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Abstract: Deliverable D3.2 presents the key outcomes of the activities that took place in the 

context of Task 3.3 “Software-Defined Edge Interconnect for Distributed Computations and 

Hardware Acceleration” and Task 3.4 “Autoscaling, Service Assurance and Computing 

Management” during the first implementation period (M04-M15). These tasks focus on the 

design and development of critical components within the EMPYREAN platform, including: (i) 

software-defined interconnection to organize edge devices into logical clusters, offering a 

unified memory layer; (ii) interoperable hardware acceleration functionality across 

heterogeneous IoT and edge nodes; (iii) AI-enabled workload autoscaling mechanisms; and 

(iv) service assurance and low-level computing management mechanisms. 

 

Keywords: Software-Defined Interconnect, Hardware Acceleration, Service Assurance, 

EMPYREAN Associations, Vertical Pod Autoscaling, Autos-Scaler  
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101136024) and do not necessarily reflect the view of the European Commission. The information in 

this document is provided “as is”, and no guarantee or warranty is given that the information is fit for 
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1 Executive Summary 

This technical report presents a comprehensive overview of the software-defined 

interconnect mechanisms and their seamless integration with hardware acceleration 

abstractions within the EMPYREAN framework. It explores the design and implementation of 

these components, their interaction with the broader EMPYREAN architecture. Emphasis is 

placed on the design principles, functionalities, and exposed public APIs of each system 

component, offering a detailed technical perspective aligned with the objectives of Task 3.3, 

"Software-Defined Edge Interconnect for Distributed Computations and Hardware 

Acceleration." 

In addition, the deliverable introduces the initial outcomes of Task 3.4, "Autoscaling, Service 

Assurance and Computing Management." This includes the design and development of an AI-

enabled vertical autoscaling mechanism for Kubernetes, which intelligently adjusts resource 

requests and limits based on workload telemetry. The task further delivers service assurance 

capabilities for the EMPYREAN platform, including the development of the Analytics Engine 

and AI-enhanced algorithms. These service assurance mechanisms enable the orchestration 

services to perform self-adaptive actions such as workload migration and resource 

reallocation in response to performance degradation or operational issues. 

This deliverable builds upon the EMPYREAN reference architecture defined in deliverable D2.3 

(M12), towards the provision of the initial release of the platform’s software-defined 

interconnections, hardware acceleration abstractions, service assurance components, and AI-

driven workload auto-scaling framework.   

The final release of the components and mechanisms developed under Tasks 3.3 and 3.4 will be 

presented in deliverable D3.3 “Final report on security, trust, seamless data and computing 

management” (M26). 
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2 Introduction 

2.1 Purpose of this document 

This document is a comprehensive technical report detailing the enablements and 

methodologies surrounding software-defined interconnects. It explores the integration 

strategies with vAccel1, a cutting-edge acceleration framework, while also delving into the 

intricate interactions within the broader EMPYREAN stack. These interactions are further 

contextualized through an examination of relevant service assurance mechanisms, ensuring a 

robust and reliable operational framework. 

The report meticulously outlines each system component, providing an in-depth analysis of 

their design principles, functionalities, and exposed APIs. These APIs are presented not only 

as technical interfaces but also as pivotal tools that facilitate seamless communication 

between components. The document aims to offer readers a clear understanding of how 

these components are architected to interact harmoniously, emphasizing the rationale 

behind various design choices. Furthermore, it elaborates on configurable parameters, 

shedding light on the decisions made during the initial stages of development efforts. 

 

2.2 Document structure 

The present deliverable is split into 5 major chapters: 

● EMPYREAN Architecture Mapping 

● Software-defined Interconnect 

● Hardware Acceleration Abstraction  

● Service Assurance 

● Intelligent Autoscaling and Adaptive Computing management. 

 

2.3 Audience 

This document is publicly available and should be of use to anyone interested in the 

description of the data interconnection, hardware acceleration, intelligent autoscaling, and 

service assurance aspects of EMPYREAN. Moreover, this document can be also be useful to 

the general public for obtaining a better understanding of the framework and scope of the 

EMPYREAN project. 

                                                      
1 https://vaccel.org 
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3 EMPYREAN Architecture Mapping 

The EMPYREAN architecture was first introduced in deliverable D2.2 "Initial Release of 

EMPYREAN Architecture" (M07), and later refined in its final version in D2.3 " Final EMPYREAN 

architecture, use cases analysis and KPIs" (M12). This refinement incorporated key insights 

gained from the initial implementation phase. D2.3 provides a comprehensive overview of the 

architecture, detailing the EMPYREAN components, their interfaces, and the supported 

operational flows.  

In this section, we present a concise description of the architecture (Figure 1) to support the 

discussion of the initial developments in WP3, particularly focusing on dynamic provisioning 

of high-performance software-defined edge interconnect, seamless provision of hardware 

acceleration abstractions, intelligent and efficient workload autoscaling mechanisms, and 

distributed and data-driven service assurance mechanisms within the EMPYREAN. 

 

 

 
Figure 1: EMPYREAN high-level architecture 
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The Service layer facilitates the development of Association-native applications, providing 

robust support for application-level adaptations, interoperability, elasticity, and scalability 

across the IoT-edge-cloud continuum. Deliverable D4.1 (M15) provides a detailed description 

of the design and development of this layer’s components. 

The Association Management Layer dynamically manages Associations within the IoT-edge-

cloud continuum. Forming resource federations, it enables seamless collaboration, resource 

sharing, and data distribution across various segments within the continuum. Together with 

the Multi-Cluster Orchestration Layer, it is central to EMPYREAN’s distributed and 

autonomous management, establishing a resilient Association-based continuum.   

The Multi-Cluster Orchestration Layer handles service orchestration and resource 

management across EMPYREAN's disaggregated infrastructure. Using autonomous, 

distributed decision-making mechanisms, it orchestrates dynamic, hyper-distributed 

applications while enabling self-driven adaptations. Multiple instances of this layer’s 

components provide decentralized operation, optimize resource utilization, and ensure 

scalability, resiliency, energy efficiency, and high service quality. Deliverable D4.2 (M15) 

provides a detailed description for designing and developing the Association Management 

and Multi-Cluster Orchestration layers’ components. 

The Resource Management Layer unifies the management of IoT, edge, and cloud platforms 

under the EMPYREAN platform. It integrates software mechanisms for both platform-level 

scheduling (e.g., EMPYREAN Controller, AI-enabled Workload Autoscaling) and low-level 

mechanisms (e.g., Unikernel Deployment). This layer operates within Kubernetes (K8s) or 

Lightweight Kubernetes (K3s) clusters and offers modularity, simplifying the integration of 

new hardware and software. The deliverable presents the initial developments for two of its 

core components. 

The Hardware Acceleration Abstractions (Section 5) component enables offloading compute-

intensive tasks to hardware accelerators on neighbouring nodes. This offloading is performed 

while ensuring data security and integrity, thereby enhancing performance for resource-

heavy workloads without compromising on safety. Moreover, the AI-enabled Workload 

Autoscaling (Section 7) component enhances the Kubernetes orchestrator by incorporating 

AI/ML techniques for intelligent workload autoscaling. By analysing historical data, this 

component ensures optimized resource allocation, dynamic application-level adaptations, 

and efficient utilization of resources, providing a more responsive and adaptive environment 

for workloads. 

The Data Management and Interconnection Layer ensures dynamic communication and 

secure data storage between IoT devices and computing resources. Operating at both cluster 

and Association levels, it provides flexible and scalable data management and seamless 

integration of IoT, edge, and cloud resources. It also supports distributed operation, 

facilitating efficient operation in complex, distributed environments.  
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Figure 2: Example deployment scenario within EMPYREAN for software-defined interconnect and hardware 

acceleration abstractions 

 

The Software-Defined Edge Interconnect (Section 4) serves as a low-level communication 

interface and key enabler within this layer. It delivers high-performance data transport service 

integrating remote I/O operations into large computational pipelines, such as AI training 

workflows. By leveraging Remote Direct Memory Access (RDMA), it optimally overlaps 

computation with network I/O, significantly enhancing the performance of data-intensive 

tasks across distributed environments and thereby supporting real-time processing and 

analytics. Figure 2 illustrates how the software-defined interconnect, together with vAccel 

framework, enables the dynamic deployment of composable infrastructures at the edge. This 

is achieved by enabling seamless resource sharing from a common pool of hardware 

acceleration resources across the edge deployment, promoting agility and scalability.   

The architecture is complemented by the Security, Trust, and Privacy and the Monitoring and 

Observability layers, which are across the other layers, providing critical functionalities for 

the overall platform. The former ensures secure access, privacy, and trusted execution across 

the EMPYREAN platform. Operating at both the cluster and Association levels, it delivers 

distributed trust services, enables secure and trusted execution environments, and provides 

controlled data access to guarantee data confidentiality and continuous validation of trust 

among entities.  

The Monitoring and Observability layer integrates real-time monitoring, observability, and 

service assurance components to provide comprehensive visibility and control over the 

EMPYREAN platform. The telemetry components are described in deliverable D4.2 (M15). The 

Analytics Engine (Section 6) provides service assurance by using AI-driven analytics on top of 

monitoring and observability data. This approach ensures that applications perform as 

intended by dynamically adjusting deployments based on changing conditions and 

requirements. 
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4 Software-Defined Interconnect  

4.1 Overview 

The EMPYREAN Software-Defined Interconnect is a low-level, high-performance 

communication interface that operates on top of Remote Direct Memory Access (RDMA) 

verbs. It offers low-latency round-trip times (RTT) and efficient message aggregation through 

a very simple circular-buffer control plane. The software interface resembles the design of the 

Linux kernel’s io_uring, adopting the same Proactor pattern for asynchronous operations. 

Additionally, we have designed a specialized accelerator interface version that disaggregates 

FIFOs offering an Advanced Microcontroller Bus Architecture (AMBA) AXI-S hardware 

specification interface, enabling seamless hardware integration. 

Value proposition of the EMPYREAN Software-Defined Interconnect (SDI) approach: 

1. High-Performance Remote I/O: Significantly improves remote I/O network data path 

performance over RDMA, enabling scalable performance for data-intensive 

applications. 

2. Standardized Interface: Offers a standard io_uring-like interface at the software level, 

following the same Proactor-based asynchronous model used in the local Linux kernel 

io_uring interface. 

3. Fully User-Space Solution: Operates entirely in user space without requiring kernel-

side servers yet achieving similar performance to a kernel-side implementation, which 

is amenable to use with containers and hypervisors. 

 

The in-band data path functionality of the circular buffer is straight forward and lock-free. 

Each endpoint manipulates the locally exposed buffer construct by: 

• Writing data: updating the head pointer. 

• Reading data: updating the tail pointer. 

 

The out-of-band control brings up the described buffer connections across the deployment 

and manipulates their depth and head/tail update strategies. The mechanism also controls 

Quality of Service (QoS) across the service deployment. This approach is particularly important 

especially for latency-sensitive operations, such as vAccel interface disaggregation (Section 5), 

where jitter can significantly impact performance. 

Applications using the disaggregated circular buffer should follow the Proactor pattern (Figure 

3), a well-known software design pattern for handling asynchronous events efficiently. This 

pattern is particularly useful in applications that require concurrent execution of operations 

without the overhead of multiple threads and are ideal for containerized environments. The 

pattern simplifies asynchronous application development by integrating the demultiplexing 

of completion events and the dispatching of their corresponding event handlers. 
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Key participants in the Proactor pattern: 

1. Proactive Initiator: The entity in the application that initiates an asynchronous 

operation. It registers both a Completion Handler and Completion Dispatcher with the 

Asynchronous Operation Processor. 

2. Asynchronous Operation Processor: It executes asynchronous operations and notifies 

the Completion Dispatcher when an operation completes. 

3. Completion Handler: It processes the results of an asynchronous operation. It is 

notified by the Asynchronous Operation Processor when an operation is complete. 

4. Completion Dispatcher: It invokes the correct call to the Completion Handler based on 

the execution environment. 

5. Asynchronous Event Demultiplexer: This component blocks waiting for events to 

occur on the Completion Event Queue and returns completed events to its caller. 

6. Completion Event Queue: It buffers completion events until they are dequeued by the 

Asynchronous Event Demultiplexer. 

 

 

Figure 3: Proactor Software Pattern 

 

4.2 Relation to Project Objectives and KPIs 

This component serves the EMPYREAN functional requirement F_SO.12 “Offload acceleration 

to nearby devices” and provides enabler EN_3 “High-Performance Data Transport Service”. 

Moreover, it contributes to achieving the technical KPIs T4.1 “Increase application-level small-

message transfer performance” and T4.2 “Improve the RDMA programming efficiency of 

applications”. 
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To meet these goals, the deliverable describes the integration of the Software-Defined 

Interconnect (SID) with the vAccel (Section 5), enabling the offloading of computationally-

intensive workloads to nearby acceleration devices. The SDI articulates the RDMA transport 

capabilities with network facing signalling rates up to 200Gb/sec, providing a high-

throughput, low-latency data path. The proposed approach promotes the circular buffer 

interface concept for RDMA network I/O, directly contributing to the achievement of the KPIs 

T4.1 and T4.2. The developed mechanism supports transparent remote synchronization and 

enables batching small messages into larger buffers. As a result, it reduces housekeeping 

overhead, improves overall throughput, and significantly enhances RDMA programming 

efficiency, thereby supporting the targeted technical KPIs. 

 

4.3 Architecture and Interfaces 

The disaggregated circular buffer communication system is the heart of the software-defined 

interconnect architecture developed within EMPYREAN. The main concept is depicted in 

Figure 4. In EMPYREAN, we adopt and extend the well-known circular buffer paradigm to 

serve as the foundation for a low-level RDMA-based communication library, referred to as 

libRRR. Next, we provide an overview of the internal design and operation of this system. 

 

 
Figure 4: Single-sided RDMA Circular Buffer 

 

Each RDMA circular buffer is single-sided and the baseline supports one producer and one 

consumer. Multi-producer/multi-consumer access is expected to be handled explicitly by the 

application that uses the library. The producer pushes data to the buffer and the consumer 

pulls from it, using the provided API. Notably, the buffer head and tail need to be polled for 

access, as the library does not provide any other notification mechanism. The applications are 

not exposed at all to RDMA communication, while form the developer’s perspective 

interaction with the buffer is similar to accessing a local buffer, albeit through the exposed 

API, abstracting away all RDMA communication complexities. 
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Each circular buffer instance moves traffic towards one direction. To implement a full-fledged 

RPC communication, typically there is a requirement of instantiating two buffers per direction: 

one for control and one for data for request side and another set for response side (Figure 5).  

The library offers comprehensive wrappers to implement the described RPC transport model. 

In this scheme, control and data messages can be transmitted out of order, and there is no 

one-on-one requirement for control and data buffers. Each control (Ctrl) command received 

at the destination may consume anywhere from zero data entries up to the whole buffer, a 

decision that is entirely left to the application. 

Figure 5 illustrates the RPC mechanism. The API uses separate circular buffers for control 

(Submit Queue - SQ) and data (Submit Queue Data - SQD), which operate independently. This 

separation is crucial because some RPC calls may feature only control operations (e.g., remote 

read), while others may involve both control and variable-sized data (e.g., remote write), 

potentially end up consuming several entries of the circular buffer data. The circular buffer 

entries are of fixed size, defined during initialization, which simplifies memory management 

and alignment. The same buffer configuration applies to the asynchronous response path, 

which may or may not need to transfer data back to the requestor. To enable full-duplex RPC, 

a total of four (4) circular buffers are initiated.  

Notably, these buffers are independently synchronized with their remote counterparts 

through the same RDMA channel. This design decouples the number of RDMA channels from 

the number of disaggregated circular buffers, allowing multiple RPC channels to be 

multiplexed over the same RDMA channel. This approach reduces connection context 

memory pressure. With buffers supporting lock-free operations, application developers can 

even use independent threads to feed control and data channels on each side, if needed by 

the application distributed communication. Nevertheless, the circular buffers structure 

guarantees in-order delivery within each stream.    

 

Figure 5: Typical RPC channel disaggregated buffer deployment 
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Figure 6 depicts the complete RDMA interaction sequence used to synchronize the contents 

of a local buffer with a remote buffer. This process involves three (3) key steps, all performed 

exclusively through RDMA memory operations.  

 
Figure 6: Request Path RDMA Remote Circular Buffer Sync 

The first step involves RDMA write operations that update both tail and head entries of the 

remote circular buffers (i.e., rings). Specifically, the head is updated for the remote ring that 

is receiving new data, while the tail is updated for the ring in the opposite direction, for which 

the request initiator has already consumed an entry locally. In most cases, tail updates occur 

typically implicitly, as part of head updates in the opposite direction. However, explicit tail 

updates are also supported but are left to the application’s responsibility when needed.  

