. By abstracting hardware-
specific APls, vAccel provides developers with a consistent interface to offload
computationally intensive tasks to specialized accelerators without being tied to specific
hardware or vendors, ensuring portability and performance optimization regardless of the
underlying infrastructure. The integration of NVIDIA’s circular-buffer primitive allows vAccel
to extend its capabilities, enabling the use of remote accelerators over RDMA without
compromising performance.

The VirtlO backend currently used by vAccel will be the integration point for this operation
flow. NVIDIA’s disaggregated circular-buffer primitive will replace the existing VirtlO backend,
bridging VirtlO calls over the network and enabling the disaggregation of vAccel. This
replacement ensures that workloads can access remote accelerators as efficiently as local
ones, enhancing system flexibility and scalability.

By leveraging RDMA, the operation flow minimizes data transfer overhead between nodes
and accelerators, enabling low-latency communication. This approach is particularly beneficial
for workloads requiring high throughput and low latency, such as Al/ML training, inference,
and real-time data processing.

Table 22: Overview of software-defined interconnect over RDMA and hardware accelerated workloads
operation flow

Op. Flow ID OF 4.5

Name Software-Defined Interconnect over RDMA

e Software-defined Edge Interconnect (WP3.3.1)

e EMPYREAN Controller (WP4.4.4)

Collaborators e Decentralized and Distributed Data Manager (WP3.2.3)
e vAccel (WP3.3.4)

e Container Runtime (WP4.3.4)

Requirements
Coverage

Enablers EN_3,EN_9, EN_12,EN_15

F_GR.4, F_GR.5, F_ASSOC.1, F_ASSOC.5, F_SO.6, F_S0.10, F_S0.11, F_SO.12

4.7.6 Cloud-Native Unikernels Execution

This operation flow introduces a seamless method for deploying and managing unikernel-
based applications within the EMPYREAN platform, leveraging the Kubernetes-native
Container Runtime, urunc, that is developed in the context of the project along with other
core platform components. This approach bridges the gap between traditional unikernels and
containerized environments, providing flexibility, security, and performance optimization.

empyrean-horizon.eu 81/129

(EMPYREAN
D2.3 — Final EMPYREAN architecture, use cases analysis and KPls I

The operation flow considers building and registering the appropriate unikernel-based images
in the EMPYREAN platform (OF3.2). Once built, these images are made available in the
Container Image Repository at the EMPYREAN Registry or other container image repositories,
allowing seamless access for deployment. During the deployment, the EMPYREAN Controller
orchestrates the execution of unikernel-based workloads, leveraging the container runtime
urunc. The urunc provides seamless compatibility with Kubernetes workflows and practices,
enabling operators to seamlessly integrate unikernels alongside traditional containers. It
serves as the container runtime for unikernel-based applications, offering full compatibility
with Kubernetes’ Container Runtime Interface (CRI) and leveraging the container semantics
and benefits from the OCI tools and methodology. Thus, urunc embeds unikernel images into
K8s/K3s clusters as generic containers, enabling developers to leverage the robust
orchestration, scaling, and monitoring capabilities of these platforms. Unlike traditional
container runtimes, urunc is optimized for unikernels, reducing overhead while maintaining
the lightweight and secure properties inherent to unikernel architectures.

This operation flow enhances the adoption of unikernels within the loT-edge-cloud
continuum, providing a cutting-edge, cloud-native approach to hyper-distributed application
deployment and management.

Table 23: Overview of cloud-native unikernels execution operation flow

Op. Flow ID OF 4.6
Name Cloud-Native Unikernels Execution

e Application Builder for Unikernels (WP4.3.2)
e Application Packaging (WP4.3.3)
Collaborators e Container Runtime (WP4.3.4)

e Container Image Repository (WP4.4.16)

e EMPYREAN Controller (WP4.4.4)

Requirements
Coverage

Enablers EN_9, EN_13, EN_14, EN_15

F_GR.4, F_GR.5, F_S0.3, F_S0.6, F_S50.13, F_S0.14, F_S0O.15

4.7.7 Analytics-Friendly Data Storage and Query

This operation flow showcases a novel storage schema specifically designed for loT time series
data, optimizing storage, retrieval, and analysis processes to meet the demands of hyper-
distributed environments like the EMPYREAN platform.

loT time series data is stored using erasure coded approach, which balances data redundancy,
fault tolerance, and storage efficiency. It is particularly advantageous for edge environments
where storage resources are constrained. The Edge Storage and Edge Storage Gateway
components provide efficient data storage with erasure coding. Next, the loT Query Engine
enables the query execution for time series analysis. These queries, similar to SQL SELECT
statements, are run against the stored datasets. The efficiency in terms of data transfers is
evaluated during query execution, enhancing performance particularly in edge environments.

empyrean-horizon.eu 82/129

(EMPYREAN
D2.3 — Final EMPYREAN architecture, use cases analysis and KPls I

The operation flow interactions will be enabled through a custom REST API exposed by the
Edge Storage Gateway, enabling seamless storage and query operations.

The integration of this operation flow in the EMPYREAN platform provides a novel approach
to managing loT time-series data, enabling efficient storage and analytics while adhering to
the high standards of performance and security expected within the EMPYREAN ecosystem.

Table 24: Overview of analytics-friendly data storage and query operation flow

Op. Flow ID OF 4.7

Name Analytics-Friendly Data Storage and Query
e |oT Query Engine (WP4.3.5)
Collaborators e Edge Storage Gateway (WP3.2.1)

e Edge Storage (WP3.2.2)

Requirements
Coverage

Enablers EN 1,EN 5

F_GR.1, F_GR.5, F_GR.6, F_ASSOC.1, F_DCM.1, F_DCM.2

4.7.8 Workload Autoscaling

This operation flow shows the dynamic resource allocation updates that take place during the
lifecycle and execution of applications, particularly focusing on the individual actions that
compose them. More specifically, after the initial placement of actions on cluster nodes and
the allocation of necessary resources, the Workload Autoscaling component ensures optimal
resource utilization by right-sizing allocations to meet the exact needs of the executions.

The Workload Autoscaling functions in accordance with the EMPYREAN Aggregator, which
provides the rules for how the workload autoscaling of the K8s/K3s clusters should perform
optimizations. These rules define parameters such as the number of retries, the incremental
amount RAM allocation in case of Out-Of-Memory events, timeout durations, and other
critical configurations.

At the management level, the Workflow Manager orchestrates operations by controlling the
Ryax Runner, while Ryax Workers (one per K8S/K3S cluster) perform the necessary
adjustments on each cluster’s resources. For each workflow, the Workload Autoscaling
dynamically provides resource recommendations for each action based on the automatically
collected utilization metrics from the past executions. Details such as the action image,
hardware type being executed, and input specifications are some of the references that will
be used for applying these recommendations to future occurrences. These details are
provided through the collaboration between the Workflow Manager, Service Orchestrator,
and EMPYREAN Aggregator.

empyrean-horizon.eu 83/129

(EMPYREAN
D2.3 — Final EMPYREAN architecture, use cases analysis and KPls I

The power of the Workload Autoscaling component comes from the internal ML-based
algorithms. These algorithms analyze past executions data to identify resource utilization
patterns for each action and adapt dynamically to execution variations. For past executions’
insights, the component connects directly to the Telemetry Service to retrieve data related to
the actual usage of resources, such as CPU, RAM, GPU and VRAM. For dynamic adaptations,
the follow-up by the Workflow Engine and in particular by services such as the Ryax Runner
and Worker is necessary to allow the service of retrying of failed actions to be efficient.

Table 25: Overview of workload autoscaling operation flow

Op. Flow ID OF 4.8

Name Workload Autoscaling

e EMPYREAN Aggregator (WP4.4.11)
e Workflow Engine (WP4.2.1)

e Telemetry Service (WP4.4.7)

e Service Orchestrator (WP4.4.1)

Collaborators

Requirements | F_GR.2, F_GR.3,F_GR.6, F_GR.7, F_ASSOC.4, F_DI.5, F_DI.6, F_DI.7, F_DI.8, F_DLI.9,
Coverage F_SO.5

Enablers EN_ 2,EN_6,EN_7,EN_9,EN_17

4.8 Inter-Association Operations

4.8.1 Inter-Association Workload and Data Migration

This operation flow is executed when workloads and data require migration between different
Associations. This migration process ensures that performance, security, and data integrity
are maintained across diverse infrastructures. Migration may be prompted by performance
optimization, resource balancing, or responses to events affecting workload performance or
security. Additionally, migration can be explicitly initiated by EMPYREAN users seeking to
modify their deployed applications. In this case, the operation flow begins at step 3 and
proceeds to completion.

Key operational scenarios related to this operation flow include (i) autonomous offloading
computations by migrating non-sensitive or time-critical computations to reduce load or
energy consumption on some specific Association, (ii) transient workload and data storage
where a temporary user, such as a drone or moving robot, uses an Association under specific
conditions to submit workload and store data, and (iii) distributed erasure-coded storage
provisioning, by moving and storing data fragments across multiple Associations to enhance
data availability, security, and redundancy.

empyrean-horizon.eu 84/129

D2.3 — Final EMPYREAN architecture, use cases analysis and KPls

%@MPYREAN

Table 26: Overview of inter-Association workload and data migration operation flow

Op. Flow ID OF5.1

Name

Inter-Association Workload and Data Migration

Collaborators

e EMPYREAN Registry (WP4.4.13)

EMPYREAN Aggregator (WP4.4.11)

Privacy and Security Manager (WP3.1.1)

Analytics Engine (WP3.4.3)

Telemetry Service (WP4.4.7)

Service Orchestrator (WP4.4.1)

Decision Engine (WP4.1.3, WP4.1.4)

Edge Storage Gateway (WP3.2.1)

Decentralized and Distributed Data Manager (WP3.2.3)
e EMPYREAN Controller (WP4.4.4)

Requirements

F_GR.1, F_GR.2, F_GR3,F _GR.4, F_GRS5,F_GR.6 F GR.7,F _ST.1, F ST.2, F_ST.5,
F_ST.6, F_ASSOC.1, F_ASSOC.3, F_ASSOC.4, F_ASSOC.6, F_ASSOC.7, F_ASSOC.8,
F_ASSOC.9, F_ASSOC.10, F_DCM.1, F_DI.1, F_DI.2, F_DI.3, F_DI.4, F_DI.5, F_DI.6,

Coverage
F_DI.7, F_DI.8, F_SO.3,F_SO.4,F_SO.5, F_SO.6, F_SO.7, F_S0O.8, F_S0O.9, F_S0.10,
F_SO.13, F_S0O.14, F_S0O.15

Enablers EN_1,EN_2,EN_3,EN_4,EN_5,EN_9,EN_11,EN_14, EN_15,EN_17

Operation flow steps:

1.

Each Association’s Analytics Engine continuously monitors the state of available
resources and deployed workloads to identify potential issues or events.

If performance optimization is required or an event is detected, the Analytics Engine
notifies the EMPYREAN Aggregator to initiate appropriate remediation actions.

The Privacy and Security Manager in the source Association validates the migration
request to ensure compliance with data governance policies and access control rules.

The EMPYREAN Aggregator instructs its Service Orchestrator to adjust the deployment
of affected workloads to address the identified issues. It also shares feedback from the
Analytics Engines and generates a unique identifier to track the migration process.

The Service Orchestrator requests the Decision Engine to generate an optimal
migration plan, explicitly directing it to exclude any affected infrastructure resources
from consideration. This operation flow corresponds to scenarios where resources
within the Association are insufficient and Decision Engine responds without a valid
migration plan.

The Service Orchestrator then instructs its Decision Engine to initiate the multi-agent
decision-making process, aiming to reassign the affected workloads to other
Associations within the platform.

The Decision Engine in the source Association queries the EMPYREAN Registry to
identify Associations with specific characteristics, such as geographic location,
hardware type, or other criteria. The orchestration mechanisms leverage the
information by the Association Metadata Store within the EMPYREAN Registry.

empyrean-horizon.eu 85/129

D2.3-Fi

A
f(EIMPYREAN
nal EMPYREAN architecture, use cases analysis and KPIs N

10.

11.

12.

13.

Deployment requests are then forwarded to the Decision Engines of the identified
Associations.

The Decision Engines across the Associations collaboratively evaluate resource
availability, current workload distribution, and inter-Association network constraints
to determine the most efficient allocation of resources and migration paths.

The source Association’s EMPYREAN Aggregator is informed of the decisions resulting
from the multi-agent orchestration.

If data migration is necessary, the Edge Storage Gateway updates accordingly the
secure storage policies, and the Decentralized and Distributed Data Manager oversees
the secure transfer of data to new locations.

At the source Association, the Service Orchestrator coordinates with the respective
EMPYREAN Controllers to terminate the affected workloads. It also updates the
EMPYREAN Registry to reflect the revised high-level assignment for tracking and
compliance purposes.

The Service Orchestrator informs the relevant Telemetry Engine and Analytics Engine
to stop monitoring and analysing the migrated workloads.

The initial EMPYREAN Aggregator coordinates with other selected resources. Upon
successful completion of the above steps, operation flows OF3.1.2 and OF3.1.3 are
triggered and executed across all selected Associations.

Analytics
Engine

Association 1

Privacy &
Security
Manager

Edge Decentralized
Storage & Distributed
| | Gateway Data Broker

Decision
Engine

EMPYREAN
Aggregator

Service
Orchestrator

EMPYREAN
Controller(s)

Registry

:| w
(2)
S 3)

Association 2
) Association N
‘EMFYREAN‘

(4) (5a)

(5¢) :Icﬁb)

(6)

e 8b)

(84)

(8¢)

: Decision Engines
: on selected
Associations

()

(10a)

(10a)

i :| (10b)

(10b)

(11a)

(11c)
(12)

:l (11b)

(13)

: OF4.1.2-4.1.3
i—>»| onselected
: Associations

Figure 34: Inter-Association workload and data migration operation flow — Steps involved and interactions

empyrean-horizon.eu

86/129

(EMPYREAN
D2.3 — Final EMPYREAN architecture, use cases analysis and KPls I

4.9 Telemetry and Service Assurance

4.9.1 Telemetry and Observability

This operation flow outlines the telemetry and observability processes across Associations in
the EMPYREAN platform, enabling seamless real-time monitoring, comprehensive data
collection, and the generation of actionable insights to optimize platform performance.

