
-

TRUSTWORTHY, COGNITIVE AND AI-DRIVEN

COLLABORATIVE ASSOCIATIONS OF IOT DEVICES AND

EDGE RESOURCES FOR DATA PROCESSING

Grant Agreement no. 101136024

Deliverable D3.1

Security, trust and data management for

distributed data processing

Programme: HORIZON-CL4-2023-DATA-01-04

Project number: 101136024

Project acronym: EMPYREAN

Start/End date: 01/02/2024 – 31/01/2027

Deliverable type: Report

Related WP: WP3

Responsible Editor: CC

Due date: 30/04/2025

Actual submission date: 30/04/2025

Dissemination level: Public

Revision: FINAL

This project has received funding from the European Union’s Horizon

Europe research and innovation programme under grant agreement

No 101136024

Ref. Ares(2025)3529351 - 30/04/2025

D3.1 – Security, trust and data management for distributed data processing

empyrean-horizon.eu 2/59

Revision History

Date Editor Status Version Changes

20.02.25 Eduardo Cánovas
Martínez (UMU) and
Marton Sipos (CC)

Draft 0.1 Initial description of Privacy and

Security Manager, component

description structure

13.03.25 Eduardo Cánovas
Martínez (UMU)

Draft 0.2 Extended description of Privacy and

Security Manager, DP-ABC Module

19.03.25 Marton Sipos (CC) Draft 0.3 Initial description of the Edge

Storage Service

31.03.25 Ivan Paez (ZSCALE) Draft 0.4 Initial description of the

Decentralized Distributed Data

Manager

02.04.25 Marton Sipos (CC) Draft 0.5 Extended description of the Edge

Storage Service, Introduction

08.04.25 Aristotelis Kretsis
(ICCS), Ivan Paez
(ZSCALE), Marton Sipos
(CC)

Draft 0.6 EMPYREAN Architecture, extended

description of the Decentralized

Distributed Data Manager

14.04.25 Anastassios Nanos
(NUBIS), Marton Sipos
(CC)

Draft 0.7 Final contributions to component

descriptions, preparations for

internal review

30.04.25 Marton Sipos (CC) and

Aristotelis Kretsis (ICCS)

Final 1.0 Updates based on internal reviews

Author List

Organization Author

CC Marton Sipos

ICCS Aristotelis Kretsis

NUBIS Anastassios Nanos

UMU Eduardo Cánovas Martínez

ZSCALE Ivan Paez

Internal Reviewers

RYAX: Yiannis Georgiou

NUBIS: Christos Panagiotou

D3.1 – Security, trust and data management for distributed data processing

empyrean-horizon.eu 3/59

Abstract: This deliverable presents the technical outcomes of Task 3.1: “Distributed Trust

Management, Trust Propagation and Verification” and Task 3.2: “Data Management for

Distributed Data Processing”, between M4 and M15. First, the general EMPYREAN

architecture is described, highlighting the role of each of the components developed in the

two tasks. This is followed by a detailed technical description of each component, including

internal architecture, key workflows, public APIs and planned integrations with other platform

components. The relationship of each component with project objectives and KPIs is described

as well as the connections to the project’s use cases. Finally, the conclusion describes the work

in the context of the project, highlighting future steps.

Keywords: EMPYREAN Architecture, Privacy and Security Manager, DP-ABC Module, Edge

Storage Service, Decentralized and Distributed Data Manager, KPIs, Objectives, Workflows,

Integration, Cloud-native IoT Device Management

D3.1 – Security, trust and data management for distributed data processing

empyrean-horizon.eu 4/59

Disclaimer: The information, documentation and figures available in this deliverable are written by the

EMPYREAN Consortium partners under EC co-financing (project HORIZON-CL4-2023-DATA-01-04-

101136024) and do not necessarily reflect the view of the European Commission. The information in

this document is provided “as is”, and no guarantee or warranty is given that the information is fit for

any particular purpose. The reader uses the information at his/her sole risk and liability.

Copyright © 2025 the EMPYREAN Consortium. All rights reserved. This document may not be copied,

reproduced or modified in whole or in part for any purpose without written permission from the

EMPYREAN Consortium. In addition to such written permission to copy, reproduce or modify this

document in whole or part, an acknowledgement of the authors of the document and all applicable

portions of the copyright notice must be clearly referenced.

D3.1 – Security, trust and data management for distributed data processing

empyrean-horizon.eu 5/59

Table of Contents

Executive Summary 10

1. Introduction 11

1.1 Purpose of this document 11

1.2 Document structure 12

1.3 Audience 12

2 EMPYREAN Architecture Mapping 13

3 Privacy and Security Manager 17

3.1 Overview 17

3.2 Features 17

3.3 Novelty - Beyond the State of the Art 17

3.4 Relation to project objectives and KPI 17

3.5 Architecture and Implementation 18

3.5.1 Internal Component Architecture 18

3.5.2 Authentication and Authorization Module 18

3.5.3 Verifiable Credential Management 19

3.5.4 Policy Enforcement Engine - XACML 19

3.5.5 Registry, Blockchain & Smart Contracts 19

3.5.6 OP-TEE Module 20

3.5.7 Deployment 21

3.5.8 Workflows 22

3.6 Public APIs 24

3.7 Integration with EMPYREAN Platform services 25

3.8 Relation to use cases 30

4 DP-ABC Module 31

4.1 Overview 31

4.2 Features 31

4.3 Novelty - Beyond the State of the Art 31

4.4 Relation to Project Objectives and KPIs 31

4.5 Architecture 32

4.6 Implementation 33

4.7 Public APIs 34

4.8 Integration with EMPYREAN Platform Services 35

4.9 Relation to Use Cases 35

5 Secure and Trusted Execution Environment 36

5.1 Overview 36

5.2 Relation to Project Objectives and KPIs 36

5.3 Architecture 37

5.4 Implementation 39

D3.1 – Security, trust and data management for distributed data processing

empyrean-horizon.eu 6/59

5.5 Public APIs 39

5.6 Integration with EMPYREAN Platform Services 40

5.7 Relation to Use Cases 40

6 Edge Storage Service 41

6.1 Overview 41

6.2 Novel features 41

6.3 Relation to project objectives and KPI 42

6.4 Architecture and Implementation 43

6.4.1 Edge Storage Gateway 44

6.4.2 Cloud Storage Gateway 44

6.4.3 Cloud storage 44

6.4.4 Edge Storage 45

6.4.5 SkyFlok.com backend 45

6.4.6 Developer dashboard 46

6.4.7 Deployment 47

6.4.8 Workflows for temporary autonomous operation 48

6.5 Public APIs 49

6.6 Integration with EMPYREAN Platform services 50

6.7 Relation to use cases 51

7 Decentralized and Distributed Data Manager 52

7.1 Overview 52

7.1.1 Current Developments 52

7.1.2 Beyond the state-of-the-art 54

7.2 Architecture and implementation 54

7.3 Public APIs 55

7.4 Relation to use cases 55

7.5 Integration with EMPYREAN Platform services 56

8 Conclusions 59

D3.1 – Security, trust and data management for distributed data processing

empyrean-horizon.eu 7/59

List of Figures

Figure 1: EMPYREAN high-level architecture ... 13

Figure 2: OP-TEE Dual-world model ... 21

Figure 3: Enrollment and AuthN/AuthZ PSM Workflow .. 22

Figure 4: Privacy and Security Manager API .. 25

Figure 5: Overview of integration between OP-TEE module and P-ABC 28

Figure 6: Overview of integration between PSM and Ryax Workflow Manager 29

Figure 7: DP-ABC architectural overview. .. 33

Figure 8: Far-Edge Device OTA Update process. .. 38

Figure 9: Operator-initiated FlashJob to re-purpose a Far-Edge device 38

Figure 10: An overview of the main components of the EMPYREAN platform’s Edge Storage

Service. ... 43

Figure 11: Map showing supported cloud storage locations across the globe. Up to date as of

March 2025. ... 45

Figure 12: The page in the Developer dashboard that lists associations the user is a member

of. .. 47

Figure 13: Communication diagram showing the upload workflow when the Association’s

Gateway is connected to the outside world, including the cloud-based SkyFlok.com

backend. ... 48

Figure 14: Communication diagram showing the alternative upload workflow when the

Association’s Gateway is temporarily disconnected from the outside world and thus must

itself assume some of the roles of the cloud-deployed SkyFlok.com backend. 49

Figure 15: Eclipse Zenoh plugins. ... 53

Figure 16: A MinIO object storage created with Eclipse zenoh backed plugin. 57

Figure 17: A MinIO object's detailed description. .. 58

List of Tables

Table 1: EMPYREAN Technical KPIs related to the Privacy and Security Manager 17

Table 2: EMPYREAN Technical KPIs related to Security and Trust Management 36

Table 3: EMPYREAN Technical KPIs related to the Edge Storage Service 42

D3.1 – Security, trust and data management for distributed data processing

empyrean-horizon.eu 8/59

Abbreviations

AI Artificial Intelligence

AMQP Advanced Message Queuing Protocol
APC Attribute-Based Credentials

API Application Programming Interface

ATR Autonomous Towing Robots
AWS Amazon Web Services

CLI Command Line Interface

CRI Container Runtime Interface
CRUD Create, Read, Update, Delete

CSG Cloud Storage Gateway
CTA Cyber Threat Alliance

CTI Cyber Threat Intelligence

CV Computer Vision

CVEs Common Vulnerabilities and Exposures

D Deliverable

DAG Directed Acyclic Graph

DB Database

DDS Data Distribution Service
DID Decentralized Identifier
DKMA Distributed Key Management and Authentication

DLT Distributed Ledger Technology

DoA Description of Action

DP-ABC Distributed Privacy Attribute-based Credentials

EAT Entity Attestation Token

EC European Commission

ESG Edge Storage Gateway
ETL Extract, Transform, Load

EUs End Users

FCS Fleet Control System

FL Federated Learning

FPGA Field Programmable Gate Arrays

GPU Graphics Processing Unit
GUI Graphical User Interface

HW Hardware

IDS Intrusion Detection System
IEC International Electrotechnical Commission

IIoT Industrial Internet of Things

IoC Indicators of Compromise
IoT Internet of Things

JWT JSON Web Tokens
K8s Kubernetes

KMS Key Management System

KPI Key Performance Indicator
M Month

ML Machine Learning

MQTT Message Queueing Telemetry Transport
MTTR Mean Time to Repair

D3.1 – Security, trust and data management for distributed data processing

empyrean-horizon.eu 9/59

NBS Nash Bargaining Solution
NIR Near-Infrared Spectrum
OCI Open Container Initiative

OF Operation Flow

OOM Out-of-Memory

OT Operational Technology

PDP Policy Decision Point
PEP Policy Enforcement Point
PMDS Persistent Monitoring Data Storage
PoC Proof of Concept
PPFL Privacy-Preserving Federated Learning

PSM Privacy and Security Manager
PVC Persistent Volume Claim

QoS Quality of Service

RAM Random Access Memory

RDMA Remote Direct Memory Access

REST REpresentational State Transfer
RL Reinforcement Learning

RLNC Random Linear Network Coding
ROT Resource Optimization Toolkit
SDK Service Development Kit
SLA Service Level Agreement
SOC Soil Organic Carbon
SSI Self-Sovereign Identity
SW Software

TPU Tensor Processing Unit
UAV Unmanned Aerial Vehicles
UC Use Case

UI User Interface

URL Uniform Resource Locator
VC Verifiable Credentials

Vis-NIR Visible and Near-Infrared Spectrum

VM Virtual Machine

VP Verifiable Presentations
VRAM Video Random Access Memory

WAN Wide Area Network

WP Work Package

ZKP Zero-Knowledge Proofs

D3.1 – Security, trust and data management for distributed data processing

empyrean-horizon.eu 10/59

Executive Summary

This deliverable presents the technical outcomes of Task 3.1: “Distributed Trust Management,

Trust Propagation and Verification” and Task 3.2: “Data Management for Distributed Data

Processing”, between M4 and M15.