The second step is initiated by the receiver, which due to the previous head update, it can 

determine which part of the remote command (cmd) ring contains new command data that 

is not yet available locally. Using this information, the receiver performs an RDMA read to 

fetch all the updated remote command data. At this point batching of remote ring entries in 

one transfer is achieved, improving efficiency. If the application logic requires examining the 

command entries before deciding which data entries to fetch, a separate RDMA read is issued 

to pull in the relevant data ring contents, provided they are available. 

In hardware implementations, the circular buffer logic is entirely abstracted from 

accelerators, which interact through a simple streaming interface.  

Moreover, the software-defined control layer provides an interface for managing 

communication link establishment and buffer configurations. It ensures that:  

• Links are only activated when endpoints are authenticated and associated. 

• Message transmission may include optional authentication (e.g., HMAC2).  

• Link-level properties such as jitter and latency are properly configured, as they directly 

related to circular buffer configurations.  

                                                      
2 https://datatracker.ietf.org/doc/html/rfc4868 
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This software-defined control plane takes advantage of the capability of bringing up RDMA 

Queue Pairs (QPs) out-of-band, thereby decoupling link setup from the application data path. 

As a result, the application can remain focused purely on data transmission, free from the 

complexities of RDMA connection management. 
 

4.3.1 Data path software public API 

The data path software interface is implemented as a C programming language library that 

wraps disaggregated circular buffer operations over RDMA. This API handles the instantiation 

of RDMA communication channels and the associated ring buffers, exposing a typical ring 

buffer interface that enables efficient and streamlined manipulation of these resources. 

 

Table 1: Data path software API – Available functions in the developed C-language library 

rrr_init_rings 

int rrr_init_rings(int sockfd, struct rdma_connection *res, struct rrr_ring_pair *ringp, char * 

recv_bufs[], char* send_bufs[],int blocksize,int iodepth, int submit_ctrl_buf_size, int 

completion_ctrl_buf_size, bool isServer, bool ext_buf_management)  

This function is used both on  client and server sides and initializes the ring pairs and associates 

them with an RDMA connection. 

rrr_register_buffer_for_transfer 

int32_t rrr_register_buffer_for_transfer(struct rrr_ring_pair *ringp, struct rdma_connection *res, 

unsigned char * buffer, uint32_t bfidx, uint64_t size) 

This function registers a user application buffer to the ring associating it effectively with a ring 

entry at index bfidx and registers its address for RDMA transfers 

rrr_async_rdma_remote_data_buf_list 

int rrr_async_rdma_remote_data_buf_list(struct rrr_ring_pair *ringp, struct rdma_connection 

*res, uint64_t *laddr, uint32_t *lkey, uint64_t *raddr, uint32_t *rkey, uint32_t *len, int entries) 

This function registers a receive-side ring buffer that accepts sent data from remote counterpart. 

The async refers to the asynchronous recycling of the receive buffer.  

rrr_ring_get_next_head_cmd_buf 

void * rrr_ring_get_next_head_cmd_buf(struct rrr_ring_pair *ringp, bool isSubmit) 

This function get next head. It can be used either from client or server side 

rrr_ring_get_next_tail_cmd_buf 

void * rrr_ring_get_next_tail_cmd_buf(struct rrr_ring_pair *ringp, struct rdma_connection *res, 

uint32_t *idx, bool isSubmit); 
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This function gets next tail it can be used either from client or server side. 

rrr_ring_get_next_tail_fixed_data_buf 

void * rrr_ring_get_next_tail_fixed_data_buf(struct rrr_ring_pair *ringp, struct rdma_connection 

*res, uint32_t *idx, bool isSubmit); 

This function is used to get next tail at the receive side when fixed receive buffers are used by the 

server for improved performance. 

rrr_submit_ring_get_next_tail_free_data 

int rrr_submit_ring_get_next_tail_free_data(struct rrr_ring_pair *ringp, uint32_t bufnum, 

uint64_t * localbfs, uint64_t *rembfs); 

This function gets next tail data from remote ring side and copies them from remotebfs to localbfs 

are required updating the tai l in the process. 

rrr_ring_unlock_cmd_buf 

void  rrr_ring_unlock_cmd_buf(struct rrr_ring_pair *ringp, uint32_t *idx, bool isSubmit); 

Function protects buffer from being reused/retired until application that uses it stops needing it. 

rrr_ring_synchronous_unlock_data_buf 

void  rrr_ring_synchronous_unlock_data_buf(struct rrr_ring_pair *ringp, uint32_t *idx, bool 

isSubmit); 

This function protects data buffer contents until application has finished using them. 

rrr_register_buffer_for_transfer 

int32_t rrr_register_buffer_for_transfer(struct rrr_ring_pair *ringp, struct rdma_connection *res, 

unsigned char * buffer, uint32_t bfidx, uint64_t size); 

This function registers buffer memory for RDMA transfers. 

rrr_ring_data_async_get_next_head 

int rrr_ring_data_async_get_next_head(struct rrr_ring_pair *ringp, int bufidx, bool isSubmit); 

This function provides asynchronous ring buffer head retrieval 

rrr_ring_commit 

int rrr_ring_commit(struct rrr_ring_pair *ringp, struct rdma_connection *res, bool isSubmit); 

This function provides commit / doorbell functionality that initiates remote buffer synching 
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4.3.2 Data path hardware interface 

 

To support simple hardware sensors and other edge devices, the Software-Defined 

Interconnect provides a fully hardware-based data path interface built on the AXI-Stream 

protocol3. The circular buffer mechanism described earlier is integrated into the Nvidia 

FlexDriver4 system, enabling seamless communication between software and hardware 

components at the edge. 

Table 2: Data path hardware interface 

AXI Send Master-Slave Interface 

module axi_stream_512 ( 

    input wire clk, 

    input wire rst_n, 

    // Master -> Slave 

    output reg [511:0] m_axis_tdata, 

    output reg         m_axis_tvalid, 

    input  wire        m_axis_tready, 

    output reg         m_axis_tlast 

) 

This is the verilog module interface that allows 512-bit data to be transmitted in a single cycle. t_data 

holds the data, t_valid indicates that data are valid, t_ready sets the interface into ready mode and 

t_last indicates the part of t_data 512-bit word that is valid for read in the current cycle. 

 

4.3.3 Software-Defined Interface   

The Restful API described below provides the necessary control path support required by the 

previous interfaces involved in data forwarding within the EMPYREAN platform. In addition to 

managing control operations, this control path interface also performs authentication for 

establishing connections initiated by the user.  

This software-defined interface is designed to fulfil three primary roles: (i) define endpoint 

associations, establishing logical pairs between endpoints intending to utilize EMPYREAN 

RDMA secure links, (ii) assign desired performance characteristics, which the system will 

attempt to accommodate, and (iii) manage the actual link establishment, ensuring controller 

maintain a full overview of the deployment.  

                                                      
3 https://developer.arm.com/documentation/ihi0051/latest/ 
4 https://dl.acm.org/doi/10.1145/3503222.3507776  
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The API listed below offers the basic control capabilities and is designed to be triggered and 

orchestrated by EMPYREAN platform control and management plane, seamlessly integrating 

with the EMPYREAN deployment platforms. 

 

Function: Set User Pair Association and Credentials  

Description:  Sets a user pair association for link bring up with credentials 

URL:   /SetPair 

HTTP Type:  POST 

POST JSON Data: { {“Endpoint1”: <Endpoint1 Identifier>”}, {“Endpoint2”: <Endpoint2 Identifier>”},  

{“Endpoint2”: <Comms Secret - Optional>”} } 

RESPONSE JSON Data: { {“PairID”: <idenfifier>”}} 

Success Response (code 200) 

Internal Error Codes:  code 500 “Endpoints not found” 

  

Function: Set Link Properties  

Description:  Sets a user pair association for link bring up with credentials 

URL:   /SetLinkProperties 

HTTP Type:  POST 

POST JSON Data: { {“PairID”: <identifier>”},  {“Jitter”: <Value>”}, {“Latency”: <Value>”} } 

Success Response (code 200) 

Internal Error Codes:  code 500 “Values not in Nanosecond format”  

REMARKS:  SetPair should be issued before to have a valid pair association id. The values reflect 

specific configuration of circular buffer that aims to meet requirements. Based on the requested 

values (e.g. if are unreasonable) or the overall load of the network the requirement might not be 

met so the global controller should have an overview of the deployment and current activity 

before configuring.  

  

Function: Bring up Link  

Description:  Coordinates the link bring up on both sides 

URL:   /LinkBringUP 

HTTP Type:  POST 

POST JSON Data:  {“PairID”: <identifier>”} 

Success Response (code 200) 

Internal Error Codes:  code 500 “Bring up failed”  

REMARKS:  Function should be called after the previous configuration functions have been issued.  
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5 Hardware Acceleration Abstractions  

5.1 Overview 

The vAccel5 framework enables seamless acceleration workload offloading by abstracting 

hardware acceleration capabilities and offering a unified API for diverse backend targets. In 

the context of EMPYREAN, vAccel is integrated to support efficient, low-latency execution of 

AI/ML workloads across distributed, heterogeneous environments.  

A key aspect of this integration involves supporting libRRR, the RDMA-capable, user-level 

communication library described in Section 4, as a vAccel transport plugin. This integration 

enables seamless remote AI/ML inference task offloading to hardware-accelerated endpoints 

across the EMPYREAN IoT-edge-cloud continuum. By embedding the vAccel execution model 

within libRRR, EMPYREAN introduces a lightweight, low-latency, and high-performance 

mechanism for invoking vAccel plugins over RDMA channels, ensuring optimal performance 

and scalability. 

5.2 Relation to EMPYREAN Objectives and KPIs 

This component is a key enabler for: 

● F_SO.12 – Offload acceleration to nearby devices 

● EN_3 – High-Performance Data Transport Service 

and directly contributes to the achievement of: 

● T4.1 – Increase application-level small-message transfer performance 

● T4.2 – Improve RDMA programming efficiency of applications 

By abstracting the complexity of RDMA operations and integrating with vAccel's plugin-based 

execution model, this integration offers a transparent and efficient offloading mechanism, 

particularly suitable for lightweight edge devices. It supports scalable and secure AI inference 

capabilities across EMPYREAN Associations. 

In scenarios such as anomaly detection in smart factories or real-time image processing in 

surveillance systems and smart agriculture, vAccel enables resource-constrained edge devices 

to offload processing tasks to nearby accelerators, while maintaining end-to-end TLS 

encryption and attestation support.  Moreover, vAccel integration extends to federated 

learning workflows, enabling distributed training on multiple edge devices and leveraging 

accelerated aggregation in more powerful environments (e.g., far edge, cloud) using vAccel-

enabled plugins. 

                                                      
5 https://vaccel.org 
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5.3 Architecture and Integration Details 

The integration of vAccel within EMPYREAN stack adopts a layered, modular architecture, 

designed to support efficient offloading and execution of AI/ML workloads across distributed 

systems. Communication is orchestrated through the Remote Ring-buffer Runtime (libRRR) 

over RDMA, enabling ultra-low latency, zero-copy interactions. 

 

 
Figure 7: vAccel and libRRR integration 

 

The architecture comprises the following key components (Figure 7): 

• vAccel Application: The user application leverages the vAccel API to issue high-level 

acceleration requests. 

• vAccel Core Library (libvaccel): Acts as the main entry point for applications. It 

marshals commands and delegates them to the appropriate client backend (plugin). 

• vAccel Client Backend (vaccel-client-rrr): Encodes acceleration requests and transmits 

them through the libRRR communication layer, leveraging a ring-buffer abstraction for 

efficient data exchange. 

• libRRR (Remote Ring-buffer Runtime): The high-performance communication runtime 

mechanism built on top of RDMA transport, facilitating zero-copy, low-latency 

command and data descriptor exchanges between client and server (detailed in 

Section 4). 

• vAccel Server Backend (vaccel-server-rrr): Dequeues and interprets incoming 

requests, dispatching them to the appropriate hardware backend through the vAccel 

plugin interface. 
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• vAccel Plugin Layer: Acts as a bridge between the vAccel runtime and the hardware 

acceleration backends, interfacing with the actual transport layer (libRRR) on one side 

and supporting hardware devices, such as GPUs, FPGAs, or TPUs on the other side. 

• Hardware Acceleration Device: The physical endpoint that executes AI/ML tasks, fully 

abstracted through the plugin interface for seamless integration and portability. 

 

5.4 Implementation and Integration Points 

The integration of vAccel into EMPYREAN platform is implemented through a series of 

modular development tasks and well-defined interconnection points, carefully aligned with 

the architectural objectives and system-level constraints of hyper-distributed environments.  

Key integration steps include: 

1. Development of vaccel-client-rrr and vaccel-server-rrr: These components constitute 

the client-server communication model for vAccel over the Remote Ring-buffer 

Runtime (RRR). The client component serializes commands and associated arguments 

into buffer-length structures, while the server deserializes, validates, and dispatches 

them for execution. This modular separation ensures flexibility in deployment, e.g., 

placing clients on IoT devices and servers on edge or cloud nodes. 

2. Design and Implementation of libRRR Protocol: The Remote Ring-buffer Runtime 

(libRRR) layer provides a zero-copy, lock-free communication mechanism over RDMA. 

It abstracts the complexities of RDMA interactions while exposing efficient 

enqueue/dequeue operations that are critical for achieving high throughput and low 

latency. The libRRR component is described in detail in Section 4. 

3. Deployment of RDMA Transport Infrastructure: High-speed RDMA-based 

interconnects (e.g., RoCE, Infiniband) are used to transport ring-buffer payloads, 

minimizing latency associated with conventional TCP/IP stack. This is particularly 

essential for supporting real-time, latency-sensitive AI workloads in distributed edge-

cloud execution paths. 

4. Implementation of Generic Operations (GenOps): To support frameworks like 

TensorFlow6 and PyTorch7, high-level tensor operations are abstracted as GenOps, 

which are routed through the plugin layer. This approach enables device- and 

framework- agnostic acceleration, making it easier to plug in various backend 

hardware types seamlessly. 

5. Resource Containerization via vAccel-resource: A lightweight vAccel-resource entity 

is introduced to encapsulate hardware contexts and metadata, such as memory 

mappings, session states, and device capabilities. This facilitates orchestration and 

                                                      
6 https://www.tensorflow.org 
7 https://pytorch.org 



D3.2 – Software-defined Edge Interconnect and Service Assurance Mechanisms 
 

 

empyrean-horizon.eu  27/70 

resource isolation in multi-tenant and containerized deployment environments within 

EMPYREAN. 

6. Feedback Loop to EMPYREAN Orchestrator: The vAccel server continuously exports 

runtime metrics, such as latency, throughput, queue depth, which are consumed by 

EMPYREAN’s orchestration and deployment mechanisms. This enables dynamic 

offloading decisions and real-time optimization of distributed workloads based on 

system state and workload demands. 

 

As a foundational enabler of hardware-accelerated execution within the EMPYREAN control 

and management plane, the vAccel framework, tightly integrated with the libRRR 

communication layer, plays a critical role in delivering high-performance, low-latency AI/ML 

capabilities across all project use cases. Rather than operating as an isolated component, 

vAccel is deeply embedded within the EMPYREAN compute and resource orchestration stack. 

It seamlessly interoperates with the key platform components such as the EMPYREAN 

Aggregator, Service Orchestrator, EMPYREAN Controller, and Telemetry Service. 

By leveraging libRRR’s ring-buffer-based transport over RDMA, vAccel enables efficient 

offloading of compute-intensive workloads from constrained edge devices to remote 

hardware accelerators (e.g., GPUs, FPGAs). This remote execution model dramatically reduces 

inference latency, preserves energy on edge nodes, and ensures timely AI operations —

including inference, pattern recognition, and predictive analytics— even when local compute 

resources (e.g., IoT devices, on-premise edge) are limited. 

Moreover, the integration directly supports dynamic optimization strategies driven by the 

telemetry and service assurance mechanisms (e.g., Analytics Engine). As the system processes 

telemetry data and detects evolving runtime conditions, vAccel’s abstraction layer facilitates 

the rapid reallocation or offloading of workloads to the most suitable acceleration resources, 

whether local or remote.  

This dynamic capability aligns tightly with EMPYREAN's mission and goals enabling: 

• Autonomous and resilient workload adaptation, especially under varying edge/cloud 

resource constraints. 

• Real-time AI inference in mission-critical edge deployments, such as industrial 

automation or autonomous mobility scenarios. 

• Scalable orchestration of heterogeneous resources, ensuring uniform access to 

acceleration across diverse hardware environments. 

• Energy-aware, latency-optimized execution, supporting green computing goals while 

maintaining strict performance guarantees. 

