

TRUSTWORTHY, COGNITIVE AND AI-DRIVEN

COLLABORATIVE ASSOCIATIONS OF IOT DEVICES AND

EDGE RESOURCES FOR DATA PROCESSING

Grant Agreement no. 101136024

Deliverable D3.2

Software-defined Edge Interconnect and Service

Assurance Mechanisms

Programme: HORIZON-CL4-2023-DATA-01-04

Project number: 101136024

Project acronym: EMPYREAN

Start/End date: 01/02/2024 – 31/01/2027

Deliverable type: Report

Related WP: WP3

Responsible Editor: NVIDIA

Due date: 30/04/2025

Actual submission date: 30/04/2025

Dissemination level: Public

Revision: FINAL

This project has received funding from the European Union’s Horizon

Europe research and innovation programme under grant agreement

No 101136024

Ref. Ares(2025)3529376 - 30/04/2025

D3.2 – Software-defined Edge Interconnect and Service Assurance Mechanisms

empyrean-horizon.eu 2/70

Revision History

Date Editor Status Version Changes

08.01.25 NVIDIA Draft 0.1 Deliverable ToC

12.03.25 NVIDIA Draft 0.2 Add initial contributions by NVIDIA, ICCS in

sections 4, 6

26.03.25 NVIDIA Draft 0.3 Add contributions by NVIDIA, NUBIS, RYAX, ICCS

in sections 3,4,5,6,7

16.04.25 NVIDIA, ICCS Draft 0.4 Complete deliverable for internal review

25.04.25 NVIDIA Draft 0.5 Address review comments

29.04.25 NVIDIA Final

Author List

Organization Author

ICCS Aristotelis Kretsis, Panagiotis Kokkinos, Fotis Kouzinos, Emmanouel

Varvarigos

NVIDIA Dimitris Syrivelis

RYAX Pedro Velho, Yuqiang Ma, Michael Mercier, Yiannis Georgiou

NUBIS Anastassios Nanos, Charalampos Mainas, Georgios Ntoutsos, Ilias

Lagomatis, Konstantinos Papazafeiropoulos, Apostolos Giannousas

Internal Reviewers

Javier Martin (IDEKO)

Roberto Gonzalez (NEC)

D3.2 – Software-defined Edge Interconnect and Service Assurance Mechanisms

empyrean-horizon.eu 3/70

Abstract: Deliverable D3.2 presents the key outcomes of the activities that took place in the

context of Task 3.3 “Software-Defined Edge Interconnect for Distributed Computations and

Hardware Acceleration” and Task 3.4 “Autoscaling, Service Assurance and Computing

Management” during the first implementation period (M04-M15). These tasks focus on the

design and development of critical components within the EMPYREAN platform, including: (i)

software-defined interconnection to organize edge devices into logical clusters, offering a

unified memory layer; (ii) interoperable hardware acceleration functionality across

heterogeneous IoT and edge nodes; (iii) AI-enabled workload autoscaling mechanisms; and

(iv) service assurance and low-level computing management mechanisms.

Keywords: Software-Defined Interconnect, Hardware Acceleration, Service Assurance,

EMPYREAN Associations, Vertical Pod Autoscaling, Autos-Scaler

D3.2 – Software-defined Edge Interconnect and Service Assurance Mechanisms

empyrean-horizon.eu 4/70

Disclaimer: The information, documentation and figures available in this deliverable are written by the

EMPYREAN Consortium partners under EC co-financing (project HORIZON-CL4-2023-DATA-01-04-

101136024) and do not necessarily reflect the view of the European Commission. The information in

this document is provided “as is”, and no guarantee or warranty is given that the information is fit for

any particular purpose. The reader uses the information at his/her sole risk and liability.

Copyright © 2025 the EMPYREAN Consortium. All rights reserved. This document may not be copied,

reproduced or modified in whole or in part for any purpose without written permission from the

EMPYREAN Consortium. In addition to such written permission to copy, reproduce or modify this

document in whole or part, an acknowledgement of the authors of the document and all applicable

portions of the copyright notice must be clearly referenced.

D3.2 – Software-defined Edge Interconnect and Service Assurance Mechanisms

empyrean-horizon.eu 5/70

Table of Contents

1 Executive Summary ... 10

2 Introduction... 11

2.1 Purpose of this document ... 11

2.2 Document structure .. 11

2.3 Audience .. 11

3 EMPYREAN Architecture Mapping .. 12

4 Software-Defined Interconnect .. 15

4.1 Overview ... 15

4.2 Relation to Project Objectives and KPIs .. 16

4.3 Architecture and Interfaces .. 17

4.3.1 Data path software public API ... 20

4.3.2 Data path hardware interface ... 22

4.3.3 Software-Defined Interface ... 22

5 Hardware Acceleration Abstractions .. 24

5.1 Overview ... 24

5.2 Relation to EMPYREAN Objectives and KPIs ... 24

5.3 Architecture and Integration Details... 25

5.4 Implementation and Integration Points .. 26

6 Service Assurance .. 28

6.1 Overview ... 28

6.2 Relation to EMPYREAN Objectives and KPIs ... 28

6.3 Architecture ... 29

6.4 Implementation ... 32

6.5 Relation to Use Cases .. 38

7 Intelligent Autoscaling and Adaptive Computing Management 39

7.1 Overview ... 39

7.2 Background and Challenges .. 39

7.2.1 GPU Fractioning ... 42

7.2.2 Time-Slicing GPU .. 42

7.2.3 Multi-Instance GPU (MIG) .. 43

7.2.4 GPU Multi-Process Service (MPS) .. 44

7.2.5 Conclusions on GPUs Fractioning .. 45

7.3 Theoretical Aspects ... 46

7.3.1 Recall the autopilot paper ... 46

7.3.2 VPA-pilot .. 49

7.4 VPA-Pilot Implementation .. 57

7.4.1 Auto-scaler implementation in Kubernetes cluster... 57

7.4.2 Implementation with Kubernetes VPA framework ... 58

D3.2 – Software-defined Edge Interconnect and Service Assurance Mechanisms

empyrean-horizon.eu 6/70

7.4.3 Implementation complexity of VPA-pilot .. 59

7.4.4 Hyper-parameter tuning with simulator ... 60

7.4.5 Auto-scaler simulator design ... 61

7.4.6 Hyper-parameter tuning: Modelling and solving modelling as an operations

research program .. 62

7.4.7 Feasible region sampling for dominating hyper-parameters on CPU 63

7.4.8 Sampling and manual methods for dominating hyper-parameters on RAM 65

7.4.9 Future improvements for a more balanced hyper-parameter tuning model ... 67

8 Conclusions.. 70

D3.2 – Software-defined Edge Interconnect and Service Assurance Mechanisms

empyrean-horizon.eu 7/70

List of Figures

Figure 1: EMPYREAN high-level architecture ... 12

Figure 2: Example deployment scenario within EMPYREAN for software-defined interconnect

and hardware acceleration abstractions ... 14

Figure 3: Proactor Software Pattern .. 16

Figure 4: Single-sided RDMA Circular Buffer ... 17

Figure 5: Typical RPC channel disaggregated buffer deployment ... 18

Figure 6: Request Path RDMA Remote Circular Buffer Sync ... 19

Figure 7: vAccel and libRRR integration ... 25

Figure 8: Analytics Engine architecture and core components ... 30

Figure 9: Analytics Engine – Access Interface RESTful API... 34

Figure 10: Analytics Engine – Data Connector plug-ins RESTful northbound interface 37

Figure 11: Analytics Engine – Data Manager RESTful API .. 38

Figure 12: Illustration of MIG Strategies, MIG Profiles and GIs on NVIDIA H100 GPU 43

Figure 13: Illustration of the auto-scaler’s behaviour under a deterministic workload,

without(left) or with(right) the RAM post-processor. The purple dashed line means the

workload fails to execute at that time. The red box with an ’X’ indicates the container is

immediately OOM Killed. The green box indicates the container is successfully created

and is running. ... 53

Figure 14: Illustration of the GPU auto-scaler components .. 56

Figure 15: Architecture of Kubernetes VPA Framework ... 58

Figure 16: Single round implementation of VPA-pilot calculation .. 60

Figure 17: Structure of the auto-scaler simulator ... 61

Figure 18: Black box function F(X) = y in hyper-parameter tuning modelling 62

Figure 19: VPA-pilot performance on CPU resources with dominating hyper-parameters (d =

0.85714, wo = 0.14285, wu = 0, w∆R = 0, w∆m = 0). Compared with Autopilot Rule-bases

baseline .. 64

Figure 20: Per-dimension uniform sampling algorithm for dominating hyper-parameters on

RAM .. 65

Figure 21: VPA-pilot performance on RAM resource with hyper-parameters fixed by samplings

(the top graph), with hyper-parameters fixed manually (the bottom graph). Compared

with Autopilot Rule-bases baseline ... 66

D3.2 – Software-defined Edge Interconnect and Service Assurance Mechanisms

empyrean-horizon.eu 8/70

List of Tables

Table 1: Data path software API – Available functions in the developed C-language library . 20

Table 2: Data path hardware interface .. 22

Table 3: Analytics Engine - Notification Engine messages ... 35

Table 4: Statistics comparison between VPA-pilot on CPU resource, with dominating hyper-

parameters [in order (d,wO,wu,w∆R,w∆m)], and the Autopilot Rule-based baseline 64

Table 5: Statistics comparison among VPA-pilot for RAM resources, with hyper parameters

fixed by samplings (d = 0.01388,wo = 0.80714,wu = 0.04725,w∆R = 0.25499,w∆m =

0.10142), with hyper-parameters fixed manually (d = 0.612,wo = 0.9,wu = 0.01,w∆R =

0.0099,w∆m = 0.00009), and the Autopilot Rule-based baseline 66

D3.2 – Software-defined Edge Interconnect and Service Assurance Mechanisms

empyrean-horizon.eu 9/70

Abbreviations

AI Artificial Intelligence

AMBA Advanced Microcontroller Bus Architecture

API Application Programming Interface

ASGI Asynchronous Server Gateway Interface

CRD Custom Resource Definition

CRUD Create, Read, Update, Delete

D Deliverable

FIFO First In, First Out

FPGA Field-Programmable Gate Array

GenOps Generic Operations

GI GPU Instance

GPU Graphics Processing Unit

HMAC Hash-based Message Authentication Code

I/O Input / Output

K3s Lightweight Kubernetes

K8s Kubernetes

KPI Key Performance Indicator

MIG Multi-Instance GPU

ML Machine Learning

MPI Message Passing Interface

MPS Multi-Process Service

NBI Northbound Interface

OOM Out-Of-Memory

QoS Quality of Service

QP Queue Pair

RDMA Remote Direct Memory Access

REST Representational State Transfer

RPC Remote Procedure Call

RRR Remote Ring-buffer Runtime

RTT Round Trip Time

SBI Southbound Interface

SDI Software-Defined Interconnect

SLO Service Level Objective

SM Streaming Multiprocessor

SQ Submit Queue

SQD Submit Queue Data

TCP/IP Transmission Control Protocol/Internet Protocol

TLS Transport Layer Security

TPU Tensor Processing Unit

VM Virtual Machine

VPA Vertical Pod Autoscaler

D3.2 – Software-defined Edge Interconnect and Service Assurance Mechanisms

empyrean-horizon.eu 10/70

1 Executive Summary

This technical report presents a comprehensive overview of the software-defined

interconnect mechanisms and their seamless integration with hardware acceleration

abstractions within the EMPYREAN framework. It explores the design and implementation of

these components, their interaction with the broader EMPYREAN architecture. Emphasis is

placed on the design principles, functionalities, and exposed public APIs of each system

component, offering a detailed technical perspective aligned with the objectives of Task 3.3,

"Software-Defined Edge Interconnect for Distributed Computations and Hardware

Acceleration."

In addition, the deliverable introduces the initial outcomes of Task 3.4, "Autoscaling, Service

Assurance and Computing Management." This includes the design and development of an AI-

enabled vertical autoscaling mechanism for Kubernetes, which intelligently adjusts resource

requests and limits based on workload telemetry. The task further delivers service assurance

capabilities for the EMPYREAN platform, including the development of the Analytics Engine

and AI-enhanced algorithms. These service assurance mechanisms enable the orchestration

services to perform self-adaptive actions such as workload migration and resource

reallocation in response to performance degradation or operational issues.

This deliverable builds upon the EMPYREAN reference architecture defined in deliverable D2.3

(M12), towards the provision of the initial release of the platform’s software-defined

interconnections, hardware acceleration abstractions, service assurance components, and AI-

driven workload auto-scaling framework.

The final release of the components and mechanisms developed under Tasks 3.3 and 3.4 will be

presented in deliverable D3.3 “Final report on security, trust, seamless data and computing

management” (M26).

D3.2 – Software-defined Edge Interconnect and Service Assurance Mechanisms

empyrean-horizon.eu 11/70

2 Introduction

2.1 Purpose of this document

This document is a comprehensive technical report detailing the enablements and

methodologies surrounding software-defined interconnects. It explores the integration

strategies with vAccel1, a cutting-edge acceleration framework, while also delving into the

intricate interactions within the broader EMPYREAN stack. These interactions are further

contextualized through an examination of relevant service assurance mechanisms, ensuring a

robust and reliable operational framework.

The report meticulously outlines each system component, providing an in-depth analysis of

their design principles, functionalities, and exposed APIs. These APIs are presented not only

as technical interfaces but also as pivotal tools that facilitate seamless communication

between components. The document aims to offer readers a clear understanding of how

these components are architected to interact harmoniously, emphasizing the rationale

behind various design choices. Furthermore, it elaborates on configurable parameters,

shedding light on the decisions made during the initial stages of development efforts.

2.2 Document structure

The present deliverable is split into 5 major chapters:

● EMPYREAN Architecture Mapping

● Software-defined Interconnect

● Hardware Acceleration Abstraction

● Service Assurance

● Intelligent Autoscaling and Adaptive Computing management.

2.3 Audience

This document is publicly available and should be of use to anyone interested in the

description of the data interconnection, hardware acceleration, intelligent autoscaling, and

service assurance aspects of EMPYREAN. Moreover, this document can be also be useful to

the general public for obtaining a better understanding of the framework and scope of the

EMPYREAN project.

1 https://vaccel.org

D3.2 – Software-defined Edge Interconnect and Service Assurance Mechanisms

empyrean-horizon.eu 12/70

3 EMPYREAN Architecture Mapping

The EMPYREAN architecture was first introduced in deliverable D2.2 "Initial Release of

EMPYREAN Architecture" (M07), and later refined in its final version in D2.3 " Final EMPYREAN

architecture, use cases analysis and KPIs" (M12). This refinement incorporated key insights

gained from the initial implementation phase. D2.3 provides a comprehensive overview of the

architecture, detailing the EMPYREAN components, their interfaces, and the supported

operational flows.

In this section, we present a concise description of the architecture (Figure 1) to support the

discussion of the initial developments in WP3, particularly focusing on dynamic provisioning

of high-performance software-defined edge interconnect, seamless provision of hardware

acceleration abstractions, intelligent and efficient workload autoscaling mechanisms, and

distributed and data-driven service assurance mechanisms within the EMPYREAN.

Figure 1: EMPYREAN high-level architecture

D3.2 – Software-defined Edge Interconnect and Service Assurance Mechanisms

empyrean-horizon.eu 13/70

The Service layer facilitates the development of Association-native applications, providing

robust support for application-level adaptations, interoperability, elasticity, and scalability

across the IoT-edge-cloud continuum. Deliverable D4.1 (M15) provides a detailed description

of the design and development of this layer’s components.

The Association Management Layer dynamically manages Associations within the IoT-edge-

cloud continuum. Forming resource federations, it enables seamless collaboration, resource

sharing, and data distribution across various segments within the continuum. Together with

the Multi-Cluster Orchestration Layer, it is central to EMPYREAN’s distributed and

autonomous management, establishing a resilient Association-based continuum.

The Multi-Cluster Orchestration Layer handles service orchestration and resource

management across EMPYREAN's disaggregated infrastructure. Using autonomous,

distributed decision-making mechanisms, it orchestrates dynamic, hyper-distributed

applications while enabling self-driven adaptations. Multiple instances of this layer’s

components provide decentralized operation, optimize resource utilization, and ensure

scalability, resiliency, energy efficiency, and high service quality. Deliverable D4.2 (M15)

provides a detailed description for designing and developing the Association Management

and Multi-Cluster Orchestration layers’ components.

The Resource Management Layer unifies the management of IoT, edge, and cloud platforms

under the EMPYREAN platform. It integrates software mechanisms for both platform-level

scheduling (e.g., EMPYREAN Controller, AI-enabled Workload Autoscaling) and low-level

mechanisms (e.g., Unikernel Deployment). This layer operates within Kubernetes (K8s) or

Lightweight Kubernetes (K3s) clusters and offers modularity, simplifying the integration of

new hardware and software. The deliverable presents the initial developments for two of its

core components.

The Hardware Acceleration Abstractions (Section 5) component enables offloading compute-

intensive tasks to hardware accelerators on neighbouring nodes. This offloading is performed

while ensuring data security and integrity, thereby enhancing performance for resource-

heavy workloads without compromising on safety. Moreover, the AI-enabled Workload

Autoscaling (Section 7) component enhances the Kubernetes orchestrator by incorporating

AI/ML techniques for intelligent workload autoscaling. By analysing historical data, this

component ensures optimized resource allocation, dynamic application-level adaptations,

and efficient utilization of resources, providing a more responsive and adaptive environment

for workloads.

The Data Management and Interconnection Layer ensures dynamic communication and

secure data storage between IoT devices and computing resources. Operating at both cluster

and Association levels, it provides flexible and scalable data management and seamless

integration of IoT, edge, and cloud resources. It also supports distributed operation,

facilitating efficient operation in complex, distributed environments.