First, the general EMPYREAN architecture is described, highlighting the role of each

component developed in the two tasks. This allows the reader to contextualize each

component’s purpose and place in the platform’s architecture.

This overview is followed by a detailed technical description of each component, including

internal architecture, key workflows, public APIs, and planned integrations with other

platform components. Five components are described, namely the Privacy and Security

Manager, the DP-ABC Module, Cloud-native IoT device management, the Edge Storage

Service, and the Decentralized and Distributed Data Manager. Beyond the technical

descriptions, aspects related to the project’s management are discussed, continuing the work

reported in D2.3 (M12). The relationship of each component with project objectives and KPIs

is described. Furthermore, a brief description is included on how each component is going to

be used and showcased by the project’s use cases.

Finally, future steps are highlighted as part of the conclusion. This includes a roadmap for the

following phase of T3.1 and T3.2, including how these contributions will be reported.

D3.1 – Security, trust and data management for distributed data processing

empyrean-horizon.eu 11/59

1. Introduction

EMPYREAN targets a vision of application owners collaborating inside Associations, sharing

resources and data across the edge-cloud continuum. A key enabler for making this vision a

reality is a robust security and trust model for managing user applications, credentials and

data across this highly distributed setting. The components of Work Package 3: “Security, Trust

and Seamless Data and Computing Management” are given in this task.

This section provides a quick overview of this deliverable’s content, comprising the purpose,

document structure, and audience.

1.1 Purpose of this document

The present deliverable reports on the outcomes of Task 3.1: “Distributed Trust Management,

Trust Propagation and Verification” and Task 3.2: “Data Management for Distributed Data

Processing”, during the first 12 months, between M4 and M15. Four partners were involved

directly in these efforts: UMU, NUBIS, CC, and ZSCALE. The work follows from Work Package

2, which collected the project’s requirements and established the general EMPYREAN

architecture.

As one of the first technical deliverables of the project, the purpose of this deliverable is to

describe how the components developed in these tasks fit into the general architecture of the

project and provide their detailed description. Beyond the static view, where applicable,

typical workflows are also described, providing a dynamic view. A connection to both project

objectives, KPIs, and the use cases is established, laying the groundwork for the outcome

validation and evaluation that will be performed in Work Package 6.

The document includes the initial API definitions and the integration plans between the

various components, which are important steps in the integration work that will be performed

in Work Package 5. As such, this deliverable is crucial in providing technical guidance to both

the developers of the other platform services and the use case providers.

The writing of this deliverable coincided with the news that the partner providing the third

use case would not be able to continue with their work in the project. The remaining

consortium members have begun preparations and planning to address this unforeseen

challenge, results will be reported in future deliverables.

The final report presenting the outcomes of T3.1 and T3.2 in the second phase of these tasks

will be reported in Deliverable 3.31 in M26. Whereas the current deliverable focuses on the

1 Deliverable 3.3: Final report on security, trust, seamless data and computing management. Due March 2026

D3.1 – Security, trust and data management for distributed data processing

empyrean-horizon.eu 12/59

technical specifications of each individual platform component, D3.3 will provide more details

on integrations and APIs.

1.2 Document structure

The present deliverable is split into eight major chapters, centred around the components

developed in Task 3.1 and Task 3.2:

● Introduction

● EMPYREAN Architecture mapping

● Privacy and Security Manager

● DP-ABC Module

● Cloud-native IoT device management

● Edge Storage Service

● Decentralized and Distributed Data Manager.

● Conclusion

1.3 Audience

This document is publicly available and should be of use to anyone interested in the

description of the security, trust and data management aspects of EMPYREAN. It includes the

initial description of the aforementioned components, their internal architecture, and the

preliminary interfaces. Moreover, this document can also be useful to the general public for

obtaining a better understanding of the framework and scope of the EMPYREAN project.

D3.1 – Security, trust and data management for distributed data processing

empyrean-horizon.eu 13/59

2 EMPYREAN Architecture Mapping

The EMPYREAN architecture was first introduced in deliverable D2.22, and later refined in its

final version in D2.33. This refinement incorporated key insights gained from the initial

implementation phase. D2.3 provides a comprehensive overview of the architecture, detailing

the EMPYREAN components, their interfaces, and the supported operational flows.

In this section, we present a concise description of the architecture (Figure 1) to support the

discussion of the initial developments in WP3, particularly focusing on (i) mechanisms to

provide trust management and privacy-preserving data access and confidentiality across the

Associations, (ii) distributed, self-managed and encrypted hybrid data storage service for the

continuum, (iii) decentralized and distributed data distribution service, and (iv) trusted

computing entities to ensure secure boot and trusted execution across the Associations.

Figure 1: EMPYREAN high-level architecture

2 D2.2: Initial Release of EMPYREAN Architecture, August 2024
3 D2.3: Final EMPYREAN architecture, use cases analysis and KPIs, January 2025

D3.1 – Security, trust and data management for distributed data processing

empyrean-horizon.eu 14/59

In the context of the EMPYREAN Architecture, the Service Layer facilitates the development

of Association-native applications by providing robust support for application-level

adaptability, interoperability, elasticity, and scalability across the IoT-edge-cloud continuum.

It addresses several key aspects, including: (a) the design and management of workflows for

hyper-distributed applications, (b) cloud-native unikernel application development, and (c)

data-flow description. A detailed design and initial implementation description of this layer’s

components is provided in deliverable D4.14 (M15).

The Association Management Layer dynamically manages Associations within the IoT-edge-

cloud continuum. By forming resource federations, it enables seamless collaboration,

resource sharing, and data distribution across various segments within the continuum. In

conjunction with the Multi-Cluster Orchestration Layer, it plays a central role in EMPYREAN’s

distributed and autonomous management framework, establishing a resilient and adaptive

Association-based continuum.

The Multi-Cluster Orchestration Layer handles service orchestration and resource

management across EMPYREAN's disaggregated infrastructure. Leveraging autonomous,

distributed decision-making mechanisms, it orchestrates hyper-distributed applications and

enables self-driven adaptations. Multiple instances of this layer’s components provide

decentralized operations, optimized resource utilization, and scalability, while also supporting

energy efficiency, fault tolerance, and high service quality. The design and development of the

components for this and the Association Management layer are detailed in D4.25 (M15).

The Resource Management Layer unifies the management of IoT, edge, and cloud platforms

under the EMPYREAN platform. It integrates software mechanisms for both platform-level

scheduling (e.g., EMPYREAN Controller, AI-enabled Workload Autoscaling) and low-level

operations (e.g., Unikernel Deployment). Operating within Kubernetes or K3s clusters, this

layer is highly modular, simplifying the integration of new hardware and software

components. Deliverables D3.26 (M15) and D4.1 (M15) presents the initial developments for

this layer components.

The Data Management and Interconnection Layer ensures secure, scalable, and dynamic

data communication and storage between IoT devices and computing resources. Operating at

both cluster and Association levels, it integrates distributed data management mechanisms

that enable seamless interaction between IoT, edge, and cloud environments. The novel data

management mechanisms developed within the EMPYREAN are detailed in this deliverable,

while the software-defined interconnection framework is presented in deliverable D3.2

(M15), and the IoT Query Engine in D4.1 (M15).

4 D4.1: Low-code application description, seamless deployment and analytic-friendly distributed storage, April
2025
5 D4.2: Intelligent resource management, cyber threat intelligence and EMPYREAN, April 2025
6 D3.2: Software-defined edge interconnect and service assurance mechanisms, April 2025

D3.1 – Security, trust and data management for distributed data processing

empyrean-horizon.eu 15/59

The Edge Storage Gateway (Section 6.4.1) and Edge Storage (Section 6.4.4) are the

foundations of EMPYREAN’s secure and efficient edge storage service. These components

manage storage across edge and cloud infrastructures, supporting hybrid policies for data

placement, redundancy, and protection. They also utilize erasure coding techniques to ensure

reliability and data integrity. Additionally, the Decentralized and Distributed Data Manager

(Section 7) provides scalable, decentralized, and distributed communication mechanisms with

efficient publish/subscribe and data querying capabilities. It facilitates communication

between IoT devices and edge computing and storage resources across various

providers/administrative domains, connectivity types (e.g., extremely constrained networks),

technologies, and network zones.

The Infrastructure Layer comprises heterogeneous resources distributed across multiple

administrative and technological domains including, (i) IoT/IIoT devices, robots, and on-

premise edge resources where data is generated and service requests initiated, (ii) deep and

far-edges, close and further from the end users/devices, for real-time processing and

aggregation, and (iii) federated multi-cloud environments for enhanced robustness, cost-

efficiency, and vendor independence in data storage and replication.

The architecture is complemented by the Security, Trust, and Privacy Layer and the Monitoring

and Observability Layer, which are across the other layers, providing critical functionalities for

the overall platform.

The Security, Trust, and Privacy Layer integrates distributed components to ensure secure

access, privacy-preserving operations, and trusted execution across the platform. Operating

at both cluster and Association levels, it establishes secure execution environments where

trust relationships between data-generating and data-processing entities are continuously

verified through distributed trust mechanisms. In parallel, identity and data access

management components ensure controlled access and data confidentiality among different

entities. This deliverable presents the core components of this layer, while the Cyber Threat

Intelligence (CTI) Engine is detailed D4.2 (M15).

The Privacy and Security Manager (Section 3) and DP-ABC library (Section 4) offer robust

identity and access management alongside attribute-based credential management. The

Privacy and Security Manager ensures secure and private identity management, data

verification, and a strong cryptographic foundation for managing privacy-preserving attribute-

based credentials across the platform. The DP-ABC library complements this by offering a

distributed privacy-preserving attribute-based credential system based on PS multi-

signatures. Moreover, the Secure and Trusted Execution Environment (Section 5) establishes

secure and trusted execution across the IoT-edge-cloud continuum, supporting secure and

measured boot mechanisms. It enables applications to be deployed seamlessly with varying

levels of security and trustworthiness across different hardware platforms. This allows for

scalable and transparent operation, from micro deep edge devices to the far edge and cloud

environments, ensuring that security requirements are met at all levels.

D3.1 – Security, trust and data management for distributed data processing

empyrean-horizon.eu 16/59

The Monitoring and Observability Layer provides real-time monitoring, observability, and

service assurance through distributed telemetry mechanisms and data-driven analytics. It

dynamically collects and analyses a wide range of metrics across heterogeneous

infrastructures and deployed applications, ensuring system health, performance, and

availability. These insights support automated control and optimization. Telemetry

components are detailed in deliverable D4.2 (M15), with the service assurance mechanisms

covered in D3.2 (M15).

D3.1 – Security, trust and data management for distributed data processing

empyrean-horizon.eu 17/59

3 Privacy and Security Manager

3.1 Overview

The Privacy and Security Manager (PSM) is a core component of the EMPYREAN platform,

ensuring trust, privacy, and security across the IoT-edge-cloud continuum. It provides

decentralized identity management, verifiable credentials (VCs), secure authentication, and

policy enforcement. The PSM enables dynamic and decentralized security policies, ensuring

seamless interactions between devices, users, and services in EMPYREAN Associations.