 

Across all EMPYREAN use cases, the integrated vAccel and libRRR stack enhances the 

platform’s ability to balance workloads intelligently, maintain low-latency responsiveness 

under load, and deliver inference-as-a-service in a hyper-distributed environment. Its deep 

coupling with the control and management plane makes it a key enabler for fulfilling the 

project’s performance, scalability, adaptability, and operational efficiency technical KPIs. 
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6 Service Assurance  

6.1 Overview 

EMPYREAN architecture integrates distributed service assurance mechanisms for the self-

driven adaptability of the IoT-edge-cloud continuum through multiple instances of Analytics 

Engine that utilize real-time telemetry data. The Analytics Engines are part of the Monitoring 

and Observability layer, enabling EMPYREAN Aggregators to continuously monitor and predict 

probable performance and security issues in Associations, allowing for prompt response to 

anomalies and ensuring efficient resource utilization. Unlike deployment and orchestration 

operations, which are generally executed per-request, service assurance operations are 

executed in automated closed-loops to ensure applications perform as intended by 

dynamically adjusting deployments and Association configuration based on real-time 

analytics and telemetry data. 

These engines employ continuous analysis techniques—such as machine learning, machine 

reasoning, swarm intelligence, and robust adaptive optimization—to drive orchestration 

mechanisms to (i) adapt resources within the Associations, (ii) provide dynamic load balancing 

of processing workloads, and data within and across Associations, (iii) migrate workloads to 

optimize energy efficiency, (iv) detect and categorize abnormal situations in 

applications/resources, and (v) mitigate resource fragmentation and connectivity issues. 

These capabilities ensure that applications perform as intended while proactively or reactively 

triggering necessary re-optimizations to provide optimal performance, reliability, and 

efficiency across the complex and dynamic Association-based IoT-edge-cloud continuum. 

By implementing these data-driven mechanisms, the EMPYREAN platform can achieve robust 

anomaly mitigation, adaptability, and self-driven recovery, ensuring resilient and efficient 

operations in the face of unforeseen issues across the infrastructure.  

6.2 Relation to EMPYREAN Objectives and KPIs 

The Analytics Engine is one of EMPYREAN’s enabling technologies that support the 

autonomous operation and self-driven adaptability across the Association-based continuum. 

To this end, the Analytics Engine contributes to the achievement of the following key 

objectives and technical KPIs: 

● T1.2 - Increase reliability in the edge: Anomaly detection and failure prediction using 

AI/ML within the Analytics Engine increases reliability by anticipating and pre-empting 

failures at the edge. The notifications provide reliable asynchronous communication 

for proactive response to performance issues. 

● T1.4 - Provide low and predictable latency for hyper-distributed applications: 

Integration of time-series databases and publish/subscribe mechanisms facilitates 

low-latency data ingestion and real-time event propagation. Moreover, the modular 
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design enables localized execution of analytics, allowing edge nodes to quickly react 

to changes in their local environment. 

● T2.3 - React fast to rapid changes in computational and data demands to maximize the 

number of demands served: It provides continuous learning and inference to detect 

resource saturation or performance degradation, triggering rapid re-optimization 

actions. Dynamic reconfiguration and orchestration are triggered based on telemetry 

data, ensuring responsiveness to changes in demand and resources. 

● T2.5 - Increase the robustness of the algorithms, ensuring consistent performance even 

under uncertain or noisy conditions: By employing robust adaptive optimization and 

swarm intelligence, it provides adaptability to uncertainties and non-deterministic 

behaviours in edge environments. The feature extraction, data normalization, and 

filtering improve input quality, reducing the impact of noisy telemetry. 

6.3 Architecture  

A key requirement for designing the Analytics Engine is its scalability, both in terms of 

integrating diverse data sources and executing AI/ML-based algorithms. Additionally, the 

Analytics Engine must efficiently handle data ingestion from all telemetry and monitoring 

resources across infrastructure segments, enabling the seamless combination of data from 

infrastructure, through Associations, to deployed services and applications. The ability to 

merge application and infrastructure-based metrics is closely linked to the AI/ML functions of 

the EMPYREAN distributed control and management plane. Facilitating service assurance 

mechanisms to aggregate and utilize data from various infrastructure layers and Associations 

is essential for implementing more intelligent self-adaptation and self-optimization 

mechanisms. 

The design of the Analytics Engine follows a modular and scalable microservices-based 

approach, providing flexibility for integrating multiple data sources and executing diverse 

data-driven algorithms. It comprises four primary services: the Access Interface, Data 

Connector, Data Manager, and Event Detection Engine. Figure 8 illustrates the architecture of 

the EMPYREAN Analytics Engine, highlighting its key components and their interactions with 

other EMPYREAN services. 

The Access Interface enables bidirectional communication to exchange commands, 

information, and notifications among the Analytic Engine instances and other services within 

the distributed EMPYREAN control and management plane. The design includes two distinct 

interfaces, each designed to meet specific interaction requirements: 

● RESTful API: It provides a stateless, synchronous interface for executing control 

operations. It is designed to handle standard CRUD operations (Create, Read, Update, 

Delete) via standard HTTP methods (POST, GET, PUT, DELETE). The RESTful API is ideal 

for tasks requiring instant feedback or control over analytics operations. The API Server 

component implement this interface. 
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● Asynchronous interface: It is provided by the Notification Manager component and is 

built on the Eclipse Zenoh8, supporting flexible, asynchronous, and persistent 

communication using its publish/subscribe and query mechanisms. It allows the 

Analytics Engine to send real-time notifications and event updates to the service 

orchestration mechanisms and platform web-based dashboard. 

 

 
Figure 8: Analytics Engine architecture and core components 

 

The Data Connector service manages the collection of raw monitoring and streaming 

telemetry data from various sources within the Monitoring and Observability layer. It 

functions as pre-processing element, performing tasks such as data filtering and 

normalization, before forwarding the processed data to the Data Manager service. The design 

supports multiple data ingestion methods (i.e., pull and push) and accommodates diverse 

types of monitored data (i.e., metrics, events, streams) through various protocols. 

Each data collection mechanism is implemented as a custom plug-in. The initial design 

supports: (i) a REST client for managing periodic and on-demand monitoring data collection 

through EMPYREAN’s telemetry service default interface, (ii) a gRPC module for handling 

streaming telemetry data, (iii) an agent customized to interact with the decentralized 

EMPYREAN data distributor service to ensure seamless data sharing within the EMPYREAN 

                                                      
8 Eclipse Zenoh: https://zenoh.io 
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platform, and (iv) a Prometheus client for collecting and managing monitoring data in the 

OpenMetrics9 format.  

A common design approach has been adopted for these plug-ins, where each implements a 

standardized Northbound Interface (NBI) and Southbound Interface (SBI). The NBI provides a 

unified interface for receiving configuration instructions from the Access Interface service, 

while the SBI forwards the collected data to the Data Engine component. 

Pre-processing is implemented as a separate component, the Data Engine, which formats as 

well as augments monitoring and telemetry for predictive model creation. It ensures data 

normalization for consistency across different telemetry formats, performs feature extraction 

and transformation to prepare data for advanced analytics, and applies filtering and 

aggregation to reduce noise and enhance meaningful insights before storage and analysis. 

The Data Manager service is responsible for managing data storage and facilitating data 

exchange between internal and external components. It provides local storage of processed 

data, trained models, and analysis results. The EMPYREAN Edge Storage component provides 

the repository of trained models, which enables collected data and trained models to be 

encrypted and stored in a distributed manner. This approach enhances security, fault 

tolerance, and accessibility, ensuring that data remains protected while being readily available 

to the Event Detection Engine for analysis, detection, and machine reasoning tasks. 

Additionally, the Data Manager incorporates various database technologies to handle both 

structured and unstructured data, including NoSQL and time-series databases. NoSQL 

databases store unstructured or semi-structured data such as event logs, metadata, analysis 

results. and post-analysis content. Time-series databases handle the continuous streams of 

monitoring data, telemetry, and event logs from the Data Connector service, which later fuels 

the operations of the Event Detection Engine. By combining edge storage, NoSQL, and time-

series databases, the Data Manager ensures efficient data processing, storage, and retrieval, 

supporting the EMPYREAN platform’s mission of real-time event detection and intelligence. 

The Data Handler component is a RESTful controller that provides a standardized interface for 

both Analytics Engine components and external EMPYREAN services to access historical 

telemetry data and interact with the other parts of the Data Manager service. It exposes 

RESTful methods that simplify data retrieval and management across diverse databases and 

storage resources, ensuring a unified and efficient data access layer. These methods abstract 

the complexities of data manipulation, allowing for seamless retrieval of telemetry data based 

on specified parameters while supporting filtering and query operations.  Additionally, the 

Data Handler ensures that stored information is properly updated and maintained. For secure 

and efficient storage and retrieval, the component interacts with EMPYREAN’s edge storage 

resources, handling both data and trained models through their standardized S3-compatible 

APIs. 

 

                                                      
9 OpenMetrics: https://github.com/OpenObservability/OpenMetrics 
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The Event Detection Engine service implements the core functionality of EMPYREAN’s 

distributed service assurance framework, leveraging real-time telemetry data and machine 

reasoning techniques to ensure system reliability. It enables the integration and execution of 

data-driven algorithms that safeguard the performance and availability of deployed 

applications and Associations. By incorporating AI/ML-based mechanisms, the Event 

Detection Engine builds knowledge and intelligence to sense (detect what is happening), 

discern (interpret detected events), and infer (understand implications) over an infinite time 

horizon control loop. Its key functions include (i) AI/ML-driven anomaly detection, failure 

prediction, and resource optimization, (ii) correlation of infrastructure and application-level 

metrics to ensure consistent performance, and (iii) triggering adaptive control mechanisms to 

dynamically respond to detected events. 

The Event Detection Engine consists of four main components: the Dispatcher, Model 

Training, Model Execution, and Event Reporter. The Dispatcher handles interactions with the 

Access Interface and Data Manager services as well as it oversees the operation of the internal 

components. It also coordinates the execution of inference, analysis, and training operations. 

The Model Training supports the selection, configuration, and optimization of AI/ML-based 

predictive and analytical models. The implementation will facilitate the definition and 

integration of user-defined detection models within the Analytics Engine, provided they align 

with the adopted processing pipeline and APIs. The Model Execution manages the 

instantiation and execution of available detection and analysis methods. Depending on the 

available telemetry information, these mechanisms will operate at different timescales. They 

will autonomously drive the orchestration mechanisms in re-optimizations and adaptations 

within an Association. All detected anomalies and performance issues are forwarded to the 

Event Reporter, which then automatically delivered to the appropriate internal components 

(e.g., Data Manager) and EMPYREAN orchestration and management services (e.g., 

EMPYREAN Aggregator, Service Orchestrator) to trigger any required remediation actions. 

By combining real-time monitoring, AI-driven insights, and adaptive control, the Analytics 

Engine (i) ensures fast reaction to rapid changes in computational and data demands to 

maximize the number of served demands, (ii) increase robustness, ensuring consistent 

performance even under uncertain or noisy conditions, (iii) maintain optimal performance by 

quickly identifying and resolving anomalies, and (iv) learns from past anomalies and recovery 

actions to improve future responses. 

6.4 Implementation 

During the reporting period, we focused on implementing the Access Interface, Data 

Connector, and Data Manager services. Additionally, we developed the core logic of the Event 

Detection Engine, with its full implementation scheduled for the second iteration of the 

implementation plane (M16-M26). The overall design of the Analytics Engine, along with the 

initial implementation of these services, ensures a robust, adaptable, and cloud-native 

application. Bellow, we provide an overview of the functionalities developed during the first 

iteration of the implementation plan. 
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The Access Interface components are implemented in Python, with the API Server built using 

the FastAPI10  web framework. FastAPI offers high performance, automatic data validation, 

and ease of use, making it an excellent choice for RESTful APIs and microservices. It is built on 

Asynchronous Server Gateway Interface (ASGI)11,  using Starlette12 for async support and 

Pydantic13 for automatic validation of request and response data. Figure 9 shows the methods 

exposed by the Access Interface’s RESTful API. 

 

 

                                                      
10 FastAPI framework: https://fastapi.tiangolo.com 
11 ASGI: https://asgi.readthedocs.io/en/latest/ 
12 Starlette: https://www.starlette.io 
13 Pydantic: https://docs.pydantic.dev/latest/ 
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Figure 9: Analytics Engine – Access Interface RESTful API 
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The Notification Engine is built using the Eclipse Zenoh14 and the PyQt15 framework. For the 

asynchronous interface and communication, the implementation leverages the Zenoh key 

expressions, the topics, to implement efficient and scalable publish-subscribe interactions, 

enabling real-time messaging across distributed systems. In this setup, messages published 

by components such as the Data Manager or Event Detection Engine are sent to designated 

topics. These topics then broadcast all received messages to subscribed clients (e.g., 

EMPYREAN Aggregator, UI, CLI), ensuring that each component receives the same set of 

notifications simultaneously. 

The Notification Engine posts messages in JSON format, following a predefined structure: 

● analytics_engine_uuid: (string): Unique identifier for the Analytics Engine instance. 

● event (string): Unique identifier for the event. 

● message (object): Collection of event-related parameters containing the necessary 

information. 

● timestamp (integer): The timestamp of the event. 

 

Table 3 outlines the detailed structure of notification messages, describing the expected 

elements and their roles in the communication process. This structured approach ensures 

consistent message delivery across the EMPYREAN platform, improving responsiveness and 

facilitating real-time control and management operations. 

Table 3: Analytics Engine - Notification Engine messages 

Event Identifier Description Parameters 

NODE_UP 

A new worker node is 

detected to a specific 

cluster, triggered on 

joining a cluster or an 

existing one becomes 

online again. 

node_id (integer): worker node unique 

identifier 

cluster_id: (integer):  K8s/K3s cluster 

unique identifier 

asociation_id: (integer): EMPYREAN 

Association unique identifier 

NODE_FAILED 

Worker node does not 

operate properly, unable 

to serve workloads. 

node_id (integer): worker node unique 

identifier 

cluster_id (integer): K8s/K3s cluster unique 

identifier 

association_id: (integer): EMPYREAN 

Association unique identifier 

message (string): event related 

information 

                                                      
14  Eclipse Zenoh: https://zenoh.io 
15 PyQt: https://riverbankcomputing.com/software/pyqt/intro 



D3.2 – Software-defined Edge Interconnect and Service Assurance Mechanisms 
 

 

empyrean-horizon.eu  36/70 

NODE_DOWN 

A worker node is detected 

unavailable, triggered on 

leaving a cluster or 

becoming offline. 

node_id (integer): worker node unique 

identifier. 

cluster_id (integer): K8s/K3s cluster unique 

identifier. 

association_id: (integer): EMPYREAN 

Association unique identifier. 

NODE_STRESSED 

A worker node is stressed 

with high load for a 

significant amount of time. 

node_id (integer): worker node unique 

identifier. 

cluster_id (integer): K8s/K3s cluster unique 

identifier. 

association_id: (integer): EMPYREAN 

Association unique identifier. 

operational_status (object): affected 

operational parameters. 

ASSOCIATION_STRESSED 

An Association is stressed 

with a high load for a 

significant amount of time. 

association_id: (integer): EMPYREAN 

Association unique identifier. 

operational_status (object): affected 

operational parameters. 

DEPLOYMENT_FAILED 

Deployed application is 

failed, triggered when at 

least one microservice is 

not running properly. 

deployment_id (integer): Application 

deployment unique identifier. 

affected_microservices (array): List of 

affected microservices identifier 

feedback (object): Information for the 

detected issue 

DEPLOYMENT_QOS 

Quality of service is not 

the expected for at least 

one microservice 

deployment_id (integer): Application 

deployment unique identifier. 

affected_microservices (array): List of 

affected microservices identifier 

feedback (object): Information for the 

detected issue 

DEPLOYMENT_MIGRATION 

Suggestion for migrating a 

deployment due to 

detected issues. 

deployment_id (integer): Application 

deployment unique identifier. 

feedback (object): Information for the 

detected issue 

 

The implementation of the Data Connector service follows a modular approach to ensure 

flexibility, scalability, and interoperability with the various telemetry sources. It is built using 

a combination of open-source frameworks and technologies to facilitate seamless data 

ingestion. Each connector component is implemented as a custom plug-in, supporting 

different data ingestion methods, while exposing a common RESTful northbound interface 

(NBI). Figure 10 presents the initial version of the implemented NBI. 

The Southbound Interface (SBI) delivers collected telemetry data to the Data Engine 

component, ensuring compatibility with storage and analysis services. To achieve this, SBI 

utilizes Pandas16 DataFrames as the primary data structure, offering several key advantages, 

such as, (i) efficient data handling as DataFrames provide a structured representation of 

telemetry data, enabling easier processing, filtering, and manipulation, (ii) interoperability 

                                                      
16 https://pandas.pydata.org 
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with popular analysis frameworks (e.g., NumPy, SciPy, Scikit-learn), ensuring smooth data 

analysis and transformation workflows, and (iii) performance optimization, as Pandas is 

optimized for high-performance operations on structured data, such as vectorized 

computations and parallel processing. 