By leveraging EMPYREAN’s distributed telemetry infrastructure, it continuously and
automatically discovers and monitors resources, including infrastructure components, robots,
loT devices, and deployed workloads. Additionally, it tracks and collects energy consumption
metrics for all platform resources, contributing to energy efficiency insights. The collected
telemetry data is a critical input to the distributed decision-making mechanisms within the
EMPYREAN platform, enabling dynamic optimization and intelligent resource management.

Table 27: Overview of telemetry and observability operation flow

Op. Flow ID OF6.1

Name Telemetry and Observability

Telemetry Service (WP4.4.7)

Telemetry Engine (WP4.4.8)

Monitoring Probes (WP4.4.10)

Persistent Monitoring Data Storage (WP4.4.9)

EMPYREAN Registry (WP4.4.13)

EMPYREAN Aggregator (WP4.4.11)

Service Orchestrator (WP4.4.1)

Analytics Engine (WP3.4.3)

CTI Engine (WP4.1.1)

F_GR.2, F_GR.3, F_GR.6, F_GR.7, F_ASSOC.4, F_ASSOC.5, F_ASSOC.7, F_ASSOC.9,

F_DI1, F_DI2, F_DI5, F_DI.6, F_DI7, F_DI.8, F_DI.9, F_SO.2, F_SO.4, F_SO.6,
F SO.7,F_SO.8

Enablers EN_2, EN_4, EN_5,EN_7, EN_8, EN_9, EN_10, EN_11, EN_17

Collaborators

Requirements
Coverage / UCs

Operation flow steps:

1. Monitoring Probes are deployed across the Association-based continuum to
continuously discover and collect real-time telemetry data, including metrics, logs, and
events. Each probe is tailored to monitor specific platform resources.

2. Multiple Telemetry Engines within each Association continuously gather raw telemetry
data from the Monitoring Probes. These engines pre-process the data, filtering and
structuring it to ensure only relevant information is available through the telemetry
infrastructure.

empyrean-horizon.eu 87/129

D2.3-Fi

(EMPYREAN
nal EMPYREAN architecture, use cases analysis and KPIs N7

Monitoring Telemetry . EMPYREAN ‘ Service

Probes

:|(11

Pre-processed telemetry data is then stored in the Persistent Monitoring Data Storage,
providing a repository for long-term reference and historical analysis.

The EMPYREAN Aggregator consolidates telemetry insights across all the Association
it manages, providing a unified view of system health, resource utilization, and
performance.

The EMPYREAN Aggregator also forwards high-level information to the EMPYREAN
Registry. The EMPYREAN Registry maintains metadata and configuration information
about monitored resources, applications, and their associations.

The Service Orchestrator within the same Association notifies the Telemetry Engine for
changes such as workload deployments, migrations, or terminations. The engine
coordinates with the respective Monitoring Probes to automatically adjust monitoring
configurations.

The Analytics Engine in each Association and the CT/ Engine subscribe to telemetry
streams via exposed interfaces of Telemetry Engine. These engines analyze the
collected data, detecting anomalies and security issues, observing trends, and
identifying performance bottlenecks. Operation flows OF 6.2 and OF 6.3 provide
detailed descriptions of these functionalities.

Association 1 Association 2

Persistent
Monitoring Data
Storage

Analytics CTI

.EMPYREAN. Association N
Engine Engine

Registry

Engine(s) Aggregator

Orchestrator

(2a)

:| (2b)

(4a)

(3)

Y

:| {ab)

(5)

Y

(6a)

A

(6a)

(7a)

(7a)

~ A

Figure 35: Telemetry and observability operation flow — Steps involved and interactions

empyrean-horizon.eu 88/129

(EMPYREAN
D2.3 — Final EMPYREAN architecture, use cases analysis and KPls I

4.9.2 Service Assurance

This operation flow represents the final step in the distributed closed-loop control system
designed to maintain the desired state across the EMPYREAN Associations through self-driven,
continuous adaptations. It performs Al/ML-assisted continuous analysis to detect critical
situations (i.e., events, anomalies, malicious behaviours) and triggers reactively or proactively
re-optimization actions within the EMPYREAN platform.

Leveraging real-time telemetry data, Al-based decision-making mechanisms, and advanced
analytics, the system ensures performance, reliability, and resilience across the loT-edge-
cloud continuum. By integrating monitoring probes, telemetry engines, and automated
orchestration workflows, it guarantees adherence to predefined SLAs, detecting anomalies
and triggering appropriate corrective actions dynamically.

Table 28 provides an overview of the operation flow and Figure 36 illustrates the steps
involved and interactions.

Table 28: Overview of service assurance operation flow

Op. Flow ID OF 6.2

Name Service Assurance

e Analytics Engine (WP3.4.3)

Telemetry Engine (WP4.4.8)

CTI Engine (WP4.1.1)

EMPYREAN Aggregator (WP4.4.11)

Service Orchestrator (WP4.4.1)

Persistent Monitoring Data Storage (WP4.4.9)

Autoscaling Optimizations (WP3.4.1) / Local Orchestrator (WP3.4.2)

Collaborators

Requirements
Coverage

Enablers EN_2,EN_4,EN_8,EN_9

F_GR.3,F_GR.6, F_ASSOC.4, F_ST.4,F_ST.5,F_ST.6, F_DI.7, F_DI.8, F_DI.9

Operation flow steps:

1. The Analytics Engine within each Association subscribes to available Telemetry
Engine(s) and CTI Engine via the Data Connector component. This enables continuous
retrieval of real-time telemetry and cyber threat intelligence data, which is pre-
processed and ingested into the internal data bus for further analysis.

2. The Analytics Engine obtains the application execution plan by its EMPYREAN
Aggregator. This plan includes details about the committed resources and mappings
of service components to resources.

3. If necessary, the Analytics Engine can also query the Persistent Monitoring Data
Storage service for historical telemetry data to support its analysis.

4. The Analytics Engine continuously analyzes the current state of available resources and
deployed applications through the Event Detection Engine component.

empyrean-horizon.eu 89/129

(EMPYREAN
D2.3 — Final EMPYREAN architecture, use cases analysis and KPls N7

5. Upon detecting a performance issue, the Analytics Engine issues alerts and forwards
them to the Association’s resource orchestration mechanisms via the EMPYREAN
Aggregator, triggering remediation actions.

6. The Service Orchestrator contacts the Local Orchestrator at the affected platform.
Using the current state of resources and feedback from the Analytics Engine, based on
telemetry data the Local Orchestrator readjusts the initial deployment of the affected
application.

7. Operation flows OF 3.1.2 and OF 3.1.3 detail the specific steps for mitigating the
detected issue.

Association 1

: () : A Local ' Persistent Association N
Analytics Telemetry | EMPYREAN ‘ Service ‘ O - CTl Monitoring Data -

Engine Engine(s) Aggregator. Orchestrator.’ | Autoscaling) Engine Storage

(1a)
(1b)

()

<
«

:| () o

(3

> (5b)

(6)

Y

Figure 36: Service assurance operation flow — Steps involved and interactions

4.9.3 Cyber-Security Aspects

This operation flow is dedicating to enhancing the security of the EMPYREAN platform by
utilizing advanced Cyber Threat Intelligence (CTI). It ensures that EMPYREAN remains resilient,
adaptive, and well-prepared to defend against the sophisticated threats within the loT-edge-
cloud ecosystem.

The EMPYREAN CTI Engine collects and analyzes Cyber Threat Intelligence (CTIl) from trusted
sources such as the Cyber Threat Alliance (CTA) and UMU’s MISP repositories to extract trends
and critical information. Additionally, it integrates with the Telemetry Service to gather
monitoring data across the entire EMPYREAN platform. By integrating data from these
prominent sources, the engine will compile a comprehensive repository of Indicators of
Compromise (loCs), including, malicious IP addresses, domain names, file hashes, URLs, and
more. This extensive dataset will serve as a foundation for thorough threat analysis and
proactive defence strategies.

empyrean-horizon.eu 90/129

(EIMPYREAN
D2.3 — Final EMPYREAN architecture, use cases analysis and KPls N

A user-friendly interface will streamline information retrieval, enabling security professionals
to quickly search, filter, and visualize relevant threat information and intelligence.
Furthermore, the CTI Engine will feature a REST API, enabling integration with orchestration
and analysis tools, such as the EMPYREAN Aggregator and Analytics Engine. This integration
supports the automation of threat intelligence operation flows, enabling seamless monitoring,
analytics, and response.

Table 29: Overview of cyber-security operation

Op. Flow ID OF6.3

Name Cyber-Security Aspects

CTl Engine (WP4.1.1)

Privacy and Security Manager (WP3.1.1)
Telemetry Service (WP4.4.7)
EMPYREAN Aggregator (WP4.4.11)

® Analytics Engine (WP3.4.3)

Collaborators

Requirements | F_ASSOC.3, F_ASSOC.4,F ST.4,F ST.5,F_DI.8
Coverage

Enablers EN 2,EN_8,EN 9

CTA

I
I
i
I
I

\

N

oo
upload
—
—
retrieve CTIWeb
’mongoDB

Figure 37: CTI Engine core components and dependencies.

empyrean-horizon.eu 91/129

D2.3 — Final EMPYREAN architecture, use cases analysis and KPls

%@MPYREAN

5 EMPYREAN Architecture Design

5.1 EMPYREAN Final Architecture

EMPYREAN adopts a layered

architecture, where each layer consists of discrete components

that interact using well-defined and open interfaces. These interactions occur both
horizontally, within the same layer, and vertically, between layers, forming the EMPYREAN
platform. The final version of the high-level architecture is illustrated in Figure 38, providing a
clear and structured view of the platform’s design.

Monitoring &

EMPYREAN Use Cases

Security, Trust,
& Privacy Layer

Service Layer

Observability Layer
Workflow
Manager

Unikernels
Builder

Action
Packaging

Dataflow

EMPYREAN
Programming

SDK

Telemetry Service

oL p-ABC Library
Association Management Layer

EMPYREAN Aggregator EMPYREAN Registry Verifiable Data

Registry

Persistent Monitoring
Data Storage

Multi-Cluster Orchestration Layer

Analytics Engine

CTI Engine

Service Orchestrator Decision Engine

Resource Management Layer

Data Management &

Interconnection Layer Privacy & Security

Telemetry Engine Al-enabled Workload EMPYREAN Manager
Autoscaling Controller Software-Defined loT Query
. . Unikernel Edge Interconnect Engine
Enviroment Packaging Denpl t
eploymen Decentralized & Distributed Data

Secure & Trusted

Container Layers
Locality Scheduler

Monitoring Probes

Manager

‘ Container Runtime ‘ Execution Environment

Edge Storage

Edge Storage

| Hardware Acceleration Abstractions Gateway
]
7 o <
= FETE L
2 . - =
g ' 14 == =
P ETE = =
2 ead oS
E 10T/ lloT Devices | ON-PREMISE DEEP EDGE FAR EDGE cLoUD |
£ J L

The consortium followed
architecture, starting with
conceptual overview of the

loT-Edge-Cloud Infrastructure

Figure 38: EMPYREAN high-level architecture

a top-down, iterative approach to define the EMPYREAN
the development of the high-level architecture that offers a
platform. This high-level design identifies the key components and

their functionalities without focusing on the implementation specifics. Building upon this
foundation, the consortium created the logical architecture, detailed in Section 5.2, which
elaborates on the logical components of the platform and aligns them with the technological

solutions developed during the project.

empyrean-horizon.eu

92/129

(EMPYREAN
D2.3 — Final EMPYREAN architecture, use cases analysis and KPls I

This iterative design process incorporated the analysis and functional requirements gathered
through two key tasks “T2.1: State-of-the-Art Analysis”, which provided a comprehensive
evaluation of existing technologies and identified gaps to address, and task “T2.2: Concept,
Use Cases and Requirements Analysis”, which ensured alignment of the architecture with the
platform’s objectives and use case scenarios. This work is documented in deliverable D2.1
(M6), with the initial architecture outlined in deliverable D2.2 (M7). The process concluded
with a refined version of the initial EMPYREAN architecture, as presented in this deliverable.
The resulting design not only encapsulates the project’s conceptual and logical components
but also establishes a robust framework for the implementation and scaling of the EMPYREAN
platform.

The Service Layer encompasses components that facilitate the development of Association-
native applications, offering robust support for application-level adaptations, interoperability,
elasticity, and scalability across the loT-edge-cloud continuum. This layer focuses on key
aspects such as: (a) workflow design and management, simplifying the creation and
orchestration of hyper-distributed applications, (b) cloud-native unikernel application
development, supporting lightweight, secure, and efficient deployment models, and (c)
dataflow description, enabling precise and scalable data management within applications.

The Association Management Layer dynamically manages Associations within the loT-edge-
cloud continuum. By forming resource federations, it enables seamless collaboration,
resource sharing, and data distribution across various segments within the continuum.
Together with the Multi-Cluster Orchestration Layer, it is central to EMPYREAN's distributed
and autonomous management, establishing a resilient Association-based continuum.

The Multi-Cluster Orchestration Layer handles service orchestration and resource
management across EMPYREAN's disaggregated infrastructure. Using autonomous,
distributed decision-making mechanisms, it orchestrates dynamic, hyper-distributed
applications while enabling self-driven adaptations. Multiple instances of this layer’s
components provide decentralized operation, optimize resource utilization, and ensure
scalability, resiliency, energy efficiency, and high service quality.