D3.2 – Software-defined Edge Interconnect and Service Assurance Mechanisms

empyrean-horizon.eu 14/70

Figure 2: Example deployment scenario within EMPYREAN for software-defined interconnect and hardware

acceleration abstractions

The Software-Defined Edge Interconnect (Section 4) serves as a low-level communication

interface and key enabler within this layer. It delivers high-performance data transport service

integrating remote I/O operations into large computational pipelines, such as AI training

workflows. By leveraging Remote Direct Memory Access (RDMA), it optimally overlaps

computation with network I/O, significantly enhancing the performance of data-intensive

tasks across distributed environments and thereby supporting real-time processing and

analytics. Figure 2 illustrates how the software-defined interconnect, together with vAccel

framework, enables the dynamic deployment of composable infrastructures at the edge. This

is achieved by enabling seamless resource sharing from a common pool of hardware

acceleration resources across the edge deployment, promoting agility and scalability.

The architecture is complemented by the Security, Trust, and Privacy and the Monitoring and

Observability layers, which are across the other layers, providing critical functionalities for

the overall platform. The former ensures secure access, privacy, and trusted execution across

the EMPYREAN platform. Operating at both the cluster and Association levels, it delivers

distributed trust services, enables secure and trusted execution environments, and provides

controlled data access to guarantee data confidentiality and continuous validation of trust

among entities.

The Monitoring and Observability layer integrates real-time monitoring, observability, and

service assurance components to provide comprehensive visibility and control over the

EMPYREAN platform. The telemetry components are described in deliverable D4.2 (M15). The

Analytics Engine (Section 6) provides service assurance by using AI-driven analytics on top of

monitoring and observability data. This approach ensures that applications perform as

intended by dynamically adjusting deployments based on changing conditions and

requirements.

D3.2 – Software-defined Edge Interconnect and Service Assurance Mechanisms

empyrean-horizon.eu 15/70

4 Software-Defined Interconnect

4.1 Overview

The EMPYREAN Software-Defined Interconnect is a low-level, high-performance

communication interface that operates on top of Remote Direct Memory Access (RDMA)

verbs. It offers low-latency round-trip times (RTT) and efficient message aggregation through

a very simple circular-buffer control plane. The software interface resembles the design of the

Linux kernel’s io_uring, adopting the same Proactor pattern for asynchronous operations.

Additionally, we have designed a specialized accelerator interface version that disaggregates

FIFOs offering an Advanced Microcontroller Bus Architecture (AMBA) AXI-S hardware

specification interface, enabling seamless hardware integration.

Value proposition of the EMPYREAN Software-Defined Interconnect (SDI) approach:

1. High-Performance Remote I/O: Significantly improves remote I/O network data path

performance over RDMA, enabling scalable performance for data-intensive

applications.

2. Standardized Interface: Offers a standard io_uring-like interface at the software level,

following the same Proactor-based asynchronous model used in the local Linux kernel

io_uring interface.

3. Fully User-Space Solution: Operates entirely in user space without requiring kernel-

side servers yet achieving similar performance to a kernel-side implementation, which

is amenable to use with containers and hypervisors.

The in-band data path functionality of the circular buffer is straight forward and lock-free.

Each endpoint manipulates the locally exposed buffer construct by:

• Writing data: updating the head pointer.

• Reading data: updating the tail pointer.

The out-of-band control brings up the described buffer connections across the deployment

and manipulates their depth and head/tail update strategies. The mechanism also controls

Quality of Service (QoS) across the service deployment. This approach is particularly important

especially for latency-sensitive operations, such as vAccel interface disaggregation (Section 5),

where jitter can significantly impact performance.

Applications using the disaggregated circular buffer should follow the Proactor pattern (Figure

3), a well-known software design pattern for handling asynchronous events efficiently. This

pattern is particularly useful in applications that require concurrent execution of operations

without the overhead of multiple threads and are ideal for containerized environments. The

pattern simplifies asynchronous application development by integrating the demultiplexing

of completion events and the dispatching of their corresponding event handlers.

D3.2 – Software-defined Edge Interconnect and Service Assurance Mechanisms

empyrean-horizon.eu 16/70

Key participants in the Proactor pattern:

1. Proactive Initiator: The entity in the application that initiates an asynchronous

operation. It registers both a Completion Handler and Completion Dispatcher with the

Asynchronous Operation Processor.

2. Asynchronous Operation Processor: It executes asynchronous operations and notifies

the Completion Dispatcher when an operation completes.

3. Completion Handler: It processes the results of an asynchronous operation. It is

notified by the Asynchronous Operation Processor when an operation is complete.

4. Completion Dispatcher: It invokes the correct call to the Completion Handler based on

the execution environment.

5. Asynchronous Event Demultiplexer: This component blocks waiting for events to

occur on the Completion Event Queue and returns completed events to its caller.

6. Completion Event Queue: It buffers completion events until they are dequeued by the

Asynchronous Event Demultiplexer.

Figure 3: Proactor Software Pattern

4.2 Relation to Project Objectives and KPIs

This component serves the EMPYREAN functional requirement F_SO.12 “Offload acceleration

to nearby devices” and provides enabler EN_3 “High-Performance Data Transport Service”.

Moreover, it contributes to achieving the technical KPIs T4.1 “Increase application-level small-

message transfer performance” and T4.2 “Improve the RDMA programming efficiency of

applications”.

D3.2 – Software-defined Edge Interconnect and Service Assurance Mechanisms

empyrean-horizon.eu 17/70

To meet these goals, the deliverable describes the integration of the Software-Defined

Interconnect (SID) with the vAccel (Section 5), enabling the offloading of computationally-

intensive workloads to nearby acceleration devices. The SDI articulates the RDMA transport

capabilities with network facing signalling rates up to 200Gb/sec, providing a high-

throughput, low-latency data path. The proposed approach promotes the circular buffer

interface concept for RDMA network I/O, directly contributing to the achievement of the KPIs

T4.1 and T4.2. The developed mechanism supports transparent remote synchronization and

enables batching small messages into larger buffers. As a result, it reduces housekeeping

overhead, improves overall throughput, and significantly enhances RDMA programming

efficiency, thereby supporting the targeted technical KPIs.

4.3 Architecture and Interfaces

The disaggregated circular buffer communication system is the heart of the software-defined

interconnect architecture developed within EMPYREAN. The main concept is depicted in

Figure 4. In EMPYREAN, we adopt and extend the well-known circular buffer paradigm to

serve as the foundation for a low-level RDMA-based communication library, referred to as

libRRR. Next, we provide an overview of the internal design and operation of this system.

Figure 4: Single-sided RDMA Circular Buffer

Each RDMA circular buffer is single-sided and the baseline supports one producer and one

consumer. Multi-producer/multi-consumer access is expected to be handled explicitly by the

application that uses the library. The producer pushes data to the buffer and the consumer

pulls from it, using the provided API. Notably, the buffer head and tail need to be polled for

access, as the library does not provide any other notification mechanism. The applications are

not exposed at all to RDMA communication, while form the developer’s perspective

interaction with the buffer is similar to accessing a local buffer, albeit through the exposed

API, abstracting away all RDMA communication complexities.

D3.2 – Software-defined Edge Interconnect and Service Assurance Mechanisms

empyrean-horizon.eu 18/70

Each circular buffer instance moves traffic towards one direction. To implement a full-fledged

RPC communication, typically there is a requirement of instantiating two buffers per direction:

one for control and one for data for request side and another set for response side (Figure 5).

The library offers comprehensive wrappers to implement the described RPC transport model.

In this scheme, control and data messages can be transmitted out of order, and there is no

one-on-one requirement for control and data buffers. Each control (Ctrl) command received

at the destination may consume anywhere from zero data entries up to the whole buffer, a

decision that is entirely left to the application.

Figure 5 illustrates the RPC mechanism. The API uses separate circular buffers for control

(Submit Queue - SQ) and data (Submit Queue Data - SQD), which operate independently. This

separation is crucial because some RPC calls may feature only control operations (e.g., remote

read), while others may involve both control and variable-sized data (e.g., remote write),

potentially end up consuming several entries of the circular buffer data. The circular buffer

entries are of fixed size, defined during initialization, which simplifies memory management

and alignment. The same buffer configuration applies to the asynchronous response path,

which may or may not need to transfer data back to the requestor. To enable full-duplex RPC,

a total of four (4) circular buffers are initiated.

Notably, these buffers are independently synchronized with their remote counterparts

through the same RDMA channel. This design decouples the number of RDMA channels from

the number of disaggregated circular buffers, allowing multiple RPC channels to be

multiplexed over the same RDMA channel. This approach reduces connection context

memory pressure. With buffers supporting lock-free operations, application developers can

even use independent threads to feed control and data channels on each side, if needed by

the application distributed communication. Nevertheless, the circular buffers structure

guarantees in-order delivery within each stream.

Figure 5: Typical RPC channel disaggregated buffer deployment

D3.2 – Software-defined Edge Interconnect and Service Assurance Mechanisms

empyrean-horizon.eu 19/70

Figure 6 depicts the complete RDMA interaction sequence used to synchronize the contents

of a local buffer with a remote buffer. This process involves three (3) key steps, all performed

exclusively through RDMA memory operations.

Figure 6: Request Path RDMA Remote Circular Buffer Sync

The first step involves RDMA write operations that update both tail and head entries of the

remote circular buffers (i.e., rings). Specifically, the head is updated for the remote ring that

is receiving new data, while the tail is updated for the ring in the opposite direction, for which

the request initiator has already consumed an entry locally. In most cases, tail updates occur

typically implicitly, as part of head updates in the opposite direction. However, explicit tail

updates are also supported but are left to the application’s responsibility when needed.

The second step is initiated by the receiver, which due to the previous head update, it can

determine which part of the remote command (cmd) ring contains new command data that

is not yet available locally. Using this information, the receiver performs an RDMA read to

fetch all the updated remote command data. At this point batching of remote ring entries in

one transfer is achieved, improving efficiency. If the application logic requires examining the

command entries before deciding which data entries to fetch, a separate RDMA read is issued

to pull in the relevant data ring contents, provided they are available.

In hardware implementations, the circular buffer logic is entirely abstracted from

accelerators, which interact through a simple streaming interface.

Moreover, the software-defined control layer provides an interface for managing

communication link establishment and buffer configurations. It ensures that:

• Links are only activated when endpoints are authenticated and associated.

• Message transmission may include optional authentication (e.g., HMAC2).

• Link-level properties such as jitter and latency are properly configured, as they directly

related to circular buffer configurations.

2 https://datatracker.ietf.org/doc/html/rfc4868

D3.2 – Software-defined Edge Interconnect and Service Assurance Mechanisms

empyrean-horizon.eu 20/70

This software-defined control plane takes advantage of the capability of bringing up RDMA

Queue Pairs (QPs) out-of-band, thereby decoupling link setup from the application data path.

As a result, the application can remain focused purely on data transmission, free from the

complexities of RDMA connection management.

4.3.1 Data path software public API

The data path software interface is implemented as a C programming language library that

wraps disaggregated circular buffer operations over RDMA. This API handles the instantiation

of RDMA communication channels and the associated ring buffers, exposing a typical ring

buffer interface that enables efficient and streamlined manipulation of these resources.

Table 1: Data path software API – Available functions in the developed C-language library

rrr_init_rings

int rrr_init_rings(int sockfd, struct rdma_connection *res, struct rrr_ring_pair *ringp, char *

recv_bufs[], char* send_bufs[],int blocksize,int iodepth, int submit_ctrl_buf_size, int

completion_ctrl_buf_size, bool isServer, bool ext_buf_management)

This function is used both on client and server sides and initializes the ring pairs and associates

them with an RDMA connection.

rrr_register_buffer_for_transfer

int32_t rrr_register_buffer_for_transfer(struct rrr_ring_pair *ringp, struct rdma_connection *res,

unsigned char * buffer, uint32_t bfidx, uint64_t size)

This function registers a user application buffer to the ring associating it effectively with a ring

entry at index bfidx and registers its address for RDMA transfers

rrr_async_rdma_remote_data_buf_list

int rrr_async_rdma_remote_data_buf_list(struct rrr_ring_pair *ringp, struct rdma_connection

*res, uint64_t *laddr, uint32_t *lkey, uint64_t *raddr, uint32_t *rkey, uint32_t *len, int entries)

This function registers a receive-side ring buffer that accepts sent data from remote counterpart.

The async refers to the asynchronous recycling of the receive buffer.

rrr_ring_get_next_head_cmd_buf

void * rrr_ring_get_next_head_cmd_buf(struct rrr_ring_pair *ringp, bool isSubmit)

This function get next head. It can be used either from client or server side

rrr_ring_get_next_tail_cmd_buf

void * rrr_ring_get_next_tail_cmd_buf(struct rrr_ring_pair *ringp, struct rdma_connection *res,

uint32_t *idx, bool isSubmit);

D3.2 – Software-defined Edge Interconnect and Service Assurance Mechanisms

empyrean-horizon.eu 21/70

This function gets next tail it can be used either from client or server side.

rrr_ring_get_next_tail_fixed_data_buf

void * rrr_ring_get_next_tail_fixed_data_buf(struct rrr_ring_pair *ringp, struct rdma_connection

*res, uint32_t *idx, bool isSubmit);

This function is used to get next tail at the receive side when fixed receive buffers are used by the

server for improved performance.

rrr_submit_ring_get_next_tail_free_data

int rrr_submit_ring_get_next_tail_free_data(struct rrr_ring_pair *ringp, uint32_t bufnum,

uint64_t * localbfs, uint64_t *rembfs);

This function gets next tail data from remote ring side and copies them from remotebfs to localbfs

are required updating the tai l in the process.

rrr_ring_unlock_cmd_buf

void rrr_ring_unlock_cmd_buf(struct rrr_ring_pair *ringp, uint32_t *idx, bool isSubmit);

Function protects buffer from being reused/retired until application that uses it stops needing it.

rrr_ring_synchronous_unlock_data_buf

void rrr_ring_synchronous_unlock_data_buf(struct rrr_ring_pair *ringp, uint32_t *idx, bool

isSubmit);

This function protects data buffer contents until application has finished using them.

rrr_register_buffer_for_transfer

int32_t rrr_register_buffer_for_transfer(struct rrr_ring_pair *ringp, struct rdma_connection *res,

unsigned char * buffer, uint32_t bfidx, uint64_t size);

This function registers buffer memory for RDMA transfers.

rrr_ring_data_async_get_next_head

int rrr_ring_data_async_get_next_head(struct rrr_ring_pair *ringp, int bufidx, bool isSubmit);

This function provides asynchronous ring buffer head retrieval

rrr_ring_commit

int rrr_ring_commit(struct rrr_ring_pair *ringp, struct rdma_connection *res, bool isSubmit);

This function provides commit / doorbell functionality that initiates remote buffer synching

D3.2 – Software-defined Edge Interconnect and Service Assurance Mechanisms

empyrean-horizon.eu 22/70

4.3.2 Data path hardware interface

To support simple hardware sensors and other edge devices, the Software-Defined

Interconnect provides a fully hardware-based data path interface built on the AXI-Stream

protocol3. The circular buffer mechanism described earlier is integrated into the Nvidia

FlexDriver4 system, enabling seamless communication between software and hardware

components at the edge.

Table 2: Data path hardware interface

AXI Send Master-Slave Interface

module axi_stream_512 (

 input wire clk,

 input wire rst_n,

 // Master -> Slave

 output reg [511:0] m_axis_tdata,

 output reg m_axis_tvalid,

 input wire m_axis_tready,

 output reg m_axis_tlast

)

This is the verilog module interface that allows 512-bit data to be transmitted in a single cycle. t_data

holds the data, t_valid indicates that data are valid, t_ready sets the interface into ready mode and

t_last indicates the part of t_data 512-bit word that is valid for read in the current cycle.

4.3.3 Software-Defined Interface

The Restful API described below provides the necessary control path support required by the

previous interfaces involved in data forwarding within the EMPYREAN platform. In addition to

managing control operations, this control path interface also performs authentication for

establishing connections initiated by the user.

This software-defined interface is designed to fulfil three primary roles: (i) define endpoint

associations, establishing logical pairs between endpoints intending to utilize EMPYREAN

RDMA secure links, (ii) assign desired performance characteristics, which the system will

attempt to accommodate, and (iii) manage the actual link establishment, ensuring controller

maintain a full overview of the deployment.

3 https://developer.arm.com/documentation/ihi0051/latest/
4 https://dl.acm.org/doi/10.1145/3503222.3507776

D3.2 – Software-defined Edge Interconnect and Service Assurance Mechanisms

empyrean-horizon.eu 23/70

The API listed below offers the basic control capabilities and is designed to be triggered and

orchestrated by EMPYREAN platform control and management plane, seamlessly integrating

with the EMPYREAN deployment platforms.

Function: Set User Pair Association and Credentials

Description: Sets a user pair association for link bring up with credentials

URL: /SetPair

HTTP Type: POST

POST JSON Data: { {“Endpoint1”: <Endpoint1 Identifier>”}, {“Endpoint2”: <Endpoint2 Identifier>”},

{“Endpoint2”: <Comms Secret - Optional>”} }

RESPONSE JSON Data: { {“PairID”: <idenfifier>”}}

Success Response (code 200)

Internal Error Codes: code 500 “Endpoints not found”

Function: Set Link Properties

Description: Sets a user pair association for link bring up with credentials

URL: /SetLinkProperties

HTTP Type: POST

POST JSON Data: { {“PairID”: <identifier>”}, {“Jitter”: <Value>”}, {“Latency”: <Value>”} }

Success Response (code 200)

Internal Error Codes: code 500 “Values not in Nanosecond format”

REMARKS: SetPair should be issued before to have a valid pair association id. The values reflect

specific configuration of circular buffer that aims to meet requirements. Based on the requested

values (e.g. if are unreasonable) or the overall load of the network the requirement might not be

met so the global controller should have an overview of the deployment and current activity

before configuring.