Next, the Data Engine enhances the quality of collected data before storage and analysis by 

offering data normalization, feature extraction and transformation, filtering and aggregation 

and processed data forwarding to the Data Manager service for storage and retrieval. 

 

Figure 10: Analytics Engine – Data Connector plug-ins RESTful northbound interface 

 

The Data Manager integrates multiple database technologies to efficiently handle diverse 

data types, ensuring optimal performance across different workloads. To store event logs, 

metadata generated by the Event Detection Engine, post-analysis reports, historical insights, 

and processed data results from analytics pipelines, the Data Manager utilizes MongoDB17, a 

document-based NoSQL database for unstructured and semi-structured data.  MongoDB was 

selected as it offers flexibility in storing dynamic data structures as well as indexing and 

aggregation capabilities for supporting fast querying and data retrieval. For managing 

continuous telemetry streams, the Data Manager integrates InfluxDB18, a high-performance 

time-series database that provides (i) high-frequency data ingestion from the Data Connector 

service, (ii) efficient querying of historical monitoring data for predictive analytics, and (iii) 

retention policies to manage the storage lifecycle of telemetry logs. InfluxDB’s built-in query 

language enables complex filtering, transformations, and real-time analytics, making it well-

suited for event-driven intelligence in the EMPYREAN platform. 

In addition, to ensure local storage and edge-based data management, the EMPYREAN Edge 

Storage component is leveraged (for further details, see D3.1 (M15)). This approach provides 

a S3-compatible, secure, fault-tolerant, and distributed object storage system that offers (i) 

secure encryption for stored data and trained models, (ii) scalability to handle large volumes 

of telemetry and analytical data, and (iii) seamless integration with the EMPYREAN platform 

via standard S3 APIs. 

                                                      
17 https://www.mongodb.com 
18 https://www.influxdata.com  
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Moreover, the Data Handler component is implemented in Python using also well-known 

frameworks and libraries such as FastAPI, PyQt, PyMongo19, Boto320, and InfluxDB 3.0 client21. 

It facilitates interactions with the integrated database and storage resources. The Data 

Handler exposes RESTful methods that allow Data Connector components to efficiently 

populate the data stores and the Event Detection Engine components to retrieve historical 

telemetry data. The available RESTful methods are shown in Figure 11. 

 

Figure 11: Analytics Engine – Data Manager RESTful API 

 

6.5 Relation to Use Cases 

As an integral part of the EMPYREAN control and management plane, the Analytics Engine 

functions as an intelligence layer that empowers all project use cases with enhanced 

situational awareness, adaptive optimization, and context-aware decision-making. Rather 

than operating in isolation, the Analytics Engine is tightly integrated with core components 

such as the EMPYREAN Aggregator and Service Orchestrator, ensuring seamless access to its 

capabilities across the distributed edge-cloud infrastructure.  

It processes both real-time and historical telemetry data, applying advanced AI/ML-driven 

predictive analytics and event detection algorithms to support a wide range of operational 

objectives. This enables the system to proactively respond to dynamic conditions, resource 

fluctuations, and performance anomalies, directly contributing to the achievement of each 

use case’s KPIs. The Analytics Engine’s value is particularly evident across the project’s use 

cases, where it ensures high reliability and low-latency responsiveness in mission-critical edge 

scenarios. Additionally, its inference and optimization capabilities support the autonomous 

adaptability of workloads, enabling intelligent workload balancing in response to evolving 

demands and variations in edge and cloud resource availability.  

                                                      
19 https://github.com/mongodb/mongo-python-driver 
20 https://github.com/boto/boto3 
21 https://github.com/InfluxCommunity/influxdb3-python 
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7 Intelligent Autoscaling and Adaptive Computing 

Management 

7.1 Overview 

This work focuses on applying AI/ML techniques to enable vertical auto-scaling within a 

Kubernetes cluster within the edge-cloud continuum. Specifically, the objective is to develop 

an ML-based vertical auto-scaler, named VPA-pilot, that leverages collected monitoring data 

to recommend suitable container size for workloads. By tailoring resource allocations more 

precisely, this approach enhances container bin-packing efficiency on worker nodes, reducing 

the overall number of active nodes. In cloud environments, this results in lower execution 

costs, while in on-premise deployments, it can also allow powering off resources, leading to 

improved energy efficiency and further cost savings. 

In the edge-cloud continuum, besides traditional workloads that use CPU and RAM resources, 

the emerging hyper-distributed AI applications also require GPU resources. However, unlike 

CPU and memory, dynamic GPU fractioning remains an immature and evolving area within 

Kubernetes. Therefore, a key focus of this work is to research state-of-the-art methods for 

dynamic GPU fractioning, and to explore how vertical auto-scaling techniques can be 

extended to support GPU workloads in hyper-distributed environments.  

7.2 Background and Challenges 

Kubernetes is the de-facto industry standard for cloud infrastructure resource management 

and orchestration, and it has also been adopted as the main low-level orchestration software 

for the edge-cloud continuum. In a Kubernetes cluster, a large number of workloads of 

different applications are running on a cluster of computers called nodes. A workload does 

not exclusively occupy a node but runs with others together on a node. A workload is hosted 

in a corresponding container, which keeps the workload isolated from others on the same 

host computer(node). Containers work like VMs but with different mechanisms and much less 

overhead. When we deploy an application in a Kubernetes cluster, we create a Deployment 

object representing the application deployed in the cluster. Besides, instead of deploying 

individual containers, we deploy groups of co-located containers - so-called pods. A pod is a 

group of one or more closely related containers that run together on the same worker node 

and need to share certain Linux namespaces. 

To bring intelligence to the low-level orchestrator in the edge-cloud continuum, we enable 

the autonomous and adaptive workload auto-scaling on the low-level Kubernetes platforms. 

A common workload auto-scaling technique is horizontal auto-scaling, which already exists in 

Kubernetes and allows applications to decrease or increase the number of replicas. This is a 

powerful feature that enables the system to automatically adapt its resource allocation based 

on real traffic. However, if the limits are not set correctly, the average utilisation might grow 
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the application in a non-optimal way. Instead, we could keep more resources powered down 

and gain a lot in the system’s energy consumption. Hence, another technique to address the 

adaptation of workload is vertical auto scaling, which enables the automated setting of limits 

for each replica. 

The workload runs inside a container located in a pod, with the assumption that each pod 

contains exactly one container. A deployment manages several homogeneous pods (i.e., 

related containers). The goal is to implement a vertical auto-scaler that collects historical 

resource usage data, predicts a suitable container size, and applies this prediction across all 

containers in the deployment. The auto-scaled resources in this work are CPU, RAM, and GPU.  

The vertical auto-scaling problem in this context has three key aspects:  

• Auto-scaler Input: The input consists of stable, real-time collected and aggregated 

telemetry data from the Kubernetes cluster. We specifically focus on historical actual 

usage metrics for CPU, RAM, and GPU, referred to as workload usage. Other potential 

inputs, such as container size history or workload scheduling information, are 

intentionally excluded.  

• Auto-scaler Prediction Algorithm: The core ML-based algorithm that predicts future 

resource usage and estimates appropriate container request and limit values. The 

prediction should not exceed the (future) workload usage too much, as 

overestimations can lead to resource waste. It should also not be underestimated as 

this may disrupt workload execution and even cause service level objective (SLO) 

violations. The aim is for the ML algorithm to outperform traditional rule-based 

algorithms, such as threshold- or heuristic-based auto-scalers.  

• Auto-scaler Output: The output includes both the predicted resource requests and 

limits, given by the core prediction algorithm, as well as the mechanism to gracefully 

apply them across all containers in the deployment. Specifically, we need to properly 

configure the container resource request and limit settings according to the 

algorithm’s prediction, followed by resource fractioning and assignment of the 

appropriate fractioned slice to each container. Two main challenges arise: (i) GPU 

resources fractioning, which lacks native Kubernetes support (unlike CPU and RAM) 

and (ii) ensuring performance stability across the deployment when applying auto-

scaling on containers.  

 

The theoretical challenge in vertical auto-scaling is making accurate predictions for future 

container size predictions under a non-clairvoyant situation – without access to future 

workload usage patterns. As such, the auto-scaler must behave as an online algorithm, making 

real-time decisions with limited information. Although ML techniques can help to mitigate this 

challenge, their effective application in an online problem setting remains an issue and is the 

key focus of this work. To this end, the performance of the proposed auto-scaling algorithm 

will be thoroughly evaluated through a variety of experiments and benchmarks, 

demonstrating its effectiveness across CPU, RAM, and GPU scaling scenarios.  
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The practical challenge addressed in this work is the actual implementation of an auto-scaler 

in the Kubernetes cluster, with the long-term goal of deploying it in a production environment 

across the edge-cloud continuum. This requires the auto-scaler to adapt and optimise CPU 

and memory consumption based on different edge or cloud devices. It also requires 

addressing differences between the theoretical model and real environment, handling cases 

that are not well considered in the theories (e.g. dealing with Out-Of-Memory Kills), and 

having enough robustness to handle diverse workloads and the edge-cloud environment.  

The first version of our efforts focusses on a vertical auto-scaler inspired by Rzadca’s Autopilot 

algorithm22. We introduce several theoretical refinements that include alignments for 

improving both algorithm’s accuracy and efficiency, including as well as a RAM post-processor 

specifically designed to successfully addresses the Out-Of-Memory (OOM) kills, which were 

not adequately considered in the original work. 

Building on this initial work, we then implemented VPA-pilot that is an actual auto-scaler built 

as service upon Kubernetes and based on an open-source framework. Special attention was 

given to edge-cloud adaptability by optimizing the CPU and RAM consumption of the 

Autopilot ML implementation, based on complexity analysis. The implementation 

demonstrates low overhead, even when running with high scale and precision (e.g., 20000 

sub-models). Algorithm’s resource usage remains minimal (12.441 millicore CPU and 

17.898MB RAM), which is not even dominate the consumption of the auto-scaler framework’s 

system logic.  

To further enhance performance, we developed a long-term auto-scaler simulator along with 

appropriate methodologies to tune the VPA-pilot’s hyper-parameters. The hyper-parameters 

tuning problem is modelled as an Operations Research (OR) program. Using combinations of 

sampling- and manual-based methods, we solved the OR program. The dominating set of 

hyper-parameters is successfully found on CPU resources.  However, the RAM tuning 

presented suboptimal performance, suggesting the need for future improvements on the 

hyper-parameters tuning model, which are also presented.  

Recognizing the growing importance of GPU acceleration in edge-cloud applications, we 

extend our methodology to include dynamic GPU fractioning and vertical auto-scaling using 

Multi-Instance GPU (MIG) technology. By leveraging our ML-based approach, we demonstrate 

a practical pathway for enabling GPU-aware vertical scaling in Kubernetes environments that 

currently lack native support for dynamic GPU partitioning. 

 

 

 

                                                      
22 Rzadca K, Findeisen P, Swiderski J, Zych P, Broniek P, Kusmierek J, Nowak P, Strack B, Witusowski P, Hand S, 
Wilkes J. Autopilot: workload autoscaling at google. InProceedings of the Fifteenth European Conference on 
Computer Systems 2020 Apr 15 (pp. 1-16). 
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7.2.1 GPU Fractioning 

The purpose of fractioning is to divide the entire resources into multiple slices and allocate 

them to each container respectively. Good fractioning technologies should be able to limit 

resources for each container, and should have good isolation between different containers.  

This work concerns CPU, RAM and GPU resources in Kubernetes nodes. For CPU and RAM, 

there are mature technologies such as Cgroups. However, Kubernetes has no native support 

for GPU. There is also no technology as mature and dominating as Cgroups. This section 

investigates 3 available GPU fractioning technologies on NVIDIA GPUs. Then compare them 

and choose one for GPU vertical auto-scaling in this work.  

GPU has its own computing and memory resources. Here we consider the combination of 

Streaming Multiprocessor (SM) and Global Memory (GPU Memory), which is similar to the 

CPU/RAM combination. SM is a fundamental computing component of NVIDIA GPUs that 

executes instructions in parallel. As for memory, GPUs have a (more complicated) hierarchical 

architecture like ordinary memory: L1/L2/constant cache, shared/local/global/texture and 

constant memory. Among these, the global memory is similar to the ordinary "memory" 

concept. So, for convenience, we use GPU Memory in this work to refer to the global memory.  

7.2.2 Time-Slicing GPU  

To access and configure GPU resources in Kubernetes, NVIDIA proposed the NVIDIA GPU 

Operator, which is a set of components installed in a Kubernetes cluster. Among these 

components, there is one called NVIDIA Kubernetes Device Plugin. This plugin implements the 

Time-Slicing GPU feature.  

Time-Slicing GPU enables the system manager to define a set of replicas for a GPU. Each 

replica can be used independently by a container to run the workload. Internally, Time-Slicing 

is used to multiplex workloads from replicas of the same underlying GPU. Time-Slicing allows 

each workload to use the entire SMs of a GPU in turn, like the context switch of CPUs. The 

GPU Memory is split and assigned to each workload, but without any memory and fault 

isolation.  

Time-Slicing is a bad fractioning method for auto-scaling. First, auto-scaling aims to improve 

resource utilization when there are multiple workloads, each of which is small compared to 

the entire resource. However, with Time-Slicing, each small workload still uses the whole GPU 

during its round. The wasting of SMs is not relieved at all (i.e., we do not simply want 

parallelism here). Second, isolation is important for Kubernetes containers. So, no isolation of 

GPU Memory in Time-Slicing is unacceptable.  
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7.2.3 Multi-Instance GPU (MIG)  

Multi-Instance GPU (MIG) is a new feature proposed on NVIDIA GPUs starting from the 

Ampere architecture. MIG allows GPUs to be securely partitioned into up to 7 separate GPU 

Instances (GIs), then assigning each GI to different workloads. Different from Time-Slicing, 

each GI owns a certain part of the resources (SM and GPU Memory) of the entire GPU 

spatially. The SMs and GPU Memory between different GIs are completely isolated and their 

resource usages are strictly limited, as if the workloads are running on different GPUs. In 

Kubernetes cluster, the NVIDIA Kubernetes Device Plugin also implemented MIG support. 

With this Kubernetes support, we can read the MIG information of the GPUs in the cluster, 

configure MIG, and assign the GIs to different containers.  

 

 

Figure 12: Illustration of MIG Strategies, MIG Profiles and GIs on NVIDIA H100 GPU  

 

For vertical auto-scaling, MIG perfectly satisfies the requirements of limiting and isolating 

resources. However, MIG has unignorable drawbacks in flexibility.  

The sizes of GIs are not arbitrary. We cannot request an arbitrary part of the GPU as we did 

on CPU or RAM. With MIG, the SMs on the GPU are grouped into 7 compute slices of the same 

size. The entire GPU memory is also divided into 8 memory slices of the same size. These 

compute slices and memory slices are grouped into several GPU Instances (GIs). Due to 

technical limits at the GPU level, the grouping of these slices is not arbitrary (less than 10 valid 

grouping methods for each GPU architecture)23. In this way above, a GPU is finally fractioned 

into a combination of GIs. Each valid combination is called a MIG Profile. The size of a GI is 

measured by the number of compute slices and memory slices it owns, denoted as Ag.BGB if 

the GI owns A compute slices and B GB of memory slices.  

 

                                                      
23 Nvidia multi-instance GPU user guide. https://docs.nvidia.com/datacenter/tesla/mig-user-guide/index.html 

https://docs.nvidia.com/datacenter/tesla/mig-user-guide/index.html
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In Kubernetes cluster, the MIG support allows us to configure a MIG profile for each GPU 

device independently. In Kubernetes MIG support, the MIG Profiles are categorized into 2 MIG 

Strategies: Single Strategy if each GI in the MIG profile have the same size, or Mixed Strategy 

if they have different size. To configure MIG for a GPU in the cluster, we need first to choose 

the MIG Strategy, then choose a MIG Profile that belongs to it. After configuring, we can assign 

a GI to a container by labelling it in the manifest YAML file.  

As a particular example, Figure 12 shows the valid MIG Strategies, MIG Profiles, and their 

combination of GIs on a Kubernetes nodes with NVIDIA H100 GPU with 80 GB GPU Memory. 