3.2 Features

The PSM offers:

● Self-sovereign identity (SSI) management using Decentralized Identifiers (DIDs) and

Verifiable Credentials (VCs).

● Secure authentication via DID-signed JWTs (JSON Web Tokens).

● Dynamic policy enforcement with blockchain-based smart contracts.

● Zero-Knowledge Proofs (ZKPs) for privacy-preserving authentication.

3.3 Novelty - Beyond the State of the Art

Unlike traditional access control models that rely on centralized identity providers, the Privacy

and Security Manager (PSM) leverages blockchain technology to distribute trust among

multiple parties. By integrating Zero-Knowledge Proofs (ZKPs) and Decentralized Identifiers

(DIDs), it enhances security without sacrificing privacy. The ability to dynamically update

security policies via smart contracts makes it more adaptable than conventional security

frameworks.

3.4 Relation to project objectives and KPI

The PSM directly supports EMPYREAN’s goals of ensuring security, privacy, and multi-party

trust within distributed environments.

It contributes to several key performance indicators (KPIs):

Table 1: EMPYREAN Technical KPIs related to the Privacy and Security Manager

ID Indicator Success Criteria Objective

T3.1
Number of trustworthy identity and trust
management processes enabled by smart
contracts.

>=3 3

D3.1 – Security, trust and data management for distributed data processing

empyrean-horizon.eu 18/59

T3.2
Accuracy of user and device verification and
authentication.

> 99%; 3

T3.3
Reduction of privacy violation incidents in data
sharing.

> 50%; 3

 The component is relevant in achieving several project objectives:

● F_ASSOC.2, F_ASSOC.3, F_ASSOC.5

● F_ST.1, F_ST.2, F_ST.3, F_ST.6

● F_GR.1, F_GR.2

These cover a range of topics from storage, to the secure operation of Associations.

3.5 Architecture and Implementation

3.5.1 Internal Component Architecture

The Privacy and Security Manager (PSM) is designed as a modular, containerized microservice

that integrates seamlessly into the decentralized EMPYREAN ecosystem. Its architecture

embraces the Association-based continuum model, ensuring that each instance operates

autonomously within an Association while maintaining interoperability across the broader

IoT-edge-cloud fabric.

Deployed within Kubernetes clusters, the PSM leverages modern orchestration practices to

ensure fault-tolerant, high-availability operations. It interfaces with the EMPYREAN

Aggregator and Service Orchestrator to enforce access policies and identity verification in real

time. Through tight integration with Distributed Ledger Technologies (DLTs), it supports

immutable policy storage and decentralized identity management.

3.5.2 Authentication and Authorization Module

At the heart of the PSM lies the DID-based authentication framework. This module utilizes

the W3C-compliant Decentralized Identifier (DID) model to support cryptographically

verifiable identities. When users or devices interact with EMPYREAN services, their access

requests are validated through DID-based signatures, which are then encapsulated in JSON

Web Tokens (JWTs) for fast and secure API interactions.

This module ensures:

● Stateless authentication across services via signed JWTs.

● Integration with Hyperledger Aries and Fabric for DID registration and resolution.

● Revocation checking and trust scoring mechanisms.

D3.1 – Security, trust and data management for distributed data processing

empyrean-horizon.eu 19/59

3.5.3 Verifiable Credential Management

The PSM functions as both an issuer and verifier of Verifiable Credentials (VCs) and Verifiable

Presentations (VPs). Using Privacy-preserving Attribute-Based Credentials (p-ABC) and Zero-

Knowledge Proofs (ZKPs), it allows selective disclosure of identity attributes, enabling:

● Minimal disclosure and user consent enforcement.

● Dynamic, context-aware access policies.

● Interoperability with third-party VC issuers via a Trusted Issuer Registry.

3.5.4 Policy Enforcement Engine - XACML

To guarantee fine-grained access control, the PSM includes an XACML (eXtensible Access

Control Markup Language)-compatible Policy Enforcement Engine. Policies are defined in a

declarative manner and deployed via smart contracts to a DLT, ensuring both transparency

and immutability.

This component provides:

● Runtime evaluation of access requests against stored policies.

● Blockchain-backed auditability of enforcement decisions.

● Coordination with PDP and PEP microservices for distributed enforcement.

3.5.5 Registry, Blockchain & Smart Contracts

Verifiable Data Registry

● Trusted Issuers List: Maintains validated issuers of credentials to enforce trust

boundaries.

● Trusted Participant List: Stored on the blockchain, it includes DIDs of Association

members alongside their trust scores and interaction history.

Blockchain & Smart contracts

The Privacy and Security Manager (PSM) leverages Hyperledger Fabric to ensure

decentralized, tamper-proof management of identity, policy, and access decisions. Several

smart contracts have been deployed to support these functions:

● Custom extensions of Fabric’s chaincode handle the creation and retrieval of

Decentralized Identifiers (DIDs), enabling secure identity resolution across EMPYREAN

entities.

D3.1 – Security, trust and data management for distributed data processing

empyrean-horizon.eu 20/59

● Policy Rule Storage: Access control policies defined in XACML are persistently stored

on the blockchain via dedicated smart contracts. This ensures that policy rules are

transparent, auditable, and immutable, supporting consistent enforcement across

distributed environments.

● Access Traceability: A dedicated smart contract logs all access control decisions (e.g.,

"GRANTED", "DENIED") along with metadata such as timestamps, resources accessed,

and associated DIDs. This historic logging mechanism supports compliance auditing,

forensic investigation, and dynamic policy refinement based on real usage data.

3.5.6 OP-TEE Module

To support secure and tamper-resistant execution of privacy-critical operations, the Privacy

and Security Manager integrates OP-TEE (Open Portable Trusted Execution Environment) as a

trusted module. OP-TEE provides a hardware-assisted secure execution context based on

ARM TrustZone technology, establishing a dual-world architecture: the Normal World (Linux

OS) and the Secure World (TEE).

Key features and architectural roles include:

● Secure Execution Environment: OP-TEE enables the isolation of sensitive operations

such as cryptographic key handling, Verifiable Credential generation, and policy

decision execution, reducing the attack surface and preventing confidential data

leakage.

● Trusted Applications (TAs): Security-critical logic runs within Trusted Applications,

executed exclusively in the Secure World. These TAs are independently signed and

verified, ensuring code integrity and authenticity at runtime.

● ARM TrustZone Integration: Hardware-based security is enforced through ARM

TrustZone, which separates memory, processing, and peripherals between the secure

and normal execution environments.

● Client–TEE Communication: Applications in the Normal World (Client Applications or

CAs) interact with TAs via the TEE Client API Library, which communicates securely

with the OP-TEE driver. The driver manages context switches and data marshalling

between the worlds.

● TEE Supplicant Interface: For certain operations (e.g., file system or crypto access), the

TEE Supplicant provides a bridge between the Normal World services and the Secure

World, without compromising TEE isolation.

D3.1 – Security, trust and data management for distributed data processing

empyrean-horizon.eu 21/59

Figure 2: OP-TEE Dual-world model

Figure 2 illustrates the dual-world model of OP-TEE, showcasing the separation and secure

communication flow between the Client Applications and Trusted Applications.

This integration ensures the confidentiality, integrity, and isolation of critical security

functions in the EMPYREAN PSM, aligning with the project's objective to establish secure,

trustworthy environments within each IoT-edge Association.

3.5.7 Deployment

The deployment of the privacy and security manager is available building the service in every

EMPYREAN Entity as a docker-compose service with all the containers running the agents and

fabric nodes.

D3.1 – Security, trust and data management for distributed data processing

empyrean-horizon.eu 22/59

3.5.8 Workflows

Combined Enrolment and Authentication/Authorization Workflow

Figure 3: Enrollment and AuthN/AuthZ PSM Workflow

The EMPYREAN Privacy and Security Manager (PSM) supports a seamless workflow that

integrates identity enrolment with authentication and authorization, ensuring that entities

are onboarded securely and evaluated dynamically at each interaction. This combined flow is

critical to maintaining zero-trust principles while enabling interoperability and privacy-

preserving access.

The sequence is depicted in Figure 3 and involves the following phases:

1. Enrolment Phase

● Credential Request:

 The consumer (e.g., a user, device, or service) initiates the enrolment process by

requesting a Verifiable Credential (VC) from its local PSM. This VC contains a

structured set of attributes, such as identity details, role, or contextual information.

● Credential Issuance:

 The Customer PSM validates the request and issues a digitally signed VC, possibly

backed by a decentralized identity (DID). This credential can later be verified by any

EMPYREAN participant based on the issuer’s trust level.

● Presentation Preparation:

 To preserve privacy, the consumer selects a subset of attributes from the VC to

D3.1 – Security, trust and data management for distributed data processing

empyrean-horizon.eu 23/59

generate a Verifiable Presentation (VP). This allows for selective disclosure, where

only the minimum required attributes are shared (e.g., using ZKPs or p-ABC

schemes).

2. Authentication and Authorization Phase

● VP Submission:

 The VP is sent from the consumer to the Producer/Provider PSM as part of an access

request.

● Verification:

 The producer-side PSM verifies the VP’s:

○ Cryptographic integrity (e.g., signature validation),

○ Trustworthiness of the issuer, using a blockchain-based Trusted Issuer

Registry, and

○ Validity of the disclosed attributes.

● Authorization Request:

 Once verified, the PSM forwards an authorization request to the internal XACML-

based Policy Enforcement Engine (PEP/PDP). This engine evaluates whether the

presented attributes satisfy the access control rules defined in the active policies.

● Traceability and Audit Logging:

 The authorization request is registered on the DLT, ensuring immutable traceability

for compliance and post-event analysis.

● Decision and Feedback:

 If the policy conditions are met, the access is authorized and permission is granted

to the consumer. This decision is propagated back to confirm that the consumer is

successfully authenticated and authorized.

The PSM is deployed as a containerized microservice within each EMPYREAN Association. It

integrates with the EMPYREAN Aggregator for access control and policy enforcement. The

DLT-based policy management allows for real-time security updates across distributed

environments.

For scalability, the PSM leverages Kubernetes-based orchestration, ensuring redundancy

and high availability. It interacts with Hyperledger Fabric for secure identity verification and

policy enforcement.

The implementation also includes RESTful APIs to facilitate interoperability with external

services.

D3.1 – Security, trust and data management for distributed data processing

empyrean-horizon.eu 24/59

3.6 Public APIs

The PSM exposes REST APIs for authentication, credential management, policy enforcement,

and JWT signing. Below is a high-level overview of the available API endpoints:

Identity and Credential Management

● /VerifyCredential (POST) - Verifies a Verifiable Credential (VC).

● /generateDID (POST) - Generates a Decentralized Identifier (DID).

● /generateVp (POST) - Creates a Verifiable Presentation (VP).

● /getVCredential (POST) - Retrieves a stored VC for an entity.

Enrollment and Trust Management

● /acceptEnrolment (POST) - Checks if an enrolment request is valid.

● /doEnrolment (POST) - Submits a VC for enrolment.

● /trustedIssuers (GET) - Fetches a list of trusted issuers.

JWT Management

● /signJWTContent (POST) - Digitally signs a JWT.

● /verifyJWTContent (POST) - Verifies the validity of a JWT.