The Resource Management Layer unifies the management of loT, edge, and cloud platforms
under the EMPYREAN platform. It integrates software mechanisms for both platform-level
scheduling (e.g., EMPYREAN Controller, Al-enabled Workload Autoscaling) and low-level
mechanisms (e.g., Unikernel Deployment). This layer operates within Kubernetes or K3s
clusters and offers modularity, simplifying the integration of new hardware and software.

The Data Management and Interconnection Layer ensures dynamic communication and
secure data storage between loT devices and computing resources. Operating at both cluster
and Association levels, it provides flexible and scalable data management and seamless
integration of loT, edge, and cloud resources. It also supports distributed operation,
facilitating efficient operation in complex, distributed environments.

empyrean-horizon.eu 93/129

(EMPYREAN
D2.3 — Final EMPYREAN architecture, use cases analysis and KPls I

The Security, Trust, and Privacy Layer ensures secure access, privacy, and trusted execution
across the EMPYREAN platform. Operating at both the cluster and Association levels, it
delivers distributed trust services, enables secure and trusted execution environments, and
provides controlled data access for guaranteeing data confidentiality and continuous
validation of trust among entities.

5.2 EMPYREAN Detailed Architecture

Following the second iteration of the requirements analysis and design (M8-M12), a more
detailed and comprehensive design of the EMPYREAN platform has been developed, as
presented in Figure 39. This refined architecture incorporates insights from initial
implementation efforts and further feedback from stakeholders, ensuring alignment with the
platform’s objectives and technical requirements.

The architecture integrates all components to be developed by the project’s technical work
packages (WP3—-WP5), as initially introduced in deliverable D2.2 (M7). These components
form the backbone of the EMPYREAN platform, enabling capabilities such as dynamic resource
management, intelligent orchestration, and federated data sharing. Updated descriptions of
these components, including their roles and functionalities, are provided in Section 3.

The architecture diagram in Figure 39 highlights the core interactions and essential
information exchanges between components. These interactions outline the operational
flows necessary for the platform’s seamless functionality, which are further elaborated in
Section 4. These system operation flows ensure efficient coordination across the loT-edge-
cloud continuum, supporting advanced features such as seamless deployment, enhanced
security and trust, autonomous decision-making, service assurance, and data sovereignty.

The detailed architecture outlines a sophisticated system comprising three distinct platforms,
each tailored to address specific operational needs across the loT-edge-cloud continuum. A
K3s cluster integrating loT devices and on-premises resources, designed for lightweight and
resource-constrained environments. This platform focuses on real-time data collection and
localized processing. Two K8s clusters encompassing deep edge, far edge, and cloud
resources. These platforms support scalable computing and storage capabilities, enabling the
execution of complex workflows and resource-intensive tasks.

The architecture includes three Associations, dynamically built upon the resources provided
by these platforms. Each Association represents a logical grouping of resources, designed to
facilitate collaborative operations and workload optimization across the distributed
environment. The operation of the three Associations is managed by two EMPYREAN
Aggregators, which form the platform’s core coordination layer. These Aggregators are
responsible for orchestrating data flows, managing resource allocation, and ensuring seamless
interaction between components within each Association. Additionally, the Aggregators
interface with higher-level components to guarantee adherence to service-level agreements
(SLAs) and alignment with overall platform objectives.

empyrean-horizon.eu 94/129

(EIMPYREAN
D2.3 — Final EMPYREAN architecture, use cases analysis and KPls N

This detailed architecture underscores the EMPYREAN platform’s capability to integrate
diverse resources into a unified framework while maintaining:

e Flexibility: tailored support for varied operational needs.
e Scalability: adaptability to changing workloads and infrastructure demands.

e Operational Efficiency: optimized use of resources and seamless coordination.

By integrating these components, operation flows, and the coordination capabilities of the
EMPYREAN Aggregators, the platform provides a modular, scalable, collaborative, and
resilient framework. This design effectively addresses the challenges of managing hyper-
distributed environments.

empyrean-horizon.eu 95/129

K3s

Hyper-Distributed

EMPYREAN SDK

N

Application Data Monitoring &

Orehestration control &
&

o

°

- 3

EMPYREAN Ryax Container Layers Al-enabled Workload | 5

Controller Worker Locality Scheduler Autoscaling =1

)) g

1 3

—
Unikernel Container Edge Software-Defined
Deployment Runtime Storage | Edge Interconnect

Monitoring
Hardware Probes

NiX-based ‘ Secure & Trusted

HAHE S

1eT / lleT Deviees

SIPON 10N

On-Premises Resources

Platform 1

Figure 39: EMPYREAN detailed architecture, final version

ES0

Deep Edge

O

o

8 p 9 3

EMPYREAN Ryax Container Layers Al-enabled Workload || §

Controller ‘Worker Locality Scheduler Autoscaling 3

¢ y H

i 2
Unikernel | Container Edge Software-Defined
Deployment Runtime Storage Edge Interconnect

- Monitoring
| Hardware ‘ NIX-based Secure & Trusted Probes
Abstractions Packaging Environment

B

SapoN o

Far Edge

Platform 2

Manager —
p-ABC Library | o
'1' Observability Dashboard
Lightweight Packaging (e.g., Grafana)
EMPYREAN Regist Action | Unikernels
Registry [Pal:kaging Builder l
Regi Privacy & s ——
Manager e:r e an Security
ogue | |Gonnectors | yanager |
Persistent Monitoring Data Storage — CTI Engine
Container Image ‘Association Verifiable
Repository Metadata Store Data Registry
1 . ;
v ¥
N p <
EMPYREAN Aggregator I EMPYREAN Aggregator
I —
Service Decision Privacy & Sacurity Service Decision Privacy & Security
Orchestrator Ryax Runner Engine Manager Orchestrator ey Engine Manager
Decentralized & Edge Storage Decentralized & Edge Storage
Distributed Data Manager Gateway ‘ TR VIEN Distributed Data Manager Gateway loTQuery Engine |
a & -
——
Dataflow Programming Telemetry Engine ‘ Analytics Engine Dataflow y Engine Analytics Engine
\ J L L J

Cloud

IICTF

o
s
y p y | 2
EMPYREAN Ryax Container Layers Al-enabled Workload E
Controller Worker Locality Scheduler) | Autoscaling i
.]
Unikernel Container Edge Software-Defined
Deployment = Runtime Storage Edge Interconnect
— Monitoring
Hardware NIX-based Secure & Trusted Probes
Acceleration Enviroment Execution
Abstractions Packaging Environment |
N S

SOPON 10MIOM

Platform 3

(EMPYREAN
D2.3 — Final EMPYREAN architecture, use cases analysis and KPls I

5.3 Tracking KPlIs

5.3.1 Methodology for Tracking KPls

Tracking the Key Performance Indicators (KPIs) for the EMPYREAN project involves a
structured systematic approach to measure, analyze, share, and optimize performance
metrics. The proposed methodology ensures KPIs are monitored in a consistent and organized
way. The following steps outline this methodology:

1. Centralize KPIs Tracking: The consortium will use a centralized repository for storing
and managing KPI data. A shared spreadsheet will be created and used for centralizing
KPlIs tracking among the partners of the consortium. The initial version of the KPI
tables, provided in the following sections (5.3.2 Technical KPIs and 5.3.3 Use case KPIs),
will act as a starting point. These KPIs will be extended with additional data to capture
the analysis, evaluation and different milestones of KPIs tracking in the context of work
packages 5 and 6.

2. Monitor and Analyze Performance: The shared spreadsheets will provide additional
data to express the ways to monitor and analyze performance in order to evaluate
whether the success criteria are being met. Lead partners assigned to each KPI will
define the evaluation methods and, if needed, establish additional metrics. Once this
is done, then regular reviews of the collected data will be conducted to monitor
performance against predefined targets.

3. Communicate Results: Following the specific milestones, the consortium will share
insights and progress, both internally among the partners of the consortium and
externally with stakeholders through reports and presentations. During these results
we will highlight key achievements, risks, mitigation plans and areas for improvement.

4. Implement Corrective Actions: Based on performance analysis, the consortium will
identify and implement corrective actions to address any challenges or problems. If
evaluations indicate that progress is not going as expected, strategies will be adjusted,
and different evaluation procedures will be adopted to optimize performance and
ensure KPI objectives are achieved.

5.3.2 Technical KPIs

The following table provides a grouping of the technical KPIs, featuring their success criteria
and the Lead Partners responsible for tracking, coordinating evaluation, and validation efforts.
These KPIs form the foundation for assessing the technical achievements and milestones of
the EMPYREAN project.

empyrean-horizon.eu 97/129

D2.3 — Final EMPYREAN architecture, use cases analysis and KPls

(EIMPYREAN

Table 30: EMPYREAN Technical KPIs

ID Indicator Success Criteria Lk
Partners
11 Reduce cloud and increase edge utilization via 50% reduction in core ICCS,
’ workload balancing optimization. cloud RYAX
o
T1.2 | Increase reliability in the edge. >50% increase UMU, NEC
compared to SotA
113 Increa.lse. statistical multiplexing gains through X2 compared t_o NUBIS, CC
associations. standard execution
Provide low and predictable latency for hyper- | <1 ms for delay-sensitive ZSCALE,
T1.4 - o
distributed applications. apps NVIDIA
Improve overall performance compared to o RYAX,
7211 sora. by 40% Iccs
2.2 Reduce energy consumption (_m Associations 525% RYAX,
compared to standard execution. ICCS
React fast to rapid changes in cgm.putatlonal between x2 and x10 IcCs,
T2.3 | and data demands so as to maximize the .
increase RYAX
number of demands served.
T2.4 | Boost Al-driven decision-making accuracy. >25% compared to SotA ICCS, NEC
Increase the robustness of the algorithms, IcCS
T2.5 | ensuring consistent performance even under >25% compared to SotA UMLJ
uncertain or noisy conditions.
Number of trustworthy identity and trust UMU
T3.1 | management processes enabled by smart >=3 ICCS'
contracts.
Accuracy of user and device verification and o/, NUBIS,
13.2 authentication. PR umu
133 Redl.Jction of privacy violation incidents in data > 50%; NEC,
sharing. umMu
Time reduction to read/write data when e
T3.4 | storing data purely on the edge compared to by 40% ’
ZSCALE
storage on the cloud.
T35 Ability to access data stored on the edge when i ZSCALE,
’ the link to the cloud is severed. CcC
- D
141 Increase small message t.ransfer performance by 3x NVIDIA,
measured at the application level. ICCS
Improve the RDMA programming efficiency of NVIDIA,
T4.2 - =
edge applications. NUBIS
Decrease the wired overhead over today’s 0 ZSCALE,
T4.3 protocols like MQTT and Kafka. A2 ICCS
empyrean-horizon.eu 98/129

(EIMPYREAN
D2.3 — Final EMPYREAN architecture, use cases analysis and KPls

T4.4 Ensure that the amount of erasure-coded data i CC,
’ retrieved for a query scales linearly. ZSCALE
Provide an upper limit on the overhead e
T4.5 mcurlred, that is either constant or a linear - 7SCALE
function.
Reduce the development time of continuum- >20% decrease RYAX,
T5.1 . .
native applications compared to SotA NUBIS
Number of supported hardware architectures NUBIS,
T5.2 .. >3
for seamless deployment of an application. RYAX
Reducg memory ar.1d sp_ace required for . 570% decrease of NUBIS,
T5.3 | deploying applications in resource-constrained .
. footprint RYAX
loT/Edge devices.
Offload acceleration functionality to nearby >1 loT device, >3 Edge NVIDIA,
T5.4 . .
devices. devices NUBIS

5.3.3 Use case KPIs

The following table provides a grouping of the use case KPls featuring success criteria and the
Lead Partner responsible to track them down while coordinating their validation.

L
No Indicator Success Criteria ead
Partners
UL1 Trans.|t|0n from (.)fflln.e opera.mon anaIYS|s to - IDEKO
real-time operation fingerprint analysis.
. . 3 robots / 200
U1.2 | Ability to process real-time data rovo S./ IDEKO
operations
- . max 2sec after it
U1.3 | Ability to alert an abnormal operation occurs IDEKO

Development of processes that support the -
U2.1 | transition from subjective to objective, EL ILVO
accurate and harmonised soil health data sets
Transition to a real- or near real-time -
assessment of soil, crop, and water

u2.2 . . EL ILVO
parameters, allowing cooperated integrated
farm management;
i 0,
U2.3 Reduce thg time anq effort needed to by 25% EL ILVO
develop soil data-driven models.
Fleet of heterogeneous robots working (i.e. payback in less
U3.1 cqllaborat!vely on speqflc warehousg tasks than 1 year). TRAC
with the aim of achieving human parity
performance
Uptime of fleet despite variable network (i.e. packet loss
LR conditions 1%,lat> 500ms). (L=
U3.3 Real-time detection of network threats and - TRAC

efficient storage and retrieval of data.

empyrean-horizon.eu 99/129

(EMPYREAN
D2.3 — Final EMPYREAN architecture, use cases analysis and KPls N7

6 Use Cases Analysis

6.1 Anomaly Detection in Robotic Machining Cells (UC1)

6.1.1 Overview

In the manufacturing sector, the adoption of robots for machining tasks offers significant
advantages by enhancing flexibility and reducing costs compared to traditional machine tools.
Robots enable rapid adjustments to production processes and product designs, providing a
high level of adaptability. This flexibility is particularly valuable in dynamic markets, where
manufacturers must quickly respond to evolving consumer demands and technological
advancements while maintaining precision and efficiency. However, integrating robots into
machining operations necessitates rigorous process monitoring to address challenges such as
precision loss, tool breakage, and other common defects encountered when machining
composite materials. Effectively managing these issues is critical to improving operational
efficiency and maintaining quality standards in the manufacturing industry.

The use case "Process Monitoring and Anomaly Detection in Robotic Machining Cells" aims to
develop a system capable of real-time monitoring within robotic machining cells performing
composite manufacturing operations using high-frequency data. These operations include
turning, milling, and drilling. The system focuses on real-time signal monitoring and the
detection of abnormal machining activities, enabling rapid identification and response to
deviations in the machining process. This approach aims to enhance production efficiency and
minimize potential losses.