Function: Bring up Link

Description: Coordinates the link bring up on both sides

URL: /LinkBringUP

HTTP Type: POST

POST JSON Data: {“PairID”: <identifier>”}

Success Response (code 200)

Internal Error Codes: code 500 “Bring up failed”

REMARKS: Function should be called after the previous configuration functions have been issued.

D3.2 – Software-defined Edge Interconnect and Service Assurance Mechanisms

empyrean-horizon.eu 24/70

5 Hardware Acceleration Abstractions

5.1 Overview

The vAccel5 framework enables seamless acceleration workload offloading by abstracting

hardware acceleration capabilities and offering a unified API for diverse backend targets. In

the context of EMPYREAN, vAccel is integrated to support efficient, low-latency execution of

AI/ML workloads across distributed, heterogeneous environments.

A key aspect of this integration involves supporting libRRR, the RDMA-capable, user-level

communication library described in Section 4, as a vAccel transport plugin. This integration

enables seamless remote AI/ML inference task offloading to hardware-accelerated endpoints

across the EMPYREAN IoT-edge-cloud continuum. By embedding the vAccel execution model

within libRRR, EMPYREAN introduces a lightweight, low-latency, and high-performance

mechanism for invoking vAccel plugins over RDMA channels, ensuring optimal performance

and scalability.

5.2 Relation to EMPYREAN Objectives and KPIs

This component is a key enabler for:

● F_SO.12 – Offload acceleration to nearby devices

● EN_3 – High-Performance Data Transport Service

and directly contributes to the achievement of:

● T4.1 – Increase application-level small-message transfer performance

● T4.2 – Improve RDMA programming efficiency of applications

By abstracting the complexity of RDMA operations and integrating with vAccel's plugin-based

execution model, this integration offers a transparent and efficient offloading mechanism,

particularly suitable for lightweight edge devices. It supports scalable and secure AI inference

capabilities across EMPYREAN Associations.

In scenarios such as anomaly detection in smart factories or real-time image processing in

surveillance systems and smart agriculture, vAccel enables resource-constrained edge devices

to offload processing tasks to nearby accelerators, while maintaining end-to-end TLS

encryption and attestation support. Moreover, vAccel integration extends to federated

learning workflows, enabling distributed training on multiple edge devices and leveraging

accelerated aggregation in more powerful environments (e.g., far edge, cloud) using vAccel-

enabled plugins.

5 https://vaccel.org

D3.2 – Software-defined Edge Interconnect and Service Assurance Mechanisms

empyrean-horizon.eu 25/70

5.3 Architecture and Integration Details

The integration of vAccel within EMPYREAN stack adopts a layered, modular architecture,

designed to support efficient offloading and execution of AI/ML workloads across distributed

systems. Communication is orchestrated through the Remote Ring-buffer Runtime (libRRR)

over RDMA, enabling ultra-low latency, zero-copy interactions.

Figure 7: vAccel and libRRR integration

The architecture comprises the following key components (Figure 7):

• vAccel Application: The user application leverages the vAccel API to issue high-level

acceleration requests.

• vAccel Core Library (libvaccel): Acts as the main entry point for applications. It

marshals commands and delegates them to the appropriate client backend (plugin).

• vAccel Client Backend (vaccel-client-rrr): Encodes acceleration requests and transmits

them through the libRRR communication layer, leveraging a ring-buffer abstraction for

efficient data exchange.

• libRRR (Remote Ring-buffer Runtime): The high-performance communication runtime

mechanism built on top of RDMA transport, facilitating zero-copy, low-latency

command and data descriptor exchanges between client and server (detailed in

Section 4).

• vAccel Server Backend (vaccel-server-rrr): Dequeues and interprets incoming

requests, dispatching them to the appropriate hardware backend through the vAccel

plugin interface.

D3.2 – Software-defined Edge Interconnect and Service Assurance Mechanisms

empyrean-horizon.eu 26/70

• vAccel Plugin Layer: Acts as a bridge between the vAccel runtime and the hardware

acceleration backends, interfacing with the actual transport layer (libRRR) on one side

and supporting hardware devices, such as GPUs, FPGAs, or TPUs on the other side.

• Hardware Acceleration Device: The physical endpoint that executes AI/ML tasks, fully

abstracted through the plugin interface for seamless integration and portability.

5.4 Implementation and Integration Points

The integration of vAccel into EMPYREAN platform is implemented through a series of

modular development tasks and well-defined interconnection points, carefully aligned with

the architectural objectives and system-level constraints of hyper-distributed environments.

Key integration steps include:

1. Development of vaccel-client-rrr and vaccel-server-rrr: These components constitute

the client-server communication model for vAccel over the Remote Ring-buffer

Runtime (RRR). The client component serializes commands and associated arguments

into buffer-length structures, while the server deserializes, validates, and dispatches

them for execution. This modular separation ensures flexibility in deployment, e.g.,

placing clients on IoT devices and servers on edge or cloud nodes.

2. Design and Implementation of libRRR Protocol: The Remote Ring-buffer Runtime

(libRRR) layer provides a zero-copy, lock-free communication mechanism over RDMA.

It abstracts the complexities of RDMA interactions while exposing efficient

enqueue/dequeue operations that are critical for achieving high throughput and low

latency. The libRRR component is described in detail in Section 4.

3. Deployment of RDMA Transport Infrastructure: High-speed RDMA-based

interconnects (e.g., RoCE, Infiniband) are used to transport ring-buffer payloads,

minimizing latency associated with conventional TCP/IP stack. This is particularly

essential for supporting real-time, latency-sensitive AI workloads in distributed edge-

cloud execution paths.

4. Implementation of Generic Operations (GenOps): To support frameworks like

TensorFlow6 and PyTorch7, high-level tensor operations are abstracted as GenOps,

which are routed through the plugin layer. This approach enables device- and

framework- agnostic acceleration, making it easier to plug in various backend

hardware types seamlessly.

5. Resource Containerization via vAccel-resource: A lightweight vAccel-resource entity

is introduced to encapsulate hardware contexts and metadata, such as memory

mappings, session states, and device capabilities. This facilitates orchestration and

6 https://www.tensorflow.org
7 https://pytorch.org

D3.2 – Software-defined Edge Interconnect and Service Assurance Mechanisms

empyrean-horizon.eu 27/70

resource isolation in multi-tenant and containerized deployment environments within

EMPYREAN.

6. Feedback Loop to EMPYREAN Orchestrator: The vAccel server continuously exports

runtime metrics, such as latency, throughput, queue depth, which are consumed by

EMPYREAN’s orchestration and deployment mechanisms. This enables dynamic

offloading decisions and real-time optimization of distributed workloads based on

system state and workload demands.

As a foundational enabler of hardware-accelerated execution within the EMPYREAN control

and management plane, the vAccel framework, tightly integrated with the libRRR

communication layer, plays a critical role in delivering high-performance, low-latency AI/ML

capabilities across all project use cases. Rather than operating as an isolated component,

vAccel is deeply embedded within the EMPYREAN compute and resource orchestration stack.

It seamlessly interoperates with the key platform components such as the EMPYREAN

Aggregator, Service Orchestrator, EMPYREAN Controller, and Telemetry Service.

By leveraging libRRR’s ring-buffer-based transport over RDMA, vAccel enables efficient

offloading of compute-intensive workloads from constrained edge devices to remote

hardware accelerators (e.g., GPUs, FPGAs). This remote execution model dramatically reduces

inference latency, preserves energy on edge nodes, and ensures timely AI operations —

including inference, pattern recognition, and predictive analytics— even when local compute

resources (e.g., IoT devices, on-premise edge) are limited.

Moreover, the integration directly supports dynamic optimization strategies driven by the

telemetry and service assurance mechanisms (e.g., Analytics Engine). As the system processes

telemetry data and detects evolving runtime conditions, vAccel’s abstraction layer facilitates

the rapid reallocation or offloading of workloads to the most suitable acceleration resources,

whether local or remote.

This dynamic capability aligns tightly with EMPYREAN's mission and goals enabling:

• Autonomous and resilient workload adaptation, especially under varying edge/cloud

resource constraints.

• Real-time AI inference in mission-critical edge deployments, such as industrial

automation or autonomous mobility scenarios.

• Scalable orchestration of heterogeneous resources, ensuring uniform access to

acceleration across diverse hardware environments.

• Energy-aware, latency-optimized execution, supporting green computing goals while

maintaining strict performance guarantees.

Across all EMPYREAN use cases, the integrated vAccel and libRRR stack enhances the

platform’s ability to balance workloads intelligently, maintain low-latency responsiveness

under load, and deliver inference-as-a-service in a hyper-distributed environment. Its deep

coupling with the control and management plane makes it a key enabler for fulfilling the

project’s performance, scalability, adaptability, and operational efficiency technical KPIs.

D3.2 – Software-defined Edge Interconnect and Service Assurance Mechanisms

empyrean-horizon.eu 28/70

6 Service Assurance

6.1 Overview

EMPYREAN architecture integrates distributed service assurance mechanisms for the self-

driven adaptability of the IoT-edge-cloud continuum through multiple instances of Analytics

Engine that utilize real-time telemetry data. The Analytics Engines are part of the Monitoring

and Observability layer, enabling EMPYREAN Aggregators to continuously monitor and predict

probable performance and security issues in Associations, allowing for prompt response to

anomalies and ensuring efficient resource utilization. Unlike deployment and orchestration

operations, which are generally executed per-request, service assurance operations are

executed in automated closed-loops to ensure applications perform as intended by

dynamically adjusting deployments and Association configuration based on real-time

analytics and telemetry data.

These engines employ continuous analysis techniques—such as machine learning, machine

reasoning, swarm intelligence, and robust adaptive optimization—to drive orchestration

mechanisms to (i) adapt resources within the Associations, (ii) provide dynamic load balancing

of processing workloads, and data within and across Associations, (iii) migrate workloads to

optimize energy efficiency, (iv) detect and categorize abnormal situations in

applications/resources, and (v) mitigate resource fragmentation and connectivity issues.

These capabilities ensure that applications perform as intended while proactively or reactively

triggering necessary re-optimizations to provide optimal performance, reliability, and

efficiency across the complex and dynamic Association-based IoT-edge-cloud continuum.

By implementing these data-driven mechanisms, the EMPYREAN platform can achieve robust

anomaly mitigation, adaptability, and self-driven recovery, ensuring resilient and efficient

operations in the face of unforeseen issues across the infrastructure.

6.2 Relation to EMPYREAN Objectives and KPIs

The Analytics Engine is one of EMPYREAN’s enabling technologies that support the

autonomous operation and self-driven adaptability across the Association-based continuum.

To this end, the Analytics Engine contributes to the achievement of the following key

objectives and technical KPIs:

● T1.2 - Increase reliability in the edge: Anomaly detection and failure prediction using

AI/ML within the Analytics Engine increases reliability by anticipating and pre-empting

failures at the edge. The notifications provide reliable asynchronous communication

for proactive response to performance issues.

● T1.4 - Provide low and predictable latency for hyper-distributed applications:

Integration of time-series databases and publish/subscribe mechanisms facilitates

low-latency data ingestion and real-time event propagation. Moreover, the modular

D3.2 – Software-defined Edge Interconnect and Service Assurance Mechanisms

empyrean-horizon.eu 29/70

design enables localized execution of analytics, allowing edge nodes to quickly react

to changes in their local environment.

● T2.3 - React fast to rapid changes in computational and data demands to maximize the

number of demands served: It provides continuous learning and inference to detect

resource saturation or performance degradation, triggering rapid re-optimization

actions. Dynamic reconfiguration and orchestration are triggered based on telemetry

data, ensuring responsiveness to changes in demand and resources.

● T2.5 - Increase the robustness of the algorithms, ensuring consistent performance even

under uncertain or noisy conditions: By employing robust adaptive optimization and

swarm intelligence, it provides adaptability to uncertainties and non-deterministic

behaviours in edge environments. The feature extraction, data normalization, and

filtering improve input quality, reducing the impact of noisy telemetry.

6.3 Architecture

A key requirement for designing the Analytics Engine is its scalability, both in terms of

integrating diverse data sources and executing AI/ML-based algorithms. Additionally, the

Analytics Engine must efficiently handle data ingestion from all telemetry and monitoring

resources across infrastructure segments, enabling the seamless combination of data from

infrastructure, through Associations, to deployed services and applications. The ability to

merge application and infrastructure-based metrics is closely linked to the AI/ML functions of

the EMPYREAN distributed control and management plane. Facilitating service assurance

mechanisms to aggregate and utilize data from various infrastructure layers and Associations

is essential for implementing more intelligent self-adaptation and self-optimization

mechanisms.

The design of the Analytics Engine follows a modular and scalable microservices-based

approach, providing flexibility for integrating multiple data sources and executing diverse

data-driven algorithms. It comprises four primary services: the Access Interface, Data

Connector, Data Manager, and Event Detection Engine. Figure 8 illustrates the architecture of

the EMPYREAN Analytics Engine, highlighting its key components and their interactions with

other EMPYREAN services.

The Access Interface enables bidirectional communication to exchange commands,

information, and notifications among the Analytic Engine instances and other services within

the distributed EMPYREAN control and management plane. The design includes two distinct

interfaces, each designed to meet specific interaction requirements:

● RESTful API: It provides a stateless, synchronous interface for executing control

operations. It is designed to handle standard CRUD operations (Create, Read, Update,

Delete) via standard HTTP methods (POST, GET, PUT, DELETE). The RESTful API is ideal

for tasks requiring instant feedback or control over analytics operations. The API Server

component implement this interface.

D3.2 – Software-defined Edge Interconnect and Service Assurance Mechanisms

empyrean-horizon.eu 30/70

● Asynchronous interface: It is provided by the Notification Manager component and is

built on the Eclipse Zenoh8, supporting flexible, asynchronous, and persistent

communication using its publish/subscribe and query mechanisms. It allows the

Analytics Engine to send real-time notifications and event updates to the service

orchestration mechanisms and platform web-based dashboard.

Figure 8: Analytics Engine architecture and core components

The Data Connector service manages the collection of raw monitoring and streaming

telemetry data from various sources within the Monitoring and Observability layer. It

functions as pre-processing element, performing tasks such as data filtering and

normalization, before forwarding the processed data to the Data Manager service. The design

supports multiple data ingestion methods (i.e., pull and push) and accommodates diverse

types of monitored data (i.e., metrics, events, streams) through various protocols.

Each data collection mechanism is implemented as a custom plug-in. The initial design

supports: (i) a REST client for managing periodic and on-demand monitoring data collection

through EMPYREAN’s telemetry service default interface, (ii) a gRPC module for handling

streaming telemetry data, (iii) an agent customized to interact with the decentralized

EMPYREAN data distributor service to ensure seamless data sharing within the EMPYREAN

8 Eclipse Zenoh: https://zenoh.io

D3.2 – Software-defined Edge Interconnect and Service Assurance Mechanisms

empyrean-horizon.eu 31/70

platform, and (iv) a Prometheus client for collecting and managing monitoring data in the

OpenMetrics9 format.

A common design approach has been adopted for these plug-ins, where each implements a

standardized Northbound Interface (NBI) and Southbound Interface (SBI). The NBI provides a

unified interface for receiving configuration instructions from the Access Interface service,

while the SBI forwards the collected data to the Data Engine component.

Pre-processing is implemented as a separate component, the Data Engine, which formats as

well as augments monitoring and telemetry for predictive model creation. It ensures data

normalization for consistency across different telemetry formats, performs feature extraction

and transformation to prepare data for advanced analytics, and applies filtering and

aggregation to reduce noise and enhance meaningful insights before storage and analysis.

The Data Manager service is responsible for managing data storage and facilitating data

exchange between internal and external components. It provides local storage of processed

data, trained models, and analysis results. The EMPYREAN Edge Storage component provides

the repository of trained models, which enables collected data and trained models to be

encrypted and stored in a distributed manner. This approach enhances security, fault

tolerance, and accessibility, ensuring that data remains protected while being readily available

to the Event Detection Engine for analysis, detection, and machine reasoning tasks.

Additionally, the Data Manager incorporates various database technologies to handle both

structured and unstructured data, including NoSQL and time-series databases. NoSQL

databases store unstructured or semi-structured data such as event logs, metadata, analysis

results. and post-analysis content. Time-series databases handle the continuous streams of

monitoring data, telemetry, and event logs from the Data Connector service, which later fuels

the operations of the Event Detection Engine. By combining edge storage, NoSQL, and time-

series databases, the Data Manager ensures efficient data processing, storage, and retrieval,

supporting the EMPYREAN platform’s mission of real-time event detection and intelligence.

The Data Handler component is a RESTful controller that provides a standardized interface for

both Analytics Engine components and external EMPYREAN services to access historical

telemetry data and interact with the other parts of the Data Manager service. It exposes

RESTful methods that simplify data retrieval and management across diverse databases and

storage resources, ensuring a unified and efficient data access layer. These methods abstract

the complexities of data manipulation, allowing for seamless retrieval of telemetry data based

on specified parameters while supporting filtering and query operations. Additionally, the

Data Handler ensures that stored information is properly updated and maintained. For secure

and efficient storage and retrieval, the component interacts with EMPYREAN’s edge storage

resources, handling both data and trained models through their standardized S3-compatible

APIs.