Changing a container’s GI size is not fully dynamic. In Kubernetes cluster with MIG fractioned 

GPU, switching the MIG Profile and MIG Strategy requires additional time overhead. In our 

experiment on a Scaleway Kubernetes node with one NVIDIA H100 GPU, switching MIG Profile 

takes 36-39 seconds and switching MIG Strategy takes 33-36 seconds. If considering the pod 

recreating time, the total time overhead is up to 70-110 seconds. During this period the pod 

cannot provide service, which may cause SLO violation problems in auto-scaling depending 

on how to deal with this overhead. Moreover, we need to ensure that all containers using this 

GPU are stopped before switching MIG Profile or MIG Strategy, otherwise the switching will 

fail. This is also a limit in auto-scaling.  

We have 3 ways to change the size of a container’s current GI: 1. Reallocating another GI in a 

fixed MIG Profile under Mixed Strategy. 2. Switching the MIG Profile under Single Strategy. 3. 

Switching MIG Strategy between Single and Mixed. The second and third ways both have the 

switching overhead. Only the first way can avoid this. However, in the vertical auto-scaling 

context, this first way has other problems with resource utilization. This will be discussed in 

follow-up subsection.  

7.2.4 GPU Multi-Process Service (MPS)  

Multi-Process Service (MPS) is a CUDA API binary-compatible runtime implementation, 

allowing multiple CUDA kernels to be concurrently on the same GPU [14]. MPS is a client 

server architecture. Each user owns a single MPS client attached to the user’s CPU process. 

This MPS client submits the task and its CUDA context to the MPS server. The MPS server 

combines the contexts of the received client tasks and lets them run on the GPU as a single 

ap plication, to reach higher GPU utilization. Starting from Volta architecture, the MPS server 

is no longer a separate component. Its functionality is taken by GPU hardware and MPS 

clients.  

MPS is designed mainly for multi-process collaboration programs like Message Passing 

Interface (MPI). However, MPS can also be used in Kubernetes to fraction GPU. A third-party 

fork of the NVIDIA Kubernetes Device Plugin implemented MPS support in Kubernetes. After 

replacing the official Kubernetes Device Plugin to this fork in the cluster, we can configure 

MPS and assign fractioned GPU slices to containers by manifest YAML files. Thanks to MPS 

server’s functionality, MPS can fraction the SMs spatially, different from context-switching in 

Time-Slicing. We can arbitrarily create the limit on maximum SM usage for each 

container(task).  
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Regarding GPU Memory, we can also arbitrarily limit each container(task)’s allocatable GPU 

Memory size. Each container has isolated address space. However, the GPU Memory access 

is not fully isolated. An out-of-range write in a CUDA Kernel can modify the CUDA accessible 

memory state of another process. In the experiment on Kubernetes node with NVIDIA H100 

GPU, a container knows the existing workloads in other containers, and also the GPU Memory 

size of other containers. The fault isolation is also bad. A fatal GPU fault generated by an MPS 

client process will be shared with some of the other clients on the same GPU. These bad 

isolations are unacceptable in vertical auto-scaling. 

7.2.5 Conclusions on GPUs Fractioning 

Regarding the choice of this work, as presented previously, our goal is to guarantee a stable 

auto-scaler implementation rather than chasing for top performance. We first discard Time-

Slicing GPU, as discussed in comments. Then as for MPS, we appreciate its flexibility to 

arbitrarily slice GPU, as how Cgroups manages CPU and RAM. However, poor isolation is 

unacceptable for a Kubernetes implementation. Although there are safe isolation methods 

based on CUDA logic or practical analysis, they are not open-source. Studying and 

implementing these novel techniques from scratch is not a stable choice. Therefore, we 

discard MPS as our GPU fractioning implementation.  

MIG is a very safe and stable choice for our goal. To fraction GPU using MIG, we need to 

choose a specific way to change the container’s GI size:  

Using Mixed Strategy is the most flexible, as we only need to reallocate another GI under the 

same MIG Profile. However, if the sizes of workloads are not uniformly distributed, Mixed 

Strategy can lead to severe resource waste. For example, if each NVIDIA H100 GPU in the 

cluster is configured as the Mixed Strategy in Figure 12, and all workloads are 1g.10GB in size. 

Then the 2g.20GB and 3g.40GB GIs will all remain unused. This will waste 71.4% of the SMs 

and 75% GPU memory. Unfortunately, we cannot guarantee the uniform distribution of 

workloads. Thus, the Mixed Strategy has to be aborted.  

Alternatively, by using the Single Strategy for all GPUs in the cluster while dynamically 

configuring the MIG profile on each GPU, we can adapt to any distribution of workload sizes 

and avoid resource waste. For example, when there are more 1g.10GB workloads, we can 

configure more free H100 GPUs as 1g.10GB MIG Profile. Regarding the Profile switching 

overhead (up to 70-110s), we can reduce the frequency of switching to lower the total 

overhead. Besides, the auto-scaler will be integrated into the Ryax platform24, which provides 

higher-level scheduling information. We can schedule tasks and prepare for the switching in 

advance, which can mitigate the service interruption caused by switching. Overall, we choose 

MIG technology with dynamically configured MIG Profiles under Single Strategy for GPU 

fractioning in this work.  

                                                      
24 https://github.com/RyaxTech/ryax-engine 
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7.3 Theoretical Aspects 

This section presents the main theoretical contributions of our vertical auto-scaler in this 

work. The contributions include refining the auto-scaler’s core recommendation algorithm, 

and designing the dynamic GPU fractioning algorithm on the auto-scaler output side.  

About the core recommendation algorithm this work chooses the Autopilot ML algorithm to 

implement and refine. In this section, we first briefly recall the contributions of the Autopilot 

paper, including the ML model that we will refine, and a rule-based algorithm that will be used 

as a baseline in performance evaluation. Then, we present the refined ML model in detail 

which is named VPA-pilot.  

About the dynamic GPU fractioning algorithm as the auto-scaler’s output, this work chooses 

MIG with dynamically configured Profiles under Single Strategy. In the follow-up sections we 

will present the theoretical details of our dynamic GPU fractioning algorithm based on the 

MIG and VPA-pilot model.  

 

7.3.1  Recall the autopilot paper  

Rzadca’s Autopilot paper presents an ML and a rule-based vertical auto-scaling algorithm that 

inputs CPU and RAM usage data and outputs the corresponding resource limit.  

7.3.1.1  Autopilot ML  

This subsection recalls the Autopilot ML algorithm(model). In Rzadca’s original work, some 

descriptions and formulas are unclear. So, we provide some additions and modifications, e.g. 

Equation 3.1 and 3.2 in the model’s input, Equation 3.6, 3.7 and 3.8 in the model selector.  

In Autopilot ML, the workloads are called tasks. Several concurrent tasks are grouped as a job. 

Autopilot ML takes task-level usage data and outputs resource limit recommendations at the 

job level using an ML algorithm.  

We first model the input of Autopilot ML. The resource usage data of task i at time τ is denoted 

as ui[τ]. For each resource of each task, the frequency of ui[τ] is 1 per second. For CPU, ui[τ] is 

measured in cores, denoted as 𝑢𝑖
𝐶𝑃𝑈[𝜏].  For RAM, ui[τ], is measured in bytes and denoted as 

𝑢𝑖
𝑅𝐴𝑀[𝜏]. 

Then for each task, every 5 minutes we aggregate per resource type ui[τ] into one histogram 

si[t], where t is the 5-minute window and τ ∈ t. A histogram si[t] has K buckets, and the upper 

bound of each bucket is b[k], k ∈ {1...K}. The histogram structure is identical for each resource 

type but varies between different resource types, i.e. KCPU buckets and bCPU[k], k ∈ {1...KCPU} 

upper bounds for a CPU histogram, KRAM buckets and bRAM[k], k ∈ {1...KRAM} upper bounds for 

a RAM histogram. 
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The CPU histogram is aggregated as Equation 3.1 below. Each bucket contains the number of 

usage data points that fall into this bucket.  

𝑠𝑖
𝐶𝑃𝑈[𝑡][𝑘] = |{𝑢𝑖[𝜏] ∶ 𝜏 ∈ 𝑡 ∧ 𝑏[𝑘 − 1]  ≤  𝑢𝑖[𝜏] ≤ 𝑏[𝑘] }|   (3.1) 

The RAM histogram only records the peak usage, as equation 3.2 below, because we usually 

want to provision for close to the peak RAM usage. 

𝑠𝑖
𝑅𝐴𝑀[𝑡][𝑘] =  { 0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

1    𝑖𝑓  𝑏[𝑘−1] ≤ 𝑚𝑎𝑥 {𝑢𝑖[𝜏] | 𝜏 ∈ 𝑡} <𝑏[𝑘]
   (3.2) 

Right after each aggregation, the task-level histograms are merged into job-level ones:  

𝑠[𝑡][𝑘] =  ∑ 𝑠𝑖[𝑡][𝑘]      (3.3)

𝑖

 

This merged histogram serves as the actual input of the Autopilot ML model. Now we describe 

the core model of Autopilot ML. As mentioned in the state of the art described in D2.1 section 

3.1.2.2.3, Autopilot ML is a Hierarchical (HMS) model containing multiple sub-models and a 

global model selector. In Autopilot ML, each sub-model m is an argmin function that outputs 

a resource limit value Lm[t] at aggregation window t given the historical usage s[t], 

parameterized by a decay rate dm and a safety margin Mm.  

In detail, inside each sub-model, every possible limit value L is evaluated. An overrun cost and 

an underrun cost that counts the number of data points in buckets above/below the limit L 

are calculated as Equation 3.4 below.  

 

𝑜(𝐿)[𝑡] = (1 − 𝑑𝑚)(𝑜(𝐿)[𝑡 − 1]) + 𝑑𝑚(∑ 𝑠[𝑡][𝑗]𝑗:𝑏[𝑗]>𝐿 )    

𝑢(𝐿)[𝑡] = (1 − 𝑑𝑚)(𝑢(𝐿)[𝑡 − 1]) + 𝑑𝑚(∑ 𝑠[𝑡][𝑗]𝑗:𝑏[𝑗]>𝐿 )   (3.4) 

 

Then the sub-model chooses an L value that minimizes a function consisting of overrun and 

underrun cost above, and a limit switching cost, as shown in Equation 3.5 below. The limit 

switching cost aims to avoid frequent limit changing, because in auto-scaler implementation, 

each changing causes an eviction and corresponding workload restarting. Finally, the sub-

model specific safety margin Mm is added to the argmin function output. 

𝐿𝑚
′ [𝑡] = arg 𝑚𝑖𝑛𝐿 (𝑤𝑜𝑜(𝐿)[𝑡] + 𝑤𝑢𝑢(𝐿)[𝑡] + 𝑤𝛥𝐿𝛥(𝐿, 𝐿𝑚

′ [𝑡 − 1]) ) 

𝐿𝑚[𝑡] =  𝐿𝑚
′ [𝑡] +  𝑀𝑚     (3.5) 

where ∆(x, y) = 1 if x ≠ y and 0 otherwise. wo,wu,w∆L are hyper-parameters representing the 

weights of each cost. 

The global model selector holds a cost function for each sub-model, and an argmin function 

that dynamically selects the best sub-model based on their cost functions. This per sub-model 

cost function is shown in Equation 3.6 below. 
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where 𝑜𝑚(𝐿𝑚[𝑡], 𝑡) =  ∑ 𝑠[𝑡][𝑗]𝑗:𝑏[𝑗]>𝐿m[𝑡]  and  𝑢𝑚(𝐿𝑚[𝑡], 𝑡) =  ∑ 𝑠[𝑡][𝑗]𝑗:𝑏[𝑗]<𝐿m[𝑡] . wo, wu, 

w∆L are the same hyper-parameters as Equation 3.5, which are consistent across all sub-

models. d is another hyper-parameter representing the decaying weight of the history cost.  

This cost function is built based on the assumption that both the recent past workload usage 

and the scaling method performance are likely to represent the near future: hence using 

recent past statistics to represent the near future. So here the overrun/underrun cost of each 

sub-model’s prediction is evaluated on current usage data. 

Then the best sub-model m[t] at the current aggregation window t is selected by:   

𝑚[𝑡] = arg 𝑚𝑖𝑛𝑚 (𝑐𝑚[𝑡] + 𝑤𝛥𝑚𝛥(𝑚[𝑡 − 1], 𝑚) + 𝑤𝛥𝐿𝛥(𝐿[𝑡 − 1], 𝐿𝑚
 [𝑡]) )   (3.7) 

 

Where w∆m is another hyper-parameter that weighs how much we should avoid frequent sub 

model changing: frequently switching sub-models causes more SLO violations. 

Finally, the limit value given by the best sub-model is used as the output of the entire Autopilot 

ML auto-scaler:  

𝐿[𝑡] =  𝐿𝑚[𝑡][𝑡]    (3.8) 

 

7.3.1.2 Autopilot rule-based: a baseline  

This subsection recalls the rule-based auto-scaler in Rzadca’s work, which will be used as a 

baseline in the following sections. This auto-scaler gives resource limit recommendations 

based on statistics on the same input histogram of Autopilot ML, i.e. s[t][k] in Equation 3.3.  

For CPU resources, a raw recommendation is calculated by the 90%ile of an adjusted usage 

histogram. The histogram is defined as: 

ℎ[𝑡][𝑘] = 𝑏[𝑘] ∙  ∑ 𝑤[𝑡] ∙ 𝑠[𝑡 − 𝜏][𝑘]∞
𝜏=0       (3.9) 

where w[τ] is a decaying weight at time τ, defined as:  

 

where t1/2 is a config parameter representing the decaying half-life.  
 
The raw recommendation value at current time t is: Sp90[t] = P90(h[t]).  

For RAM resources, we use the max of recent input samples as the raw:  

𝑆𝑚𝑎𝑥[𝑡] = 𝑚𝑎𝑥𝜏∈{𝑡−(𝑁−1)…𝑡} {𝑏[𝑗]: 𝑠[𝜏][𝑗] > 0 }   (3.11) 

cm[t] = d(woom(Lm[t],t) +wuum(Lm[t],t) +w∆L∆(Lm[t],Lm[t −1])) + 

(1−d)cm[t −1] (3.6)  
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Finally, a 10-15 safety margin is added to the raw recommendations above, and we use the 

maximum margined recommendation value over the last hour as the final output of this rule-

based auto-scaler.  
 

7.3.2 VPA-pilot  

In the context of EMPYREAN, we improved the Autopilot ML described previously to propose 

VPA-pilot as our vertical auto-scaler’s core recommendation algorithm. VPA-pilot takes the 

resources usage of the workloads running in each container of the deployment as input, and 

predicts the corresponding resource request and limit for these containers. This section 

presents the theoretical model of VPA-pilot.  

VPA-pilot includes two major enhancements. The first is aligning the recommended request 

values with bucket bounds thus calculating on array indexes (i.e. integers instead of floats), to 

reduce computation and increase accuracy. The second is introducing a post-processor for 

RAM resources to address the Out-of-Memory Kill (OOM Kill) issue that was not well handled 

in Autopilot paper. The following subsections detail the process of the whole model while 

describing these 2 enhancements respectively.  

In addition to major enhancements, this work also performs several minor enhancements, 

adaptations to our requirements, and clarifications of Rzadca’s Autopilot work. These will not 

be presented in dedicated subsections but within the following 2 major enhancements 

subsections as they arise. 

7.3.2.1 Alignment: more lightweight, efficient, and accurate 

Although Autopilot ML is well designed, from the implementation perspective, Autopilot ML 

still has drawbacks on its efficiency and accuracy:  

• Floating-point errors: The function ∆(x, y) is frequently applied to floating-point 

numbers, e.g. in Equation 3.5, 3.6, 3.7, the floating-point limit values L serve as inputs 

to ∆(x, y). This causes frequent equality comparisons between floating-point numbers. 

Due to floating-point errors, directly comparing the equality of floating-point numbers 

is inaccurate. An alternative is to consider the floating-point numbers equal if their 

difference is less than a small threshold ε. However, if the model frequently calls this 

alternative, the additional statements involved can be a bottleneck, significantly 

impacting the model’s efficiency (i.e. speed, CPU usage). Therefore, we are considering 

whether we can replace floating-point values with integer values while keeping the 

same mathematical meaning.  

• Redundancy on the limit L variable: From Equations 3.4 and 3.5, we know that the 

optimization variable L influences the sub-model’s output Lm[t] only through its 

comparison with the bucket bounds b[k], k ∈ {1...K}, which are finite number of 

elements. For the infinite amount of possible real numbers L : b[k] < L < b[k +1], the 

optimal value of the argmin function in Equation 3.5 is the same. Thus, although 

evaluating L as every possible real-number value seems to increase the model’s 
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precision, the L : b[k] < L < b[k+1] values are completely unuseful, so this precision 

increase is actually not realized. Therefore, we can just align L to the bound of buckets, 

i.e. L ∈ {b[k]}, k ∈ {1...K}.  