6.1.2 Development and Deployment Updates

The development and deployment strategy for this use case is grounded in the typical
architecture utilized by machine tool clients (Figure 40). The proposed architecture is
structured into two main layers: deep-edge devices integrated with the robots and far-edge
resources hosted on the client’s premises. This layered design ensures an efficient allocation
of computational workloads, assigning tasks to the layers best suited to handle them.

Deep edge devices

= —af 3_..1 |
= o

Figure 40: The typical architecture employed by machine tool clients, consisting of deep-edge devices
integrated with the robots and far-edge resources hosted on-premise by the client.

Far edge devices

empyrean-horizon.eu 100/129

(EIMPYREAN
D2.3 — Final EMPYREAN architecture, use cases analysis and KPls N

In the initial deployment phase, the focus will be on setting up a single EMPYREAN Association
for one robot, managed by an Aggregator. This phased approach is intended to validate the
fundamental architecture and its components, providing a strong foundation for future
scalability. The robots will be equipped with deep-edge devices offering various CPU, RAM,
and storage configurations. Although these devices do not include GPU support, they can run
containerized applications, enabling the efficient and flexible deployment of EMPYREAN
components.

The far-edge devices, located on the client’s premises, will manage more computationally
intensive tasks. These resources will support advanced processing activities, such as real-time
analytics, ensuring the seamless execution of high-demand workloads. EMPYREAN’s
distributed architecture features, including multi-clustering support and real-time dataflow
management, will enable efficient coordination and communication between deep and far-
edge layers.

During Task 5.2, "Anomaly Detection in Robotic Machining Cells Technological
Developments," the current production workflows will be tailored to align with the
EMPYREAN distributed architecture, as detailed in Deliverable D2.1 (Section 4.1.3, Figure 9).
This alignment will take place as part of WP5 activities (M13-M28). The current production
workflows will be restructured into distinct Ryax workflows (WF), as described in D2.2 (Section
6.1, Figure 25), to fully harness EMPYREAN’s advanced capabilities (Figure 41, Figure 42).

Deep Edge
T |
i |
| |
| |
| |
] |
i i
! Data Fingerprint User E
' Recoding E Comparison '
! Robot — —_— — —p Database <= APl <—p Interface i
! System System i) !
| [DRS] = [FCS] |
i g i
i @ i
i £ i
i £ i
i IE — Fingerprint i
i - Generation _ i
! System +—— % pattern-generation !
[FGS]

Figure 41: Current production workflow.

empyrean-horizon.eu 101/129

(EIMPYREAN
D2.3 — Final EMPYREAN architecture, use cases analysis and KPls I

Deep Edge Far Edge

I
I
I
|
Read Preprocess Store |
. — |
Data recording Al ™ data > data data T ©
I
: | : S :
\ N queue |
Far Edge Deep [Far Edge Far Edge
_______ T .- S
| | | [|
| B . . [|
: % : ! FC5 — Fingerprint Comparison System : : :
| queue | X L !
H I I]
Infe rering : : | I::;? = c(laet = Execute _— Store —_—— g
I ata task result D '
: db : : . | : |
| | H 1 [|
___L__ | X . Vo _____1
i . model
Far Edge
—— |
I
i % FGS — Fingerprint Generation System i
Model training i queue | . - el °® !
eal e rain ore I
| task data T model result il i
| db |
| |
e - - - e e e —— 4
I 1 . model

Figure 42: Possible breakdown in EMPYREAN of current behavior into three workflows

This incremental deployment strategy, beginning with a single robot, ensures a
comprehensive validation and optimization process before scaling to scenarios involving
multiple robots and associations. Development and deployment updates will systematically
build upon previous steps, guaranteeing a smooth transition to a fully operational monitoring
solution. By leveraging EMPYREAN'’s extensive feature set (including support for resilience,
scalability, and operational efficiency) the deployment will address the demands of this highly
distributed, on-premise use case effectively.

6.1.3 Leveraging EMPYREAN Components and Features

The deployment of this use case will leverage the EMPYREAN architecture to establish a robust
and efficient system tailored to the requirements of advanced manufacturing operations.
EMPYREAN’s distributed components will play a pivotal role in addressing the unique
characteristics of this scenario, including the fully on-premise setup (without Cloud
interaction), the need for online, real-time operations, and the limited computational capacity
at the deep edge. Processing will be divided across layers, with complex, high-computation
tasks performed at the far and deep edge focused on data collection and minimal pre-
processing before forwarding data for further analysis.

In this deployment, multiple Kubernetes clusters, potentially using different distributions to
accommodate the constraints of lower compute power, will orchestrate containerized
workloads across infrastructure layers. EMPYREAN’s multi-cluster scheduling capabilities will
be implemented to ensure seamless coordination and optimal resource utilization across the
different edge layers.

empyrean-horizon.eu 102/129

(EMPYREAN
D2.3 — Final EMPYREAN architecture, use cases analysis and KPls I

The deep edge layer will employ Edge Smart Boxes equipped with 8GB of RAM. These devices
will run lightweight Kubernetes distributions and host EMPYREAN components such as the
Ryax Workflow Engine Worker and the Zeno-Flow daemon. These components will enable
real-time dataflow management and facilitate communication between the deep and far edge
layers. While some basic pre-processing may occur here, the primary function of the deep
edge will be to collect sensor data and forward it to the far edge for advanced processing.
EMPYREAN’s telemetry service will be crucial in ensuring consistent monitoring and
management of this distributed layer.

At the far edge, the deployment will rely on high-performance nodes equipped with 16 to
32GB of RAM, potentially complemented by GPUs for compute-intensive tasks such as training
machine learning models for the Fingerprint Generation System. EMPYREAN’s analytics-
friendly distributed storage will ensure efficient data management during these operations,
while the far edge will also host the majority of EMPYREAN’s computational components,
enabling scalable and advanced real-time analytics. This layer will act as the system’s
backbone, executing processes that demand high computational power and supporting
complex real-time decision-making.

EMPYREAN’s multi-clustering support within the Ryax Workflow Engine will be a key feature,
enabling workload orchestration across different infrastructure layers. This will include
optimized scheduling at both the local and multi-cluster levels to ensure efficient use of
resources while maintaining strict real-time operational standards. The integration of the
Dataflow programming framework within the Ryax Workflow Engine will enable real-time
data communication and processing across the system, ensuring responsiveness to the high-
frequency demands of this use case.

To ensure security and privacy in this highly distributed architecture, EMPYREAN’s Privacy and
Security Manager will be deployed to safeguard interactions between layers. Additionally, the
application builder for unikernels will enable the deployment of lightweight binaries for loT
devices, allowing remote execution and simplified management at the deep-edge and on-
premises layers. At the on-premises edge, lightweight devices such as Edge Smart Boxes with
2 to 4GB of RAM will handle the initial data collection from robotic sensors, running
lightweight executables orchestrated by EMPYREAN’s deep-edge microservices.

EMPYREAN’s comprehensive feature set, including telemetry services, distributed storage,
and real-time dataflow management will ensure that the architecture can scale to meet these
challenges while maintaining efficiency and operational reliability.

empyrean-horizon.eu 103/129

(EMPYREAN
D2.3 — Final EMPYREAN architecture, use cases analysis and KPls I

6.2 Proximal Sensing in Agriculture Fields (UC2)

6.2.1 Overview

This use case focuses on the dynamic assessment of Soil Organic Carbon (SOC) to evaluate and
manage soil conditions in agricultural fields. By combining proximal sensing technology with
edge computing, the system enables real-time SOC assessment without relying on centralized
data processing. This innovative approach supports integrative farm management and
sustainable agricultural practices by providing timely and actionable insights for soil health.

The EMPYREAN platform revolutionizes soil health assessment workflows, enabling real-time
Soil Organic Carbon (SOC) evaluation through advanced sensing and edge computing
technologies. The system facilitates efficient and dynamic SOC analysis directly in the field, by
integrating UAVs and robots equipped with cutting-edge sensors, including spectrometers and
soil moisture devices. High-resolution data is processed locally using distributed Al and edge
computing, ensuring accurate results with reduced latency, enhanced data privacy, and
minimal data transfer. This approach supports sustainable agricultural practices by optimizing
resource use, increasing yields, and minimizing environmental impacts. Through a decision
support platform, farmers receive actionable insights and strategies for SOC improvement,
empowering informed, adaptive farm management.

The use case begins with a drone capturing high-resolution multispectral images of the field,
forming the foundation of the SOC assessment. These images are processed through advanced
workflows, including image stitching and the creation of management zones, which enable
precise SOC predictions either locally or on remote infrastructure, depending on resource
availability. Secondly, a robot performs complementary ground operations, focusing on
detailed SOC analysis at specific points of interest. Equipped with a portable spectrometer and
a moisture sensor, it collects precise soil data to generate a comprehensive SOC map. This
map provides a granular view of soil health, guiding key decisions such as fertilization,
irrigation, and weed management. At the heart of the system lies a decision support platform
that integrates all data from drones, robots, optional satellite imagery, and farmer inputs.
Through a user-friendly interface, the platform offers actionable recommendations and SOC
improvement strategies. This seamless integration of technologies empowers farmers with
real-time monitoring and informed decision-making, transforming agricultural practices to
prioritize both productivity and sustainability. One or more Associations will be set up for the
realization of the use case.

6.2.2 Development and Deployment Updates

This section provides further details on the development of the use case. A preliminary
selection of the edge hardware has been made. Additionally, some adjustments have been
made to the initial plans described in D2.1, specifically regarding the overall development of
the use case. Lastly, the different workflows within the use case are described, as well as the

empyrean-horizon.eu 104/129

\
‘@MPYREAN
D2.3 — Final EMPYREAN architecture, use cases analysis and KPIs ¥

decision support tool that will be presented to the farmer and their advisors to facilitate
informed decision-making.

6.2.2.1 Devices, equipment and communications

UAV DJI M350 RTK drone - RTK GPS Wi-Fi 6

- 5880 mAh battery: flight time | Bluetooth 5.1
up to 55 minutes

- Max speed 23m/s

- IP55

- Power: 44.76V/5.88A

Raspberry Pi 5 - CPU: 2.4GHz 64-bit Arm Wi-Fi 5
Cortex-A76 Bluetooth 5.0
- RAM: 8GB

- Memory: SD card
- Power: 5V/5A

Hailo 8L Al accelerator | - 13 TOPS Not applicable
- Power: 1.5W
Micasense RedEdge - 10 multispectral bands Wi-Fi
Multispectral camera | - 1.6mp/band
- Up to 3fps

- Memory: SD card
- Power: 7V/2.85A

Robot ILVO Cimat robot - RTK GPS Wi-Fi
- IMU, camera, lidar, sonar 4G
- GPU
- FPGA
Spectrometer To be selected
Moisture sensor To be selected

Table 31: The different hardware components and their key features of UC2.

empyrean-horizon.eu 105/129

(EMPYREAN
D2.3 — Final EMPYREAN architecture, use cases analysis and KPls I

6.2.2.2 Adjustments from D2.1

This list contains some alterations and updates to the initial planning provided in D2.1.

e Cover crops: Initially, we planned to use RGB and multispectral imaging to estimate
cover crop biomass and identify management zones. However, this plan has been
revised to focus on a different model that assesses Soil Organic Carbon (SOC). The new
model utilizes multispectral images of fields with bare soil to perform the SOC
assessment, providing valuable insights into soil health and composition.

e Decision support: After discussions with stakeholders, we have decided to broaden the
scope of the use case. Rather than focusing solely on providing farmers with a
prescription map based on SOC evaluations, we aim to develop a more complete
farmer advisor platform. This platform will enable farmers and their advisors to gain
valuable insights about the land using a variety of data sources, including SOC
management zones, yield maps, and NDVI/NDW!I data from satellite imaging, among
others. By integrating these diverse data sources, the platform will guide users through
a decision support tool to make well-informed management decisions. Outputs may
include the aforementioned SOC-based prescription maps, as well as
recommendations for fertilization, weed control, irrigation activities, and more.

e Platform output: The original plan for the final stage of the use case involved guiding
fertilization through prescription maps generated from SOC assessments and other
collected data. To accommodate this, the last step of the use case will involve the
generation and download of the prescription map in an industry-standard format. The
farmer can then upload this file to the proprietary tractor’s system to carry out the
fertilization process.

6.2.2.3 Al models training/development

The development of Al models for this use case focuses on two distinct but complementary
approaches to assessing SOC levels, leveraging data from the drone-mounted multispectral
sensor and the robot's portable spectrometer. These models ensure a comprehensive and
dynamic assessment of SOC across the agricultural field.

The SOC Classification Model (Drone) will use multispectral images captured by the UAVs
camera during field surveys, which provide ten spectral bands with high spatial resolution. Its
objective is to classify SOC levels across the field into categories, such as low, medium, and
high, and generate management zones based on these classifications. The training process
involves collecting soil samples from ILVO fields that represent diverse conditions and SOC
levels. These samples will be analysed in the laboratory to determine their precise SOC
content. The resulting SOC data is then paired with the corresponding multispectral images to
create the training dataset. Once trained, the classification model will be deployed on edge
devices, allowing in-field SOC level predictions during drone flights. These outputs guide
subsequent workflows, including identifying points of interest for detailed analysis by the
robot.

empyrean-horizon.eu 106/129

(EMPYREAN
D2.3 — Final EMPYREAN architecture, use cases analysis and KPls I

The SOC Prediction Model (Robot) relies on data from a portable spectrometer and a soil
moisture sensor mounted on the robot. These devices capture precise measurements at
specific points of interest. The model's objective is to provide highly accurate SOC values for
particular locations within the field, offering granular insights and serving as a benchmark for
validating and refining the classification model. For training, soil samples will be collected from
ILVO fields and undergo detailed spectrometer analysis and laboratory testing to determine
their SOC levels and other relevant properties. The spectrometer readings are correlated with
the lab-analysed SOC values to train the model, with environmental factors such as soil
moisture levels included to ensure robustness under varying field conditions. After training,
the prediction model will operate on the robot’s computing infrastructure at the deep edge,
enabling real-time SOC predictions during field operations.