9 OpenMetrics: https://github.com/OpenObservability/OpenMetrics

D3.2 – Software-defined Edge Interconnect and Service Assurance Mechanisms

empyrean-horizon.eu 32/70

The Event Detection Engine service implements the core functionality of EMPYREAN’s

distributed service assurance framework, leveraging real-time telemetry data and machine

reasoning techniques to ensure system reliability. It enables the integration and execution of

data-driven algorithms that safeguard the performance and availability of deployed

applications and Associations. By incorporating AI/ML-based mechanisms, the Event

Detection Engine builds knowledge and intelligence to sense (detect what is happening),

discern (interpret detected events), and infer (understand implications) over an infinite time

horizon control loop. Its key functions include (i) AI/ML-driven anomaly detection, failure

prediction, and resource optimization, (ii) correlation of infrastructure and application-level

metrics to ensure consistent performance, and (iii) triggering adaptive control mechanisms to

dynamically respond to detected events.

The Event Detection Engine consists of four main components: the Dispatcher, Model

Training, Model Execution, and Event Reporter. The Dispatcher handles interactions with the

Access Interface and Data Manager services as well as it oversees the operation of the internal

components. It also coordinates the execution of inference, analysis, and training operations.

The Model Training supports the selection, configuration, and optimization of AI/ML-based

predictive and analytical models. The implementation will facilitate the definition and

integration of user-defined detection models within the Analytics Engine, provided they align

with the adopted processing pipeline and APIs. The Model Execution manages the

instantiation and execution of available detection and analysis methods. Depending on the

available telemetry information, these mechanisms will operate at different timescales. They

will autonomously drive the orchestration mechanisms in re-optimizations and adaptations

within an Association. All detected anomalies and performance issues are forwarded to the

Event Reporter, which then automatically delivered to the appropriate internal components

(e.g., Data Manager) and EMPYREAN orchestration and management services (e.g.,

EMPYREAN Aggregator, Service Orchestrator) to trigger any required remediation actions.

By combining real-time monitoring, AI-driven insights, and adaptive control, the Analytics

Engine (i) ensures fast reaction to rapid changes in computational and data demands to

maximize the number of served demands, (ii) increase robustness, ensuring consistent

performance even under uncertain or noisy conditions, (iii) maintain optimal performance by

quickly identifying and resolving anomalies, and (iv) learns from past anomalies and recovery

actions to improve future responses.

6.4 Implementation

During the reporting period, we focused on implementing the Access Interface, Data

Connector, and Data Manager services. Additionally, we developed the core logic of the Event

Detection Engine, with its full implementation scheduled for the second iteration of the

implementation plane (M16-M26). The overall design of the Analytics Engine, along with the

initial implementation of these services, ensures a robust, adaptable, and cloud-native

application. Bellow, we provide an overview of the functionalities developed during the first

iteration of the implementation plan.

D3.2 – Software-defined Edge Interconnect and Service Assurance Mechanisms

empyrean-horizon.eu 33/70

The Access Interface components are implemented in Python, with the API Server built using

the FastAPI10 web framework. FastAPI offers high performance, automatic data validation,

and ease of use, making it an excellent choice for RESTful APIs and microservices. It is built on

Asynchronous Server Gateway Interface (ASGI)11, using Starlette12 for async support and

Pydantic13 for automatic validation of request and response data. Figure 9 shows the methods

exposed by the Access Interface’s RESTful API.

10 FastAPI framework: https://fastapi.tiangolo.com
11 ASGI: https://asgi.readthedocs.io/en/latest/
12 Starlette: https://www.starlette.io
13 Pydantic: https://docs.pydantic.dev/latest/

D3.2 – Software-defined Edge Interconnect and Service Assurance Mechanisms

empyrean-horizon.eu 34/70

Figure 9: Analytics Engine – Access Interface RESTful API

D3.2 – Software-defined Edge Interconnect and Service Assurance Mechanisms

empyrean-horizon.eu 35/70

The Notification Engine is built using the Eclipse Zenoh14 and the PyQt15 framework. For the

asynchronous interface and communication, the implementation leverages the Zenoh key

expressions, the topics, to implement efficient and scalable publish-subscribe interactions,

enabling real-time messaging across distributed systems. In this setup, messages published

by components such as the Data Manager or Event Detection Engine are sent to designated

topics. These topics then broadcast all received messages to subscribed clients (e.g.,

EMPYREAN Aggregator, UI, CLI), ensuring that each component receives the same set of

notifications simultaneously.

The Notification Engine posts messages in JSON format, following a predefined structure:

● analytics_engine_uuid: (string): Unique identifier for the Analytics Engine instance.

● event (string): Unique identifier for the event.

● message (object): Collection of event-related parameters containing the necessary

information.

● timestamp (integer): The timestamp of the event.

Table 3 outlines the detailed structure of notification messages, describing the expected

elements and their roles in the communication process. This structured approach ensures

consistent message delivery across the EMPYREAN platform, improving responsiveness and

facilitating real-time control and management operations.

Table 3: Analytics Engine - Notification Engine messages

Event Identifier Description Parameters

NODE_UP

A new worker node is

detected to a specific

cluster, triggered on

joining a cluster or an

existing one becomes

online again.

node_id (integer): worker node unique

identifier

cluster_id: (integer): K8s/K3s cluster

unique identifier

asociation_id: (integer): EMPYREAN

Association unique identifier

NODE_FAILED

Worker node does not

operate properly, unable

to serve workloads.

node_id (integer): worker node unique

identifier

cluster_id (integer): K8s/K3s cluster unique

identifier

association_id: (integer): EMPYREAN

Association unique identifier

message (string): event related

information

14 Eclipse Zenoh: https://zenoh.io
15 PyQt: https://riverbankcomputing.com/software/pyqt/intro

D3.2 – Software-defined Edge Interconnect and Service Assurance Mechanisms

empyrean-horizon.eu 36/70

NODE_DOWN

A worker node is detected

unavailable, triggered on

leaving a cluster or

becoming offline.

node_id (integer): worker node unique

identifier.

cluster_id (integer): K8s/K3s cluster unique

identifier.

association_id: (integer): EMPYREAN

Association unique identifier.

NODE_STRESSED

A worker node is stressed

with high load for a

significant amount of time.

node_id (integer): worker node unique

identifier.

cluster_id (integer): K8s/K3s cluster unique

identifier.

association_id: (integer): EMPYREAN

Association unique identifier.

operational_status (object): affected

operational parameters.

ASSOCIATION_STRESSED

An Association is stressed

with a high load for a

significant amount of time.

association_id: (integer): EMPYREAN

Association unique identifier.

operational_status (object): affected

operational parameters.

DEPLOYMENT_FAILED

Deployed application is

failed, triggered when at

least one microservice is

not running properly.

deployment_id (integer): Application

deployment unique identifier.

affected_microservices (array): List of

affected microservices identifier

feedback (object): Information for the

detected issue

DEPLOYMENT_QOS

Quality of service is not

the expected for at least

one microservice

deployment_id (integer): Application

deployment unique identifier.

affected_microservices (array): List of

affected microservices identifier

feedback (object): Information for the

detected issue

DEPLOYMENT_MIGRATION

Suggestion for migrating a

deployment due to

detected issues.

deployment_id (integer): Application

deployment unique identifier.

feedback (object): Information for the

detected issue

The implementation of the Data Connector service follows a modular approach to ensure

flexibility, scalability, and interoperability with the various telemetry sources. It is built using

a combination of open-source frameworks and technologies to facilitate seamless data

ingestion. Each connector component is implemented as a custom plug-in, supporting

different data ingestion methods, while exposing a common RESTful northbound interface

(NBI). Figure 10 presents the initial version of the implemented NBI.

The Southbound Interface (SBI) delivers collected telemetry data to the Data Engine

component, ensuring compatibility with storage and analysis services. To achieve this, SBI

utilizes Pandas16 DataFrames as the primary data structure, offering several key advantages,

such as, (i) efficient data handling as DataFrames provide a structured representation of

telemetry data, enabling easier processing, filtering, and manipulation, (ii) interoperability

16 https://pandas.pydata.org

D3.2 – Software-defined Edge Interconnect and Service Assurance Mechanisms

empyrean-horizon.eu 37/70

with popular analysis frameworks (e.g., NumPy, SciPy, Scikit-learn), ensuring smooth data

analysis and transformation workflows, and (iii) performance optimization, as Pandas is

optimized for high-performance operations on structured data, such as vectorized

computations and parallel processing.

Next, the Data Engine enhances the quality of collected data before storage and analysis by

offering data normalization, feature extraction and transformation, filtering and aggregation

and processed data forwarding to the Data Manager service for storage and retrieval.

Figure 10: Analytics Engine – Data Connector plug-ins RESTful northbound interface

The Data Manager integrates multiple database technologies to efficiently handle diverse

data types, ensuring optimal performance across different workloads. To store event logs,

metadata generated by the Event Detection Engine, post-analysis reports, historical insights,

and processed data results from analytics pipelines, the Data Manager utilizes MongoDB17, a

document-based NoSQL database for unstructured and semi-structured data. MongoDB was

selected as it offers flexibility in storing dynamic data structures as well as indexing and

aggregation capabilities for supporting fast querying and data retrieval. For managing

continuous telemetry streams, the Data Manager integrates InfluxDB18, a high-performance

time-series database that provides (i) high-frequency data ingestion from the Data Connector

service, (ii) efficient querying of historical monitoring data for predictive analytics, and (iii)

retention policies to manage the storage lifecycle of telemetry logs. InfluxDB’s built-in query

language enables complex filtering, transformations, and real-time analytics, making it well-

suited for event-driven intelligence in the EMPYREAN platform.

In addition, to ensure local storage and edge-based data management, the EMPYREAN Edge

Storage component is leveraged (for further details, see D3.1 (M15)). This approach provides

a S3-compatible, secure, fault-tolerant, and distributed object storage system that offers (i)

secure encryption for stored data and trained models, (ii) scalability to handle large volumes

of telemetry and analytical data, and (iii) seamless integration with the EMPYREAN platform

via standard S3 APIs.

17 https://www.mongodb.com
18 https://www.influxdata.com

D3.2 – Software-defined Edge Interconnect and Service Assurance Mechanisms

empyrean-horizon.eu 38/70

Moreover, the Data Handler component is implemented in Python using also well-known

frameworks and libraries such as FastAPI, PyQt, PyMongo19, Boto320, and InfluxDB 3.0 client21.

It facilitates interactions with the integrated database and storage resources. The Data

Handler exposes RESTful methods that allow Data Connector components to efficiently

populate the data stores and the Event Detection Engine components to retrieve historical

telemetry data. The available RESTful methods are shown in Figure 11.

Figure 11: Analytics Engine – Data Manager RESTful API

6.5 Relation to Use Cases

As an integral part of the EMPYREAN control and management plane, the Analytics Engine

functions as an intelligence layer that empowers all project use cases with enhanced

situational awareness, adaptive optimization, and context-aware decision-making. Rather

than operating in isolation, the Analytics Engine is tightly integrated with core components

such as the EMPYREAN Aggregator and Service Orchestrator, ensuring seamless access to its

capabilities across the distributed edge-cloud infrastructure.

It processes both real-time and historical telemetry data, applying advanced AI/ML-driven

predictive analytics and event detection algorithms to support a wide range of operational

objectives. This enables the system to proactively respond to dynamic conditions, resource

fluctuations, and performance anomalies, directly contributing to the achievement of each

use case’s KPIs. The Analytics Engine’s value is particularly evident across the project’s use

cases, where it ensures high reliability and low-latency responsiveness in mission-critical edge

scenarios. Additionally, its inference and optimization capabilities support the autonomous

adaptability of workloads, enabling intelligent workload balancing in response to evolving

demands and variations in edge and cloud resource availability.

19 https://github.com/mongodb/mongo-python-driver
20 https://github.com/boto/boto3
21 https://github.com/InfluxCommunity/influxdb3-python

D3.2 – Software-defined Edge Interconnect and Service Assurance Mechanisms

empyrean-horizon.eu 39/70

7 Intelligent Autoscaling and Adaptive Computing

Management

7.1 Overview

This work focuses on applying AI/ML techniques to enable vertical auto-scaling within a

Kubernetes cluster within the edge-cloud continuum. Specifically, the objective is to develop

an ML-based vertical auto-scaler, named VPA-pilot, that leverages collected monitoring data

to recommend suitable container size for workloads. By tailoring resource allocations more

precisely, this approach enhances container bin-packing efficiency on worker nodes, reducing

the overall number of active nodes. In cloud environments, this results in lower execution

costs, while in on-premise deployments, it can also allow powering off resources, leading to

improved energy efficiency and further cost savings.

In the edge-cloud continuum, besides traditional workloads that use CPU and RAM resources,

the emerging hyper-distributed AI applications also require GPU resources. However, unlike

CPU and memory, dynamic GPU fractioning remains an immature and evolving area within

Kubernetes. Therefore, a key focus of this work is to research state-of-the-art methods for

dynamic GPU fractioning, and to explore how vertical auto-scaling techniques can be

extended to support GPU workloads in hyper-distributed environments.

7.2 Background and Challenges

Kubernetes is the de-facto industry standard for cloud infrastructure resource management

and orchestration, and it has also been adopted as the main low-level orchestration software

for the edge-cloud continuum. In a Kubernetes cluster, a large number of workloads of

different applications are running on a cluster of computers called nodes. A workload does

not exclusively occupy a node but runs with others together on a node. A workload is hosted

in a corresponding container, which keeps the workload isolated from others on the same

host computer(node). Containers work like VMs but with different mechanisms and much less

overhead. When we deploy an application in a Kubernetes cluster, we create a Deployment

object representing the application deployed in the cluster. Besides, instead of deploying

individual containers, we deploy groups of co-located containers - so-called pods. A pod is a

group of one or more closely related containers that run together on the same worker node

and need to share certain Linux namespaces.

To bring intelligence to the low-level orchestrator in the edge-cloud continuum, we enable

the autonomous and adaptive workload auto-scaling on the low-level Kubernetes platforms.

A common workload auto-scaling technique is horizontal auto-scaling, which already exists in

Kubernetes and allows applications to decrease or increase the number of replicas. This is a

powerful feature that enables the system to automatically adapt its resource allocation based

on real traffic. However, if the limits are not set correctly, the average utilisation might grow

D3.2 – Software-defined Edge Interconnect and Service Assurance Mechanisms

empyrean-horizon.eu 40/70

the application in a non-optimal way. Instead, we could keep more resources powered down

and gain a lot in the system’s energy consumption. Hence, another technique to address the

adaptation of workload is vertical auto scaling, which enables the automated setting of limits

for each replica.

The workload runs inside a container located in a pod, with the assumption that each pod

contains exactly one container. A deployment manages several homogeneous pods (i.e.,

related containers). The goal is to implement a vertical auto-scaler that collects historical

resource usage data, predicts a suitable container size, and applies this prediction across all

containers in the deployment. The auto-scaled resources in this work are CPU, RAM, and GPU.

The vertical auto-scaling problem in this context has three key aspects:

• Auto-scaler Input: The input consists of stable, real-time collected and aggregated

telemetry data from the Kubernetes cluster. We specifically focus on historical actual

usage metrics for CPU, RAM, and GPU, referred to as workload usage. Other potential

inputs, such as container size history or workload scheduling information, are

intentionally excluded.

• Auto-scaler Prediction Algorithm: The core ML-based algorithm that predicts future

resource usage and estimates appropriate container request and limit values. The

prediction should not exceed the (future) workload usage too much, as

overestimations can lead to resource waste. It should also not be underestimated as

this may disrupt workload execution and even cause service level objective (SLO)

violations. The aim is for the ML algorithm to outperform traditional rule-based

algorithms, such as threshold- or heuristic-based auto-scalers.

• Auto-scaler Output: The output includes both the predicted resource requests and

limits, given by the core prediction algorithm, as well as the mechanism to gracefully

apply them across all containers in the deployment. Specifically, we need to properly

configure the container resource request and limit settings according to the

algorithm’s prediction, followed by resource fractioning and assignment of the

appropriate fractioned slice to each container. Two main challenges arise: (i) GPU

resources fractioning, which lacks native Kubernetes support (unlike CPU and RAM)

and (ii) ensuring performance stability across the deployment when applying auto-

scaling on containers.

The theoretical challenge in vertical auto-scaling is making accurate predictions for future

container size predictions under a non-clairvoyant situation – without access to future

workload usage patterns. As such, the auto-scaler must behave as an online algorithm, making

real-time decisions with limited information. Although ML techniques can help to mitigate this

challenge, their effective application in an online problem setting remains an issue and is the

key focus of this work. To this end, the performance of the proposed auto-scaling algorithm

will be thoroughly evaluated through a variety of experiments and benchmarks,

demonstrating its effectiveness across CPU, RAM, and GPU scaling scenarios.

D3.2 – Software-defined Edge Interconnect and Service Assurance Mechanisms

empyrean-horizon.eu 41/70

The practical challenge addressed in this work is the actual implementation of an auto-scaler

in the Kubernetes cluster, with the long-term goal of deploying it in a production environment

across the edge-cloud continuum. This requires the auto-scaler to adapt and optimise CPU

and memory consumption based on different edge or cloud devices. It also requires

addressing differences between the theoretical model and real environment, handling cases

that are not well considered in the theories (e.g. dealing with Out-Of-Memory Kills), and

having enough robustness to handle diverse workloads and the edge-cloud environment.

The first version of our efforts focusses on a vertical auto-scaler inspired by Rzadca’s Autopilot

algorithm22. We introduce several theoretical refinements that include alignments for

improving both algorithm’s accuracy and efficiency, including as well as a RAM post-processor

specifically designed to successfully addresses the Out-Of-Memory (OOM) kills, which were

not adequately considered in the original work.