TEE

● /tee/generatekeypair (POST) - Generate keypair in a Trusted Execution

Environment

These APIs enable secure and seamless authentication, access control, and trust management

across EMPYREAN services.

D3.1 – Security, trust and data management for distributed data processing

empyrean-horizon.eu 25/59

Figure 4: Privacy and Security Manager API

3.7 Integration with EMPYREAN Platform services

The PSM is tightly integrated into the EMPYREAN ecosystem, ensuring that all security policies

are dynamically enforced while maintaining a privacy-preserving environment.

EMPYREAN Aggregator

Works as the central orchestrator for identity verification and policy enforcement, the

aggregator will be the proxy between services and users and he will manage the access with

the PDP/PEP Proxy of his PSM.

D3.1 – Security, trust and data management for distributed data processing

empyrean-horizon.eu 26/59

Edge Storage Gateway

The Edge Storage Gateway (ESG), a key component of Chocolate Cloud’s Edge Storage Service

(ESS), plays a dual role in EMPYREAN: it not only facilitates high-performance, hybrid edge-

cloud object storage, but also contributes to the identity, access control, and privacy

infrastructure by acting as a source of access proofs for credential-based security mechanisms

managed by the PSM.

This integration bridges secure storage access with self-sovereign identity (SSI) principles,

enabling users to control and selectively disclose identity attributes based on storage-related

capabilities and policies.

Core Concept

The ESG verifies users' authenticated access to edge storage services and exposes this

verification to the user as a verifiable proof. This proof becomes the basis for issuing Verifiable

Credentials (VCs) against a trusted issuer, which can later be used for privacy-preserving

authorization workflows across the EMPYREAN platform.

Workflow Overview

1. Storage Access and Identity Proofs

Users interact with the Edge Storage Gateway (ESG) using standard S3-compatible APIs.

Upon successful authentication (e.g., through API keys or pre-signed URLs), the ESG can

generate signed proofs reflecting the user’s verified access to specific storage providers

and resource policies.

2. Credential Issuance via PSM

These proofs are forwarded to the Privacy and Security Manager, which present them

to a trusted issuer for credential issuance. This VC could contain storage-related

attributes such as:

• Proven access to cloud services

• Supported operations (e.g., read/write access)

• Encryption or erasure coding capabilities

• Location-awareness or policy alignment (e.g., edge-only, hybrid, GDPR-compliant)

3. Selective Disclosure with p-ABCs and ZKPs

When interacting with a relying party or accessing sensitive data, the user generates a

Verifiable Presentation (VP) derived from the VC. Using privacy-preserving attribute-

based credentials (p-ABCs) and zero-knowledge proofs (ZKPs), the user can disclose

only the necessary attributes required for authorization (e.g., "has access to encrypted

D3.1 – Security, trust and data management for distributed data processing

empyrean-horizon.eu 27/59

edge storage" without revealing which provider or key structure).

4. Authorization and Policy Enforcement

 The VP or JWT Derived is evaluated by the relying service (e.g., an ML pipeline

orchestrator or distributed application component) against policies defined in the PSM’s

XACML-compatible engine and anchored in the blockchain. If the attributes match the

policy, access is granted; otherwise, the request is denied or flagged.

OP-TEE Module and P-ABC

To protect sensitive operations and cryptographic material in the EMPYREAN ecosystem at a

high level of security, the Privacy and Security Manager (PSM) integrates with OP-TEE, a

Trusted Execution Environment (TEE) that leverages ARM TrustZone to create a secure,

isolated processing domain.

As illustrated in Figure 5, the PSM uses OP-TEE to delegate security-critical tasks while

maintaining strict separation between the normal Linux-based OS and the secure world:

● Secure Cryptographic Operations

The PSM offloads cryptographic computations (e.g., signing, decryption, key handling)

to OP-TEE. These operations are isolated from the normal execution environment to

prevent leakage or tampering.

● Trusted Execution

Inside OP-TEE’s Secure World, Trusted Applications (TAs) perform the requested

tasks. This environment ensures that sensitive data never leaves the protected

memory space, even in the presence of compromised applications in the Normal

World.

● API Communication

The PSM interacts with OP-TEE via a secure API. Requests are passed through the OP-

TEE Client Library and driver in the Normal World into the Secure World where they

are handled securely.

● Enhanced Privacy and Security

This architecture ensures end-to-end protection of sensitive operations. Even if the

operating system or application layer is compromised, secrets managed by the PSM

remain protected by the TEE.

D3.1 – Security, trust and data management for distributed data processing

empyrean-horizon.eu 28/59

Figure 5: Overview of integration between OP-TEE module and P-ABC

Figure 5 illustrates how the Privacy and Security Manager (PSM) securely delegates sensitive

cryptographic tasks to the OP-TEE Trusted Execution Environment, following a four-step

process across the Normal World and Secure World domains.

1. Request Initiation

The PSM identifies a cryptographic task (e.g., signature generation or private key operation)

that must be executed in a secure environment. It sends a request to the OP-TEE API, located

in the Normal World (Linux-based user space). This request includes the parameters or data

required to perform the operation.

2. Secure World Processing

 The OP-TEE API passes the request through the secure communication channel to the OP-TEE

core, which resides in the Secure World. The request is then routed to the appropriate Trusted

Application (TA) capable of handling the task. Inside the Secure World, the TA performs the

cryptographic operation in isolation from the main OS, in our case, generating keypairs with

the P-ABC Module.

3. Response Transfer

Once the TA completes the task, it generates a response, which is securely returned from the

Secure World to the OP-TEE API in the Normal World. This response may include, for example,

a signed message or encrypted result.

D3.1 – Security, trust and data management for distributed data processing

empyrean-horizon.eu 29/59

4. Result Delivery to PSM

 Finally, the OP-TEE API sends the result back to the PSM. The PSM can now proceed with its

workflow (e.g., issuing a credential, authorizing access, etc.) using the securely computed

output.

Ryax Workflow Manager

To enhance interoperability and trust management across the EMPYREAN platform, the
Privacy and Security Manager (PSM) can integrate with external identity and attribute
providers. One such integration involves using RYAX’s Keycloak as a bridge to provide certified
identity attributes to EMPYREAN entities.

As illustrated in Figure 6, this setup enables the PSM to issue privacy-preserving Attribute-
Based Credentials (p-ABCs), while leveraging externally validated attributes for enrollment
and authorization purposes.

Figure 6: Overview of integration between PSM and Ryax Workflow Manager

• Privacy and Security Manager (PSM)
Responsible for authenticating entities and issuing Verifiable Credentials (VCs) in the
form of p-ABCs. These credentials enable users to later generate Verifiable
Presentations for minimal-disclosure authentication and access control.

• External Attribute Provider (RYAX Keycloak)
Acts as a trusted issuer of identity attributes, such as roles, group memberships, or
usage entitlements. These attributes are used by the PSM to construct VCs during the

D3.1 – Security, trust and data management for distributed data processing

empyrean-horizon.eu 30/59

enrollment phase. Keycloak provides a standards-compliant interface for attribute
assertions, supporting OpenID Connect and SAML.

• EMPYREAN Entity
A component (e.g., device, user, or microservice) operating within the EMPYREAN
Association. It receives p-ABCs from the PSM and uses them to create unlinkable
tokens or Verifiable Presentations, enabling selective disclosure of attributes
depending on the access context.

• Relying Party
Any EMPYREAN platform service or component that enforces Attribute-Based Access
Control (ABAC). Relying parties evaluate incoming VPs against defined access policies
and interact with the blockchain to verify identity assertions, audit logs, or
permissions.

• Blockchain Layer
Serves as a trusted ledger for storing access policies, audit logs, trusted issuers, and
verification events. All key actors interact with the blockchain for transparency and
traceability:

• The PSM writes/reads identity credentials and trust status.

• EMPYREAN Entities read validation rules or credential status.

Relaying Parties log authorization decisions and read policies.

3.8 Relation to use cases

The PSM plays a crucial role in EMPYREAN’s core use cases (UCs) by securing device

interactions and enforcing trusted access.

UC1: Secure Robotic Operations in Manufacturing

• Ensures that only authorized robots access machining data.

• Verifies identity using VCs and DIDs before allowing data exchange.

• Traceability for industrial operation with DID’s matching

UC2: Privacy-Preserving Agriculture Monitoring

• Protects sensor data from unauthorized access.
• Uses ZKPs to allow farmers to share specific data with researchers.

D3.1 – Security, trust and data management for distributed data processing

empyrean-horizon.eu 31/59

4 DP-ABC Module

4.1 Overview

The Distributed Privacy Attribute-based Credentials (DP-ABC) Library is a cryptographic library

designed to provide privacy-preserving attribute-based credentials (ABC). It enables IoT and

low-power edge devices to prove attributes selectively while ensuring security and minimal

computational overhead. The library implements Zero-Knowledge Proofs (ZKPs), BBS

signatures, and attribute hiding to enable secure, privacy-focused authentication and access

control in distributed environments.

4.2 Features

• Decentralized Credential Issuance – Enables devices to generate and manage
attribute-based credentials (VCs) without relying on a centralized authority.

• Selective Disclosure – Users/devices can reveal only necessary attributes without
exposing full identity.

• Zero-Knowledge Proofs (ZKPs) – Allows authentication without disclosing sensitive
information.

• BBS Signature Scheme – Supports multi-message signing and unlinkable credentials.
• Standalone Operation for IoT Devices – Low-computation IoT devices can use the

DP-ABC library independently, without the Privacy and Security Manager (PSM), to
generate and verify credentials locally.

4.3 Novelty - Beyond the State of the Art

Current credential systems often require cloud-based verification, which can increase latency

and reduce privacy. The DP-ABC Library enables standalone credential verification on low-

power IoT devices, making it an ideal choice for EMPYREAN's decentralized and device-

centric architecture. It is optimized for offline authentication, ensuring secure interactions

even in constrained environments.

4.4 Relation to Project Objectives and KPIs

The DP-ABC Library plays a core role in EMPYREAN’s vision of a decentralized, secure, and

autonomous IoT-edge-cloud environment. It aligns with key project objectives:

• Privacy-Preserving Authentication – Supports Zero-Knowledge Proofs to prevent
unnecessary data exposure.

• Scalability in IoT and Edge Networks – Enables low-power devices to handle identity
verification without relying on cloud services.

D3.1 – Security, trust and data management for distributed data processing

empyrean-horizon.eu 32/59

• Secure Device Interactions – Contributes to EMPYREAN’s KPI of reducing privacy
violations in data sharing by over 50%.

• Autonomous IoT Security – Allows devices to verify credentials independently,
enhancing resilience in disconnected or remote environments.

4.5 Architecture

The DP-ABC Library (Figure 7) is designed as a lightweight, embeddable library that integrates

seamlessly into IoT devices, edge nodes, and high-performance systems. It consists of the

following modules:

• BBS Signature Module: Implements the BBS signature scheme, allowing devices to
sign and verify multiple messages securely. This enables unlinkable credential proofs,
preventing tracking and correlation of authentication requests.

• Credential Management Module: Handles issuance, storage, and revocation of
attribute-based credentials (VCs). It allows IoT devices to self-manage credentials or
rely on trusted issuers.

• Zero-Knowledge Proof Generation Module: Generates cryptographic proofs that
allow devices to prove possession of credentials without revealing unnecessary
attributes. This ensures secure and private interactions between IoT devices and
platform services.

Configuration and Integration

• Build: The library is built as a static/shared .so or .a object and can be linked in
C/C++ applications.

• Dependencies: None external; uses its own wrapper over EC cryptographic
primitives.