6.2.2.4 Workflows identified within the use case

The workflows for this use case are categorized into two groups: those executed on the drone
and those executed on the robot. This section provides a detailed overview of these
workflows, describing their inputs, processing steps, and outputs. By outlining these
workflows, we aim to highlight how the various components interact to achieve the objectives
of the use case. Additionally, some information is given regarding a decision support tool,
which can be used to make informed farming decisions based on data acquired in the
aforementioned workflows and other data sources.

Drone Workflows:

e 1%t workflow [DroneWF1] - Multispectral image collection: During flight, the UAV
collects data using a multispectral camera, capturing ten distinct spectral bands. Data
from the relevant bands is compressed and stored, either locally or on remote storage.
This workflow is deployed on the drone’s computing infrastructure, allowing for real-
time processing and efficient collection of multispectral images at the deep edge. By
performing these tasks locally on the drone, the workflow minimizes latency and
optimizes the data pipeline for further analysis.

e 2" workflow [DroneWF2] - Monitoring of drone characteristics: Throughout the
flight, the UAV provides detailed performance metrics about its operation, processing
unit, and multispectral sensor. These include flight data such as speed, altitude, and
position, as well as battery capacity, CPU/memory usage of its computing unit, and
more. This workflow could for example track the battery consumption, providing
different soft and hard thresholds and triggering alerts when necessary. Alerts may
need human intervention or trigger other specific actions, such as stopping data
collection or offloading computation to nearby computing units.

e 3 workflow [DroneWF3] - Multispectral image stitching: In the DroneWF1 workflow,
the UAV captures multispectral images of the field, following a flight path designed
with specificimage overlap in mind. This overlap is crucial for stitching the images from
different spectral bands into a single, multi-layered composite image that provides a
comprehensive overview of the entire field. Given the potential size of the dataset,

empyrean-horizon.eu 107/129

D2.3 — Final EMPYREAN architecture, use cases analysis and KPls

%@MPYREAN

which depends on the field's dimensions, this process is computationally intensive and
demands significant resources for effective processing.

4th workflow [DroneWF4] - SOC assessment and creation of management zones
based on SOC assessment: The multi-layered stitched image serves as input for
evaluating SOC levels across the field. This evaluation is performed using a pre-trained
Al model, which is periodically updated with more precise data collected by the robot.
The SOC levels are then classified into management zones, categorized into different
levels (e.g., low, medium, high). These management zones represent the key output of
the UAV flight and provide critical insights for informed decision-making in field
management.

Robot Workflows:

1%t workflow [RobotWF1] - Identification of points of interest for detailed SOC
assessment: Based on the management zone map, which is the primary output of the
UAV flight, specific points of interest are selected for more detailed analysis. These
points are primarily chosen to calibrate the SOC measurements captured by the
multispectral camera and to enhance the accuracy of the Al model. This targeted
approach ensures continuous improvement of the model and more precise SOC
evaluations in future workflows.

2" workflow [RobotWF2] - Data collection: The ILVO Cimat robot conducts
complementary ground operations, focusing on detailed SOC analysis at designated
points of interest. Equipped with a portable spectrometer and a moisture sensor, the
robot gathers highly precise soil data. This data will feed into subsequent workflows,
contributing to the generation of a comprehensive and accurate SOC map.

3 workflow [RobotWF3] - Monitoring of robot characteristics: Similar to the UAV,
the robot provided data that allows for monitoring its performance through metrics,
such as position, speed, battery status, and the resource usage of its onboard
computer. These data points help ensure the efficient operation of the robot during
its tasks.

4th workflow [RobotWF4] - Creation of SOC map of the field: This workflow will be
deployed on the robots computing infrastructure, using data from the robot’s
spectrometer and moisture-related sensors at the deep edge. The prediction phase
will primarily take place at the far edge, although lightweight ML models could be
executed at the deep edge. The processed data will then be stored at the far edge, and
the soil organic carbon assessments will be used as inputs for creating prescription
maps. These maps provide a granular view of soil health, guiding key decisions such as
fertilization, irrigation, and weed management.

Decision Support Platform: At the heart of the system lies a decision support platform that
integrates all data from drones, robots, optional satellite imagery, and farmer inputs. Through
a user-friendly interface, the platform offers actionable recommendations and SOC
improvement strategies. The platform allows uploading data sources, in addition to the SOC
maps, such as satellite images, yield maps, index, and others.

empyrean-horizon.eu 108/129

s
o7

f(EIMPYREAN
D2.3 — Final EMPYREAN architecture, use cases analysis and KPls N

6.2.3 Leveraging EMPYREAN Components and Features

With the implementation of the EMPYREAN platform, the future state of soil health
assessment will see a significant transformation in workflows. Integrating various sensors and
data types, combined with edge computing, will enable dynamic and efficient SOC
assessment, allowing for near real-time analysis of soil conditions. This will create a more
responsive and adaptive agricultural management system. In the future state envisioned with
EMPYREAN, UAVs equipped with advanced sensors will play a crucial role. Robotic sensors will
further enhance soil assessment by performing detailed analyzes in the identified
management zones. The robot, equipped with visible and near-infrared (Vis-NIR)
spectrometers, RTK GPS, and soil moisture sensors, will conduct dynamic and efficient SOC
assessments directly in the field. The data collected will be processed on-site using edge
computing, ensuring timely and accurate results.

requirements

Workfiow manager

l

Empyrean Registry

Empyrean Aggregator for UCZ
Higher layer
Deploy
agplication logic
Telemetry engine Local orchestrator
[Decentralized and Distributed Data
> Broker / Zenah.Flow ST
—
Edga storaga gate
iga storage gataway
Lower layer: Empyrean Controller
feur
Secure & Trusted Execution 53
bl environment %5
%5 i
%
@
L
1
Drone platform 5 Edge server (Al workloads) ILVO Climate robot
DJI MIBORTK + : .
Micasense RedEdge DroneWF3: Stitching of multspeciral images —
Tt multispectral camera §5 bl
arone By ——— e s L =
sssssss M = _
= ’
Stie are. ¥4
ihchag o e
Raspoerry sment + creation of management zones
Fis

y P . ROBOIWF2: Spectramates
DroneWF1: Wutispactral imsge collection — > - oy]
I . " 4 RobotWF3: Robot

L1+ Dronewrz: Drone plsttorm menitorng |
T mpme™ |

‘Stioned drene mage Managemant rens map

RebotWF1: Idenification of POI's for detalled SOC assessment

Send > o>
Ietemelry ;

Sand telmatry

Spactromator +

Figure 43: Planned UC2 architecture with the EMPYREAN components

empyrean-horizon.eu 109/129

(EMPYREAN
D2.3 — Final EMPYREAN architecture, use cases analysis and KPls I

By leveraging the EMPYREAN components, we can efficiently achieve the targets outlined in
this use case (Figure 43). Below is a list of the key components and features that will be utilized
during the use case development. Please note that this list is not exhaustive and additional
components, such as the Privacy and Security Manager, the Lightweight Application
Packaging, the Application Builder for Unikernels, etc are going to be included indirectly.

Workflow Manager: The end result of the use case is a decision support platform that allows
the farmer (advisors) to make informed decisions on the farm management based on data
presented to him. For this, the large amounts of raw data collected by the UAV, robot,
satellites, etc should be analyzed and converted to a format that can be interpreted by the
users. For this purpose, the EMPYREAN Workflow Manager will be used as it enables efficient
design and execution of data analytics applications. In section 6.2.2 we have identified a
number of workflows that could potentially be developed in the context of a Ryax workflow,
such as parsing of the multispectral drone images or parsing of the spectrometer/moisture
measurements.

Dataflow Programming: The Dataflow Programming component will play a key role in
defining and managing the various data flows within the system. This includes data exchanges
between edge devices, such as UAVs and the Cimat robot, the edge server, and the cloud
infrastructure. By orchestrating these data flows, the component ensures that raw data
collected at the edge is efficiently processed, transferred, and made available in the cloud for
visualisation to the end user.

Edge Storage (Gateway): Both the multispectral sensor and the spectrometer generate a high
volume of data during operation. Initially, most of this data is stored on edge storage, so it can
be easily processed on the edge. This limits the amount of data to be transferred to the cloud.
Once the analysis is performed, the resulting output data from the workflows is transferred
to the cloud storage. This processed data can be visualized and presented to the user in a clear
and accessible format, ensuring that insights are readily available for decision-making
purposes.

Decentralized and Distributed Data Manager: The use case relies on the data manager as the
primary mechanism for data exchange between edge devices and the cloud infrastructure.
This layer facilitates the efficient transfer of data collected from edge devices. Additionally,
the communication layer can trigger specific workflows to execute within the Workflow
Manager, enabling automated data processing and analysis.

Telemetry Engine: The edge devices provide a range of parameters that can be monitored to
ensure its optimal operation. For example, the UAV collects detailed flight data, including
speed, altitude, and position, as well as information about battery capacity and the
CPU/memory usage of its computing unit (Raspberry Pi). Similarly, the robot offers
comparable metrics, such as position, speed, battery status, and the resource usage of its
onboard computer.

empyrean-horizon.eu 110/129

(EMPYREAN
D2.3 — Final EMPYREAN architecture, use cases analysis and KPls I

6.3 Advanced Inference and Coordinated Behaviors for
Warehouse Automation Robots (UC3)

6.3.1 Overview

The particular use case centers around a robotic warehouse automation application, where a
fleet of Autonomous Towing Robots (ATRs) performs order-picking based on incoming orders.
Warehouse operators utilize a specialized software named the Fleet Control System (FCS),
which enables them to submit order-picking tasks to the ATRs. In this use case, the ATRs will
be equipped with on-board computational capabilities along with a variety of sensors (such as
lidars and radars), enabling them to perform the needed computations directly upon the
robots at the deep edge. The Fleet Control System is installed and operates mainly at the far
edge, where more substantial computational resources are available, including GPU node
pools that can offload ML inference tasks and potentially perform ML training. Additionally,
public or private cloud resources can be also used to offload even more compute-intensive
operations.

A key challenge of this use case is the collaboration and data exchange between robots, which
besides the adaptations needed on the Fleet Control System it requires efficient data transfer
among robots and with the FCS. This setup also demands increased computational power
across the different layers of the continuum. Moreover, the possible intermittent connectivity
of the ATRs within the warehouse needs also to be taken into account. To address these needs,
the use case leverages novel functionalities from the EMPYREAN platform. EMPYREAN’s ability
to enable seamless executions on different layers of the edge-cloud computing infrastructure
to facilitate the operation of the robots, while ensuring secure data transfers even under
intermittent networking connectivity, will significantly enhance the robot fleet’s operation.

6.3.2 Development and Deployment updates

This section provides further details on the development of the use case.

6.3.2.1 Devices, equipment and communications

The initial computing infrastructure setup for this use case will include: a) the ATR robots
equipped with onboard industrial PC units featuring Intel i5 CPUs and 16GB of RAM,
representing the deep-edge part. The robots will have various onboard sensors (such as lidars
and radars) to facilitate navigation and order-picking within the warehouse; b) intermediate
servers located in the warehouse office, consisting of PC’s, laptops, or GPU-equipped units
with around 32GB of RAM, representing the far-edge; and optionally c) a distant data-center
or cloud resources for offloading more demanding computations, offering more powerful
computation resources and diverse hardware sources along with access to GPU node pools.

empyrean-horizon.eu 111/129

(EMPYREAN
D2.3 — Final EMPYREAN architecture, use cases analysis and KPls I

6.3.2.2 Workflows identified within the use case

At this initial stage of the project, the following use case workflows are anticipated:

e 1%t workflow: The FCS is connected to the EMPYREAN platform, and when a certain
order is submitted on the FCS, the workflow demands the collection of data at the
deep edge on the computing cluster of the ATR while performing an initial pre-
processing onboard and transferring data to the far edge for further data treatment
while enabling storage of insights and results on the FCS triggering specific alerts or
observability functions. This workflow can be duplicated and used for each different
ATR.

e 2" workflow: The ATR retrieves data, and depending on the task’s computational
demands, it may offload the more compute-intensive tasks to the far edge (or the
cloud) featuring a GPU. The processed data is then transferred back to the ATR to use
it accordingly.

e 3workflow: The FCS operator submits a request for robot collaboration between two
ATR robots, such as jointly picking up a particular (heavier) cart. Based on that, the two
robots will receive the operation order, and data will be transferred to both for pre-
processing. This particular pre-processing process will be started on both robots
simultaneously. This may be managed by a single workflow executing across both
robots and waiting to aggregate insights from both or by two workflows coordinating
with each other.

6.3.2.3 Developments

The Tractonomy development team has been preparing the core robot technology for the
above integrations with the EMPYREAN platform. Tractonomy’s autonomous towing robot
(ATR) is a commercially ready robot designed for towing all sorts of existing carts. It has a
uniqgue omnidirectional platform with a rotating gripping system for grabbing and pulling all
sorts of industrial carts. A number of areas had to be prepared within the hardware
architecture of the existing platform. A demo robot is used as a development platform and
showcase for the EMPYREAN project.