Building on this initial work, we then implemented VPA-pilot that is an actual auto-scaler built

as service upon Kubernetes and based on an open-source framework. Special attention was

given to edge-cloud adaptability by optimizing the CPU and RAM consumption of the

Autopilot ML implementation, based on complexity analysis. The implementation

demonstrates low overhead, even when running with high scale and precision (e.g., 20000

sub-models). Algorithm’s resource usage remains minimal (12.441 millicore CPU and

17.898MB RAM), which is not even dominate the consumption of the auto-scaler framework’s

system logic.

To further enhance performance, we developed a long-term auto-scaler simulator along with

appropriate methodologies to tune the VPA-pilot’s hyper-parameters. The hyper-parameters

tuning problem is modelled as an Operations Research (OR) program. Using combinations of

sampling- and manual-based methods, we solved the OR program. The dominating set of

hyper-parameters is successfully found on CPU resources. However, the RAM tuning

presented suboptimal performance, suggesting the need for future improvements on the

hyper-parameters tuning model, which are also presented.

Recognizing the growing importance of GPU acceleration in edge-cloud applications, we

extend our methodology to include dynamic GPU fractioning and vertical auto-scaling using

Multi-Instance GPU (MIG) technology. By leveraging our ML-based approach, we demonstrate

a practical pathway for enabling GPU-aware vertical scaling in Kubernetes environments that

currently lack native support for dynamic GPU partitioning.

22 Rzadca K, Findeisen P, Swiderski J, Zych P, Broniek P, Kusmierek J, Nowak P, Strack B, Witusowski P, Hand S,
Wilkes J. Autopilot: workload autoscaling at google. InProceedings of the Fifteenth European Conference on
Computer Systems 2020 Apr 15 (pp. 1-16).

D3.2 – Software-defined Edge Interconnect and Service Assurance Mechanisms

empyrean-horizon.eu 42/70

7.2.1 GPU Fractioning

The purpose of fractioning is to divide the entire resources into multiple slices and allocate

them to each container respectively. Good fractioning technologies should be able to limit

resources for each container, and should have good isolation between different containers.

This work concerns CPU, RAM and GPU resources in Kubernetes nodes. For CPU and RAM,

there are mature technologies such as Cgroups. However, Kubernetes has no native support

for GPU. There is also no technology as mature and dominating as Cgroups. This section

investigates 3 available GPU fractioning technologies on NVIDIA GPUs. Then compare them

and choose one for GPU vertical auto-scaling in this work.

GPU has its own computing and memory resources. Here we consider the combination of

Streaming Multiprocessor (SM) and Global Memory (GPU Memory), which is similar to the

CPU/RAM combination. SM is a fundamental computing component of NVIDIA GPUs that

executes instructions in parallel. As for memory, GPUs have a (more complicated) hierarchical

architecture like ordinary memory: L1/L2/constant cache, shared/local/global/texture and

constant memory. Among these, the global memory is similar to the ordinary "memory"

concept. So, for convenience, we use GPU Memory in this work to refer to the global memory.

7.2.2 Time-Slicing GPU

To access and configure GPU resources in Kubernetes, NVIDIA proposed the NVIDIA GPU

Operator, which is a set of components installed in a Kubernetes cluster. Among these

components, there is one called NVIDIA Kubernetes Device Plugin. This plugin implements the

Time-Slicing GPU feature.

Time-Slicing GPU enables the system manager to define a set of replicas for a GPU. Each

replica can be used independently by a container to run the workload. Internally, Time-Slicing

is used to multiplex workloads from replicas of the same underlying GPU. Time-Slicing allows

each workload to use the entire SMs of a GPU in turn, like the context switch of CPUs. The

GPU Memory is split and assigned to each workload, but without any memory and fault

isolation.

Time-Slicing is a bad fractioning method for auto-scaling. First, auto-scaling aims to improve

resource utilization when there are multiple workloads, each of which is small compared to

the entire resource. However, with Time-Slicing, each small workload still uses the whole GPU

during its round. The wasting of SMs is not relieved at all (i.e., we do not simply want

parallelism here). Second, isolation is important for Kubernetes containers. So, no isolation of

GPU Memory in Time-Slicing is unacceptable.

D3.2 – Software-defined Edge Interconnect and Service Assurance Mechanisms

empyrean-horizon.eu 43/70

7.2.3 Multi-Instance GPU (MIG)

Multi-Instance GPU (MIG) is a new feature proposed on NVIDIA GPUs starting from the

Ampere architecture. MIG allows GPUs to be securely partitioned into up to 7 separate GPU

Instances (GIs), then assigning each GI to different workloads. Different from Time-Slicing,

each GI owns a certain part of the resources (SM and GPU Memory) of the entire GPU

spatially. The SMs and GPU Memory between different GIs are completely isolated and their

resource usages are strictly limited, as if the workloads are running on different GPUs. In

Kubernetes cluster, the NVIDIA Kubernetes Device Plugin also implemented MIG support.

With this Kubernetes support, we can read the MIG information of the GPUs in the cluster,

configure MIG, and assign the GIs to different containers.

Figure 12: Illustration of MIG Strategies, MIG Profiles and GIs on NVIDIA H100 GPU

For vertical auto-scaling, MIG perfectly satisfies the requirements of limiting and isolating

resources. However, MIG has unignorable drawbacks in flexibility.

The sizes of GIs are not arbitrary. We cannot request an arbitrary part of the GPU as we did

on CPU or RAM. With MIG, the SMs on the GPU are grouped into 7 compute slices of the same

size. The entire GPU memory is also divided into 8 memory slices of the same size. These

compute slices and memory slices are grouped into several GPU Instances (GIs). Due to

technical limits at the GPU level, the grouping of these slices is not arbitrary (less than 10 valid

grouping methods for each GPU architecture)23. In this way above, a GPU is finally fractioned

into a combination of GIs. Each valid combination is called a MIG Profile. The size of a GI is

measured by the number of compute slices and memory slices it owns, denoted as Ag.BGB if

the GI owns A compute slices and B GB of memory slices.

23 Nvidia multi-instance GPU user guide. https://docs.nvidia.com/datacenter/tesla/mig-user-guide/index.html

https://docs.nvidia.com/datacenter/tesla/mig-user-guide/index.html

D3.2 – Software-defined Edge Interconnect and Service Assurance Mechanisms

empyrean-horizon.eu 44/70

In Kubernetes cluster, the MIG support allows us to configure a MIG profile for each GPU

device independently. In Kubernetes MIG support, the MIG Profiles are categorized into 2 MIG

Strategies: Single Strategy if each GI in the MIG profile have the same size, or Mixed Strategy

if they have different size. To configure MIG for a GPU in the cluster, we need first to choose

the MIG Strategy, then choose a MIG Profile that belongs to it. After configuring, we can assign

a GI to a container by labelling it in the manifest YAML file.

As a particular example, Figure 12 shows the valid MIG Strategies, MIG Profiles, and their

combination of GIs on a Kubernetes nodes with NVIDIA H100 GPU with 80 GB GPU Memory.

Changing a container’s GI size is not fully dynamic. In Kubernetes cluster with MIG fractioned

GPU, switching the MIG Profile and MIG Strategy requires additional time overhead. In our

experiment on a Scaleway Kubernetes node with one NVIDIA H100 GPU, switching MIG Profile

takes 36-39 seconds and switching MIG Strategy takes 33-36 seconds. If considering the pod

recreating time, the total time overhead is up to 70-110 seconds. During this period the pod

cannot provide service, which may cause SLO violation problems in auto-scaling depending

on how to deal with this overhead. Moreover, we need to ensure that all containers using this

GPU are stopped before switching MIG Profile or MIG Strategy, otherwise the switching will

fail. This is also a limit in auto-scaling.

We have 3 ways to change the size of a container’s current GI: 1. Reallocating another GI in a

fixed MIG Profile under Mixed Strategy. 2. Switching the MIG Profile under Single Strategy. 3.

Switching MIG Strategy between Single and Mixed. The second and third ways both have the

switching overhead. Only the first way can avoid this. However, in the vertical auto-scaling

context, this first way has other problems with resource utilization. This will be discussed in

follow-up subsection.

7.2.4 GPU Multi-Process Service (MPS)

Multi-Process Service (MPS) is a CUDA API binary-compatible runtime implementation,

allowing multiple CUDA kernels to be concurrently on the same GPU [14]. MPS is a client

server architecture. Each user owns a single MPS client attached to the user’s CPU process.

This MPS client submits the task and its CUDA context to the MPS server. The MPS server

combines the contexts of the received client tasks and lets them run on the GPU as a single

ap plication, to reach higher GPU utilization. Starting from Volta architecture, the MPS server

is no longer a separate component. Its functionality is taken by GPU hardware and MPS

clients.

MPS is designed mainly for multi-process collaboration programs like Message Passing

Interface (MPI). However, MPS can also be used in Kubernetes to fraction GPU. A third-party

fork of the NVIDIA Kubernetes Device Plugin implemented MPS support in Kubernetes. After

replacing the official Kubernetes Device Plugin to this fork in the cluster, we can configure

MPS and assign fractioned GPU slices to containers by manifest YAML files. Thanks to MPS

server’s functionality, MPS can fraction the SMs spatially, different from context-switching in

Time-Slicing. We can arbitrarily create the limit on maximum SM usage for each

container(task).

D3.2 – Software-defined Edge Interconnect and Service Assurance Mechanisms

empyrean-horizon.eu 45/70

Regarding GPU Memory, we can also arbitrarily limit each container(task)’s allocatable GPU

Memory size. Each container has isolated address space. However, the GPU Memory access

is not fully isolated. An out-of-range write in a CUDA Kernel can modify the CUDA accessible

memory state of another process. In the experiment on Kubernetes node with NVIDIA H100

GPU, a container knows the existing workloads in other containers, and also the GPU Memory

size of other containers. The fault isolation is also bad. A fatal GPU fault generated by an MPS

client process will be shared with some of the other clients on the same GPU. These bad

isolations are unacceptable in vertical auto-scaling.

7.2.5 Conclusions on GPUs Fractioning

Regarding the choice of this work, as presented previously, our goal is to guarantee a stable

auto-scaler implementation rather than chasing for top performance. We first discard Time-

Slicing GPU, as discussed in comments. Then as for MPS, we appreciate its flexibility to

arbitrarily slice GPU, as how Cgroups manages CPU and RAM. However, poor isolation is

unacceptable for a Kubernetes implementation. Although there are safe isolation methods

based on CUDA logic or practical analysis, they are not open-source. Studying and

implementing these novel techniques from scratch is not a stable choice. Therefore, we

discard MPS as our GPU fractioning implementation.

MIG is a very safe and stable choice for our goal. To fraction GPU using MIG, we need to

choose a specific way to change the container’s GI size:

Using Mixed Strategy is the most flexible, as we only need to reallocate another GI under the

same MIG Profile. However, if the sizes of workloads are not uniformly distributed, Mixed

Strategy can lead to severe resource waste. For example, if each NVIDIA H100 GPU in the

cluster is configured as the Mixed Strategy in Figure 12, and all workloads are 1g.10GB in size.

Then the 2g.20GB and 3g.40GB GIs will all remain unused. This will waste 71.4% of the SMs

and 75% GPU memory. Unfortunately, we cannot guarantee the uniform distribution of

workloads. Thus, the Mixed Strategy has to be aborted.

Alternatively, by using the Single Strategy for all GPUs in the cluster while dynamically

configuring the MIG profile on each GPU, we can adapt to any distribution of workload sizes

and avoid resource waste. For example, when there are more 1g.10GB workloads, we can

configure more free H100 GPUs as 1g.10GB MIG Profile. Regarding the Profile switching

overhead (up to 70-110s), we can reduce the frequency of switching to lower the total

overhead. Besides, the auto-scaler will be integrated into the Ryax platform24, which provides

higher-level scheduling information. We can schedule tasks and prepare for the switching in

advance, which can mitigate the service interruption caused by switching. Overall, we choose

MIG technology with dynamically configured MIG Profiles under Single Strategy for GPU

fractioning in this work.

24 https://github.com/RyaxTech/ryax-engine

D3.2 – Software-defined Edge Interconnect and Service Assurance Mechanisms

empyrean-horizon.eu 46/70

7.3 Theoretical Aspects

This section presents the main theoretical contributions of our vertical auto-scaler in this

work. The contributions include refining the auto-scaler’s core recommendation algorithm,

and designing the dynamic GPU fractioning algorithm on the auto-scaler output side.

About the core recommendation algorithm this work chooses the Autopilot ML algorithm to

implement and refine. In this section, we first briefly recall the contributions of the Autopilot

paper, including the ML model that we will refine, and a rule-based algorithm that will be used

as a baseline in performance evaluation. Then, we present the refined ML model in detail

which is named VPA-pilot.

About the dynamic GPU fractioning algorithm as the auto-scaler’s output, this work chooses

MIG with dynamically configured Profiles under Single Strategy. In the follow-up sections we

will present the theoretical details of our dynamic GPU fractioning algorithm based on the

MIG and VPA-pilot model.

7.3.1 Recall the autopilot paper

Rzadca’s Autopilot paper presents an ML and a rule-based vertical auto-scaling algorithm that

inputs CPU and RAM usage data and outputs the corresponding resource limit.

7.3.1.1 Autopilot ML

This subsection recalls the Autopilot ML algorithm(model). In Rzadca’s original work, some

descriptions and formulas are unclear. So, we provide some additions and modifications, e.g.

Equation 3.1 and 3.2 in the model’s input, Equation 3.6, 3.7 and 3.8 in the model selector.

In Autopilot ML, the workloads are called tasks. Several concurrent tasks are grouped as a job.

Autopilot ML takes task-level usage data and outputs resource limit recommendations at the

job level using an ML algorithm.

We first model the input of Autopilot ML. The resource usage data of task i at time τ is denoted

as ui[τ]. For each resource of each task, the frequency of ui[τ] is 1 per second. For CPU, ui[τ] is

measured in cores, denoted as 𝑢𝑖
𝐶𝑃𝑈[𝜏]. For RAM, ui[τ], is measured in bytes and denoted as

𝑢𝑖
𝑅𝐴𝑀[𝜏].

Then for each task, every 5 minutes we aggregate per resource type ui[τ] into one histogram

si[t], where t is the 5-minute window and τ ∈ t. A histogram si[t] has K buckets, and the upper

bound of each bucket is b[k], k ∈ {1...K}. The histogram structure is identical for each resource

type but varies between different resource types, i.e. KCPU buckets and bCPU[k], k ∈ {1...KCPU}

upper bounds for a CPU histogram, KRAM buckets and bRAM[k], k ∈ {1...KRAM} upper bounds for

a RAM histogram.

D3.2 – Software-defined Edge Interconnect and Service Assurance Mechanisms

empyrean-horizon.eu 47/70

The CPU histogram is aggregated as Equation 3.1 below. Each bucket contains the number of

usage data points that fall into this bucket.

𝑠𝑖
𝐶𝑃𝑈[𝑡][𝑘] = |{𝑢𝑖[𝜏] ∶ 𝜏 ∈ 𝑡 ∧ 𝑏[𝑘 − 1] ≤ 𝑢𝑖[𝜏] ≤ 𝑏[𝑘] }| (3.1)

The RAM histogram only records the peak usage, as equation 3.2 below, because we usually

want to provision for close to the peak RAM usage.

𝑠𝑖
𝑅𝐴𝑀[𝑡][𝑘] = { 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

1 𝑖𝑓 𝑏[𝑘−1] ≤ 𝑚𝑎𝑥 {𝑢𝑖[𝜏] | 𝜏 ∈ 𝑡} <𝑏[𝑘]
 (3.2)

Right after each aggregation, the task-level histograms are merged into job-level ones:

𝑠[𝑡][𝑘] = ∑ 𝑠𝑖[𝑡][𝑘] (3.3)

𝑖

This merged histogram serves as the actual input of the Autopilot ML model. Now we describe

the core model of Autopilot ML. As mentioned in the state of the art described in D2.1 section

3.1.2.2.3, Autopilot ML is a Hierarchical (HMS) model containing multiple sub-models and a

global model selector. In Autopilot ML, each sub-model m is an argmin function that outputs

a resource limit value Lm[t] at aggregation window t given the historical usage s[t],

parameterized by a decay rate dm and a safety margin Mm.

In detail, inside each sub-model, every possible limit value L is evaluated. An overrun cost and

an underrun cost that counts the number of data points in buckets above/below the limit L

are calculated as Equation 3.4 below.

𝑜(𝐿)[𝑡] = (1 − 𝑑𝑚)(𝑜(𝐿)[𝑡 − 1]) + 𝑑𝑚(∑ 𝑠[𝑡][𝑗]𝑗:𝑏[𝑗]>𝐿)

𝑢(𝐿)[𝑡] = (1 − 𝑑𝑚)(𝑢(𝐿)[𝑡 − 1]) + 𝑑𝑚(∑ 𝑠[𝑡][𝑗]𝑗:𝑏[𝑗]>𝐿) (3.4)

Then the sub-model chooses an L value that minimizes a function consisting of overrun and

underrun cost above, and a limit switching cost, as shown in Equation 3.5 below. The limit

switching cost aims to avoid frequent limit changing, because in auto-scaler implementation,

each changing causes an eviction and corresponding workload restarting. Finally, the sub-

model specific safety margin Mm is added to the argmin function output.

𝐿𝑚
′ [𝑡] = arg 𝑚𝑖𝑛𝐿 (𝑤𝑜𝑜(𝐿)[𝑡] + 𝑤𝑢𝑢(𝐿)[𝑡] + 𝑤𝛥𝐿𝛥(𝐿, 𝐿𝑚

′ [𝑡 − 1]))

𝐿𝑚[𝑡] = 𝐿𝑚
′ [𝑡] + 𝑀𝑚 (3.5)

where ∆(x, y) = 1 if x ≠ y and 0 otherwise. wo,wu,w∆L are hyper-parameters representing the

weights of each cost.