• Integration Target: It is being integrated into the Privacy and Security Manager (PSM)
and used to:

o Sign JSON Web Tokens (JWTs) using DIDs.
o Generate Verifiable Presentations (VPs) from Verifiable Credentials (VCs).
o Apply Zero-Knowledge Proofs for selective disclosure.

Implementation Details

• Credential Issuance:
o Supports generation of multi-attribute credentials signed by trusted

authorities.
• Credential Presentation:

o End-users can present subsets of their credentials to verifiers, using non-
interactive ZKPs.

D3.1 – Security, trust and data management for distributed data processing

empyrean-horizon.eu 33/59

• Security Features:
o Based on pairing-friendly curves, the library ensures unforgeability and

unlinkability of credentials.
o Fully supports offline verification (i.e., credentials can be verified without

querying the issuer).

Figure 7: DP-ABC architectural overview.

4.6 Implementation

The DP-ABC Library is implemented in C and optimized for embedded devices and high-

performance systems. It provides:

• Cross-Platform Compatibility – Runs on IoT microcontrollers, edge devices, and
standard Linux/Windows environments.

• Cryptographic Performance Optimization – Utilizes hardware-accelerated
cryptographic libraries where available.

• Minimal Resource Footprint – Designed to consume minimal CPU and memory,
ensuring efficient execution on low-power devices.

D3.1 – Security, trust and data management for distributed data processing

empyrean-horizon.eu 34/59

4.7 Public APIs

The DP-ABC library provides a C-based API designed to support decentralized, privacy-

preserving credential issuance and verification. Below is a summary of its key public functions,

which constitute the core interface for applications integrating the library (e.g. the EMPYREAN

Privacy and Security Manager).

• dpabc_init()

Initializes the internal library state and cryptographic parameters. This function must

be called once before using any other library functionality.

• dpabc_clear()

Cleans up allocated memory and cryptographic structures. Should be called at the end

of the application to prevent memory leaks.

• dpabc_issuer_keygen(...)

Generates a key pair (secret and public keys) for a credential issuer. The number of

supported attributes is specified by the caller. This function is used to initialize trusted

authorities in the ecosystem.

• dpabc_user_commit(...)

Computes a cryptographic commitment over a user’s attributes and secret key. This is

the first step in the issuance protocol, where the user proves knowledge of attributes

without revealing them.

• dpabc_issue(...)

Issues a credential for a user by combining the issuer’s secret key with the user’s

commitment and list of attributes. The result is a signed credential that the user can

later present in a privacy-preserving way.

• dpabc_prove(...)

Generates a zero-knowledge proof of possession of a valid credential. The user can

specify which attributes (if any) to reveal in the proof, enabling selective disclosure.

• dpabc_verify(...)

Verifies a zero-knowledge proof generated by a user. This includes checking the

cryptographic validity of the proof and that any disclosed attributes match

expectations.

These API calls enable the full lifecycle of verifiable credentials:

• Key generation for issuers

• Secure, private credential issuance

• Selective disclosure and privacy-preserving authentication

D3.1 – Security, trust and data management for distributed data processing

empyrean-horizon.eu 35/59

• Verification of identity or attribute claims without centralized databases

The API is designed for modular integration and is currently being embedded in the

EMPYREAN platform’s Privacy and Security Manager (PSM), where it supports decentralized

identifiers (DIDs), Verifiable Credentials (VCs), and cryptographic access control mechanisms.

4.8 Integration with EMPYREAN Platform Services

The DP-ABC Library acts as a foundational component of the Privacy and Security Manager

(PSM) but is also designed for standalone use by IoT devices.

For Low-Power IoT Devices:

• Devices can generate, store, and verify credentials independently.

• Eliminates the need for constant cloud connectivity.

• Reduces latency in security operations.

For PSM-Managed Authentication:

• The PSM can issue credentials to devices.

• IoT devices can submit ZKPs to the PSM for access control decisions.

• P-ABC can be deployed in a TEE to perform cryptographic operations.

4.9 Relation to Use Cases

The DP-ABC Library enhances security and privacy across all EMPYREAN Use Cases (UCs):

UC1: Secure Robotic Operations in Manufacturing

Robots can verify credentials locally, ensuring only authorized units interact with
manufacturing processes.

UC2: Privacy-Preserving Agriculture Monitoring

Sensors can share anonymized environmental data without exposing location details. Farmers
retain control over what data is disclosed.

D3.1 – Security, trust and data management for distributed data processing

empyrean-horizon.eu 36/59

5 Secure and Trusted Execution Environment

5.1 Overview

Within the EMPYREAN project, NUBIS introduces a secure, cloud-native orchestration and

device management framework, purpose-built for the IoT–edge–cloud continuum. This

framework is developed exclusively within EMPYREAN to address the unique challenges of

managing highly constrained devices, and in particular those based on ESP32-family MCUs,

through a modern, Kubernetes-native lens.

Additionally, NUBIS builds on our team's foundational expertise in lightweight virtualization

and sandboxed container runtimes, which serve as a key enabling layer for secure and efficient

workload isolation across heterogeneous environments. These runtimes, including minimal

VMs, microVMs, and unikernel-inspired containers, are tailored to offer strong security

boundaries and low overhead, making them ideal for edge and IoT deployments. As part of

EMPYREAN, we enhance this technology with tighter Kubernetes integration, enabling fine-

grained resource control, secure multi-tenancy, and seamless offloading across the compute

continuum.

The cloud-native IoT stack developed within NUBIS leverages these enhanced runtimes

alongside Kubernetes-native constructs such as CRDs and controllers. It provides secure

device onboarding using Entity Attestation Tokens (EATs) and Unique Device Secrets (UDS),

robust OTA firmware management via OCI-packaged firmware blobs, flashed using “flashjobs”

and intelligent workload orchestration with AI inference offloading through the vAccel

framework7. By integrating Akri8 for dynamic device discovery and adopting privacy-

preserving design principles, NUBIS enables secure, scalable, and compute-aware IoT

deployments across EMPYREAN Associations.

5.2 Relation to Project Objectives and KPIs

This framework directly addresses several key EMPYREAN objectives, particularly those

related to secure device integration, dynamic resource management, and efficient execution

across the edge-cloud continuum.

Table 2: EMPYREAN Technical KPIs related to Security and Trust Management

ID Indicator Success Criteria Objective

T3.2
Accuracy of user and device verification and

authentication
>99% 3

7 vAccel framework: https://vaccel.org
8 Akri: https://docs.akri.sh

https://vaccel.org/
https://docs.akri.sh/

D3.1 – Security, trust and data management for distributed data processing

empyrean-horizon.eu 37/59

T3.3 Reduction of privacy violation incidents in data sharing >50% 3

T3.4 Time reduction for read/write on edge vs. cloud by 40% 3

T3.5
Ability to access data on the edge when cloud

connectivity is lost
Demo 3

T4.1
Increase small-message transfer performance at

application level
by 3x 4

T5.1
Reduce development time of continuum-native

applications
>20% decrease vs.

SoTA
5

T5.2 Number of supported hardware architectures >3 5

These KPIs are met through the following contributions:

• Zero-touch onboarding and attestation based on EAT and UDS improve T3.2.
• Confidential OTA updates and device telemetry routing reduce privacy incidents (T3.3).
• Edge-based OTA delivery reduces dependence on the cloud (T3.4, T3.5).
• Optimized control plane with lightweight communication protocols boosts application-

level message performance (T4.1).
• Containerized device workflows and OTA packaging reduce application deployment

time and support diverse architectures (T5.1, T5.2).
• Containerized device workflows and OTA packaging reduce application deployment

time and support diverse architectures (T5.1, T5.2).

Relevant EMPYREAN objectives include:

• F_ASSOC.1, F_ASSOC.5 – Enabling Association-aware orchestration and configuration.

• F_DI.1, F_DI.2 – Secure and flexible IoT device management.

• F_ST.3, F_ST.4 – Ensuring secure bootstrapping and operational trust.

• F_GR.1, NF_GR.2 – Support for zero-trust and scalable integration mechanisms.

5.3 Architecture

The cloud-native IoT management framework spans multiple architectural layers of

EMPYREAN, aligning with the multi-layered approach described in the project’s architecture

(see Section 2). It integrates into:

• Device Layer: ESP32-class microcontrollers embed cryptographic UDS and generate
EATs during onboarding.

• Edge Layer: K3s-based Kubernetes clusters run lightweight workloads, device
discovery handlers, and OTA agents.

• Cloud Layer: Centralized orchestration logic (k8s operator) manages device lifecycle
and OTA tasks.

D3.1 – Security, trust and data management for distributed data processing

empyrean-horizon.eu 38/59

• Application Layer: Web-based dashboards and APIs offer monitoring, OTA control,
and device insights.

Figure 8: Far-Edge Device OTA Update process.

The system is composed of several microservices and operators:

• Device Onboarding Service (low-level attestation server): Handles EAT verification
and device registration using a vendor-maintained board ledger.

• Akri Integration: Akri-based discovery handlers detect and register IoT devices as k8s
resources.

• OTA Update Operator (integrated with Akri): Issues flashjob pods to deliver and apply
firmware updates packaged as OCI images (Device-specific process shown in Figure 8,
CRD and operator logical diagram shown in Figure 9).

• vAccel Offloading Agent (integrated as a multi-tier component): Enables ESP32
devices to forward AI/ML tasks to local edge accelerators.

Figure 9: Operator-initiated FlashJob to re-purpose a Far-Edge device

D3.1 – Security, trust and data management for distributed data processing

empyrean-horizon.eu 39/59

5.4 Implementation

The cloud-native IoT management component is implemented using containerized

microservices deployed within the EMPYREAN platform:

• Programming Languages: Go (operator/controller), C (device-side logic), Python
(support services)

• K8s CRDs: Extend Akri’s resource model for IoT-specific semantics (e.g., attestation
state, firmware version, flashjob operator)

• Security Libraries: mbedTLS for device-level TLS, OpenSSL for attestation verification
• Flashjobs: Lightweight, stateless pods delivering firmware via HTTP(S) to target

devices

Firmware images are delivered using OCI manifests, supporting full and delta updates for

bandwidth efficiency.

5.5 Public APIs

The NUBIS Component exposes several REST and K8s-native APIs:

Attestation server:

Discovery handler:

Device:

D3.1 – Security, trust and data management for distributed data processing

empyrean-horizon.eu 40/59

5.6 Integration with EMPYREAN Platform Services

The cloud-native IoT device management component integrates with several core EMPYREAN

services:

• Privacy and Security Manager: Onboarding process and OTA policies integrate with
PSM’s credential verification and policy enforcement.

• Telemetry and Observability: Exposes device metrics and update states for
monitoring and diagnostics.

• Edge Storage Service: Flashjobs may reference firmware stored in edge-accessible S3-
compatible buckets.

• Workflow Engine: Can dynamically repurpose devices by triggering OTA updates
through integrated workflows.

5.7 Relation to Use Cases

The cloud-native IoT device management component supports EMPYREAN’s use cases by

enabling secure, agile, and context-aware IoT deployments:

UC1: Secure Robotic Operations in Manufacturing

Ensures only attested robotic controllers are enrolled; allows safe OTA updates without
human intervention.

UC2: Privacy-Preserving Agriculture Monitoring

Automates onboarding and firmware lifecycle of field-deployed sensors; supports edge
inference via vAccel.