Distributed Zenoh Databases: To support the first workflow, the team has updated the robot
to the latest Zenoh 1.0.0 “Firesong” release. We have been experimenting with how data-in-
motion and data-at-rest geo-distributed storage can work. As there exist many ways for Zenoh
nodes to store values it may need to serve later, we have integrated the storage manager
plugin relying on dynamically loaded “backends” to provide this functionality. Typically, a
backend will leverage some third-party technology, such as databases, to handle storage. A
possibly convenient side effect of using databases as backends is that they may also be used
as an interface between the robot’s Zenoh infrastructure and the EMPYREAN infrastructure
and may interact independently with the database.

empyrean-horizon.eu 112/129

\

o7
@MPYREAN
D2.3 — Final EMPYREAN architecture, use cases analysis and KPls g

Point cloud compression: A key enabler for the second workflow is to stream real-time point
clouds from the on-board Intel Realsense D455 depth camera to the far edge where machine
learning and computer vision (CV) pipelines can process and return inferences from the data
the robot sees (Figure 44). In this case, we developed a containerized CV pipeline that can be
dynamically configured and deployed by the RYAX engine based on the relevant associations
for GPU resources. Currently, the latency has been tested on local loopback networks without
point-cloud compression at 1Hz. The next goal is to implement MPEG-PCC and evaluate the
benefits of point cloud compression in 5 GHz wireless networks, which are representative of
Tractonomy’s production deployment environments.

Figure 44: A Tractonomy’s autonomous towing robot (ATR) collecting point cloud data.

Automatic cart locking system: A key concept is the ATR’s unique cart docking system. The
cart docking system is a rotating turret enabled by a patented gripping system. The turret
allows Tractonomy to handle two types of popular carts:

1. Carts with fixed wheels in front and castor wheels in the rear.

2. Carts with castor wheels on all sides.

empyrean-horizon.eu 113/129

l\
‘@MPYREAN
D2.3 — Final EMPYREAN architecture, use cases analysis and KPIs 3

This property is already being exploited in commercial applications. We are now developing a
prototype to extend this property to manipulate very long carts with castor wheels on all sides
using two robots (Figure 45). Initially, a shared motion model has been partially developed in
simulation to establish a smooth and seamless motion control demonstrator with two robots
in simulation. A realization of a final demonstrator with two physical robots will also be

evaluated.

. B

—>

<+

Figure 45: A two carts automatic locking system.

6.3.3 Leveraging EMPYREAN Components and Features

Based on this infrastructure setup, one EMPYREAN Association and Aggregator will be
explored initially to enable the execution of tasks from deep to far edge up to the cloud. Each
ATR robot will be an independent cluster in the Association, possibly using lightweight
Kubernetes distributions such as K3S. Initially, one robot will participate in the Association,
while afterwards, the participation of multiple robots will be realized. By the end of the
project, we will validate the functionality of defining multiple Associations for different
aspects where robots may participate in more than one Association.

Critical EMPYREAN features for the successful execution of this UC include: (i) the integration
of the dataflow programming (Zenoh-Flow) within the workflow management system (Ryax),
(ii) the cyber-threat intelligence engine and the privacy and security manager to guarantee
that operation will remain secure even in highly vulnerable contexts (such in 4G networks),
(iii) the support of unikernels for lightweight, secure, and reproducible deployment at the
edge, (iv) the support for intermittent connectivity, (v) the edge distributed storage, (vi) the
multi-clustering execution, and (vii) optimized offloading for GPU-based ML inference.

empyrean-horizon.eu 114/129

(EMPYREAN
D2.3 — Final EMPYREAN architecture, use cases analysis and KPls I

6.4 Security in Smart Factories - S. Korea International
Collaboration (UC4)

6.4.1 Overview

Smart factories are becoming more prevalent, and their operations rely heavily on network
connectivity. Private 5G networks are being used to provide the high-speed, low-latency
connectivity required by smart factories. However, as with any network, security is a critical
concern. This use case considers a situation-aware security orchestration model that can
effectively address security threats to smart factories that use private 5G networks. Towards
this end, situation-aware security and other applications are required, including but not
limited to Intrusion Detection Systems (IDS) and Firewall and Cyber Thread Intelligence (CTI)
modules. These provide an effective means of ensuring the security of the factory's
operations/services and physical assets.

This UC focuses on addressing these challenges by automating the deployment of security
applications that run inside smart factories Association(s). EMPYREAN’s advanced
orchestration and autoscaling mechanisms will ensure that the applications are executed
efficiently under any circumstances while utilizing both edge resources (inside and between
Association) and cloud resources. EMPYREAN’s employed security and trust functionalities will
ensure that the security application operates securely. The utilized Al-based procedures for
accurately recognizing and responding to security threats will take advantage of EMPYREAN's
privacy-preserving Federated Learning (PPFL) mechanisms that support a fully privacy-
preserving and federated anomaly detection system.

6.4.2 Development and Deployment Updates

As indicated in D2.1, this use case was agreed originally with Prof. llsun You of the Department
of Information Security, Cryptology, and Mathematics, Kookmin University, Seoul, Korea
under the conditions of being funded by the South Korean government. As it was not the case,
it was decided to continue the collaboration in various ways. In this context, a joint workshop
was organized linked to the special session Secure and Cognitive Continuum (SECON) that was
held at the 8th International Conference on Mobile Internet Security (MobiSec 2024) Sapporo,
Japan, on December 17, 2024 (https://manuscriptlink-society-file.s3.ap-northeast-
1.amazonaws.com/kiisc/conference/mobisec2024/secon24-2.htm).

During this workshop, the EMPYREAN architecture and the different modules envisioned were
discussed among EMPYREAN and Korean partners. The Korean partners expressed their
interest in the work done and the possibility of collaboration, taking however into account
their funding limitations. It was decided to continue collaboration during 2025 (Y2) so as to
evaluate the use of key EMPYREAN components that could fit the needs of the Korean partner
threat management scenarios. Also, the University of Murcia’s 5G testbed can be used to
replicate these scenarios as an initial Proof of Concept (PoC), demonstrating EMPYREAN's

empyrean-horizon.eu 115/129

https://manuscriptlink-society-file.s3.ap-northeast-1.amazonaws.com/kiisc/conference/mobisec2024/secon24-2.htm
https://manuscriptlink-society-file.s3.ap-northeast-1.amazonaws.com/kiisc/conference/mobisec2024/secon24-2.htm
https://manuscriptlink-society-file.s3.ap-northeast-1.amazonaws.com/kiisc/conference/mobisec2024/secon24-2.htm

(EMPYREAN
D2.3 — Final EMPYREAN architecture, use cases analysis and KPls I

capabilities. Towards this direction, another workshop was scheduled for Q2 of 2025 to
provide concrete planning based on a proposal provided by EMPYREAN on the components
ready to be tested during Y2.

6.4.3 Leveraging EMPYREAN Components and Features

Based on the above discussion, the focus of the use case will be centred around three major
achievements and features:

e Orchestration and deployment of secure enablers at the edge level to provide threat
identification and abnormal behaviours based on privacy-preserving Federated
Learning (PPFL).

o Use the telemetry component to aggregate information coming from the PPFL to
trigger events in the CTl components.

e Integrate the CTI component either to:

o identify if possible identified threats related to the existing components
deployed in order to deploy the most suitable solution for the PPFL;

O or to provide support to detect the misbehaviours identified and if needed to
exchange information with the privacy preserving MISP component to share
this situation awareness with the rest of the nodes.

empyrean-horizon.eu 116/129

(EIMPYREAN
D2.3 — Final EMPYREAN architecture, use cases analysis and KPls N

7 Implementation and Delivery Plan

The overall implementation and delivery of the EMPYREAN project (Figure 46) are structured
into a series of well-defined and complementary phases, ensuring a systematic and iterative
approach to achieving the project’s objectives. These phases enable seamless progression
from requirement analysis to the delivery of a fully functional platform, incorporating
feedback and refinements at every stage. Deliverable D2.2 (M7) provides a more detailed
description of these plans and phases.

The present deliverable marks the successful completion of the first two phases:
Requirements Analysis (Phase 1) and Architecture Definition (Phase 2). Moving into the
second year, the consortium’s focus will shift towards the research and development activities
of the individual technological advancements (Phase 3). Initial outcomes from these activities
will be reported in M15 through the first set of technical deliverables from WP3 and WP4.
Simultaneously, WP5 will commence activities to support the continuous integration and
testing activities (Phase 4), preparing the initial platform release by M18. Moreover, efforts
will also focus on initiating the implementation of the project use cases.

D53

D3.1,D3.2 MS10
D23 D4.1.D42 D5.1,D52 D33,D43 P D6.1 D5.4,D6.2
MS4 MS5, MS7 MS9 MS6, MS8 MS12 MS11
r P > > r r
Feb Jan April Jul March May Jul Jan
24 25 25 25 26 26 26 27
(m1) (M12) (m15) (m18) (M26) (m28) (m30) (m36)

Initial Platform Release

7 Final 2
Platform Initial WP3-4 initiol EMPYREAN

R S requirements & £ SEEET
requirements architecture aichitectiure de Initial

Full Platform Release

WP3-4 final UCs final EMPYREAN
developments developments Full Release

M26) M28) M30)
e a Final Platform

KPIs &
evaluation EMPYREAN

methodology ~ Final Release

M30) M36

Figure 46: EMPYREAN development roadmap

The initial platform release, resulting from the first project development iteration (M4-M15),
will provide a partial implementation of EMPYREAN components. This version will feature a
subset of the envisioned features and primary inter-component communication interfaces,
forming a functional prototype to support the core platform’s objectives. This prototype will
offer critical feedback to guide and enhance the second development iteration (M18—M36)
that will provide the full platform release (M30) and final platform release (M36).

By adopting this structured and iterative approach, the EMPYREAN consortium ensures a
systematic transition from concept to a fully functional and exploitable platform, aligning
technological developments with the project's objectives and stakeholder expectations.

empyrean-horizon.eu 117/129

(EMPYREAN
D2.3 — Final EMPYREAN architecture, use cases analysis and KPls I

8 Conclusions

This deliverable presents the final version of the EMPYREAN architecture, emphasizing the
critical technical aspects of component interactions and system operation flows. The
comprehensive analysis of how components interact within the loT-edge-cloud continuum has
been pivotal in identifying and addressing key operational challenges. These interactions are
designed to enable seamless communication, efficient task distribution, and dynamic resource
allocation across Associations, ensuring the platform's ability to support diverse and time-
critical applications.

System operation flows have been meticulously designed to align with the needs of various
users and application scenarios. These flows outline the procedural dynamics of how tasks are
initiated, managed, and executed across the platform, providing clarity on the operational
alignment of system components. The iterative refinement of these flows informed necessary
adjustments to the architecture, ensuring it accurately reflects EMPYREAN operational
demands, particularly related to its use cases, while optimizing platform efficiency.

As a result, the finalized EMPYREAN architecture integrates these technical insights to serve
as the basis for measuring and achieving the project’s technical KPlIs. By incorporating detailed
component interactions and well-defined system operation flows, the architecture sets a
robust foundation for tracking the platform’s performance and effectiveness throughout its
lifecycle.

Furthermore, the deliverable provides key updates on the use cases, illustrating how they will
leverage EMPYREAN’s new features to enhance their functionality. Additionally, the
implementation and delivery plan, along with the requirements coverage analysis provide
more context on the platform’s development roadmap and its alighment with project
objectives.

Finally, this document will also serve as a guideline during the iterative execution of the
implementation and evaluation phases supporting technical activities in WPs 3-4, UCs
development and platform integration activities in WP5, and project demonstrations in WP6.
By ensuring that technological developments remain relevant and aligned with EMPYREAN’s
ambitions, this deliverable reinforces the project’s vision of introducing a novel ecosystem of
trustworthy, cognitive, and Al-driven collaborative Associations of loT devices and edge
resources for intelligent data processing.

empyrean-horizon.eu 118/129

D2.3 — Final EMPYREAN architecture, use cases analysis and KPls

%@MPYREAN

9 Appendix - Requirements Coverage

This section outlines how the final set of functional requirements, collected, described, and
categorized within WP2, are addressed by the components of the EMPYREAN architecture and
the presented operation flows. Deliverable D2.2 (M7) introduced the initial mapping of
requirements in the context of the preliminary architecture release. This deliverable builds
upon that by expanding the initial mapping to include updates, detailing the operation flows
that implement these requirements, and providing an overall analysis of non-functional
requirements.

Throughout the architecture design process, all partners closely collaborated to analyze each
requirement and map it to the platform’s components. This iterative and cooperative
interaction between the technical and use case partners ensured that the EMPYREAN platform
is capable of realizing the desired functionalities, aligning the architecture with both the
project’s objectives and the specific needs of its use cases.

Table 32: Functional requirements coverage in the final EMPYREAN architecture and operation flows

ID Short Description Components Operation Flows
EMP.YREAN Aggregator, EMPYREAN Reglst.ry, OF1.1, OF1.2, OF1.3,
Federate heterogeneous and | Service Orchestrator, Privacy and Security
L . OF2.1, OF2.2, OF2.3,
F_GR.1 distributed loT, edge, and Manager, Telemetry Engine, EMPYREAN
. S OF2.4, OF3.3, OF4.1,
cloud resources. Controller, Decentralized and Distributed OF4.3 OFA.7 OF51
Data Manager, Edge Storage Gateway " Y ’
EMPYREAN Aggregator, EMPYREAN Registry,
Enable collaborative Service Orchestrator, Decision Engine, | OF1.1, OF1.2, OF1.3,
F_GR.2 autonomy in the loT-edge- Telemetry Engine, Decentralized and| OF4.1, OF4.8, OF5.1,
cloud continuum. Distributed Data Manager, Privacy and OF6.1
Security Manager
Service Orchestrator, Decision Engine,
F GR3 Encompass autonomous and | Analytics Engine, Telemetry Engine, | OF1.3, OF4.1, OF4.2,
- continuous control loops. Persistent Monitoring Data Storage, | OF5.1, OF6.1, OF6.2
EMPYREAN Controller
Provide seamless Workflow Manager., Dataflow Programming OFL.1, OF1.2, OFL3,
deployment of hyper- Component, Service Orchestrator, NIX- OF2.3 OF3.1 OF3.2
distributed cloud-native based Environment Packaging, Application Y Y Y
F_GR.4 - . .) OF4.1, OF4.2, OF4.3,
applications across a Packaging, Container Runtime, Edge Storage
. . . OF4.4, OF4.5, OF4.6,
collaborative loT-edge-cloud | Gateway, Decentralized and Distributed OF4.8 OF5.1
continuum. Data Manager -)
Workflow Manager, Dataflow Programming
Support hyper-distributed, Component, Software-Defined Edge | OF1.1, OF1.2, OF1.3,
E GRS highly-demanding, and Interconnect, Decentralized & Distributed | OF3.1, OF3.2, OF4.1,
- dynamic applications from Data Manager, Workload Autoscaling, | OF4.3, OF4.4, OF4.5,
diverse domains. Hardware Acceleration Abstractions, | OF4.6, OF4.7, OF5.1
Application Packaging
Provide monitoring for Monitoring Probes, Telemetry Engine, | OF1.3, OF2.1, OF2.2,
E GRG cloud-native applications and | Persistent Monitoring Data Storage, | OF4.1, OF4.2, OF4.7,

heterogeneous
infrastructure resources.