The global model selector holds a cost function for each sub-model, and an argmin function

that dynamically selects the best sub-model based on their cost functions. This per sub-model

cost function is shown in Equation 3.6 below.

D3.2 – Software-defined Edge Interconnect and Service Assurance Mechanisms

empyrean-horizon.eu 48/70

where 𝑜𝑚(𝐿𝑚[𝑡], 𝑡) = ∑ 𝑠[𝑡][𝑗]𝑗:𝑏[𝑗]>𝐿m[𝑡] and 𝑢𝑚(𝐿𝑚[𝑡], 𝑡) = ∑ 𝑠[𝑡][𝑗]𝑗:𝑏[𝑗]<𝐿m[𝑡] . wo, wu,

w∆L are the same hyper-parameters as Equation 3.5, which are consistent across all sub-

models. d is another hyper-parameter representing the decaying weight of the history cost.

This cost function is built based on the assumption that both the recent past workload usage

and the scaling method performance are likely to represent the near future: hence using

recent past statistics to represent the near future. So here the overrun/underrun cost of each

sub-model’s prediction is evaluated on current usage data.

Then the best sub-model m[t] at the current aggregation window t is selected by:

𝑚[𝑡] = arg 𝑚𝑖𝑛𝑚 (𝑐𝑚[𝑡] + 𝑤𝛥𝑚𝛥(𝑚[𝑡 − 1], 𝑚) + 𝑤𝛥𝐿𝛥(𝐿[𝑡 − 1], 𝐿𝑚
 [𝑡])) (3.7)

Where w∆m is another hyper-parameter that weighs how much we should avoid frequent sub

model changing: frequently switching sub-models causes more SLO violations.

Finally, the limit value given by the best sub-model is used as the output of the entire Autopilot

ML auto-scaler:

𝐿[𝑡] = 𝐿𝑚[𝑡][𝑡] (3.8)

7.3.1.2 Autopilot rule-based: a baseline

This subsection recalls the rule-based auto-scaler in Rzadca’s work, which will be used as a

baseline in the following sections. This auto-scaler gives resource limit recommendations

based on statistics on the same input histogram of Autopilot ML, i.e. s[t][k] in Equation 3.3.

For CPU resources, a raw recommendation is calculated by the 90%ile of an adjusted usage

histogram. The histogram is defined as:

ℎ[𝑡][𝑘] = 𝑏[𝑘] ∙ ∑ 𝑤[𝑡] ∙ 𝑠[𝑡 − 𝜏][𝑘]∞
𝜏=0 (3.9)

where w[τ] is a decaying weight at time τ, defined as:

where t1/2 is a config parameter representing the decaying half-life.

The raw recommendation value at current time t is: Sp90[t] = P90(h[t]).

For RAM resources, we use the max of recent input samples as the raw:

𝑆𝑚𝑎𝑥[𝑡] = 𝑚𝑎𝑥𝜏∈{𝑡−(𝑁−1)…𝑡} {𝑏[𝑗]: 𝑠[𝜏][𝑗] > 0 } (3.11)

cm[t] = d(woom(Lm[t],t) +wuum(Lm[t],t) +w∆L∆(Lm[t],Lm[t −1])) +

(1−d)cm[t −1] (3.6)

D3.2 – Software-defined Edge Interconnect and Service Assurance Mechanisms

empyrean-horizon.eu 49/70

Finally, a 10-15 safety margin is added to the raw recommendations above, and we use the

maximum margined recommendation value over the last hour as the final output of this rule-

based auto-scaler.

7.3.2 VPA-pilot

In the context of EMPYREAN, we improved the Autopilot ML described previously to propose

VPA-pilot as our vertical auto-scaler’s core recommendation algorithm. VPA-pilot takes the

resources usage of the workloads running in each container of the deployment as input, and

predicts the corresponding resource request and limit for these containers. This section

presents the theoretical model of VPA-pilot.

VPA-pilot includes two major enhancements. The first is aligning the recommended request

values with bucket bounds thus calculating on array indexes (i.e. integers instead of floats), to

reduce computation and increase accuracy. The second is introducing a post-processor for

RAM resources to address the Out-of-Memory Kill (OOM Kill) issue that was not well handled

in Autopilot paper. The following subsections detail the process of the whole model while

describing these 2 enhancements respectively.

In addition to major enhancements, this work also performs several minor enhancements,

adaptations to our requirements, and clarifications of Rzadca’s Autopilot work. These will not

be presented in dedicated subsections but within the following 2 major enhancements

subsections as they arise.

7.3.2.1 Alignment: more lightweight, efficient, and accurate

Although Autopilot ML is well designed, from the implementation perspective, Autopilot ML

still has drawbacks on its efficiency and accuracy:

• Floating-point errors: The function ∆(x, y) is frequently applied to floating-point

numbers, e.g. in Equation 3.5, 3.6, 3.7, the floating-point limit values L serve as inputs

to ∆(x, y). This causes frequent equality comparisons between floating-point numbers.

Due to floating-point errors, directly comparing the equality of floating-point numbers

is inaccurate. An alternative is to consider the floating-point numbers equal if their

difference is less than a small threshold ε. However, if the model frequently calls this

alternative, the additional statements involved can be a bottleneck, significantly

impacting the model’s efficiency (i.e. speed, CPU usage). Therefore, we are considering

whether we can replace floating-point values with integer values while keeping the

same mathematical meaning.

• Redundancy on the limit L variable: From Equations 3.4 and 3.5, we know that the

optimization variable L influences the sub-model’s output Lm[t] only through its

comparison with the bucket bounds b[k], k ∈ {1...K}, which are finite number of

elements. For the infinite amount of possible real numbers L : b[k] < L < b[k +1], the

optimal value of the argmin function in Equation 3.5 is the same. Thus, although

evaluating L as every possible real-number value seems to increase the model’s

D3.2 – Software-defined Edge Interconnect and Service Assurance Mechanisms

empyrean-horizon.eu 50/70

precision, the L : b[k] < L < b[k+1] values are completely unuseful, so this precision

increase is actually not realized. Therefore, we can just align L to the bound of buckets,

i.e. L ∈ {b[k]}, k ∈ {1...K}.

• Invalid penalties on switching limits: In Equations 3.5, 3.6 and 3.7, the penalties of

switching limits are all calculated by ∆(x, y) with 2 real numbers. In the infinite real

numbers set, achieving equality between two elements is difficult, even allowing for a

threshold ε. Therefore, these penalties all become invalid, which leads to frequent

switching of recommended limit value, and finally causes SLO violations. In Equation

3.5, by aligning L to bucket bounds as described above, the penalty ∆(L,L′
m[t− 1])

becomes valid again, and the value L′
m[t] is also aligned to the bucket bounds. Then to

ensure the penalties in Equations 3.6 and 3.7 are valid, any Lm[t] must also be aligned

to bucket bounds. Known that L′
m[t] is already aligned, aligning Lm[t] requires: (1) the

histogram should be linear, i.e. b[k] = k · b[1], and (2) the safety margin of each sub

model Mm should align with bucket bounds, i.e. Mm = b[mm], mm ∈ {1...K} . While these

requirements seem to cause a precision loss, this is necessary for the model to function

properly. Moreover, if the number of buckets is large enough, this precision loss is

negligible.

Based on the analysis above, we use linear histogram (i.e. b[k] = k · b[1], k ∈ {1...K}), and align

L and Mm to histogram bucket bounds b[k] in VPA-pilot’s design. We also noticed that before

the global model selector outputs the final recommendation, all limit values (L, Lm[t], etc.) are

only used to compare with other limits or the bucket bounds. Besides, the linear histogram

has monotonic increasing property, i.e. for any k1 < k2, b[k1] < b[k2]. Therefore, before the final

output, we can all use the index of the bucket bounds as the unit and perform integer

calculations and comparisons, instead of calculating the exact floating-point values at the very

beginning and then performing floating-point comparisons. This perfectly solves the floating-

point errors. During implementation, this can also save the model’s RAM consumption, and

some CPU on specific architectures.

Based on these designs, we now present the VPA-pilot’s theoretical model for auto-scaling

CPU and RAM resources (GPU will be present together with MIG in following section). On the

input side, the linear histogram s[t][k] in Equation 3.3 is used as the model’s input at the

aggregation window t. Its aggregation methods are the same as Equations 3.1 and 3.2.

Because in our problem context we have the deployment and containers(pods) instead of the

job and tasks, so in these equations, si[t][k] represents the histogram on the container’s level,

and s[t][k] is the histogram on the deployment’s level. The bucket amount K and per bucket

size b[1] in the linear histogram are set as follows: We use 400 buckets for CPU resource (KCPU

= 400), and 500 buckets for RAM (KCPU = 500), because the number of RAM is larger and

requires higher precision for effective fractioning. Assuming a node’s total amount of current

scaled resource is B and the number of pods(containers) in the deployment is C, then the size

of each linear histogram bucket 𝑏[1] =
𝐵

𝐾∙𝐶
 this is because containers in the deployment exist

concurrently, each container uses no more than B/C resources.

D3.2 – Software-defined Edge Interconnect and Service Assurance Mechanisms

empyrean-horizon.eu 51/70

Different from Rzadca’s Autopilot work, VPA-pilot recommends the containers’ resource

requests instead of limits. Thus, in the sub-models of VPA-pilot, we need to evaluate every

possible request value R ∈ {b[k]}, k ∈ {1...K}. Then based on the previous paragraph’s

discussion, we set r as the index of the bucket whose bound is aligned by R, i.e. R = b[r], r ∈

{1...K}. We iterate on all possible r values instead of R.

The sub-models of VPA-pilot are parameterized by the decay rate dm ∈ [0,1] and the index mm

of a bucket whose bound is aligned by the safety margin Mm, i.e. Mm = b[mm] as discussed in

"invalid penalties on switching limits" above. To ensure that the sub-models cover all possible

scenarios as thoroughly and representatively as possible, we uniformly sample Ndm values for

dm from its interval [0,1], and select mm from Nmm possible integers starting from 0: {0,...,Nmm

−1}. By pairing each dm and each mm, we have Ndm·Nmm sub-models in VPA-pilot.

In each sub-model, inspired by Equation 3.4, we calculate the overrun and underrun cost by:

𝑜(𝑟)[𝑡] = (1 − 𝑑𝑚)(𝑜(𝑟)[𝑡 − 1]) + 𝑑𝑚(∑ 𝑠[𝑡][𝑗]𝑗:𝑗>𝑟)

 𝑢(𝑟)[𝑡] = (1 − 𝑑𝑚)(𝑢(𝑟)[𝑡 − 1]) + 𝑑𝑚(∑ 𝑠[𝑡][𝑗]𝑗:𝑗<𝑟) (3.12)

Then each sub-model outputs the index rm[t] of a bucket whose bound is aligned with the

recommended resource request Rm[t], i.e. Rm[t] = b[rm[t]]. Inspired by Equation 3.5, the sub

model’s recommendation (bucket) index is calculated by:

𝑟𝑚
′ [𝑡] = arg 𝑚𝑖𝑛𝑟 (𝑤𝑜𝑜(𝑟)[𝑡] + 𝑤𝑢𝑢(𝑟)[𝑡] + 𝑤𝛥𝑅𝛥(𝑟, 𝑟𝑚

′ [𝑡 − 1]))

𝑟𝑚[𝑡] = min (𝑟𝑚
′ [𝑡] + 𝑚𝑚, 𝐾) (3.13)

where ∆(x, y) = 1 if x ≠ y and 0 otherwise. 𝑤𝑜 , 𝑤𝑢, 𝑤𝛥𝑅 are hyper-parameters. The min function

prevents the recommendation index from exceeding the histogram’s upper bound so that the

real resource request value can be retrieved using this index in the future.

The global model selector of VPA-pilot maintains a cost function for each sub model. This

function cm[t] is inspired by Equation 3.6 while using the comparison between bucket indexes

instead of limit values:

𝑐𝑚[𝑡] = 𝑑(𝑤𝑜(∑ 𝑠[𝑡][𝑗]𝑗:𝑗>𝑟𝑚[𝑡])) + 𝑤𝑢(∑ 𝑠[𝑡][𝑗]𝑗:𝑗<𝑟𝑚[𝑡]) + 𝑤𝛥𝑅∆(𝑟𝑚[𝑡], 𝑟𝑚[𝑡 − 1]) +

(1 − 𝑑)𝑐𝑚[𝑡 − 1] (3.14)

where d is another hyper-parameter.

Then the global model selector iterates all the sub-models m and chooses the best sub-model

m[t] at aggregation window t according to this argmin function (inspired by Equation 3.7):

𝑚[𝑡] = arg 𝑚𝑖𝑛𝑚 (𝑐𝑚[𝑡] + 𝑤𝛥𝑚𝛥(𝑚[𝑡 − 1], 𝑚) + 𝑤𝛥𝑅𝛥(𝑟[𝑡 − 1], 𝑟𝑚
 [𝑡])) (3.15)

where 𝑤𝛥𝑚 is another hyper-parameter.

D3.2 – Software-defined Edge Interconnect and Service Assurance Mechanisms

empyrean-horizon.eu 52/70

Finally, the global model selector takes the recommended bucket index r[t] given by the

selected sub-model, and calculates its corresponding bucket bound value as the resource

request recommendation R[t] of the whole algorithm:

𝑟[𝑡] = 𝑟𝑚[𝑡][𝑡]

 𝑅[𝑡] = 𝑏[𝑟[𝑡]] (3.16)

7.3.2.2 Resource Limit and the RAM Post-Processor for OOM Kill

In the Kubernetes cluster, a container has both request and limit values for each of its CPU

and RAM resources. Previously, we enabled the VPA-pilot algorithm to recommend the

request values. Now we decide the resource limit values for CPU and RAM by discussing the

underlying mechanisms of request and limit values in Kubernetes.

CPU limits

The CPU request is implemented using the cpu_shares field in Cgroups25. If all containers use

CPU simultaneously, the CPU time is allocated to each container based on the proportion of

their cpu_shares values. When some containers are idle, the

CPU time is allocated proportionally among the remaining active containers. This mechanism

prevents the waste of CPU time while ensuring the lower bound of CPU time for each

container. The CPU request is also a basis for Kubernetes to schedule each pod placed on

which node, instead of the CPU limit. Therefore, the request is more important than the limit

for the workload bin-packing performance of our auto-scaler.

The CPU limit is implemented using the ratio of fields cpu_quota to cpu_period in Cgroups.

Within the time of cpu_period, if a container uses more CPU time than its cpu_quota value, it

will enter the CPU throttling state. During CPU throttling, the container cannot use CPU until

the next cpu_period. This mechanism effectively limits the upper bound of CPU usage for

containers but can cause significant execution delays of the workload inside the container.

In our context, the CPU request value is properly set by the VPA-pilot algorithm. In this case,

setting the CPU limit brings no advantage but only the CPU throttling drawbacks. This is

because the sharing mechanism behind the CPU request and the node’s Linux kernel already

can efficiently handle CPU bursts without too much work load delay, e.g. the CPU Burst

feature in Linux kernel from 5.14. Even if the user workloads’ CPU bursts are excessive, causing

insufficient CPU time for the system’s daemon services, we can move the daemon services to

another node, or employ additional recovery mechanisms to temporarily set limits to prevent

system crashes.

Overall, we decided to set no CPU limit in VPA-pilot’s output.

25 The fields mentioned here all refer to Cgroups V1. Our experimental environment Scaleway Kubernetes cluster

uses a new version: Cgroups V2. The fields in Cgroups V2 are more complex than in Cgroups V1, but the

underlying mechanisms are very similar.

D3.2 – Software-defined Edge Interconnect and Service Assurance Mechanisms

empyrean-horizon.eu 53/70

RAM limits

The RAM request is mainly used as an indication for the Kubernetes scheduler to determine

each pod placed on which node. There are no mechanisms related to the RAM request in

Cgroups (V1), so Kubernetes does not intervene in the container’s actual RAM usage if only

the RAM request is set.

The RAM limit is implemented by the limit_in_bytes field in Cgroups. If the container tries to

allocate more memory than the RAM limit, the Linux kernel out-of-memory subsystem is

activated, to intervene by stopping one of the processes in the container that tried to allocate

memory. This is called Out-Of-Memory Kill (OOM Kill). After this, an OOM Killed event is raised

and the pod is evicted.

In our auto-scaling context, if we do not set the RAM limit or set it higher than the RAM

request, a container might use more RAM resources than Kubernetes is aware of. If many

containers do this at the same time, the RAM of the node’s Linux system will be exhausted

before Kubernetes realizes that the node’s available RAM is full and prevents it. This can lead

to hidden system crashes in the cluster that are difficult to diagnose from Kubernetes.

Therefore, we decided to set the RAM limit equal to the RAM request in VPA-pilot’s output.

In the vertical auto-scaling problem, the consequences of the container’s CPU or RAM usage

exceeding the corresponding limit are entirely different. We assume that the workload in the

container is deterministic (i.e. denote the state of the workload at time t as σ(t), if σ(t′)

executed successfully but σ(t′ +1) failed, the workload will retry exactly with state σ(t′ +1)

rather than any other state). If the CPU usage exceeds the limit, the workload enters CPU

throttling but the container remains running. In this case, the auto-scaler can still collect this

extremely high CPU usage data and use this data to enhance future container size. However,

if the RAM usage exceeds the limit, an OOM Kill will be triggered and the container

(corresponding pod) will be evicted. In this case, the auto-scaler cannot obtain the

corresponding extremely high RAM usage and will recreate the pod with the original size.