• Invalid penalties on switching limits: In Equations 3.5, 3.6 and 3.7, the penalties of 

switching limits are all calculated by ∆(x, y) with 2 real numbers. In the infinite real 

numbers set, achieving equality between two elements is difficult, even allowing for a 

threshold ε. Therefore, these penalties all become invalid, which leads to frequent 

switching of recommended limit value, and finally causes SLO violations.  In Equation 

3.5, by aligning L to bucket bounds as described above, the penalty ∆(L,L′
m[t− 1]) 

becomes valid again, and the value L′
m[t] is also aligned to the bucket bounds. Then to 

ensure the penalties in Equations 3.6 and 3.7 are valid, any Lm[t] must also be aligned 

to bucket bounds. Known that L′
m[t] is already aligned, aligning Lm[t] requires: (1) the 

histogram should be linear, i.e. b[k] = k · b[1], and (2) the safety margin of each sub 

model Mm should align with bucket bounds, i.e. Mm = b[mm],  mm ∈ {1...K} . While these 

requirements seem to cause a precision loss, this is necessary for the model to function 

properly. Moreover, if the number of buckets is large enough, this precision loss is 

negligible.  

Based on the analysis above, we use linear histogram (i.e. b[k] = k · b[1], k ∈ {1...K}), and align 

L and Mm to histogram bucket bounds b[k] in VPA-pilot’s design. We also noticed that before 

the global model selector outputs the final recommendation, all limit values (L, Lm[t], etc.) are 

only used to compare with other limits or the bucket bounds. Besides, the linear histogram 

has monotonic increasing property, i.e. for any k1 < k2, b[k1] < b[k2]. Therefore, before the final 

output, we can all use the index of the bucket bounds as the unit and perform integer 

calculations and comparisons, instead of calculating the exact floating-point values at the very 

beginning and then performing floating-point comparisons. This perfectly solves the floating-

point errors. During implementation, this can also save the model’s RAM consumption, and 

some CPU on specific architectures.  

Based on these designs, we now present the VPA-pilot’s theoretical model for auto-scaling 

CPU and RAM resources (GPU will be present together with MIG in following section). On the 

input side, the linear histogram s[t][k] in Equation 3.3 is used as the model’s input at the 

aggregation window t. Its aggregation methods are the same as Equations 3.1 and 3.2. 

Because in our problem context we have the deployment and containers(pods) instead of the 

job and tasks, so in these equations, si[t][k] represents the histogram on the container’s level, 

and s[t][k] is the histogram on the deployment’s level. The bucket amount K and per bucket 

size b[1] in the linear histogram are set as follows: We use 400 buckets for CPU resource (KCPU 

= 400), and 500 buckets for RAM (KCPU = 500), because the number of RAM is larger and 

requires higher precision for effective fractioning. Assuming a node’s total amount of current 

scaled resource is B and the number of pods(containers) in the deployment is C, then the size 

of each linear histogram bucket 𝑏[1] =  
𝐵

𝐾∙𝐶
 this is because containers in the deployment exist 

concurrently, each container uses no more than B/C resources. 
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Different from Rzadca’s Autopilot work, VPA-pilot recommends the containers’ resource 

requests instead of limits. Thus, in the sub-models of VPA-pilot, we need to evaluate every 

possible request value R ∈ {b[k]}, k ∈ {1...K}. Then based on the previous paragraph’s 

discussion, we set r as the index of the bucket whose bound is aligned by R, i.e. R = b[r], r ∈ 

{1...K}. We iterate on all possible r values instead of R.  

The sub-models of VPA-pilot are parameterized by the decay rate dm ∈ [0,1] and the index mm 

of a bucket whose bound is aligned by the safety margin Mm, i.e. Mm = b[mm] as discussed in 

"invalid penalties on switching limits" above. To ensure that the sub-models cover all possible 

scenarios as thoroughly and representatively as possible, we uniformly sample Ndm values for 

dm from its interval [0,1], and select mm from Nmm possible integers starting from 0: {0,...,Nmm 

−1}. By pairing each dm and each mm, we have Ndm·Nmm sub-models in VPA-pilot.  

In each sub-model, inspired by Equation 3.4, we calculate the overrun and underrun cost by:  

 

𝑜(𝑟)[𝑡] = (1 − 𝑑𝑚)(𝑜(𝑟)[𝑡 − 1]) + 𝑑𝑚(∑ 𝑠[𝑡][𝑗]𝑗:𝑗>𝑟 )    

                𝑢(𝑟)[𝑡] = (1 − 𝑑𝑚)(𝑢(𝑟)[𝑡 − 1]) + 𝑑𝑚(∑ 𝑠[𝑡][𝑗]𝑗:𝑗<𝑟 )      (3.12) 

 

Then each sub-model outputs the index rm[t] of a bucket whose bound is aligned with the 

recommended resource request Rm[t], i.e. Rm[t] = b[rm[t]]. Inspired by Equation 3.5, the sub 

model’s recommendation (bucket) index is calculated by:  

 

𝑟𝑚
′ [𝑡] = arg 𝑚𝑖𝑛𝑟 (𝑤𝑜𝑜(𝑟)[𝑡] + 𝑤𝑢𝑢(𝑟)[𝑡] +  𝑤𝛥𝑅𝛥(𝑟, 𝑟𝑚

′ [𝑡 − 1]) ) 

𝑟𝑚[𝑡] = min (𝑟𝑚
′ [𝑡] + 𝑚𝑚, 𝐾)      (3.13) 

 

where ∆(x, y) = 1 if x ≠ y and 0 otherwise. 𝑤𝑜 , 𝑤𝑢, 𝑤𝛥𝑅  are hyper-parameters. The min function 

prevents the recommendation index from exceeding the histogram’s upper bound so that the 

real resource request value can be retrieved using this index in the future.  

The global model selector of VPA-pilot maintains a cost function for each sub model. This 

function cm[t] is inspired by Equation 3.6 while using the comparison between bucket indexes 

instead of limit values:  

𝑐𝑚[𝑡] = 𝑑(𝑤𝑜(∑ 𝑠[𝑡][𝑗]𝑗:𝑗>𝑟𝑚[𝑡] )) + 𝑤𝑢(∑ 𝑠[𝑡][𝑗]𝑗:𝑗<𝑟𝑚[𝑡] ) + 𝑤𝛥𝑅∆(𝑟𝑚[𝑡], 𝑟𝑚[𝑡 − 1])  +

(1 − 𝑑)𝑐𝑚[𝑡 − 1]      (3.14) 

where d is another hyper-parameter.  

Then the global model selector iterates all the sub-models m and chooses the best sub-model 

m[t] at aggregation window t according to this argmin function (inspired by Equation 3.7): 

𝑚[𝑡] = arg 𝑚𝑖𝑛𝑚 (𝑐𝑚[𝑡] + 𝑤𝛥𝑚𝛥(𝑚[𝑡 − 1], 𝑚) + 𝑤𝛥𝑅𝛥(𝑟[𝑡 − 1], 𝑟𝑚
 [𝑡]) )   (3.15) 

where 𝑤𝛥𝑚  is another hyper-parameter.  
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Finally, the global model selector takes the recommended bucket index r[t] given by the 

selected sub-model, and calculates its corresponding bucket bound value as the resource 

request recommendation R[t] of the whole algorithm:  

𝑟[𝑡] =  𝑟𝑚[𝑡][𝑡] 

             𝑅[𝑡] =  𝑏[𝑟[𝑡]]     (3.16) 
 

7.3.2.2 Resource Limit and the RAM Post-Processor for OOM Kill  

In the Kubernetes cluster, a container has both request and limit values for each of its CPU 

and RAM resources. Previously, we enabled the VPA-pilot algorithm to recommend the 

request values. Now we decide the resource limit values for CPU and RAM by discussing the 

underlying mechanisms of request and limit values in Kubernetes.  

CPU limits 

The CPU request is implemented using the cpu_shares field in Cgroups25. If all containers use 

CPU simultaneously, the CPU time is allocated to each container based on the proportion of 

their cpu_shares values. When some containers are idle, the  

CPU time is allocated proportionally among the remaining active containers. This mechanism 

prevents the waste of CPU time while ensuring the lower bound of CPU time for each 

container. The CPU request is also a basis for Kubernetes to schedule each pod placed on 

which node, instead of the CPU limit. Therefore, the request is more important than the limit 

for the workload bin-packing performance of our auto-scaler.  

The CPU limit is implemented using the ratio of fields cpu_quota to cpu_period in Cgroups. 

Within the time of cpu_period, if a container uses more CPU time than its cpu_quota value, it 

will enter the CPU throttling state. During CPU throttling, the container cannot use CPU until 

the next cpu_period. This mechanism effectively limits the upper bound of CPU usage for 

containers but can cause significant execution delays of the workload inside the container.  

In our context, the CPU request value is properly set by the VPA-pilot algorithm. In this case, 

setting the CPU limit brings no advantage but only the CPU throttling drawbacks. This is 

because the sharing mechanism behind the CPU request and the node’s Linux kernel already 

can efficiently handle CPU bursts without too much work load delay, e.g. the CPU Burst 

feature in Linux kernel from 5.14. Even if the user workloads’ CPU bursts are excessive, causing 

insufficient CPU time for the system’s daemon services, we can move the daemon services to 

another node, or employ additional recovery mechanisms to temporarily set limits to prevent 

system crashes.  

Overall, we decided to set no CPU limit in VPA-pilot’s output.  

                                                      
25 The fields mentioned here all refer to Cgroups V1. Our experimental environment Scaleway Kubernetes cluster 

uses a new version: Cgroups V2. The fields in Cgroups V2 are more complex than in Cgroups V1, but the 

underlying mechanisms are very similar. 
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RAM limits 

The RAM request is mainly used as an indication for the Kubernetes scheduler to determine 

each pod placed on which node. There are no mechanisms related to the RAM request in 

Cgroups (V1), so Kubernetes does not intervene in the container’s actual RAM usage if only 

the RAM request is set.  

The RAM limit is implemented by the limit_in_bytes field in Cgroups. If the container tries to 

allocate more memory than the RAM limit, the Linux kernel out-of-memory subsystem is 

activated, to intervene by stopping one of the processes in the container that tried to allocate 

memory. This is called Out-Of-Memory Kill (OOM Kill). After this, an OOM Killed event is raised 

and the pod is evicted.  

In our auto-scaling context, if we do not set the RAM limit or set it higher than the RAM 

request, a container might use more RAM resources than Kubernetes is aware of. If many 

containers do this at the same time, the RAM of the node’s Linux system will be exhausted 

before Kubernetes realizes that the node’s available RAM is full and prevents it. This can lead 

to hidden system crashes in the cluster that are difficult to diagnose from Kubernetes. 

Therefore, we decided to set the RAM limit equal to the RAM request in VPA-pilot’s output.  

In the vertical auto-scaling problem, the consequences of the container’s CPU or RAM usage 

exceeding the corresponding limit are entirely different. We assume that the workload in the 

container is deterministic (i.e. denote the state of the workload at time t as σ(t), if σ(t′) 

executed successfully but σ(t′ +1) failed, the workload will retry exactly with state σ(t′ +1) 

rather than any other state). If the CPU usage exceeds the limit, the workload enters CPU 

throttling but the container remains running. In this case, the auto-scaler can still collect this 

extremely high CPU usage data and use this data to enhance future container size. However, 

if the RAM usage exceeds the limit, an OOM Kill will be triggered and the container 

(corresponding pod) will be evicted. In this case, the auto-scaler cannot obtain the 

corresponding extremely high RAM usage and will recreate the pod with the original size. 

Then the deterministic workload will use RAM exceeding the limit again. Thus, a dead loop is 

formed here. The left of Figure 13 illustrates this RAM exceeding dead loop.  

 
Figure 13: Illustration of the auto-scaler’s behaviour under a deterministic workload, without(left) or 

with(right) the RAM post-processor. The purple dashed line means the workload fails to execute at that 

time. The red box with an ’X’ indicates the container is immediately OOM Killed. The green box indicates the 

container is successfully created and is running.  
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In the RAM exceeding situation with a deterministic workload, any auto-scaling algorithm that 

only relies on workload usage as input can do nothing, including the VPA-pilot algorithm 

described previously. Therefore, VPA-pilot requires a RAM post processor that is triggered by 

OOM Kill events and outputs the new request and limit values after considering the OOM Kill 

event.  

Now we describe the RAM post-processor designed in this work. The RAM post-processor 

contains a configuration parameter b,b > 1 representing the bump-up ratio, and maintains a 

state value 𝑃𝑅[𝑡]𝑖  represents the post-processed request value after considering the ith OOM 

Kill event during the current 5-minute aggregation window t. At the beginning of each 

aggregation window t, this value is (re-)initialized as the current request recommendation 

given by the algorithm in Alignment subsection:  

𝑃𝑅[𝑡]0 =  𝑅[𝑡]   (3.17) 

Then, if an ith OOM kill event occurs within this aggregation window, the post-processor 

calculates the new state value as follows:  

𝑃𝑅[𝑡]𝑖 =  𝑃𝑅[𝑡]𝑖−1 ⋅ 𝑏   (3.18) 

 

This state value 𝑃𝑅[𝑡]𝑖 is also the output of the RAM post-processor in real-time. The right of 

Figure 13 illustrates how this RAM post-processor handles the RAM exceeding situation with 

a deterministic workload. When the coming deterministic workload usage u[t] is extremely 

high, after j consecutive restarts (OOM Kills), from Equations 3.17 and 3.18 we derive the 

current RAM request value 𝑃𝑅[𝑡]𝑗 =  𝑅[𝑡] ⋅ 𝑏𝑗. 

Therefore, after ⌈𝑙𝑜𝑔𝑏(
𝑢[𝑡]

𝑅[𝑡]
)⌉ restarts, the container will have a suitable RAM request (and 

limit) to let the workload run without OOM Kill. Then this high-usage data can be successfully 

passed into the Refined Autopilot ML algorithm, to get its suitable recommendation as it does 

for CPU resources. After this, the post-processor finishes handling this OOM Kill, and then 

reset at the beginning of the next aggregation window. 

The above derivation demonstrates the performance of this post-processor under the most 

challenging and representative deterministic workload scenario. This proves that the RAM 

post-processor is sufficient to handle any OOM Kill issues.  

Finally, combining the post-processor with previous discussions about resource limits, we 

summarize the output of the entire VPA-pilot algorithm on the container’s CPU and RAM 

resources:  

• For CPU resources, the recommended container’s request at aggregation window t is 

R[t], and no limit is set to the container.  

• For RAM resources, if there are already i OOM Kills in the current aggregation window 

t, then both the recommended container’s request and limit values are PR[t]i.  

 

 



D3.2 – Software-defined Edge Interconnect and Service Assurance Mechanisms 
 

 

empyrean-horizon.eu  55/70 

7.3.2.3 GPU auto-scaling with VPA-pilot 

In this section, we present the GPU resource vertical auto-scaling model, based on VPA-pilot 

and MIG technology.  

We start by modelling the dynamic GPU fractioning method to decide the object to be 

managed by the auto-scaler. As discussed previously, we fraction the GPU using MIG 

technology with dynamically configured MIG Profiles under Single Strategy. Therefore, in our 

model, a GPU can dynamically adopt one of the P pre-defined MIG Profiles. In each MIG 

profile, a GPU is divided into 𝑛𝑝
𝐺𝐼

 GIs with the same size. We model a fractioned GPU using an 

element in an (increasingly) ordered set of Profiles, where each Profile is denoted with a key-

value pair: The key is the GI type, and the value is the number of GIs in the Profile.  

𝐺𝑃𝑈 ∈ 𝑃𝑟𝑜𝑓𝑖𝑙𝑒𝑠 = { 𝐺𝐼𝑝, 𝑛𝑝
𝐺𝐼}, 𝑝 ∈ {1 … 𝑃} (3.19) 

A GI type is further denoted as a combination of its SM and GPU Memory size: 

GIp = Apg.BpGB, p ∈ {1...P} (3.20) 

Notice that the Profiles set is a pre-defined constant based on analysis of the specific GPU’s 

MIG configuration, and the elements (K-V pairs) in the set are indexed in increasing order of 

their GI’s SM and GPU Memory size. For example, on the NVIDIA H100 80G GPU illustrated in 

Figure 2.6, there are 6 different MIG Profiles under Single Strategy. Among these, the 4g.40GB 

one is strictly worse than the 7g.80GB one because it wastes more space to get the same 

number of fractions, so we discard the 4g.40GB GI.  