D3.1 – Security, trust and data management for distributed data processing

empyrean-horizon.eu 41/59

6 Edge Storage Service

6.1 Overview

The Edge Storage Service (ESS) provides a convenient, privacy-focused object store for

association applications. It employs and manages both cloud and edge resources seamlessly,

providing great flexibility in meeting application requirements. It achieves this by utilizing the

technologies and some of the software components of SkyFlok, a file storage and sharing

service developed by Chocolate Cloud.

As an object storage service, applications upload and download objects, organized into

buckets. Compared to file system semantics, object stores provide a simplified concurrency

model, great performance at scale, and are widely used in cloud storage whenever data is

unstructured and of considerable volume. Beyond the public clouds, object storage solutions

like Min.IO also exist for the edge (or private cloud). Commercially available hybrid solutions

that can utilize both types of storage resources are uncommon.

To ensure high reliability and availability, most storage services employ replication, which

provides great performance and simplicity. The downside is storage cost, especially when a

high level of availability is desired (each replica adds an additional 100% storage cost

compared to the original size). Erasure coding solves this issue by creating linear combinations

of the original data and spreading them across storage locations. Redundancy is added to

achieve high reliability as new linear combinations. This approach is much more cost-effective.

For example, a configuration that allows any 2 out of 4 locations to reconstruct the original

data has an overhead of 100%. A comparable 3-way replicated system requires 200%

overhead. The difference is much greater if higher levels of availability are required as storage

costs scale linearly for replication and sub-linearly for erasure coding.

6.2 Novel features

The Edge Storage Service uses a novel erasure coding technique called Random Linear

Network Coding (RLNC), which has significant privacy benefits compared to traditional

techniques such as Reed-Solomon. It is also a rateless code, meaning that redundancy can be

added later, without the need to change previously stored data. RLNC is a patented

technology, giving Chocolate Cloud a meaningful advantage in the secure cloud storage

market.

Coded fragments are distributed across cloud and edge locations, achieving a hybrid storage

solution that seamlessly combines the benefits of both types of resources. Users define a

storage configuration using a storage policy. If better latency is desired, an edge-focused

policy that stores most fragments using the Association’s resources should be used.

Conversely, a cloud-focused policy usually provides better reliability and availability at a lower

D3.1 – Security, trust and data management for distributed data processing

empyrean-horizon.eu 42/59

cost - ideal for long-term archival storage. This flexibility in working across the edge-cloud

continuum is one of the distinguishing features, when compared to state-of-the-art

commercial solutions.

To make it as simple to use as possible and require the least amount of learning and

integration work from application developers, the service offers an S3-compatible API,

featuring full coverage of bucket and object CRUD endpoints as well as more advanced

features such as multipart uploads and range queries.

Many of these features have been tested and developed in SERRANO9 (Horizon 2020 project)

as part of a prototype system. For EMPYREAN, Chocolate Cloud has decided to bring its

production-ready to the project, instead of continuing development of the prototype system.

This choice was made to streamline the exploitability of EMPYREAN results and to start from

a more mature software foundation.

EMPYREAN will bring two key, novel new features. The temporary autonomous edge-only

operation makes it possible to keep serving read and write requests using Association-local

requests when the link to the cloud is severed. Once reconnected, changes are synced, and

normal operation can resume. The second feature significantly enhances the privacy

characteristics of the system. By performing encryption and storing encryption keys at the

edge, platform applications get further assurance that their data cannot be accessed by not

only third parties, but also the storage provider itself. Additionally, several new S3 features

will be developed as part of the project including object versioning and access control,

improving coverage of the S3 API. All of these improvements have been selected with

exploitability in mind.

6.3 Relation to project objectives and KPI

The Edge Storage Service will help in measuring the following project-level technical KPIs. T3.4

requires measurements to be performed, comparing edge-only storage policies to cloud-

based ones. T3.5 concerns temporary autonomous operation when the link to the cloud is

severed. This will be assessed using tests.

Table 3: EMPYREAN Technical KPIs related to the Edge Storage Service

ID Indicator
Success

Criteria
Objective

T3.4
Time reduction to read/write data when storing data purely on

the edge compared to storage on the cloud.
by 40% Obj.3

T3.5
Ability to access data stored on the edge when the link to the

cloud is severed.
- Obj.3

9SERRANO project website: https://ict-serrano.eu

https://ict-serrano.eu/

D3.1 – Security, trust and data management for distributed data processing

empyrean-horizon.eu 43/59

The component is relevant in achieving several project objectives:

• F_ASSOC.1,F_ASSOC.4, F_ASSOC.5
• F_DI.4
• F_ST.1
• F_GR.5, F_GR.6
• F_DCM.1
• NF_GR.1, NF_GR.4, NF_GR.5, NF_GR.6

6.4 Architecture and Implementation

The overview of the architecture of the Edge Storage Service is shown in Figure 10. EMPYREAN

user applications interact with the service through the Edge Storage Gateway (ESG), when

inside the private network of their Association, or through the Cloud Storage Gateway (CSG).

Both provide an S3-compatible API. The gateways perform the data processing tasks such as

erasure coding and encryption, and they are in charge of distributing data to the storage

locations. The CSG is only able to access Cloud Storage locations, whereas the ESG can store

and retrieve fragments from Association-local Edge Storage. Much of the business logic is

provided by the SkyFlok.com backend, which also manages different metadata. Among the

many backend services, three are particularly relevant to EMPYREAN. The Edge Support

Service is in charge of managing Association-related data, including ESGs and Edge Storage

devices. The Migration Service is used to synchronize data after a network outage. The S3 API

Service implements the S3 endpoints not directly linked to uploads and downloads.

10+ other cloud
providers

Google Cloud Storage

Microsoft Azure
 Blob Storage

Amazon AWS S3

SkyFlok.com backend

Cloud Storage
Gateway

App

Global
metadata DBs

Backend services
Backend services

Backend services

Migration service

Association 1

Edge Storage
Gateway

Edge
storage

Edge
storage

Edge
storage

Local metadata
DBs

Association 2

Edge Storage
Gateway

Edge
storage

Edge
storage

Edge
storage

Local metadata
DBs

Developer dashboard

App App

S3 API service
Edge support

service

Figure 10: An overview of the main components of the EMPYREAN platform’s Edge Storage Service.

D3.1 – Security, trust and data management for distributed data processing

empyrean-horizon.eu 44/59

Each Association has its own ESG. For privacy reasons, the Edge Storage Service provides no

direct way to share or migrate data between Associations. Instead, applications that must

work across Associations will need to use the EMPYREAN platform’s security mechanisms to

retrieve credentials for each Association separately.

6.4.1 Edge Storage Gateway

The Edge Storage Gateway (ESG) is the most important edge component of the service. It

provides all APIs used by the EMPYREAN applications as well as the platform services.

The ESG is written in Python and uses a local relational database to store information needed

for providing autonomous operation. The performance-critical erasure coding uses NCLib, a

cpp header-only library developed in-house by Chocolate Cloud.

During normal operation, the ESG forwards S3 requests that do not involve data upload or

download to the SkyFlok.com backend’s S3 API service. Object uploads and downloads are

done by the gateway, including all data processing such as compression, erasure coding and

encryption.

The ESG is also a key component of the Analytics-friendly Distributed Storage, described in

Deliverable 4.1 (M15).

6.4.2 Cloud Storage Gateway

The Cloud Storage Gateway (CSG) has a shared codebase with Edge Storage Gateway and is a

core component of SkyFlok S3, Chocolate Cloud’s upcoming object storage solution. However,

it lacks all features related to associations. The joint development of the two gateways has its

benefits when it comes to writing validated, maintainable code. It has the added benefit that

S3-related features added to either component are either automatically inherited by the other

or can easily be migrated.

6.4.3 Cloud storage

SkyFlok, CC’s main commercial product, stores coded fragments in cloud-based object

storage. As such, the Skyflok.com backend has connectors to both the proprietary interfaces

of the major cloud providers (e.g., Google Cloud Platform, Azure) and the interfaces that are

used by several providers like AWS’s S3 and OpenStack Swift’s native API. Thanks to this

integration, the Edge Storage Service is able to distribute data across the globe to more than

110 cloud locations, as illustrated in Figure 11. The list is constantly being expanded.

D3.1 – Security, trust and data management for distributed data processing

empyrean-horizon.eu 45/59

Figure 11: Map showing supported cloud storage locations across the globe. Up to date as of March 2025.

The Gateway uploads and downloads fragments to and from cloud locations directly, using

pre-signed URLs that are supplied by the SkyFlok.com backend. Each URL contains a time limit

in which it can be used and has a precisely defined scope in terms of what it can be used. To

ensure its veracity and that has not been modified, the backend cryptographically signs it,

hence its name.

6.4.4 Edge Storage

Edge Storage devices are practical representations of individual Association storage resources.

It is a layer of abstraction that provides two key benefits. Firstly, integration into the storage

system is greatly simplified by wrapping a storage resource within a software component.

Wrapping each storage resource type within the same component ensures a common API.

The system does not need to have special considerations for the characteristics of the

underlying resource. Secondly, selecting a technology that can wrap seamlessly around a large

variety of storage resources makes Edge Storage devices a flexible, user-friendly mechanism.

To achieve these goals, we have selected Min.IO, a self-hosted object storage solution. It

exposes an S3-compatible API, making integration with the Gateway simple, given S3’s

popularity in the cloud object storage space. Another benefit of Min.IO is its ease of use in a

containerized environment. By deploying it to a K8s cluster or even running it as a standalone

Docker image, it can store all data and metadata on a storage volume mounted on the

container. This opens up a wide range of storage types that can be seamlessly used, such as

host file systems, iSCSI, NFS, and more. Furthermore, Min.IO uses the Prometheus Data

Model to provide support for monitoring and alerting. This widely used standard API and data

model makes it possible for the Telemetry service to monitor the Edge Storage devices.

6.4.5 SkyFlok.com backend

SkyFlok is a next-generation file sharing and storage solution for users who care deeply about

privacy and security. It is a multi-cloud platform which distributes data across a wide range of

D3.1 – Security, trust and data management for distributed data processing

empyrean-horizon.eu 46/59

commercially available clouds. Beyond the big three

of Amazon, Google and Microsoft, SkyFlok supports

most major EU cloud providers and can be

configured to be GDPR compliant (66 out of total of

111 cloud locations are GDPR-compliant). A key enabler of this is the ability provided to users

to select the cloud providers that will store their data as well as the actual locations down to

the city level. Internally, SkyFlok’s secret sauce is RLNC, an erasure code that provides reliable

service even if a cloud provider becomes unavailable. It also offers protection from data loss

and gives privacy benefits beyond those provided by conventional encryption.

SkyFlok was launched in February 2018. Since then, over 750 SME teams have used the

service. Chocolate Cloud launched in 2020 its reseller portal for resellers in multiple countries

(incl. Canada, Italy, Denmark, UK) to commercialise SkyFlok.

The Edge Storage Service relies on the software infrastructure behind SkyFlok, the Skyflok.com

backend, for a wide range of features. These can be grouped as follows:

• Object storage metadata management
• Storage location management
• Generating pre-signed upload and download links
• Storage policy management
• File and metadata consistency checking
• Authentication and authorization
• User and team management

The SkyFlok.com backend is implemented as 15+ Python microservices. Each manages its own

business entities through either a MySQL database or Google Datastore, a NoSQL database

offered by the Google Cloud Platform.