Then the deterministic workload will use RAM exceeding the limit again. Thus, a dead loop is

formed here. The left of Figure 13 illustrates this RAM exceeding dead loop.

Figure 13: Illustration of the auto-scaler’s behaviour under a deterministic workload, without(left) or

with(right) the RAM post-processor. The purple dashed line means the workload fails to execute at that

time. The red box with an ’X’ indicates the container is immediately OOM Killed. The green box indicates the

container is successfully created and is running.

D3.2 – Software-defined Edge Interconnect and Service Assurance Mechanisms

empyrean-horizon.eu 54/70

In the RAM exceeding situation with a deterministic workload, any auto-scaling algorithm that

only relies on workload usage as input can do nothing, including the VPA-pilot algorithm

described previously. Therefore, VPA-pilot requires a RAM post processor that is triggered by

OOM Kill events and outputs the new request and limit values after considering the OOM Kill

event.

Now we describe the RAM post-processor designed in this work. The RAM post-processor

contains a configuration parameter b,b > 1 representing the bump-up ratio, and maintains a

state value 𝑃𝑅[𝑡]𝑖 represents the post-processed request value after considering the ith OOM

Kill event during the current 5-minute aggregation window t. At the beginning of each

aggregation window t, this value is (re-)initialized as the current request recommendation

given by the algorithm in Alignment subsection:

𝑃𝑅[𝑡]0 = 𝑅[𝑡] (3.17)

Then, if an ith OOM kill event occurs within this aggregation window, the post-processor

calculates the new state value as follows:

𝑃𝑅[𝑡]𝑖 = 𝑃𝑅[𝑡]𝑖−1 ⋅ 𝑏 (3.18)

This state value 𝑃𝑅[𝑡]𝑖 is also the output of the RAM post-processor in real-time. The right of

Figure 13 illustrates how this RAM post-processor handles the RAM exceeding situation with

a deterministic workload. When the coming deterministic workload usage u[t] is extremely

high, after j consecutive restarts (OOM Kills), from Equations 3.17 and 3.18 we derive the

current RAM request value 𝑃𝑅[𝑡]𝑗 = 𝑅[𝑡] ⋅ 𝑏𝑗.

Therefore, after ⌈𝑙𝑜𝑔𝑏(
𝑢[𝑡]

𝑅[𝑡]
)⌉ restarts, the container will have a suitable RAM request (and

limit) to let the workload run without OOM Kill. Then this high-usage data can be successfully

passed into the Refined Autopilot ML algorithm, to get its suitable recommendation as it does

for CPU resources. After this, the post-processor finishes handling this OOM Kill, and then

reset at the beginning of the next aggregation window.

The above derivation demonstrates the performance of this post-processor under the most

challenging and representative deterministic workload scenario. This proves that the RAM

post-processor is sufficient to handle any OOM Kill issues.

Finally, combining the post-processor with previous discussions about resource limits, we

summarize the output of the entire VPA-pilot algorithm on the container’s CPU and RAM

resources:

• For CPU resources, the recommended container’s request at aggregation window t is

R[t], and no limit is set to the container.

• For RAM resources, if there are already i OOM Kills in the current aggregation window

t, then both the recommended container’s request and limit values are PR[t]i.

D3.2 – Software-defined Edge Interconnect and Service Assurance Mechanisms

empyrean-horizon.eu 55/70

7.3.2.3 GPU auto-scaling with VPA-pilot

In this section, we present the GPU resource vertical auto-scaling model, based on VPA-pilot

and MIG technology.

We start by modelling the dynamic GPU fractioning method to decide the object to be

managed by the auto-scaler. As discussed previously, we fraction the GPU using MIG

technology with dynamically configured MIG Profiles under Single Strategy. Therefore, in our

model, a GPU can dynamically adopt one of the P pre-defined MIG Profiles. In each MIG

profile, a GPU is divided into 𝑛𝑝
𝐺𝐼

 GIs with the same size. We model a fractioned GPU using an

element in an (increasingly) ordered set of Profiles, where each Profile is denoted with a key-

value pair: The key is the GI type, and the value is the number of GIs in the Profile.

𝐺𝑃𝑈 ∈ 𝑃𝑟𝑜𝑓𝑖𝑙𝑒𝑠 = { 𝐺𝐼𝑝, 𝑛𝑝
𝐺𝐼}, 𝑝 ∈ {1 … 𝑃} (3.19)

A GI type is further denoted as a combination of its SM and GPU Memory size:

GIp = Apg.BpGB, p ∈ {1...P} (3.20)

Notice that the Profiles set is a pre-defined constant based on analysis of the specific GPU’s

MIG configuration, and the elements (K-V pairs) in the set are indexed in increasing order of

their GI’s SM and GPU Memory size. For example, on the NVIDIA H100 80G GPU illustrated in

Figure 2.6, there are 6 different MIG Profiles under Single Strategy. Among these, the 4g.40GB

one is strictly worse than the 7g.80GB one because it wastes more space to get the same

number of fractions, so we discard the 4g.40GB GI.

Therefore, we set the valid Profiles number P = 5, and the sorted elements in the Profiles set

are:

(GI1 = 1g.10GB, nGI
1 = 7), (GI2 = 1g.20GB, nGI 2 = 4), (GI3 = 2g.20GB, nGI 3 = 3),

(GI4 = 3g.40GB, nGI 4 = 2), (GI5 = 7g.80GB, nGI 5 = 1)

Based on the dynamic GPU fractioning settings above, we design the GPU vertical auto-scaling

model that adopts VPA-pilot, taking the workload’s GPU usage as input to recommend a

suitable GI type for the container. The structure of our designed GPU auto-scaler is shown in

Figure 14. The GPU usage data of SM and GPU Memory resources are processed separately

by 2 VPA-pilot models without post-processor (the part in subsection 7.3.2.1 that outputs R[t],

without post-processing and limit-setting parts in subsection 7.3.2.2), to get SM and GPU

Memory raw recommendation values. Then, these 2 raw recommendations enter the

combiner to get a suitable GI type that can accommodate the recommended SM and GPU

Memory size. GPU Memory OOM events are processed finally to get the final GI type

recommendation. In the next paragraphs, we formally model the details of the GPU auto-

scaler.

D3.2 – Software-defined Edge Interconnect and Service Assurance Mechanisms

empyrean-horizon.eu 56/70

Figure 14: Illustration of the GPU auto-scaler components

On the usage data input side, at every second τ we collect SM usage data 𝑢𝑖
𝐺𝑃𝑈𝑆𝑀[𝜏] and GPU

Memory data usage data 𝑢𝑖
𝐺𝑃𝑈𝑀𝐸𝑀[𝜏] for each container i. Then, at every 5-minute window t,

𝑢𝑖
𝐺𝑃𝑈𝑆𝑀[𝜏] are aggregated into histogram 𝑠𝑖

𝐺𝑃𝑈𝑆𝑀[𝑡] with the same method as CPU in

Equation 3.1, 𝑢𝑖
𝐺𝑃𝑈𝑀𝐸𝑀[𝜏] are aggregated into histogram 𝑠𝑖

𝐺𝑃𝑈𝑀𝐸𝑀[𝑡] as RAM in Equation 3.2.

The workload level histograms 𝑠
𝐺𝑃𝑈𝑆𝑀[𝑡][𝑘], 𝑠

𝐺𝑃𝑈𝑀𝐸𝑀[𝑡][𝑘] are calculated the same way as

in Equation 3.3.

As for the bucket size b[1] and bucket number K in the histogram (remind: the bucket bounds

are also the set of possible model recommendations), we first need to ensure a linear

histogram. Then since our auto-scaling units are the GIs, making the recommendation

granularity smaller than the GI sizes is meaningless. Therefore, for SM or GPU Memory

resources, we set its histogram bucket size equal to the greatest common divisor (gcd) of the

corresponding resource size values of all GIs. Then, the number of buckets should ensure the

histogram covers the resource size of the maximum GI.

The Equation 3.21 below formalizes these bucket settings.

𝑏𝐺𝑃𝑈𝑆𝑀[1] = gcd {𝐴𝑝}, 𝑝 ∈ {1 … 𝑃}, 𝐾𝐺𝑃𝑈𝑆𝑀 =
max {𝐴𝑝}

𝑏𝐺𝑃𝑈𝑆𝑀[1]

𝑏𝐺𝑃𝑈𝑀𝐸𝑀[1] = gcd {𝐵𝑝}, 𝑝 ∈ {1 … 𝑃}, 𝐾𝐺𝑃𝑈𝑀𝐸𝑀 =
max {𝐵𝑝}

𝑏𝐺𝑃𝑈𝑀𝐸𝑀[1]
 (3.21)

Then, two "VPA-pilot without post-processor" models take histograms sGPUSM[t][k],

sGPUMEM[t][k] respectively, and output raw resource re quest recommendations RGPUSM[t] and

RGPUMEM[t] at every aggregation window t. The model remains unchanged except for fine-

tuning the hyper-parameters.

Next, a combiner takes the RGPUSM[t] and RGPUMEM[t] as input. The combiner scans all types of

GIs in the Profiles set in Equation 3.19 in increasing order, and chooses the smallest GI that

can accommodate both RGPUSM[t] and RGPUMEM[t] as its output GI[t] at the window t:

𝑟𝐺𝐼[𝑡] = 𝑚𝑖𝑛𝑝∈{1…𝑃} {𝑝 | 𝐴𝑝 ≥ 𝑅𝐺𝑃𝑈𝑆𝑀[𝑡] ∧ 𝐵𝑝 ≥ 𝑅𝐺𝑃𝑈𝑀𝐸𝑀[𝑡] }

𝑅𝐺𝐼[𝑡] = 𝐺𝐼𝑟𝐺𝐼[𝑡] (3.22)

D3.2 – Software-defined Edge Interconnect and Service Assurance Mechanisms

empyrean-horizon.eu 57/70

Similar to RAM, when a GPU Memory allocation attempt exceeds the allocatable GPU Memory

size, the GPU will raise an event similar to the RAM OOM Kill (not the same thing because

RAM OOM Kill is raised by the Linux Kernel) through the NVIDIA GPU Operator, we name it

GPU OOM. At the same time, the corresponding container will be evicted.

Thus, a post-processor is attached as the GPU auto-scaler’s last component, for handling the

GPU OOM events. Similar to the RAM one, this post-processor maintains a state value prGI[t]i

represents the ID of post-processed GI request after considering the ith GPU OOM Kill event

during the current 5-minute aggregation window t. When a GPU OOM Kill event happens, this

means the GPU Memory size of the current GI is not enough, so we directly use the larger

GI(prGI[t]i−1 + 1) to continue the workload. At the beginning of each aggregation window t, this

value is (re-)initialized as the ID of current GI recommendation 𝑟𝐺𝐼[𝑡]. Finally, the GI

recommendation is calculated from the ID of the post-processed GI request.

𝑝𝑟𝐺𝐼[𝑡]0 = 𝑟𝐺𝐼[𝑡]

𝑝𝑟𝐺𝐼[𝑡]𝑖 = 𝑚𝑖𝑛(𝑝𝑟𝐺𝐼[𝑡]𝑖−1 + 1, 𝑃)

𝑃𝑅𝐺𝐼[𝑡]𝑖 = 𝐺𝐼𝑝𝑟𝐺𝐼[𝑡]𝑖
 (3.23)

If there are already i GPU OOM Kills in the current aggregation window t, then the container’s

recommended GI is 𝑃𝑅𝐺𝐼[𝑡].

7.4 VPA-Pilot Implementation

7.4.1 Auto-scaler implementation in Kubernetes cluster

Now we discuss the efficient and accurate implementation of the VPA-pilot model in the

Kubernetes cluster. Since this work focuses more on the algorithm part, we choose not to

develop an auto-scaler from scratch. Instead, we implement VPA-pilot for RAM and CPU based

on an efficient open-source vertical auto-scaler framework called Kubernetes VPA (Vertical

Pod Autoscaler), in Golang. Due to time constraints, this work also did not implement the GPU

auto-scaling in the Kubernetes cluster. The evaluation of GPU auto-scaling will only be

performed on the simulator in the next section. In future, the whole VPA-pilot auto-scaler for

CPU, RAM and GPU will be implemented as part of the optimizations in the Ryax open-source

platform.

This section first presents the Kubernetes VPA Framework, and how the VPA-pilot will be

implemented based on this framework. Next, we present the detailed implementation of the

formalized model, focusing on optimizing the resource consumption to adapt to the edge-

cloud environment.

D3.2 – Software-defined Edge Interconnect and Service Assurance Mechanisms

empyrean-horizon.eu 58/70

7.4.2 Implementation with Kubernetes VPA framework

Kubernetes VPA is an open-source implementation of a vertical auto-scaler for the Kubernetes

cluster. It contains a built-in, simple threshold-based auto-scaling algorithm, which can

provide rough container size recommendations. This algorithmic component has a well-

defined interaction API with the system, making it ideal for adapting and implementing

custom auto-scaling algorithms.

Kubernetes VPA consists of 3 main components, as shown in Figure 15:

• Recommender is the component where the core algorithm resides. It receives real-

time usage information for all workloads through the Kubernetes Metrics Server API

and extracts the workload usage specific to the containers (pods) of the deployment

currently being auto-scaled. This usage data is input into the core algorithm

implemented by the developer. Finally, the algorithm’s recommendation outputs are

stored in a Kubernetes Custom Resource Definition (CRD) object.

• Updater is the component that compares the latest container size recommendation

in the CRD with the current actual container size. If it determines that the current

container size needs to be updated, it gracefully evicts the pods hosting the containers

that require resizing according to specific rules. This allows the pods to be restarted

with the updated container size.

• Admission controller is a common component that intercepts requests to the

Kubernetes API server, to validate or modify requests to create, delete, and modify

objects. In this VPA framework, the admission controller modifies the pod creating

requests to create the new pod with an updated container size.

Figure 15: Architecture of Kubernetes VPA Framework

D3.2 – Software-defined Edge Interconnect and Service Assurance Mechanisms

empyrean-horizon.eu 59/70

We implement VPA-pilot in the recommender component, by replacing its built-in threshold-

based algorithm. For each resource type in a deployment being auto-scaled, we maintain a

VPA-pilot instance. The instance starts running as an endless loop since the recommender is

initiated. Every second, this instance takes the usage data of each related container as the

input signal ui[τ]. Every 5 minutes, the instance aggregates the input signals of all containers

in a deployment, runs a round of VPA-pilot, and outputs the final request and limit

recommendation to the CRD.

7.4.3 Implementation complexity of VPA-pilot

Next, we describe the specific implementation of the VPA-pilot algorithm, focusing on

minimizing time and space complexity. This ensures low resource consumption of the auto

scaler with a large number of sub-models.

We start by analysing the equations presented before. We notice that:

1) The aggregation signal 𝑠[𝑘] is only used for calculating the number of samples

above/under different bucket bounds. Therefore, instead of repeating this calculation in

each sub-model, we pre-calculate them using dynamic programming right after we get

the s[k] signal.

2) Among the 𝑁𝑑𝑚 ∙ 𝑁𝑚𝑚 sub-models, the ones with the same dm values share the same

𝑜(𝑟)[𝑡] and 𝑢(𝑟)[𝑡] values in Equation 3.12, and the same 𝑟𝑚
′ [𝑡] values in Equation 3.13.

Thus, we can share these values among the sub-models with the same dm, thus saving

𝑁𝑚𝑚 times of resource consumption.

3) All time series (variables with [t]) are iterated only based on the latest value, so we don’t

need to store the entire time series. Instead, we just keep updating on a single variable

for each time series.

Taking these optimizations, the VPA-pilot is implemented as Algorithm 1 (Figure 16). This

algorithm describes a single round in the infinite loop, i.e. the recommendation in an

aggregation window t. Based on the analysis (3) above, we remove the [t] in every time series

and replace them with corresponding single variable. The values of these variables are

retained and reused in the next round.

Because K ≥ Nmm (no need to set safety margin higher than the maximum available resource

size), the time complexity of this implementation is 𝑂(𝐾 ∙ 𝑁𝑑𝑚). Its space complexity is also

𝑂(𝐾 ∙ 𝑁𝑑𝑚).

D3.2 – Software-defined Edge Interconnect and Service Assurance Mechanisms

empyrean-horizon.eu 60/70

Figure 16: Single round implementation of VPA-pilot calculation

7.4.4 Hyper-parameter tuning with simulator

In the previous subsection, we mentioned 5 hyper-parameters (d,wo,wu,w∆R,w∆m) in our VPA-

pilot algorithm. Their values need to be determined before running the algorithm and should

be passed as configuration parameters to the VPA recommender. In Rzadca’s Autopilot work,

they tune these hyper-parameters of Autopilot in off-line experiments during which they

simulate Autopilot behaviour on a sample of saved traces taken from representative jobs. We

adopt this way and present a detailed method for tuning the hyper-parameters of VPA-pilot.

We employ a one (1) month’s Google Workload Traces26 on CPU and RAM usage as the

"sample of saved traces taken from representative jobs". In this section, we first design a VPA-

pilot simulator for offline experiments and evaluation on the long-term Google Workload

Traces. Then we discuss our detailed method of tuning hyper-parameters based on the

simulator.

26 Clusterdata 2019 traces google/cluster-data. https://github.com/google/ cluster-

data/blob/master/ClusterData2019.md. Accessed: 25/07/2024.