Container Runtime

OF4.8, OF5.1, OF6.1,
OF6.2

empyrean-horizon.eu

119/129

D2.3 — Final EMPYREAN architecture, use cases analysis and KPls

%@MPYREAN

Energy and power-aware
operation for optimal power

Monitoring Probes, Telemetry Engine,
Decision Engine, Workload Autoscaling,

OF4.2, OF4.8, OF5.1,

F_GR.7 management, energy Container Layers Locality Scheduler OF6.1
efficiency and ecological ’
sustainability.

Combine heterogeneous EMPYREAN Registry, EMPYREAN Aggregator, | OF1.1, OF1.2, OF1.3,
computational aid storage EMPYREAN Controller, Edge Storage | OF2.1, OF2.2, OF2.3,
F_ASSOC.1 resoﬂrces o ftarant 8¢ | Gateway, Decentralized and Distributed | OF3.3, OF4.1, OF4.2,
. Data Manager OF4.3, OF4.5, OF4.7,
connectivity resources.
OF5.1
Facilitate secure onboarding | EMPYREAN Registry, Secure and Trusted
of loT devices, robots, ar\d_ Execution Environment, Privacy and Security OF1.3, OF2.1, OF2.2,
F_ASSOC.2 |edge/cloud resources within | Manager OF2.3 OF2.4. OF3.3
the EMPYREAN control and - o ’
management plane.
Constitute a secure.and Privacy and Security Manéger, C'!'I Engine, OF1.3, OF2.4, OF3.3,
F_ASSOC.3 | trustworthy execution Secure and Trusted Execution Environment,
. OF4.4, OF5.1, OF6.3
environment. Edge Storage Gateway
SUDDOIt 3UtONOMOUS Workflow Manager, Analytics Engine,
o ,::-fation and enhance Decentralized and Distributed Data| OF1.3, OF4.2, OF4.8,
F_ASSOC.4 p' . Manager, Decision Engine, Workload | OF5.1, OF6.1, OF6.2,
resiliency across the .
continuum Autoscaling, EMPYREAN Controller, OF6.3
) Software-Defined Edge Interconnect
Provide low and pr('adlc':table EMPYREAN Aggregator, Softwa.re-Deflned OF4.1, OF4.3, OF4.5,
F_ASSOC.5 | latency for hyper-distributed | Edge Interconnect, Decentralized and OF6.1
applications. Distributed Data Manager '
Provide inter-Association EMPYREAN Aggregator, Decentralized and
F_ASSOC.6 | communication and Distributed Data Manager OF1.3, OF4.3, OF5.1
exchange of events.
Data-driven seamless. . Telemgtry I?nglne, . Monitoring Probes, OF1.3, OF2.3, OF3.3,
F_ASSOC.7 | workload and data migration | Analytics Engine, Service Orchestrator, Edge OF5.1 OF6.1
across the Associations. Storage Gateway - ’
Aggregators must maintain a EMPYREAN Registry, EMPYREAN Controller, | OF1.1, OF1.2, OF1.3,
L Telemetry Engine OF2.1, OF2.2, OF2.3,
F_ASSOC.8 ;:::2:)223 of the Association OF3.3, OF4.1, OF4.2,
’ OF5.1
Aggregators must EMPYREAN Registry, EMPYREAN Aggregator,
- ' . . g OF4.1, OF5.1, OF6.1
registered infrastructures
and detect events.
Asgregators must maintain EMPYREAN Registry, EMPYREAN Aggregator, | OF1.1, OF1.2, OF1.3,
F_ASSOC.10 geres L Telemetry Engine, Persistent Monitoring | OF2.3, OF4.1, OF4.2,
the state of the Association.
Data Storage OF5.1
p-ABC Library, Privacy and Security Manager | OF1.1, OF1.2, OF1.3,
FSsT1 Decentralized identity OF2.1, OF2.2, OF2.4,
- management. OF4.1, OF4.2, OF4.3,
OF5.1
Privacy-Preserving p-ABC Library, Privacy and Security Manager, 11 12 1
F_ST.2 authentication and Secure and Trusted Execution Environment OF1.1,OF1.2, 0F1.3,

authorization.

OF2.1, OF2.2, OF2.4,

empyrean-horizon.eu

120/129

D2.3 — Final EMPYREAN architecture, use cases analysis and KPls

%@MPYREAN

OF3.3, OF4.1, OF4.2,
OF4.3, OF5.1

F_ST.3 Policy-Based Encryption. p-ABC Library, Privacy and Security Manager | OF3.3, OF4.1, OF4.3
FsTa Autom.ated Cyber Threat CTI .Eng.lne, Telemetry Engine, Persistent OF6.2, OF6.3
- Analysis. Monitoring Data Storage
FSTs ML for Anomaly Detection CTl Engine, Telemetry Engine, Persistent | OF4.2, OF5.1, OF6.2,
- and Cybersecurity. Monitoring Data Storage OF6.3
Secure and Trusted Se'cure and Trusted' Execution Enwronmgnt, OF4.1, OF4.2, OF4.4,
F_ST.6 . Privacy and Security Manager, Container
Execution. . . OF5.1, OF6.2
Runtime, Unikernel Deployment
F_DCM.1 g Edge Storage, Edge Storage Gateway OF4.2, OF4.3, OF4.7,
encompasses edge-cloud
. OF5.1
continuum.
Provide an analytics-friendly .
F_DCM.2 |erasure-coded loT storage loT Query Engine, Edge Storage, Edge OF4.7
Storage Gateway
platform.
Decentralized decision- EMPYREAN Registry, EMPYREAN Aggregator,
E D1 making, speculative and Decision Engine, Service Orchestrator, | OF1.3, OF4.1, OF4.2,
- multi-objective resource EMPYREAN Controller OF5.1, OF6.1
orchestration.
Multi-agent speculative Decision Engine, Service Orchestrator,
intelligent resource EMPYREAN Controller, Container Layers | OF1.3, OF4.1, OF5.1,
F_DI.2 . .
- orchestration across Locality Scheduler OF6.1
EMPYREAN Associations.
Hierarchical orchestration Decision Engine, Service Orchestrator,
and multi-objective EMPYREAN Controller, Container Layers
F_DI3 optimization for cognitive Locality Scheduler OF4.1, OF4.2, OF5.1
resource orchestration
within Associations.
Al-enhanced data Decision Engine, Service Orchestrator, Edge
F0a | resounce managoment - | Decensralized and ributed ata Mamager | OFL3 0F23,0F33
- 0! geme 8¢"| OF4.2, OF4.3, OF5.1
within and across
Associations.
Energy.-avyare.workload and | Decision Engine, Service Qrchestrator, OF4.1, OF4.2, OF4.8,
F_DL5 data distribution EMPYREAN Controller, Container Layers
. . OF5.1, OF6.1
mechanisms. Locality Scheduler
Monitoring and managing Monitoring Probes, Telemetry Engine,
F DL6 power and energy Analytics Engine OF2.1, OF2.2, OF4.2,
- consumption in loT devices OF4.8, OF5.1, OF6.1
and edge nodes.
Decentrallzeq and Al- Analytics Eng|.r1e, Serv!ce Orches.trat.or, OF4.2, OF4.8, OF5.1,
F_DI.7 enabled service assurance Telemetry Engine, Persistent Monitoring
. OF6.1, OF6.2
mechanisms. Data Storage
Al-enhanced self-healing for | Workload Autoscaling, Analytics Engine, CTI
F D8 enhanced resiliency, Engine, Service Orchestrator, EMPYREAN | OF4.2, OF4.8, OF5.1,

adaptability, and
autonomous operation.

Controller, Telemetry Engine, Persistent

Monitoring Data Storage

OF6.1, OF6.2, OF6.3

empyrean-horizon.eu

121/129

D2.3 — Final EMPYREAN architecture, use cases analysis and KPls

%@MPYREAN

Workload Autoscaling, Analytics Engine,

F D9 Autonomous and adaptive Container Layers Locality Scheduling, | OF4.1, OF4.8, OF6.1,
- workload autoscaling. EMPYREAN Controller, Telemetry Engine, OF6.2
Persistent Monitoring Data Storage
Continuum-native workflow- | Workflow Manager, Dataflow Programming
base.d ap_pllcatlon design Compo.nent, 'NI)'(-based ' Environment OF3.1, OF3.2, OF4.1,
F_SO.1 considering dataflow Packaging, Application Packaging OF4.3
programming and low-code '
techniques.
Deployment objectives Workflow Manager, EMPYREAN Registry,
F $0.2 (SLO.s) deflnltlo.n for Service Orchestrator, Decision Engine OF3.1, OF4.1, OF6.1
- continuum-native
applications
Seamless and declarative EMPYREAN Registry, Service Orchestrator,
F 03 orchestration of self- Decision Engine, EMPYREAN Controller, | OF3.1, OF4.1, OF4.2,
- organized distributed Container Layers Locality Scheduler OF4.6, OF5.1
orchestration systems.
Pollcy-k')a'sed orchestration Wor'kﬂow Manager, EMPYR'E.AN Regls.try, OF2.3, OF4.1, OF5.1,
F_SO.4 and efficient resource Service Orchestrator, Decision Engine, OF6.1
allocation. EMPYREAN Controller, Telemetry Engine '
Context awareness.and Workﬂ.ow M'anager, EMPYREAN Beglstry, OF4.1, OF4.2, OF4.8,
F_SO.5 autonomous adaptive Analytics Engine, Workload Autoscaling OF5.1
response. '
Transparent lifecycle Workflow Manager, Dataflow Programming, | OF1.1, OF1.2, OF1.3,
F <06 management of hyper- Service Orchestrator, EMPYREAN Controller, | OF3.1, OF3.2, OF4.1,
- distributed application Container Runtime OF4.2, OF4.3, OF4.5,
components. OF4.6, OF5.1, OF6.1
Cc?ordllnate \'No.rkload EMPYREAN A.g.gregator,. SerV|.ce OF1.3, OF4.2, OF5.1,
F_SO.7 migration within and across | Orchestrator, Decision Engine, Analytics OF6.1
Associations. Engine, EMPYREAN Controller ’
EMPYREAN Aggregator, Service
Su'pport automat.lc data. . Orchestrator, Decision Engine, Analytics OF1.3, OF2.3, OF3.3,
F_SO.8 migration operations within | Engine, EMPYREAN Controller, Edge Storage
- . o OF4.2, OF5.1, OF6.1
and across Associations. Gateway, Decentralized & Distributed Data
Manager
Implementation and Decision Engine, Container Layers Locality
F_SO.9 integration of custom Scheduler OF4.1, OF4.2, OF5.1
scheduling policies.
Seamless orchestration and | Workflow Manager, Service Orchestrator,
F $0.10 management of both EMPYREAN Controller, NIX-based | OF4.1, OF4.2, OF4.5,
- container-based and Environment Packaging, Container Runtime OF5.1
serverless workloads.
Flexible Hardware- Hardware Acceleration Abstractions,
F_SO.11 accelerated execution Container Runtime, Application Packaging, OF4.5
' EMPYREAN Controller
Offload acceleration to Hardware Acceleration Abstractions,
F_SO.12 nearby devices Container Runtime, EMPYREAN Controller, OF4.5
y ’ Software-Defined Edge Interconnect
OCl-compatible container Unikernel Application Builder, NIX-based | OF3.1, OF3.2, OF4.1,
F_S0.13 P Environment Packaging, Unikernel | OF4.2, OF4.4, OF4.6,

images.

Deployment, Container Runtime

OF5.1

empyrean-horizon.eu

122/129

(EIMPYREAN
D2.3 — Final EMPYREAN architecture, use cases analysis and KPls

Support diverse execution g:\llli(rir::wlenAtpphca;fcrI](a Bi:llderl I\:Jlr):i-li):rsneec: OF3.1,0F3.2, OF4.1,
F 50.14 PP ging, "€l OF4.2, OF4.4, OF4.6,
environments. Deployment, Container Runtime, OF5.1
EMPYREAN Controller)
ik | Applicati Buil NIX-
- <015 | Reproducible Environment E:\'/ig:rientpp 'Cap'ac’crl‘(a i‘;' der, Unif:rsne:: OF3.1, OF3.2, OF4.1,
= Packaging ging, OF4.2, OF4.6, OF5.1
Deployment

The following table presents the relationship between the non-functional requirement
categories of ISO/IEC 25010 and all the functional requirements.

Table 33: Analysis of overall non-functional requirements

Requirement ID: | NF_GR.1 Stakeholders Involved: All

Title: Performance Efficiency

This characteristic represents the performance relative to the number of
resources used under stated conditions. This characteristic is composed of the
following sub-characteristics:

e Time behaviour - Degree to which the response, processing times and
throughput rates of a product or system, when performing its functions,

Description: meet the requirements.

e Resource utilization - Degree to which the amounts and types of resources
used by a product or system, when performing its functions, meet the
requirements.

e Capacity - Degree to which the maximum limits of a product or system
parameter meet requirements.