Among the microservices, two are particularly relevant for the Edge Storage Service. The S3

API Service performs all S3 operations unrelated to uploading or downloading objects. The

cloud and edge gateways communicate with it directly, forwarding requests with minimal

changes. For Association and edge storage-related features, CC has implemented the Edge

Support Service for the project. It manages all data related to associations, ESGs, and Edge

Storage devices.

6.4.6 Developer dashboard

The Developer dashboard provides a simple web-based user interface to application

developers. It provides an overview of S3 buckets and objects and, through either the cloud

or edge storage gateways, makes it possible to upload and download objects and manage

buckets. S3 API keys can also be defined, providing fine-grained access control to data.

Beyond the S3 features, the dashboard makes it possible to define and manage storage

policies. Users can specify exactly where their data should be distributed using which

D3.1 – Security, trust and data management for distributed data processing

empyrean-horizon.eu 47/59

redundancy scheme, and they can also select between supported compression and encryption

methods.

Finally, the dashboard provides management of EMPYREAN’s storage-related entities. This

includes a way to manage Associations, Edge Storage devices, and Edge Storage Gateways.

Each Association owner must create their association using the dashboard, defining at least

one gateway. Non-owner teams can join associations using a secret key that they obtain from

the owner. Figure 12 shows a list of Associations the currently logged in user is a member of.

Figure 12: The page in the Developer dashboard that lists associations the user is a member of.

6.4.7 Deployment

The service’s components are deployed at various points of the edge-cloud continuum. The

Edge Storage Gateway and Edge Storage run inside an Association, ideally in a managed K8s

cluster. They can be deployed either directly using YAML descriptors or through a helm chart.

The Edge Storage is unique in that it relies on the K8s StatefulSet mechanism for simple

deployment. Both components can also be deployed directly as Docker containers or can even

be adapted to run on bare metal.

The Cloud Storage Gateway is deployed to fly.io’s extensive global infrastructure. This employs

some of the same concepts of a Content Delivery Network in that requests are automatically

routed using DNS to the nearest available gateway. The CSG is managed by Chocolate Cloud

and is not tied to any single Association. The SkyFlok.com backend is deployed to the Google

Cloud Platform as microservices running in Google App Engine Standard.

D3.1 – Security, trust and data management for distributed data processing

empyrean-horizon.eu 48/59

6.4.8 Workflows for temporary autonomous operation

Figure 13: Communication diagram showing the upload workflow when the Association’s Gateway is

connected to the outside world, including the cloud-based SkyFlok.com backend.

In this subsection, we present the workflows related to file upload, namely the S3 PutObject

endpoint, using the Edge Storage Gateway. Figure 13 shows regular operation where the

Association has internet connectivity and both the SkyFlok.com backend and cloud storage

locations are accessible. The Gateway performs the verification of the request, checking that

it has not been tampered with, but delegates authentication and authorization to the

backend. This provides the pre-signed URLs, based on the storage policy which the ESG uses

to upload fragments. This is done, after encryption and erasure coding take place. The result

is then recorded on the backend.

In the event the Association’s outside connection is not available, the Edge Storage Service

can continue to function in a degraded capacity. Figure 14 shows how file uploads are handled.

The Gateway must temporarily take on some of the backend responsibilities by authorizing

requests, generating pre-signed URLs, and recording results. To achieve this, a colocated

metadata database stores the required business entities. Given that no cloud locations are

reachable in this capacity, fragments can only be uploaded to Edge Storage devices.

D3.1 – Security, trust and data management for distributed data processing

empyrean-horizon.eu 49/59

Figure 14: Communication diagram showing the alternative upload workflow when the Association’s

Gateway is temporarily disconnected from the outside world and thus must itself assume some of the roles

of the cloud-deployed SkyFlok.com backend.

6.5 Public APIs

Object storage (S3) API

The ESG’s S3-compatible object storage API supports all major Create, Read, Update, Delete

(CRUD) features of both objects and buckets in their simplest form.

Buckets

• CreateBucket
• DeleteBucket
• ListBuckets

Objects

• GetObject
• HeadObject
• PutObject
• ListObjectsV2
• DeleteObject

D3.1 – Security, trust and data management for distributed data processing

empyrean-horizon.eu 50/59

An API reference can be found on Amazon’s website10. Amazon Web Services S3 provides two

URL schemas to access buckets and their contents. Like most Secure Storage API adopts the

first one. The second scheme was created by Amazon to address the bottlenecks related to

routing requests through DNS on a global scale. Given that the Edge Storage Service operates

at a much more modest scale, the second schema does not bring any benefits.

1. http://s3.amazonaws.com/[bucket_name]/

2. http://[bucket_name].s3.amazonaws.com/

The Secure Storage API uses the same parameters for each endpoint and maintains the error

handling of AWS S3, both in terms of the format of error messages as well as the different

codes that identify the cause.

Storage Policy API

The Storage Policy API allows EMPYREAN users to programmatically create and retrieve

storage policies. These can be thought of as recipes used to translate an application’s storage

requirements into a storage resource allocation.

Storage Resource Telemetry API

The list of supported Cloud Storage locations is provided by the ESG, listing their static

characteristics as well. Beyond this, the performance of cloud locations is continuously

monitored by the SkyFlok.com backend. This information is also exposed by the ESG through

its Telemetry API.

The list of Edge Storage devices associated with an association is provided by the ESG,

including their static characteristics. Dynamic characteristics can be collected directly through

a Prometheus-compatible interface exposed by MinIO. No communication with the ESG is

needed. This interface provides a way to both monitor performance characteristics as well as

configure alert rules for certain types of abnormal events.

6.6 Integration with EMPYREAN Platform services

The Edge Support Service will be an integrated part of the EMPYREAN platform, achieving its

purpose through connections to other services. As such, it will utilize many of the components

needed to manage associations. In the following, we constrain ourselves to presenting the

integrations that are specific to the storage-related aspects.

The Privacy and Security Manager (UMU), provides decentralized identity management, and

secure authentication for platform applications. Through its policy engine, usage quotas can

be placed on storage resources as smart contracts and then enforced by the ESS. The PSM, by

10 S3 API reference:
https://docs.aws.amazon.com/AmazonS3/latest/API/API_Operations_Amazon_Simple_Storage_Service.html

https://docs.aws.amazon.com/AmazonS3/latest/API/API_Operations_Amazon_Simple_Storage_Service.html

D3.1 – Security, trust and data management for distributed data processing

empyrean-horizon.eu 51/59

working across Associations, also opens up the possibility for using storage in applications that

work across Association boundaries.

User applications define data workflows using the Ryax Workflow Manager (RYAX). One key

functionality is the ability to dynamically allocate storage resources tailored to the specific

requirements of each workflow. Each S3 bucket in Edge Storage is governed by a storage

policy, enabling Ryax workflows to seamlessly direct data to/from edge resources for low-

latency access, cloud storage for scalability and reliability, or a combination of both through

the use of hybrid storage policies.

Applications leveraging the Decentralized and Distributed Data Manager (ZSCALE) can easily

utilize the services of the ESS. Eclipse Zenoh, and thus Zenoh-Flow, has an S3 plugin, meaning

applications have a simple way of including the service in their data pipelines.

Finally, the Telemetry Service (ICCS) monitors Edge Storage devices as well as cloud locations

through information provided by the Edge Storage Gateway and the devices themselves.

6.7 Relation to use cases

The Edge Storage Services provides a convenient way to store data for EMPYREAN

applications. This includes the two use case applications:

UC1: Secure Robotic Operations in Manufacturing

There are several types of data that could be stored by UC1, including machine learning

models, datasets to train the models as well as inference results. Object storage is especially

useful if multiple versions of models need to be kept for a longer period of time. To account

for the stringent privacy requirements of the use case, edge-only storage policies can be used

to ensure that data is never stored outside IDEKO’s premises.

UC2: Privacy-Preserving Agriculture Monitoring

UC2 works with large volumes of remote and proximal sensing satellite data, requiring long-

term storage. This is an ideal scenario for showcasing the benefits of object storage.

Furthermore, like UC1, machine learning models can also be stored using the Edge Storage

Service. UC2 performs computations across the cloud continuum, meaning that some data

may best be kept either in the cloud, or using a hybrid policy in both the cloud and at the edge.

To enhance privacy for cloud-based policies, file encryption keys can be stored at the edge,

further limiting the potential for improper access.

The feedback gathered from the use case providers will be used to improve the service in the

following phase of the project. Furthermore, it will be essential in guiding Chocolate Cloud’s

(CC) individual exploitation plans. By highlighting the most relevant challenges and most

market-ready features, CC aims to establish which parts are to be added to its current

products.

D3.1 – Security, trust and data management for distributed data processing

empyrean-horizon.eu 52/59

7 Decentralized and Distributed Data Manager

7.1 Overview

EMPYREAN uses Eclipse Zenoh as its decentralized and distributed data framework. Zenoh is

a Pub/Sub/Query protocol designed to provide a set of unified abstractions for dealing with

data in motion, data at rest, and computations at Internet scale. Eclipse zenoh technology was

initially introduced in D2.111, and later refined in D2.312.

One of the main characteristics of Zenoh is openness and interoperability. This is aligned with

EMPYREAN’s openness objectives, enabling diverse technologies to collaborate. For example,

the new Zenoh’s querier API supports efficient and optimized data retrieval. Enhanced

support for ROS213, a widely used framework in robotics, strengthens connections between

Zenoh and other platforms, facilitating interoperability.

Figure 15 presents the types of different plugins that Zenoh supports at the moment. As

storage plugins, it supports InfluxDB14 storage plugin for time series databases, RocksDB15 for

key-value oriented databases, Amazon S3 to store data as objects in buckets in the cloud, and

MinIO for high-performance, distributed object storage system.

Runtime plugins include Zenoh-Flow16, which is a dataflow programming framework that

enables declaring an application as a set of computations that can be distributed in a set of

nodes across the continuum. For the protocols plugin, Eclipse Zenoh supports bridges with the

Data Distribution Service (DDS) standard, with the REST-based web APIs, and with MQTT17-

based protocols. Additionally, Eclipse Zenoh has been selected as an alternative

communication middleware for the ROS2 release, and a rmw_zenoh is under development to

become a Tier-1 protocol for the Robot Operation System (ROS) community.

7.1.1 Current Developments

In October 2024, Eclipse Zenoh v1.0.0 was released, marking a milestone for the open-source

project as it came out of the incubation period to become a fully Eclipse project. That has not

prevented it from moving forward. Just a couple of months later, by the time of writing this

deliverable, March 2025, the latest release is Zenoh v1.3.0. This continuous update reflects

the engagement with the requirements and priorities, such as adaptability, security, and

11 Deliverable 2.2: Initial Release of EMPYREAN Architecture. September 2024.
12 Deliverable 2.3: Final EMPYREAN architecture, use cases analysis and KPIs. January 2025.
13 ROS2: https://docs.ros.org/en/foxy/index.html
14 InfluxDB: https://www.influxdata.com/
15 RocksDB: https://rocksdb.org/
16 Baldoni, G., Loudet, J., Guimarães, C., Nair, S. and Corsaro, A., 2023, October. A Data Flow Programming
Framework for 6G-Enabled Internet of Things Applications. In 2023 IEEE 9th World Forum on Internet of Things
(WF-IoT) (pp. 1-8). IEEE. https://ieeexplore.ieee.org/abstract/document/10539539
17 MQTT: https://mqtt.org/

https://docs.ros.org/en/foxy/index.html
https://www.influxdata.com/
https://rocksdb.org/
https://ieeexplore.ieee.org/abstract/document/10539539
https://mqtt.org/

D3.1 – Security, trust and data management for distributed data processing

empyrean-horizon.eu 53/59

performance optimization, ensuring an efficient and interconnected ecosystem for devices,

applications, and data. Other important characteristics include:

Figure 15: Eclipse Zenoh plugins.