Therefore, we set the valid Profiles number P = 5, and the sorted elements in the Profiles set 

are:  

(GI1 = 1g.10GB, nGI
1 = 7), (GI2 = 1g.20GB, nGI 2 = 4), (GI3 = 2g.20GB, nGI 3 = 3), 

(GI4 = 3g.40GB, nGI 4 = 2), (GI5 = 7g.80GB, nGI 5 = 1) 

 

Based on the dynamic GPU fractioning settings above, we design the GPU vertical auto-scaling 

model that adopts VPA-pilot, taking the workload’s GPU usage as input to recommend a 

suitable GI type for the container. The structure of our designed GPU auto-scaler is shown in 

Figure 14. The GPU usage data of SM and GPU Memory resources are processed separately 

by 2 VPA-pilot models without post-processor (the part in subsection 7.3.2.1 that outputs R[t], 

without post-processing and limit-setting parts in subsection 7.3.2.2), to get SM and GPU 

Memory raw recommendation values. Then, these 2 raw recommendations enter the 

combiner to get a suitable GI type that can accommodate the recommended SM and GPU 

Memory size. GPU Memory OOM events are processed finally to get the final GI type 

recommendation. In the next paragraphs, we formally model the details of the GPU auto-

scaler.  
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Figure 14: Illustration of the GPU auto-scaler components 

 

On the usage data input side, at every second τ we collect SM usage data 𝑢𝑖
𝐺𝑃𝑈𝑆𝑀[𝜏] and GPU 

Memory data usage data 𝑢𝑖
𝐺𝑃𝑈𝑀𝐸𝑀[𝜏] for each container i. Then, at every 5-minute window t, 

𝑢𝑖
𝐺𝑃𝑈𝑆𝑀[𝜏] are aggregated into histogram 𝑠𝑖

𝐺𝑃𝑈𝑆𝑀[𝑡] with the same method as CPU in 

Equation 3.1, 𝑢𝑖
𝐺𝑃𝑈𝑀𝐸𝑀[𝜏] are aggregated into histogram 𝑠𝑖

𝐺𝑃𝑈𝑀𝐸𝑀[𝑡] as RAM in Equation 3.2. 

The workload level histograms 𝑠 
𝐺𝑃𝑈𝑆𝑀[𝑡][𝑘], 𝑠 

𝐺𝑃𝑈𝑀𝐸𝑀[𝑡][𝑘] are calculated the same way as 

in Equation 3.3. 

As for the bucket size b[1] and bucket number K in the histogram (remind: the bucket bounds 

are also the set of possible model recommendations), we first need to ensure a linear 

histogram. Then since our auto-scaling units are the GIs, making the recommendation 

granularity smaller than the GI sizes is meaningless. Therefore, for SM or GPU Memory 

resources, we set its histogram bucket size equal to the greatest common divisor (gcd) of the 

corresponding resource size values of all GIs. Then, the number of buckets should ensure the 

histogram covers the resource size of the maximum GI.  

The Equation 3.21 below formalizes these bucket settings.  

𝑏𝐺𝑃𝑈𝑆𝑀[1] = gcd {𝐴𝑝}, 𝑝 ∈ {1 … 𝑃}, 𝐾𝐺𝑃𝑈𝑆𝑀 =
max {𝐴𝑝}

𝑏𝐺𝑃𝑈𝑆𝑀[1]
  

𝑏𝐺𝑃𝑈𝑀𝐸𝑀[1] = gcd {𝐵𝑝}, 𝑝 ∈ {1 … 𝑃}, 𝐾𝐺𝑃𝑈𝑀𝐸𝑀 =
max {𝐵𝑝}

𝑏𝐺𝑃𝑈𝑀𝐸𝑀[1]
    (3.21) 

 

Then, two "VPA-pilot without post-processor" models take histograms sGPUSM[t][k], 

sGPUMEM[t][k] respectively, and output raw resource re quest recommendations RGPUSM[t] and 

RGPUMEM[t] at every aggregation window t. The model remains unchanged except for fine-

tuning the hyper-parameters.  

Next, a combiner takes the RGPUSM[t] and RGPUMEM[t] as input. The combiner scans all types of 

GIs in the Profiles set in Equation 3.19 in increasing order, and chooses the smallest GI that 

can accommodate both RGPUSM[t] and RGPUMEM[t] as its output GI[t] at the window t:  

 

𝑟𝐺𝐼[𝑡] =  𝑚𝑖𝑛𝑝∈{1…𝑃} {𝑝 | 𝐴𝑝  ≥  𝑅𝐺𝑃𝑈𝑆𝑀[𝑡]  ∧ 𝐵𝑝 ≥ 𝑅𝐺𝑃𝑈𝑀𝐸𝑀[𝑡] } 

𝑅𝐺𝐼[𝑡] =  𝐺𝐼𝑟𝐺𝐼[𝑡]      (3.22) 
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Similar to RAM, when a GPU Memory allocation attempt exceeds the allocatable GPU Memory 

size, the GPU will raise an event similar to the RAM OOM Kill (not the same thing because 

RAM OOM Kill is raised by the Linux Kernel) through the NVIDIA GPU Operator, we name it 

GPU OOM. At the same time, the corresponding container will be evicted.  

Thus, a post-processor is attached as the GPU auto-scaler’s last component, for handling the 

GPU OOM events. Similar to the RAM one, this post-processor maintains a state value prGI[t]i 

represents the ID of post-processed GI request after considering the ith GPU OOM Kill event 

during the current 5-minute aggregation window t. When a GPU OOM Kill event happens, this 

means the GPU Memory size of the current GI is not enough, so we directly use the larger 

GI(prGI[t]i−1 + 1) to continue the workload. At the beginning of each aggregation window t, this 

value is (re-)initialized as the ID of current GI recommendation 𝑟𝐺𝐼[𝑡]. Finally, the GI 

recommendation is calculated from the ID of the post-processed GI request.  

𝑝𝑟𝐺𝐼[𝑡]0 =  𝑟𝐺𝐼[𝑡] 

𝑝𝑟𝐺𝐼[𝑡]𝑖 = 𝑚𝑖𝑛(𝑝𝑟𝐺𝐼[𝑡]𝑖−1 + 1, 𝑃) 

𝑃𝑅𝐺𝐼[𝑡]𝑖 =  𝐺𝐼𝑝𝑟𝐺𝐼[𝑡]𝑖
     (3.23) 

If there are already i GPU OOM Kills in the current aggregation window t, then the container’s 

recommended GI is 𝑃𝑅𝐺𝐼[𝑡]. 

 

7.4 VPA-Pilot Implementation  

7.4.1 Auto-scaler implementation in Kubernetes cluster  

Now we discuss the efficient and accurate implementation of the VPA-pilot model in the 

Kubernetes cluster. Since this work focuses more on the algorithm part, we choose not to 

develop an auto-scaler from scratch. Instead, we implement VPA-pilot for RAM and CPU based 

on an efficient open-source vertical auto-scaler framework called Kubernetes VPA (Vertical 

Pod Autoscaler), in Golang. Due to time constraints, this work also did not implement the GPU 

auto-scaling in the Kubernetes cluster. The evaluation of GPU auto-scaling will only be 

performed on the simulator in the next section. In future, the whole VPA-pilot auto-scaler for 

CPU, RAM and GPU will be implemented as part of the optimizations in the Ryax open-source 

platform.  

This section first presents the Kubernetes VPA Framework, and how the VPA-pilot will be 

implemented based on this framework. Next, we present the detailed implementation of the 

formalized model, focusing on optimizing the resource consumption to adapt to the edge-

cloud environment.  
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7.4.2 Implementation with Kubernetes VPA framework  

Kubernetes VPA is an open-source implementation of a vertical auto-scaler for the Kubernetes 

cluster. It contains a built-in, simple threshold-based auto-scaling algorithm, which can 

provide rough container size recommendations. This algorithmic component has a well-

defined interaction API with the system, making it ideal for adapting and implementing 

custom auto-scaling algorithms.  

Kubernetes VPA consists of 3 main components, as shown  in Figure 15: 

• Recommender is the component where the core algorithm resides. It receives real-

time usage information for all workloads through the Kubernetes Metrics Server API 

and extracts the workload usage specific to the containers (pods) of the deployment 

currently being auto-scaled. This usage data is input into the core algorithm 

implemented by the developer. Finally, the algorithm’s recommendation outputs are 

stored in a Kubernetes Custom Resource Definition (CRD) object.  

• Updater is the component that compares the latest container size recommendation 

in the CRD with the current actual container size. If it determines that the current 

container size needs to be updated, it gracefully evicts the pods hosting the containers 

that require resizing according to specific rules. This allows the pods to be restarted 

with the updated container size.  

• Admission controller is a common component that intercepts requests to the 

Kubernetes API server, to validate or modify requests to create, delete, and modify 

objects. In this VPA framework, the admission controller modifies the pod creating 

requests to create the new pod with an updated container size.  

 

 

Figure 15: Architecture of Kubernetes VPA Framework  
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We implement VPA-pilot in the recommender component, by replacing its built-in threshold-

based algorithm. For each resource type in a deployment being auto-scaled, we maintain a 

VPA-pilot instance. The instance starts running as an endless loop since the recommender is 

initiated. Every second, this instance takes the usage data of each related container as the 

input signal ui[τ]. Every 5 minutes, the instance aggregates the input signals of all containers 

in a deployment, runs a round of VPA-pilot, and outputs the final request and limit 

recommendation to the CRD.  

 

7.4.3 Implementation complexity of VPA-pilot  

Next, we describe the specific implementation of the VPA-pilot algorithm, focusing on 

minimizing time and space complexity. This ensures low resource consumption of the auto 

scaler with a large number of sub-models.  

We start by analysing the equations presented before. We notice that: 

1) The aggregation signal 𝑠[𝑘] is only used for calculating the number of samples 

above/under different bucket bounds. Therefore, instead of repeating this calculation in 

each sub-model, we pre-calculate them using dynamic programming right after we get 

the s[k] signal.  

2) Among the 𝑁𝑑𝑚 ∙  𝑁𝑚𝑚 sub-models, the ones with the same dm values share the same 

𝑜(𝑟)[𝑡] and 𝑢(𝑟)[𝑡] values in Equation 3.12, and the same 𝑟𝑚
′ [𝑡] values in Equation 3.13. 

Thus, we can share these values among the sub-models with the same dm, thus saving 

𝑁𝑚𝑚  times of resource consumption.  

3) All time series (variables with [t]) are iterated only based on the latest value, so we don’t 

need to store the entire time series. Instead, we just keep updating on a single variable 

for each time series. 
 

Taking these optimizations, the VPA-pilot is implemented as Algorithm 1 (Figure 16). This 

algorithm describes a single round in the infinite loop, i.e. the recommendation in an 

aggregation window t. Based on the analysis (3) above, we remove the [t] in every time series 

and replace them with corresponding single variable. The values of these variables are 

retained and reused in the next round.  

Because K ≥ Nmm (no need to set safety margin higher than the maximum available resource 

size), the time complexity of this implementation is 𝑂(𝐾 ∙ 𝑁𝑑𝑚). Its space complexity is also 

𝑂(𝐾 ∙ 𝑁𝑑𝑚).  
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Figure 16: Single round implementation of VPA-pilot calculation 

 

7.4.4 Hyper-parameter tuning with simulator  

In the previous subsection, we mentioned 5 hyper-parameters (d,wo,wu,w∆R,w∆m) in our VPA-

pilot algorithm. Their values need to be determined before running the algorithm and should 

be passed as configuration parameters to the VPA recommender. In Rzadca’s Autopilot work, 

they tune these hyper-parameters of Autopilot in off-line experiments during which they 

simulate Autopilot behaviour on a sample of saved traces taken from representative jobs. We 

adopt this way and present a detailed method for tuning the hyper-parameters of VPA-pilot.  

We employ a one (1) month’s Google Workload Traces26 on CPU and RAM usage as the 

"sample of saved traces taken from representative jobs". In this section, we first design a VPA-

pilot simulator for offline experiments and evaluation on the long-term Google Workload 

Traces. Then we discuss our detailed method of tuning hyper-parameters based on the 

simulator.  

                                                      
26 Clusterdata 2019 traces google/cluster-data. https://github.com/google/ cluster-

data/blob/master/ClusterData2019.md. Accessed: 25/07/2024.  
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7.4.5 Auto-scaler simulator design  

To tune the hyper-parameters on long traces, and evaluate the long-term behaviour of the 

auto scaler, it would be highly time-consuming and impractical to run it for a long time in a 

real-world environment to collect the necessary data. We need to overcome the time 

constraints and obtain the long-term data within a short time. To achieve this, we design the 

auto-scaler simulator. This subsection focuses on the auto-scaler simulator for CPU and RAM 

resources. The one for GPU has a very similar structure and behaviour.  

The structure of the auto-scaler simulator is shown in Figure 17. We first pre-process the 

Google Workload Trace using Apache Spark into a trace data sequence with a frequency of 1 

second, then pass the sequence into the simulator. The simulator runs in the form of iteration 

over the sequence. At each time step (second), a logical workload generates CPU and RAM 

usage according to the trace sequence value. The VPA-pilot algorithm takes the CPU and RAM 

usage as signals 𝑢𝑖
𝐶𝑃𝑈[𝜏] and 𝑢𝑖

𝑅𝐴𝑀[𝜏] per second and outputs recommended container 

requests and limits every 300-time steps, to simulate the 5-minutes aggregation time. A 

logical container is set with the recommended size, to communicate with logical workload to 

simulate system events like OOM Kills. Finally, on the global layer outside the per-second loop, 

a metrics collector gathers all required metrics to generate graphs and statistics tables after 

the whole execution.  

 

 

Figure 17: Structure of the auto-scaler simulator 

 

To simplify our development, the simulator ignores the overhead of container (pod) restarts 

in the VPA Framework implementation. This is because we focus on the algorithm itself rather 

than the VPA Framework’s efficiency. We can evaluate the number of restarts in the statistics 

and calculate their real impact. Thus, if we adjust the container size at the current time step, 

it will be immediately applied to the logical container in the next time step. Similarly, for OOM 

Kill events, the RAM post-processor can make i bump-ups in only i time steps. 
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Figure 18: Black box function F(X) = y in hyper-parameter tuning modelling  

7.4.6 Hyper-parameter tuning: Modelling and solving modelling as 

an operations research program  

Now we present our way of tuning the 5 hyper-parameters (𝑑, 𝑤𝑜 , 𝑤𝑢, 𝑤𝛥𝑅 , 𝑤𝛥𝑚), in VPA-pilot 

using the auto-scaler simulator presented in the previous subsection. This subsection also 

dedicates only CPU and RAM resources.  

We start with modelling the hyper-parameter tuning problem. Our goal refers to the criteria 

of Rzadca’s Autopilot paper: This tuning aims to produce a configuration that dominates 

alternative algorithms (such as the moving window recommenders) over a large portion of the 

sample, with a similar (or slightly lower) number of overruns and limit adjustments, and 

significantly higher utilization. Based on this description, we can model the process of finding 

the dominating hyper-parameters on one 1-month Google Workload Trace sample as an OR 

(Operations Research) program including a black box function F(X) = y.  

The function is built as in Figure 18 that treats the whole execution of the simulator as a black 

box with only hyper-parameters and summary statistics exposed. X is the input hyper-

parameters set of Refined Autopilot ML. We normalize each hyper-parameter between [0,1]. 

This is because d is the decaying weight originally between [0,1]. 𝑤𝑜 , 𝑤𝑢, 𝑤𝛥𝑅 , 𝑤𝛥𝑚 are weights 

that are only compared with each other, so normalizing them only brings convenience without 

changing their meanings.  

y is composed of 3 key global performances of VPA-pilot:  

• average gap is the 1 month’s average of (container raw request - workload usage) 

values at every time step. The container raw request here is the VPA-pilot’s raw output 

without RAM post-processor (i.e. R[t] in Equation 3.16). We use this R[t] because the 

5 hyper-parameters only affect the behaviour of the core model part, not the RAM 

post-processor. The lower average gap means the higher utilization in Rzadca’s 

criteria, because we have the same usage in this model for one workload sample.  
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• adjust times is the number of occurrences where container raw requests R[t] differ 

between adjacent time steps. Higher adjust times mean higher limit adjustments and 

more pod (containers) restarts, which we do not want.  

• overrun seconds is the number of time steps in which workload usage is larger than 

the container’s raw request R[t]. This value represents the number of overruns in 

Rzadca’s criteria.  

The OR program modelling the hyper-parameter tuning problem on a single trace sample is 

shown in Equation 4.1 below. The baseline adjust times and baseline overrun seconds are the 

corresponding metrics generated from the simulator with the Autopilot Rule-based algorithm 

in subsection 7.3.1.2. ε is a small relaxation on the constraints to avoid no solution. At the 

beginning of our solving attempt, we let ε = 0.5 to only limit the order of magnitude. It can be 

reduced in future attempts for better results.  