F_GR.4 Provide seamless deployment of hyper-distributed cloud-native
applications across a collaborative loT-edge-cloud continuum.

F_GR.5 Support hyper-distributed, highly-demanding, and dynamic
applications from diverse domains.

F_GR.6 Provide monitoring for cloud-native applications and heterogeneous
infrastructure resources.

F_GR.7 Energy and power aware operation for optimal power management,
energy efficiency and ecological sustainability.

F_ASSOC.5 Provide low and predictable latency for hyper-distributed
Related applications.

Functional F_ASSOC.8 Aggregators must maintain a catalogue of the Association resources.
Requirements F_ASSOC.9 Aggregators must dynamically discover resources within the
registered infrastructures and detect events.

F_ASSOC.10 Aggregators must maintain the state of the Association.

F_ST.4 Automated Cyber Threat Analysis.

F_ST.5 ML for Anomaly Detection and Cybersecurity.

F_DCM.1 Provide S3-compatible storage service that encompasses edge-cloud
continuum.

F_DI.4 Al-enhanced data orchestration and storage resource management
within and across Associations.

F_DI.5 Energy-aware workload and data distribution mechanisms.

empyrean-horizon.eu 123/129

D2.3 — Final EMPYREAN architecture, use cases analysis and KPls

%@MPYREAN

F_DI.6 Monitoring and managing power and energy consumption in loT devices
and edge nodes.

F_S0.4 Policy-based orchestration and efficient resource allocation.

F_S0.6 Transparent lifecycle management of hyper-distributed application
components.

F_S0.7 Coordinate workload migration within and across Associations.
F_S0.10 Seamless orchestration and management of both container-based and
serverless workloads.

F_S0.11 Flexible Hardware-accelerated execution.

F_S50.12 Offload acceleration to nearby devices.

Requirement ID:

NF_GR.2 Stakeholders Involved: All

Title:

Functional Suitability

Description:

This characteristic represents the degree to which a product or system provides
functions that meet stated and implied needs when used under specified
conditions. This characteristic is composed of the following sub-characteristics:
e Functional completeness - Degree to which the set of functions covers all
the specified tasks and user objectives.
e Functional correctness - Degree to which a product or system provides the
correct results with the needed degree of precision.
e Functional appropriateness - Degree to which the functions facilitate the
accomplishment of specified tasks and objectives.

Related
Functional
Requirements

F_GR.4 Provide seamless deployment of hyper-distributed cloud-native
applications across a collaborative loT-edge-cloud continuum.

F_GR.5 Support hyper-distributed, highly-demanding, and dynamic
applications from diverse domains.

F_S0.1 Continuum-native workflow-based application design considering
dataflow programming and low-code techniques.

F_SO0.2 Deployment objectives (SLOs) definition for continuum-native
applications.

F_IPDR.1 Expose well-defined APIs through EMPYREAN SDK.

F_IPDR.2 Build upon well-established open-source platforms and consortium
existing solutions.

F_IPDR.6 CI/CD guidelines.

Requirement ID:

NF_GR.3 Stakeholders Involved: All

Title:

Compatibility

Description:

Degree to which a product, system or component can exchange information
with other products, systems or components, and/or perform its required
functions while sharing the same hardware or software environment. This
characteristic is composed of the following sub-characteristics:
o Co-existence - Degree to which a product can perform its required
functions efficiently while sharing a common environment and resources
with other products, without detrimental impact on any other product.

empyrean-horizon.eu

124/129

D2.3 — Final EMPYREAN architecture, use cases analysis and KPls

%@MPYREAN

e Interoperability - Degree to which two or more systems, products or
components can exchange information and use the information that has
been exchanged.

Related
Functional
Requirements

F_GR.1 Federate heterogeneous, distributed loT, edge and cloud resources.
F_GR.2 Enable collaborative autonomy in the loT-edge-cloud continuum.
F_ASSOC.1 Combine heterogeneous computational, storage resources,
different connectivity resources.

F_ASSOC.2 Facilitate secure onboarding of new loT devices, robots,
edge/cloud resources within the EMPYREAN control and management plane.
F_ASSOC.6 Provide inter-Association communication and exchange of events.
F_S50.6 Transparent lifecycle management of hyper-distributed application
components.

F_S0.7 Coordinate workload migration within and across Associations.

F_SO.8 Support automatic data migration operations within and across
Associations.

F_50.13 OCl-compatible container images.

F_S0.14 Support diverse execution environments.

F_50.15 Reproducible Environment Packaging.

Requirement ID:

NF_GR.4 Stakeholders Involved: All

Title:

Usability

Description:

Degree to which a product or system can be used by specified users to achieve
specified goals with effectiveness and efficiency in a specified context of use.
This characteristic is composed of the following sub-characteristics:

e Appropriateness recognizability - Degree to which users can recognize
whether a product or system is appropriate to their needs.

e Learnability - Degree to which a product or system can be used by specified
users to achieve specified goals of learning to use the product or system
with effectiveness, efficiency, freedom from risk and satisfaction in a
specified context of use.

e Operability - Degree to which a product or system has attributes that make
it easy to operate and control.

e User error protection - Degree to which a system protects users against
making errors.

Related
Functional
Requirements

F_GR.4 Provide seamless deployment of hyper-distributed cloud-native
applications across a collaborative loT-edge-cloud continuum.

F_ASSOC.1 Combine heterogeneous computational and storage resources and
different connectivity resources.

F_ASSOC.2 Facilitate secure onboarding of new loT devices, robots and
edge/cloud resources within the EMPYREAN control and management plane.
F_DCM.2 Provide an analytics-friendly erasure-coded loT storage platform.
F_S0.1 Continuum-native workflow-based application design considering
dataflow programming and low-code techniques.

F_S50.4 Policy-based orchestration and efficient resource allocation.

F_S0.6 Transparent lifecycle management of hyper-distributed application
components.

empyrean-horizon.eu

125/129

D2.3 — Final EMPYREAN architecture, use cases analysis and KPls

%@MPYREAN

F_50.10 Seamless orchestration and management of both container-based and
serverless workloads.

F_S50.15 Reproducible Environment Packaging.

F_IPDR.1 Expose well-defined APIs through EMPYREAN SDK.

F_IPDR.2 Build upon well-established open-source platforms and consortium
existing solutions.

F_IPDR.3 Documentation of all integration points.

Requirement ID:

NF_GR.5 Stakeholders Involved: All

Title:

Reliability

Description:

Degree to which a system, product or component performs specified functions
under specified conditions for a specified period of time. This characteristic is
composed of the following sub-characteristics:
e Maturity - Degree to which a system, product or component meets needs
for reliability under normal operation.
e Availability - Degree to which a system, product or component is
operational and accessible when required for use.
e Fault tolerance - Degree to which a system, product or component
operates as intended despite the presence of hardware or software faults.
e Recoverability - Degree to which, in the event of an interruption or a
failure, a product or system can recover the data directly affected and re-
establish the desired state of the system.

Related
Functional
Requirements

F_GR.2 Enable collaborative autonomy in the loT-edge-cloud continuum.
F_GR.3 Encompass autonomous and continuous control loops.

F_GR.6 Provide monitoring for cloud-native applications and heterogeneous
infrastructure resources.

F_ASSOC.4 Support autonomous operation and enhance resiliency across the
continuum.

F_ASSOC.7 Data-driven seamless workload and data migration across the
Associations.

F_DI.1 Decentralized decision-making, speculative and multi-objective resource
orchestration.

F_DI.7 Decentralized and Al-enabled service assurance mechanisms.

F_DI.8 Al-enhanced self-healing for enhanced resiliency, adaptability, and
autonomous operation.

F_DI.9 Autonomous and adaptive workload autoscaling.

F_S0.6 Transparent lifecycle management of hyper-distributed application
components.

F_S0.7 Coordinate workload migration within and across Associations.

F_S0.8 Support automatic data migration operations within and across
Associations.

Requirement ID:

NF_GR.6 Stakeholders Involved: | All

Title:

Security

Description:

Degree to which a product or system protects information and data so that
persons or other products or systems have the degree of data access

empyrean-horizon.eu

126/129

D2.3 — Final EMPYREAN architecture, use cases analysis and KPls

%@MPYREAN

appropriate to their types and levels of authorization. This characteristic is
composed of the following sub-characteristics:
e Confidentiality - Degree to which a product or system ensures that data
are accessible only to those authorized to have access.
e Integrity - Degree to which a system, product or component prevents
unauthorized access to, or modification of, computer programs or data.
e Non-repudiation - Degree to which actions or events can be proven to have
taken place so that the events or actions cannot be repudiated later.
e Accountability - Degree to which the actions of an entity can be traced
uniquely to the entity.
e Authenticity - Degree to which the identity of a subject or resource can be
proved to be the one claimed.

Related
Functional
Requirements

F_GR.5 Support hyper-distributed, highly-demanding, and dynamic
applications from diverse domains.

F_ASSOC.3 Constitute a secure and trustworthy execution environment.
F_ASSOC.4 Support autonomous operation and enhance resiliency across the
continuum.

F_ST.1 Decentralized identity management.

F_ST.2 Privacy-Preserving authentication and authorization.

F_ST.3 Policy-Based Encryption.

F_ST.4 Automated Cyber Threat Analysis.

F_ST.5 ML for Anomaly Detection and Cybersecurity.

F_ST.6 Secure and Trusted Execution.

F_DI.7 Decentralized and Al-enabled service assurance mechanisms.

F_DI.8 Al-enhanced self-healing for enhanced resiliency, adaptability, and
autonomous operation.

F_IPDR.6 CI/CD guidelines.

Requirement ID:

NF_GR.7 Stakeholders Involved: All

Title:

Maintainability

Description:

This characteristic represents the degree of effectiveness and efficiency with
which a product or system can be modified to improve it, correct it or adapt it
to changes in environment, and in requirements. This characteristic is
composed of the following sub-characteristics:

e Modularity - Degree to which a system or computer program is composed
of discrete components, such that a change to one component has minimal
impact on other components.

e Reusability - Degree to which an asset can be used in more than one
system, or in building other assets.

e Analysability - Degree of effectiveness and efficiency with which it is
possible to assess the impact on a product or system of an intended change
to one or more of its parts, or to diagnose a product for deficiencies or
causes of failures, or to identify parts to be modified.

o Modifiability - Degree to which a product or system can be effectively and
efficiently modified without introducing defects or degrading existing
product quality.

empyrean-horizon.eu

127/129

D2.3 — Final EMPYREAN architecture, use cases analysis and KPls

%@MPYREAN

e Testability - Degree of effectiveness and efficiency with which test criteria
can be established for a system, product or component and tests can be
performed to determine whether those criteria have been met.

Related
Functional
Requirements

F_GR.2 Enable collaborative autonomy in the loT-edge-cloud continuum.
F_GR.3 Encompass autonomous and continuous control loops.

F_GR.6 Provide monitoring for cloud-native applications and heterogeneous
infrastructure resources.

F_ASSOC.8 Aggregators must maintain a catalogue of the Association resources.
F_ASSOC.10 Aggregators must maintain the state of the Association.

F_DI.6 Monitoring and managing power and energy consumption in loT devices
and edge nodes.

F_S50.9 Implementation and integration of custom scheduling policies.
F_50.10 Seamless orchestration and management of both container-based and
serverless workloads.

F_IPDR.1 Expose well-defined APIs through EMPYREAN SDK.

F_IPDR.2 Build upon well-established open-source platforms and consortium
existing solutions.

F_IPDR.3 Documentation of all integration points.

F_IPDR.4 Docker image of developed components for creating containers.
F_IPDR.5 EMPYREAN Git-based code repository.

F_IPDR.6 CI/CD guidelines.

Requirement ID:

NF_GR.8 Stakeholders Involved: | All

Title:

Portability

Description:

Degree of effectiveness and efficiency with which a system, product or
component can be transferred from one hardware, software or other
operational or usage environment to another. This characteristic is composed
of the following sub-characteristics:

e Adaptability - Degree to which a product or system can effectively and
efficiently be adapted for different or evolving hardware, software or other
operational or usage environments.

o Installability - Degree of effectiveness and efficiency with which a product
or system can be successfully installed and/or uninstalled in a specified
environment.

e Replaceability - Degree to which a product can replace another specified
software product for the same purpose in the same environment.

Related
Functional
Requirements

F_GR.1 Federate heterogeneous and distributed loT, edge and cloud resources.
F_GR.2 Enable collaborative autonomy in the loT-edge-cloud continuum.
F_GR.4 Provide seamless deployment of hyper-distributed cloud-native
applications across a collaborative loT-edge-cloud continuum.

F_ASSOC.4 Support autonomous operation and enhance resiliency across the
continuum.

F_ASSOC.9 Aggregators must dynamically discover resources within the
registered infrastructures and detect events.

F_DI.7 Decentralized and Al-enabled service assurance mechanisms.

empyrean-horizon.eu

128/129

D2.3 — Final EMPYREAN architecture, use cases analysis and KPls

%@MPYREAN

F_DI.8 Al-enhanced self-healing for enhanced resiliency, adaptability, and
autonomous operation.

F_DI.9 Autonomous and adaptive workload autoscaling.

F_S0.1 Continuum-native workflow-based application design considering
dataflow programming and low-code techniques.

F_S0.3 Seamless and declarative orchestration of self-organized distributed
orchestration systems.

F_S0.5 Context awareness and autonomous adaptive response.

F_S50.13 OCl-compatible container images.

F_S0.14 Support diverse execution environments.

F_S50.15 Reproducible Environment Packaging

F_IPDR.1 Expose well-defined APIs through EMPYREAN SDK.

F_IPDR.2 Build upon well-established open-source platforms and consortium
existing solutions.

F_IPDR.3 Documentation of all integration points.

F_IPDR.4 Docker image of developed components for creating containers.
F_IPDR.5 EMPYREAN Git-based code repository.

F_IPDR.6 CI/CD guidelines.

empyrean-horizon.eu

129/129