Adaptability and Scalability: new features that adapt to varying technological needs. The

stabilization of liveliness API ensures real-time monitoring of active participants in the

network. Zenoh-Pico, which is made for small IoT devices, has also been updated. With huge

improvements in performance and extension in scope, as it is now compatible with the

Raspberry Pi Pico series.

Security and Privacy: The protocol enhancements address critical issues such as

fragmentation and message integrity, ensuring secure and reliable data transmission. These

updates safeguard interactions across the network, whether between IoT devices or in the

cloud. Zenoh supports Transport Layer Security (TLS) as a transport protocol. TLS can be

configured in two ways:

• Server side authentication: clients validate the server TLS certificate but not the other
way around, that is, the same way of operating on the web where the web browsers
validate the identity of the server via means of the TLS certificate.

• Mutual authentication (mTLS): where both server-side and client-side authentication
is required. The configuration of TLS certificates is done via a configuration file.

D3.1 – Security, trust and data management for distributed data processing

empyrean-horizon.eu 54/59

Technology Agnosticism: to be considered a part of the EMPYREAN’s platform, Zenoh should

support diverse types of hardware infrastructure and software platforms, including new

features for QNX operating systems18, highlighting its technology-agnostic approach. This

openness reduces dependence on specific vendors and encourages widespread adoption.

7.1.2 Beyond the state-of-the-art

Existing protocols were designed to work on a very specific use case and address a connectivity

island. As an example, the Data Distribution Service (DDS)19 was designed to provide a pub/sub

protocol that works best for applications running on resourceful hardware connected by

multicast-enabled (UDP/IP) wired Local Area Network (LAN). Another assumption in DDS’s

design is that peer-to-peer communication is quintessential and most of the applications

consume data from every other application.

On the other hand, there is MQTT, which was designed to support pub/sub via a client-to-

broker architecture over TCP/IP networks. What is interesting is that both DDS and MQTT

provide pub/sub. Yet, their implementations force onto the user very specific communication

topologies that are completely orthogonal to the concept of pub/sub. This introduces

architectural inflexibility and scalability issues. As an example, DDS is notoriously hard to work

with and scale on a Wide Area Network (WAN) as a consequence of its (flat) peer-to-peer only

model and its reliance on multicast IP. MQTT, makes communicating across a WAN easy, as

far as the user is willing to accept having a hub-and-spoke architecture and a topology not

ideal for several edge applications. Therefore, the solution has been to use different protocols

on different segments of the system and integrate them, hoping to have some meaningful

end-to-end semantics. This is tedious, error-prone, and inefficient. This is a consequence of

the inability of established protocols to deal with the cloud-to-device continuum.

Zenoh is a Pub/Sub/Query protocol that provides a set of unified abstractions to deal with

data in motion, data at rest, and computations at large scale. Zenoh runs efficiently on server-

grade hardware and networks as well as on microcontroller and constrained networks.

7.2 Architecture and implementation

Zenoh operates over resources. A resource is a (key, value) tuple, where the key is an array of

arrays of characters. When representing keys, we usually use the “/” as a separator. Thus,

home/kitchen/sensor/C2O2 is a resource key.

18 QNX OS Architecture and Concepts:
https://www.qnx.com/developers/docs/8.0/com.qnx.doc.neutrino.prog/topic/overview.html
19 Data Distribution Service (DDS). OMG 2018. https://www.omg.org/spec/DDS/1.4/About-DDS

https://www.qnx.com/developers/docs/8.0/com.qnx.doc.neutrino.prog/topic/overview.html
https://www.omg.org/spec/DDS/1.4/About-DDS

D3.1 – Security, trust and data management for distributed data processing

empyrean-horizon.eu 55/59

A set of keys can be expressed by means of a key selector, which may include “∗” or “∗∗” that

expand respectively to an arbitrary array of characters not including the separator, and an

array of arrays of characters. For instance, home/kitchen/sensor/* would represent the set

of keys, including all the sensors in the kitchen, while home/*/sensor/C2O2 would represent

the set of keys representing all the C2O2 sensors in the house.

Zenoh allows the selection of a set of resources by using a selector. The syntax supported

Zenoh’s selector is keyexpr?arg1=val1&arg2=value – where keyexpr is a key expression as

defined above. Some arguments, such as those for indicating filters, projections, and time

intervals, are built-in; application-specific semantics can be added by defining additional

arguments. As an example, the selector

home/*/sensor/temperature?_filter="temp>25"&_project="hum", among all the

temperature sensors in the house, it would select those whose value is greater than 25 and

project their humidity.

Moreover, the Zenoh protocol defines three different kinds of network entities: (i) publishers,

(ii) subscribers, and (iii) queryables. A publisher should be thought of as the source for

resources matching key expressions. As an example, a publisher could be defined for a key,

such as home/kitchen/sensor/C2O2, or a set of keys, such as, home/kitchen/sensor/* or

home/kitchen/**.

Symmetrically, a subscriber should be thought of as a sink for resources matching key

expressions. As an example, a subscriber could be defined for a key, such as

home/kitchen/sensor/C2O2, or for a set of keys, such as, home/**/sensor/*.

A queryable should be through of as a well for resources whose key match a key expression.

As such a queryable for home/kitchen/** essentially promises that if queried for keys that

match this key expression it will have something to say.

7.3 Public APIs

The main core of the zenoh protocol implementation is done in Rust. Additionally, there are

APIs in different programming languages, such as:

• Rust, https://docs.rs/zenoh/latest/zenoh/
• C/C++, https://github.com/eclipse-zenoh/zenoh-cpp
• Kotlin (Java), https://github.com/eclipse-zenoh/zenoh-kotlin
• Python, and https://github.com/eclipse-zenoh/zenoh-python
• Typescript/Javascript https://github.com/eclipse-zenoh/zenoh-ts

7.4 Relation to use cases

Zenoh offers several orthogonal primitives that can be used by applications to declare a data

exchange mechanism; these are:

https://docs.rs/zenoh/latest/zenoh/
https://github.com/eclipse-zenoh/zenoh-cpp
https://github.com/eclipse-zenoh/zenoh-kotlin
https://github.com/eclipse-zenoh/zenoh-python
https://github.com/eclipse-zenoh/zenoh-ts

D3.1 – Security, trust and data management for distributed data processing

empyrean-horizon.eu 56/59

Declarations: Namely, declare_resource, declare_publisher, declare_subscriber, and

declare_queryable allow the declaring of a resource, a publisher a subscriber and a queryable

respectively. A declaration is either used to optimize certain aspects of the protocol, such as

automatically mapping keys to small integers, or to inform the rest of the Zenoh network that

a specific endpoint is available.

Producing Data (Publisher). The put operation is used to produce a (key, value). This operation

provides options that allow specifying the congestion control applied to it, the associated

priority and a few other non-functional properties.

Subscribing Data (Subscriber). The sub operation is used to subscribe to a key-expression. This

operation provides options that allow specifying the wildcards (i.e, *, **) to query for multiple

key-expressions and also allows filter parameters.

Query. Zenoh provides a get operation that allows the issuing of a query. This query will be

served by a set of queryable that cover, in a set-theoretical sense, the key expression portion

of the query. Additionally, among all the set of sets that cover the query, Zenoh will select the

one that is closest in routing terms. Zenoh provides options to control if only one of such set

will be triggered or if all the matching queryable will. It also allows to control wether a partial

cover is acceptable or not. The get operation also allows to control how data will be

consolidated on the way back, and if consolidation is required at all.

Deleting Data. Zenoh provides a delete operation that makes it possible to indicate the desire

that a resource shall be deleted.

7.5 Integration with EMPYREAN Platform services

There are two potential integration points of Zscale’s Eclipse Zenoh with Ryax’s Intelligent

workflow orchestrator.

• A potential collaboration is to use Eclipse Zenoh as a generic Remote Procedure Call
(RPC) to interconnect different Ryax intelligent workflow orchestrator’s actions.

• Other potential integration point is through the use of cloud storages, Eclipse zenoh

supports object storage either in the Amazon S3 buckets or MinIO storages through

the Zenoh-backend-s3 plugin.

D3.1 – Security, trust and data management for distributed data processing

empyrean-horizon.eu 57/59

Figure 16: A MinIO object storage created with Eclipse zenoh backed plugin.

In Zenoh, a backend is a storage technology (i.e., DBMS, time-series database, file system.,

memory backend) allowing to store the keys/values publications made via Zenoh and return

them on queries. Zenoh’s backend relies on Amazon S3 to implement the storage. It is also

compatible to work with MinIO object storage. Figure 16 shows a MinIO object storage

created through Eclipse zenoh. Figure 17 represents the object detailed description.

Moreover, Zenoh is utilized as the core communication middleware to enable the new multi-

agent capabilities within the EMPYREAN Decision Engine. Leveraging its lightweight, high-

performance publish/subscribe and query-based communication model, Zenoh facilitates

scalable, low-latency data exchange among distributed Decision Engine instances. Each

instance, acting as an autonomous agent, uses Zenoh topics to coordinate actions, share

telemetry insights, and negotiate workload distribution strategies across Associations.

Deliverable D4.2 (M15) provides more details for this specific integration.

Finally, there is ongoing work to integrate the decentralised and distributed capabilities of

Zenoh into EMPYREAN proposed use cases. In D2.3, TRACTONOMY presented their Advanced

Inference and Coordinated Behaviours for Warehouse Automation Robots (UC3), and its

integration with the Zenoh protocol for data communication in section 6.3. However, as it is

known, unfortunately TRAC partner is no longer taking part in the project. At the time of

writing this deliverable there are ongoing discussion about a potential UC3 replacement.

D3.1 – Security, trust and data management for distributed data processing

empyrean-horizon.eu 58/59

Figure 17: A MinIO object's detailed description.

D3.1 – Security, trust and data management for distributed data processing

empyrean-horizon.eu 59/59

8 Conclusions

The deliverable outlined how the technical outcomes of T3.1 and T3.2 play a key role in

providing a robust security and trust model for the platform’s applications. It described the

technical details on how each component is being implemented including critical design

decisions, internal architecture, and public APIs. The role of each component was also

presented through its connection to the project’s requirements, KPIs, and use cases.

To achieve the goals of Work Package 3 and, in general, the project, these components

implement a wide range of features, many of them directly exposed to EMPYREAN application

owners. Without any claim to completeness, this deliverable presented mechanisms for:

• providing identity management using decentralized identifiers,
• dynamic policy enforcement using blockchain-based smart contracts,
• a novel cryptographic library for privacy-preserving attribute-based credentials that

can be used in a distributed environment,
• a cloud-native framework for providing secure code execution,
• a secure, distributed object storage system that works across the edge-cloud

continuum and employs a novel privacy-preserving erasure coding scheme,
• a scalable, secure decentralized and distributed solution for managing data-centric

workflows.

In the second phase of T3.1 and T3.2, the focus will fall on completing the integrations of these

components to provide a coherent platform view to EMPYREAN application owners, including

the project’s use cases. Beyond this, each component will play a key part in validating that the

project’s technical objectives have been met and KPI target values reached. As such, WP3

results will continue to play an important role in the project’s life cycle, being tied directly to

efforts in WP5 and WP6.