Minimize: 𝑦[1]  

subject to: 𝐹(𝑋) = 𝑦 

0 ≤ 𝑋[𝑖] ≤ 1, 𝑖 ∈ {1 … 5} 

0 ≤ 𝑦[2] ≤ 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒_𝑎𝑑𝑗𝑢𝑠𝑡_𝑡𝑖𝑚𝑒𝑠 ∙  (1 + 𝜀) 

0 ≤ 𝑦[3] ≤ 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒_𝑜𝑣𝑒𝑟𝑟𝑢𝑛_𝑠𝑒𝑐𝑜𝑛𝑑𝑠 ∙  (1 + 𝜀) 

 
where:  

        𝑋 = [𝑑, 𝑤𝑜 , 𝑤𝑢, 𝑤𝛥𝑅, 𝑤𝛥𝑚] 

𝑦 = [𝑎𝑣𝑒𝑟𝑎𝑔𝑒_𝑔𝑎𝑝, 𝑎𝑑𝑗𝑢𝑠𝑡_𝑡𝑖𝑚𝑒𝑠, 𝑜𝑣𝑒𝑟𝑟𝑢𝑛_𝑠𝑒𝑐𝑜𝑛𝑑𝑠]  (4.1) 

 
 

We compare the optimal value  𝑦[0] of this OR program with the average gap of the Autopilot 

Rule-based baseline. If our solution is significantly smaller, the X vector in the optimal solution 

is our best hyper-parameters on this workload sample.  

 

7.4.7 Feasible region sampling for dominating hyper-parameters on 

CPU  

After successfully modelling the tuning problem as the OR program in Equation 4.1, we try to 

solve it. This OR program is very hard to solve because the F(X) function is not composed of 

mathematical formulas but is based on real program execution results. This makes F(X) a 

complete black box from the mathematical point of view. Therefore, it is impossible to 

calculate the gradient or to prove the convexity of F(X).  
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Because of the hardness above, this work does not successfully find the OR program’s optimal 

solution. However, we can approximate the optimal solution by sampling within the feasible 

region of X, then filtering all samples where 𝑦[1] and 𝑦[2]] satisfy the constraints, and sorting 

them in ascending order based on 𝑦[0]. If in a solution obtained through sampling, the value 

𝑦[1] (average gap) is still significantly smaller than the baseline, then the hyper-parameters 

set X in the solution also make our VPA-pilot dominate the Autopilot Rule-based baseline. We 

name a such sampled set of hyper-parameters dominating hyper-parameters.  

To sample the feasible region 𝑋, 0 ≤ 𝑋[𝑖] ≤ 1, 𝑖 𝜖 {1 … 5}, we start with uniform sampling on 

the whole 5D feasible region. If we sample n points in each dimension, then the whole uniform 

sampling has a complexity of O(n5). Therefore, although our simulator is fast, we can only 

afford to sample up to 10 points for each hyper-parameter (n = 10 in each dimension).  

On the CPU resource, we did a round of n = 10 uniform sampling as above. We found that the 

samples with the smallest 𝑦[1] (average gap) values all have 𝑋[3] = 𝑋[4] = 𝑋[5] = 0, which 

means in the dominating hyper-parameters set, 𝑤𝑢, 𝑤𝛥𝑅, 𝑤𝛥𝑚 are the most likely to be 0. 

Although we cannot prove this, we continue with this assumption 𝑋[3] = 𝑋[4] = 𝑋[5] = 0. 

Therefore, the dimension of the sampling space is greatly reduced, allowing us to perform 

more detailed sampling with n = 300 in 𝑋[1] and 𝑋[2] dimensions. After this detailed 

sampling, we successfully find several sets of dominating hyper-parameters. Table 4 compares 

the sample of the most dominating hyper-parameters, with the Autopilot Rule-based 

baseline. 

Figure 19 compares the long-term performance of VPA-pilot under the dominating hyper-

parameters set, with the Autopilot Rule-based baseline algorithm. From Table 4 and Figure 

19, we can validate that the dominating hyper-parameters set (d = 0.85714,wo = 0.14285,wu = 

0,w∆R = 0,w∆m = 0) is the best for CPU resource above the given 1 month’s Google Workload 

Trace sample.  

Table 4: Statistics comparison between VPA-pilot on CPU resource, with dominating hyper-parameters [in 

order (d,wO,wu,w∆R,w∆m)], and the Autopilot Rule-based baseline 

Statistics for CPU resource Average Gap Adjust Times Overrun Seconds 

VPA-pilot Rule-Based 275.20660 425 12896 

VPA-pilot hyper-param: 
(0.85714,0.14285,0,0,0) 

237.71037 127 14355 

 

 

Figure 19: VPA-pilot performance on CPU resources with dominating hyper-parameters (d = 0.85714, wo = 

0.14285, wu = 0, w∆R = 0, w∆m = 0). Compared with Autopilot Rule-bases baseline  
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7.4.8 Sampling and manual methods for dominating hyper-

parameters on RAM  

Encouraged by the success on CPU above, we start on RAM also by performing exhaustive 

uniform sampling of the 5D feasible region of X with n = 10 in each dimension. Unfortunately, 

we cannot find any patterns in the results. As a result, we are not able to reduce the dimension 

to perform more detailed sampling. Therefore, we propose another two sampling methods to 

attempt to find more accurate dominating hyper-parameters.  

The first sampling method is per-dimension uniform sampling as shown in Algorithm 2 (Figure 

20). This sampling starts with X0, y0, which are the above n = 10 exhaustive uniform sampling’s 

solution with the minimum y[1] (average gap) value. Outputs a more fine-grained sampling 

solution Xlopt, ylopt. This sampling tries to find a "local minimum" that is near to the above n = 

10 exhaustive sampling’s minimum solution. Although we cannot prove any relation between 

this local minimum and the global minimum, this local minimum should be much better than 

the n = 10 exhaustive sampling’s solution.  

The second sampling method is pure random sampling: We repeatedly randomize the 5 

elements of input X as real numbers in [0,1], limit y[2], y[3] and gather the minimum y[1]. We 

let this random program run for 1 day on a cloud server.  

 

 

Figure 20: Per-dimension uniform sampling algorithm for dominating hyper-parameters on RAM 

 

 

It is interesting that, although neither of the above 2 sampling methods can be proved to find 

solutions close to the global minimum of y[1], the y vectors (average gap, adjust times and 

overrun seconds) produced by the two sampling methods are relatively close, although the 

corresponding X (hyper-parameters) vectors are completely different. Therefore, we guess 

that the two methods yield nearly the optimal solution, multiple hyper-parameters sets can 

lead to this solution. However, we are not able to prove this.  
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The hyper-parameters obtained by random sampling are (d = 0.01388, wo = 0.80714, wu = 

0.04725, w∆R = 0.25499, w∆m = 0.10142). Corresponding y values are shown in the third row of 

Table 5. Its corresponding VPA-pilot performance is shown in Figure 21. Unfortunately, the 

average gap value of VPA-pilot with randomly sampled parameters is larger than that of the 

Autopilot Rule-based baseline. This means for RAM resources, we cannot get dominating 

hyper-parameters with our sampling methods.  

 
Table 5: Statistics comparison among VPA-pilot for RAM resources, with hyper parameters fixed by 

samplings (d = 0.01388,wo = 0.80714,wu = 0.04725,w∆R = 0.25499,w∆m = 0.10142), with hyper-parameters 

fixed manually (d = 0.612,wo = 0.9,wu = 0.01,w∆R = 0.0099,w∆m = 0.00009), and the Autopilot Rule-based 

baseline 

Statistics for RAM resource Average Gap 
Adjust 
Times 

Overrun 
Seconds 

OOM 
Kills 

Autopilot Rule-Based 261822531 63 301 3 

VPA-pilot hyper-param: 
(0.01388, 0.80714, 0.04725, 0.25499, 0.10142) 

332630700 92 385 20 

VPA-pilot hyper-param: 
(0.612, 0.9, 0.01, 0.0099, 0.00009) 

111383357 83 9835 47 

 

Besides sampling, we also attempted to manually search for hyper-parameters and observe 

their performance, regardless of the strict constraints in Equation 4.1, because we roughly 

understand the practical meaning of each hyper-parameter thanks to the good 

interpretability of VPA-pilot. We manually discovered a set of hyper-parameters that are 

worth dis cussing: (d = 0.612,wo = 0.9,wu = 0.01,w∆R = 0.0099,w∆m = 0.00009), whose statistics 

is shown in the third row of Table 5 and whose performance is shown as the bottom graph of 

Figure 21.  

 

 

 

Figure 21: VPA-pilot performance on RAM resource with hyper-parameters fixed by samplings (the top 

graph), with hyper-parameters fixed manually (the bottom graph). Compared with Autopilot Rule-bases 

baseline 
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Now we concern the 3 key global performances (average gap, adjust times, overrun seconds) 

brought by our manually discovered hyper-parameters: In Table 5 compared to the Autopilot 

Rule-based baseline, our manually discovered hyper-parameters leads to significantly smaller 

average gap, slightly reduced adjust times, but a great increase in overrun seconds. These 

make the hyper-parameters good but not standard dominating. Although not dominating, 

based on the overall assessment of the results, this is the best solution we can find. In the 

following section, we discuss the reasons for this situation, what we can learn from the 

positive aspects, and how to improve the bad overrun seconds.  

For a RAM auto-scaler, OOM Kills is actually a more critical performance than overrun seconds 

in our OR program, as it directly leads to pod eviction. Therefore, for memory resources, our 

simulator additionally generate OOM Kills performance for RAM:  

• OOM kills (for RAM) is the number of events where the OOM Kills triggers the RAM 

post-processor.  

These OOM Kill statistics are shown in the last column of Table 5. It shows that the Refined 

Autopilot ML with 2 different hyper-parameters sets both have significantly higher OOM Kills 

compared to the baseline, which is not good. This indicates that the lack of OOM Kill control 

in Rzadca’s Autopilot paper criteria and our OR program is problematic. In the following 

"Future improvements" part, we will attempt to add OOM Kill control in our hyper-parameter 

tuning model.  

7.4.9 Future improvements for a more balanced hyper-parameter 

tuning model  

We argue and study whether the VPA-pilot with sampled hyper-parameters (top of Figure 21) 

or the one with manually found hyper-parameters (bottom of Figure 21) performs better. 

Based on our analysis, we tend to favour the manually found hyper-parameters, although the 

sampled ones are selected entirely following Rzadca’s Autopilot paper criteria and the OR 

model. Next, we discuss this conflict in detail.  

First, we should admit that the VPA-pilot is not universally good for all types of workloads. 

Due to the lack of decaying weight in the resource amount itself like in Autopilot Rule-based, 

when faced with a workload usage that suddenly decays and then persists for a long time as 

in Figure 21, VPA-pilot often tries to fit by making abrupt changes in recommended container 

size, rather than gradually reducing it. This naturally makes the auto-scaler generate more 

overruns on this specific type of workload.  

The issue with the sampling hyper-parameters method is that it relies too strictly on the 1 

month’s global performance metrics but rarely cares about the specific auto-scaling 

behaviour. Therefore, when faced with the workload in Figure 21, if we strictly adhere to the 

criteria and the OR model we have established to tune hyper-parameters, to force VPA-pilot 

generates less overruns than the Autopilot Rule-based. Then the auto-scaler will attempt to 

aggressively increase the container size at the beginning of the trace and then maintain a high 

container size to avoid overruns, as shown in the top graph of Figure 21.  
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This is not good auto scaler behaviour in a production environment. However, the global 

criteria and our OR model have no punishment for this behaviour. In contrast, the manually 

selected hyper-parameters do not strictly adhere to the 1 month’s global performance 

metrics, especially on "overrun seconds". However, this actually results in better auto-scaling 

behaviour.  

The comparison above is enough to demonstrate that the limits on adjust times and overrun 

seconds in our current OR model (Equation 4.1) and Rzadca’s original criteria are sometimes 

too strict, particularly for hyper-parameters tuning on RAM resources.  

However, completely relaxing these restrictions is also unacceptable. The exploding overrun 

seconds by manually selected hyper-parameters is the result. Therefore, even if strictly 

limiting them is not feasible, we still need to apply some appropriate constraints. The same 

issue applies to the OOM Kills caused by VPA-pilot. Thus, we also need to add OOM Kills limit 

to the current 3 key global performances.  

Based on all the above discussions, we designed a more balanced and flexible approach to 

improve the OR program: to assign weights to each element in vector y in the OR program of 

Equation 4.1, based on practical requirements, thereby constructing a new single objective 

value y in the OR program.  

The improved OR program is shown in Equation 4.2 below:  

Minimize:  𝑦  

subject to:                                         

    𝐹(𝑋) = 𝑦′ 

𝑦 =  𝑦′ × [𝑤𝑒𝑖𝑔ℎ𝑡1, 𝑤𝑒𝑖𝑔ℎ𝑡2, 𝑤𝑒𝑖𝑔ℎ𝑡3,𝑤𝑒𝑖𝑔ℎ𝑡4 (𝑅𝐴𝑀 𝑜𝑛𝑙𝑦)]𝑇 

0 ≤ 𝑋[𝑖] ≤ 1, 𝑖 ∈  {1 … 5} 

 
where:  

        𝑋 = [𝑑, 𝑤𝑜 , 𝑤𝑢, 𝑤𝛥𝑅, 𝑤𝛥𝑚] 

𝑦′ = [𝑎𝑣𝑒𝑟𝑎𝑔𝑒_𝑔𝑎𝑝, 𝑎𝑑𝑗𝑢𝑠𝑡_𝑡𝑖𝑚𝑒𝑠, 𝑜𝑣𝑒𝑟𝑟𝑢𝑛_𝑠𝑒𝑐𝑜𝑛𝑑𝑠, 𝑂𝑂𝑀 𝐾𝑖𝑙𝑙𝑠(𝑅𝐴𝑀 𝑜𝑛𝑙𝑦)]  (4.2) 
 
 
To effectively limit the number of OOM kills, we add "OOM Kills" support in the simulator thus 

adding the corresponding element to the vector y′. Besides, to further evaluate the details of 

the auto-scaler actions, we can add more detailed metrics like "the balance of the gap values 

during all periods of the trace", etc. into y′ vector in Equation 4.2, and assign corresponding 

weight in the calculation of y.  
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Besides, to get more robust behaviour in production, we still need to introduce more 

representative workload traces, and tune hyper-parameters in the same way as we discussed 

on these representative traces. To be specific, we planned to use Apache Spark27 to extract 

multiple (at least 10+) representative traces from the Google Workload Trace28 by filtering 

keywords and merging sub-tasks, then randomly shuffle fragments of these traces to create 

new sequences for running hyper-parameters tuning.  

However, the Google Workload Trace is a massive dataset (2.4TB, compressed). Due to the 

lack of time and enough resources to process such a size, we only processed 1 one-month 

trace used above and did not go further for multiple traces.  

Moving such a system to production we need to consider the workload trace (historical data) 

of the system we aim to optimize. To be specific, for the future hyper-parameters tuning in 

the edge-cloud continuum, we can broadly collect usage data from representative workloads 

running on different edge-cloud clusters, and use Apache Spark to filter and categorize those 

from similar clusters. After some human review, we can shuffle and concatenate the data 

fragments from similar clusters. The hyper-parameters will be tuned respectively on these 

concatenated data for the corresponding clusters.  

The development of the complete methodology to consider when analysing historical 

workload traces using Apache Spark to better prepare the hyperparameters for each 

production case remains a future work. 

 

                                                      
27 https://spark.apache.org 
28 Clusterdata 2019 traces google/cluster-data.  
https://github.com/google/cluster-data/blob/master/ClusterData2019.md 

https://github.com/google/cluster-data/blob/master/ClusterData2019.md
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8 Conclusions  

The EMPYREAN platform pursues a very ambitious goal: to unify operations across multiple 

layers of the computing stack, spanning from low -level interconnects and container 

virtualization to high-level resource management, autoscaling, and service assurance.  

The platform is designed to support, among others, the deployment of large-scale distributed 

and collaborative systems in both the scale-up (horizontal scaling, software-defined 

interconnects, and hardware acceleration abstractions for containerized workloads) and 

scale-out (dynamic autoscaling of containers on Kubernetes clusters) dimensions. These 

capabilities enable fine-grained and efficient resource sharing across heterogeneous 

environments within the IoT-edge-cloud continuum. 

The developments presented in this report reflect the progress made during the first iteration 

of the implementation phase (M4-M15) under Tasks 3.3 “Software-Defined Edge Interconnect 

for Distributed Computations and Hardware Acceleration” and Task 3.4 “Autoscaling, Service 

Assurance, and Computing Management” of Work Package 3, laying the foundation of 

EMPYREAN’s unified and collaborative platform. Moreover, the detailed mechanisms 

empower EMPYREAN to achieve key technical and performance objectives. Final 

implementations and integration outcomes will be detailed in the forthcoming Deliverable 

D3.3, scheduled for M26. 

 

 

 