D3.2 – Software-defined Edge Interconnect and Service Assurance Mechanisms

empyrean-horizon.eu 61/70

7.4.5 Auto-scaler simulator design

To tune the hyper-parameters on long traces, and evaluate the long-term behaviour of the

auto scaler, it would be highly time-consuming and impractical to run it for a long time in a

real-world environment to collect the necessary data. We need to overcome the time

constraints and obtain the long-term data within a short time. To achieve this, we design the

auto-scaler simulator. This subsection focuses on the auto-scaler simulator for CPU and RAM

resources. The one for GPU has a very similar structure and behaviour.

The structure of the auto-scaler simulator is shown in Figure 17. We first pre-process the

Google Workload Trace using Apache Spark into a trace data sequence with a frequency of 1

second, then pass the sequence into the simulator. The simulator runs in the form of iteration

over the sequence. At each time step (second), a logical workload generates CPU and RAM

usage according to the trace sequence value. The VPA-pilot algorithm takes the CPU and RAM

usage as signals 𝑢𝑖
𝐶𝑃𝑈[𝜏] and 𝑢𝑖

𝑅𝐴𝑀[𝜏] per second and outputs recommended container

requests and limits every 300-time steps, to simulate the 5-minutes aggregation time. A

logical container is set with the recommended size, to communicate with logical workload to

simulate system events like OOM Kills. Finally, on the global layer outside the per-second loop,

a metrics collector gathers all required metrics to generate graphs and statistics tables after

the whole execution.

Figure 17: Structure of the auto-scaler simulator

To simplify our development, the simulator ignores the overhead of container (pod) restarts

in the VPA Framework implementation. This is because we focus on the algorithm itself rather

than the VPA Framework’s efficiency. We can evaluate the number of restarts in the statistics

and calculate their real impact. Thus, if we adjust the container size at the current time step,

it will be immediately applied to the logical container in the next time step. Similarly, for OOM

Kill events, the RAM post-processor can make i bump-ups in only i time steps.

D3.2 – Software-defined Edge Interconnect and Service Assurance Mechanisms

empyrean-horizon.eu 62/70

Figure 18: Black box function F(X) = y in hyper-parameter tuning modelling

7.4.6 Hyper-parameter tuning: Modelling and solving modelling as

an operations research program

Now we present our way of tuning the 5 hyper-parameters (𝑑, 𝑤𝑜 , 𝑤𝑢, 𝑤𝛥𝑅 , 𝑤𝛥𝑚), in VPA-pilot

using the auto-scaler simulator presented in the previous subsection. This subsection also

dedicates only CPU and RAM resources.

We start with modelling the hyper-parameter tuning problem. Our goal refers to the criteria

of Rzadca’s Autopilot paper: This tuning aims to produce a configuration that dominates

alternative algorithms (such as the moving window recommenders) over a large portion of the

sample, with a similar (or slightly lower) number of overruns and limit adjustments, and

significantly higher utilization. Based on this description, we can model the process of finding

the dominating hyper-parameters on one 1-month Google Workload Trace sample as an OR

(Operations Research) program including a black box function F(X) = y.

The function is built as in Figure 18 that treats the whole execution of the simulator as a black

box with only hyper-parameters and summary statistics exposed. X is the input hyper-

parameters set of Refined Autopilot ML. We normalize each hyper-parameter between [0,1].

This is because d is the decaying weight originally between [0,1]. 𝑤𝑜 , 𝑤𝑢, 𝑤𝛥𝑅 , 𝑤𝛥𝑚 are weights

that are only compared with each other, so normalizing them only brings convenience without

changing their meanings.

y is composed of 3 key global performances of VPA-pilot:

• average gap is the 1 month’s average of (container raw request - workload usage)

values at every time step. The container raw request here is the VPA-pilot’s raw output

without RAM post-processor (i.e. R[t] in Equation 3.16). We use this R[t] because the

5 hyper-parameters only affect the behaviour of the core model part, not the RAM

post-processor. The lower average gap means the higher utilization in Rzadca’s

criteria, because we have the same usage in this model for one workload sample.

D3.2 – Software-defined Edge Interconnect and Service Assurance Mechanisms

empyrean-horizon.eu 63/70

• adjust times is the number of occurrences where container raw requests R[t] differ

between adjacent time steps. Higher adjust times mean higher limit adjustments and

more pod (containers) restarts, which we do not want.

• overrun seconds is the number of time steps in which workload usage is larger than

the container’s raw request R[t]. This value represents the number of overruns in

Rzadca’s criteria.

The OR program modelling the hyper-parameter tuning problem on a single trace sample is

shown in Equation 4.1 below. The baseline adjust times and baseline overrun seconds are the

corresponding metrics generated from the simulator with the Autopilot Rule-based algorithm

in subsection 7.3.1.2. ε is a small relaxation on the constraints to avoid no solution. At the

beginning of our solving attempt, we let ε = 0.5 to only limit the order of magnitude. It can be

reduced in future attempts for better results.

Minimize: 𝑦[1]

subject to: 𝐹(𝑋) = 𝑦

0 ≤ 𝑋[𝑖] ≤ 1, 𝑖 ∈ {1 … 5}

0 ≤ 𝑦[2] ≤ 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒_𝑎𝑑𝑗𝑢𝑠𝑡_𝑡𝑖𝑚𝑒𝑠 ∙ (1 + 𝜀)

0 ≤ 𝑦[3] ≤ 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒_𝑜𝑣𝑒𝑟𝑟𝑢𝑛_𝑠𝑒𝑐𝑜𝑛𝑑𝑠 ∙ (1 + 𝜀)

where:

 𝑋 = [𝑑, 𝑤𝑜 , 𝑤𝑢, 𝑤𝛥𝑅, 𝑤𝛥𝑚]

𝑦 = [𝑎𝑣𝑒𝑟𝑎𝑔𝑒_𝑔𝑎𝑝, 𝑎𝑑𝑗𝑢𝑠𝑡_𝑡𝑖𝑚𝑒𝑠, 𝑜𝑣𝑒𝑟𝑟𝑢𝑛_𝑠𝑒𝑐𝑜𝑛𝑑𝑠] (4.1)

We compare the optimal value 𝑦[0] of this OR program with the average gap of the Autopilot

Rule-based baseline. If our solution is significantly smaller, the X vector in the optimal solution

is our best hyper-parameters on this workload sample.

7.4.7 Feasible region sampling for dominating hyper-parameters on

CPU

After successfully modelling the tuning problem as the OR program in Equation 4.1, we try to

solve it. This OR program is very hard to solve because the F(X) function is not composed of

mathematical formulas but is based on real program execution results. This makes F(X) a

complete black box from the mathematical point of view. Therefore, it is impossible to

calculate the gradient or to prove the convexity of F(X).

D3.2 – Software-defined Edge Interconnect and Service Assurance Mechanisms

empyrean-horizon.eu 64/70

Because of the hardness above, this work does not successfully find the OR program’s optimal

solution. However, we can approximate the optimal solution by sampling within the feasible

region of X, then filtering all samples where 𝑦[1] and 𝑦[2]] satisfy the constraints, and sorting

them in ascending order based on 𝑦[0]. If in a solution obtained through sampling, the value

𝑦[1] (average gap) is still significantly smaller than the baseline, then the hyper-parameters

set X in the solution also make our VPA-pilot dominate the Autopilot Rule-based baseline. We

name a such sampled set of hyper-parameters dominating hyper-parameters.

To sample the feasible region 𝑋, 0 ≤ 𝑋[𝑖] ≤ 1, 𝑖 𝜖 {1 … 5}, we start with uniform sampling on

the whole 5D feasible region. If we sample n points in each dimension, then the whole uniform

sampling has a complexity of O(n5). Therefore, although our simulator is fast, we can only

afford to sample up to 10 points for each hyper-parameter (n = 10 in each dimension).

On the CPU resource, we did a round of n = 10 uniform sampling as above. We found that the

samples with the smallest 𝑦[1] (average gap) values all have 𝑋[3] = 𝑋[4] = 𝑋[5] = 0, which

means in the dominating hyper-parameters set, 𝑤𝑢, 𝑤𝛥𝑅, 𝑤𝛥𝑚 are the most likely to be 0.

Although we cannot prove this, we continue with this assumption 𝑋[3] = 𝑋[4] = 𝑋[5] = 0.

Therefore, the dimension of the sampling space is greatly reduced, allowing us to perform

more detailed sampling with n = 300 in 𝑋[1] and 𝑋[2] dimensions. After this detailed

sampling, we successfully find several sets of dominating hyper-parameters. Table 4 compares

the sample of the most dominating hyper-parameters, with the Autopilot Rule-based

baseline.

Figure 19 compares the long-term performance of VPA-pilot under the dominating hyper-

parameters set, with the Autopilot Rule-based baseline algorithm. From Table 4 and Figure

19, we can validate that the dominating hyper-parameters set (d = 0.85714,wo = 0.14285,wu =

0,w∆R = 0,w∆m = 0) is the best for CPU resource above the given 1 month’s Google Workload

Trace sample.

Table 4: Statistics comparison between VPA-pilot on CPU resource, with dominating hyper-parameters [in

order (d,wO,wu,w∆R,w∆m)], and the Autopilot Rule-based baseline

Statistics for CPU resource Average Gap Adjust Times Overrun Seconds

VPA-pilot Rule-Based 275.20660 425 12896

VPA-pilot hyper-param:
(0.85714,0.14285,0,0,0)

237.71037 127 14355

Figure 19: VPA-pilot performance on CPU resources with dominating hyper-parameters (d = 0.85714, wo =

0.14285, wu = 0, w∆R = 0, w∆m = 0). Compared with Autopilot Rule-bases baseline

D3.2 – Software-defined Edge Interconnect and Service Assurance Mechanisms

empyrean-horizon.eu 65/70

7.4.8 Sampling and manual methods for dominating hyper-

parameters on RAM

Encouraged by the success on CPU above, we start on RAM also by performing exhaustive

uniform sampling of the 5D feasible region of X with n = 10 in each dimension. Unfortunately,

we cannot find any patterns in the results. As a result, we are not able to reduce the dimension

to perform more detailed sampling. Therefore, we propose another two sampling methods to

attempt to find more accurate dominating hyper-parameters.

The first sampling method is per-dimension uniform sampling as shown in Algorithm 2 (Figure

20). This sampling starts with X0, y0, which are the above n = 10 exhaustive uniform sampling’s

solution with the minimum y[1] (average gap) value. Outputs a more fine-grained sampling

solution Xlopt, ylopt. This sampling tries to find a "local minimum" that is near to the above n =

10 exhaustive sampling’s minimum solution. Although we cannot prove any relation between

this local minimum and the global minimum, this local minimum should be much better than

the n = 10 exhaustive sampling’s solution.

The second sampling method is pure random sampling: We repeatedly randomize the 5

elements of input X as real numbers in [0,1], limit y[2], y[3] and gather the minimum y[1]. We

let this random program run for 1 day on a cloud server.

Figure 20: Per-dimension uniform sampling algorithm for dominating hyper-parameters on RAM

It is interesting that, although neither of the above 2 sampling methods can be proved to find

solutions close to the global minimum of y[1], the y vectors (average gap, adjust times and

overrun seconds) produced by the two sampling methods are relatively close, although the

corresponding X (hyper-parameters) vectors are completely different. Therefore, we guess

that the two methods yield nearly the optimal solution, multiple hyper-parameters sets can

lead to this solution. However, we are not able to prove this.

D3.2 – Software-defined Edge Interconnect and Service Assurance Mechanisms

empyrean-horizon.eu 66/70

The hyper-parameters obtained by random sampling are (d = 0.01388, wo = 0.80714, wu =

0.04725, w∆R = 0.25499, w∆m = 0.10142). Corresponding y values are shown in the third row of

Table 5. Its corresponding VPA-pilot performance is shown in Figure 21. Unfortunately, the

average gap value of VPA-pilot with randomly sampled parameters is larger than that of the

Autopilot Rule-based baseline. This means for RAM resources, we cannot get dominating

hyper-parameters with our sampling methods.

Table 5: Statistics comparison among VPA-pilot for RAM resources, with hyper parameters fixed by

samplings (d = 0.01388,wo = 0.80714,wu = 0.04725,w∆R = 0.25499,w∆m = 0.10142), with hyper-parameters

fixed manually (d = 0.612,wo = 0.9,wu = 0.01,w∆R = 0.0099,w∆m = 0.00009), and the Autopilot Rule-based

baseline

Statistics for RAM resource Average Gap
Adjust
Times

Overrun
Seconds

OOM
Kills

Autopilot Rule-Based 261822531 63 301 3

VPA-pilot hyper-param:
(0.01388, 0.80714, 0.04725, 0.25499, 0.10142)

332630700 92 385 20

VPA-pilot hyper-param:
(0.612, 0.9, 0.01, 0.0099, 0.00009)

111383357 83 9835 47

Besides sampling, we also attempted to manually search for hyper-parameters and observe

their performance, regardless of the strict constraints in Equation 4.1, because we roughly

understand the practical meaning of each hyper-parameter thanks to the good

interpretability of VPA-pilot. We manually discovered a set of hyper-parameters that are

worth dis cussing: (d = 0.612,wo = 0.9,wu = 0.01,w∆R = 0.0099,w∆m = 0.00009), whose statistics

is shown in the third row of Table 5 and whose performance is shown as the bottom graph of

Figure 21.

Figure 21: VPA-pilot performance on RAM resource with hyper-parameters fixed by samplings (the top

graph), with hyper-parameters fixed manually (the bottom graph). Compared with Autopilot Rule-bases

baseline

D3.2 – Software-defined Edge Interconnect and Service Assurance Mechanisms

empyrean-horizon.eu 67/70

Now we concern the 3 key global performances (average gap, adjust times, overrun seconds)

brought by our manually discovered hyper-parameters: In Table 5 compared to the Autopilot

Rule-based baseline, our manually discovered hyper-parameters leads to significantly smaller

average gap, slightly reduced adjust times, but a great increase in overrun seconds. These

make the hyper-parameters good but not standard dominating. Although not dominating,

based on the overall assessment of the results, this is the best solution we can find. In the

following section, we discuss the reasons for this situation, what we can learn from the

positive aspects, and how to improve the bad overrun seconds.

For a RAM auto-scaler, OOM Kills is actually a more critical performance than overrun seconds

in our OR program, as it directly leads to pod eviction. Therefore, for memory resources, our

simulator additionally generate OOM Kills performance for RAM:

• OOM kills (for RAM) is the number of events where the OOM Kills triggers the RAM

post-processor.

These OOM Kill statistics are shown in the last column of Table 5. It shows that the Refined

Autopilot ML with 2 different hyper-parameters sets both have significantly higher OOM Kills

compared to the baseline, which is not good. This indicates that the lack of OOM Kill control

in Rzadca’s Autopilot paper criteria and our OR program is problematic. In the following

"Future improvements" part, we will attempt to add OOM Kill control in our hyper-parameter

tuning model.

7.4.9 Future improvements for a more balanced hyper-parameter

tuning model

We argue and study whether the VPA-pilot with sampled hyper-parameters (top of Figure 21)

or the one with manually found hyper-parameters (bottom of Figure 21) performs better.

Based on our analysis, we tend to favour the manually found hyper-parameters, although the

sampled ones are selected entirely following Rzadca’s Autopilot paper criteria and the OR

model. Next, we discuss this conflict in detail.

First, we should admit that the VPA-pilot is not universally good for all types of workloads.

Due to the lack of decaying weight in the resource amount itself like in Autopilot Rule-based,

when faced with a workload usage that suddenly decays and then persists for a long time as

in Figure 21, VPA-pilot often tries to fit by making abrupt changes in recommended container

size, rather than gradually reducing it. This naturally makes the auto-scaler generate more

overruns on this specific type of workload.

The issue with the sampling hyper-parameters method is that it relies too strictly on the 1

month’s global performance metrics but rarely cares about the specific auto-scaling

behaviour. Therefore, when faced with the workload in Figure 21, if we strictly adhere to the

criteria and the OR model we have established to tune hyper-parameters, to force VPA-pilot

generates less overruns than the Autopilot Rule-based. Then the auto-scaler will attempt to

aggressively increase the container size at the beginning of the trace and then maintain a high

container size to avoid overruns, as shown in the top graph of Figure 21.

D3.2 – Software-defined Edge Interconnect and Service Assurance Mechanisms

empyrean-horizon.eu 68/70

This is not good auto scaler behaviour in a production environment. However, the global

criteria and our OR model have no punishment for this behaviour. In contrast, the manually

selected hyper-parameters do not strictly adhere to the 1 month’s global performance

metrics, especially on "overrun seconds". However, this actually results in better auto-scaling

behaviour.

The comparison above is enough to demonstrate that the limits on adjust times and overrun

seconds in our current OR model (Equation 4.1) and Rzadca’s original criteria are sometimes

too strict, particularly for hyper-parameters tuning on RAM resources.

However, completely relaxing these restrictions is also unacceptable. The exploding overrun

seconds by manually selected hyper-parameters is the result. Therefore, even if strictly

limiting them is not feasible, we still need to apply some appropriate constraints. The same

issue applies to the OOM Kills caused by VPA-pilot. Thus, we also need to add OOM Kills limit

to the current 3 key global performances.

Based on all the above discussions, we designed a more balanced and flexible approach to

improve the OR program: to assign weights to each element in vector y in the OR program of

Equation 4.1, based on practical requirements, thereby constructing a new single objective

value y in the OR program.

The improved OR program is shown in Equation 4.2 below:

Minimize: 𝑦

subject to:

 𝐹(𝑋) = 𝑦′

𝑦 = 𝑦′ × [𝑤𝑒𝑖𝑔ℎ𝑡1, 𝑤𝑒𝑖𝑔ℎ𝑡2, 𝑤𝑒𝑖𝑔ℎ𝑡3,𝑤𝑒𝑖𝑔ℎ𝑡4 (𝑅𝐴𝑀 𝑜𝑛𝑙𝑦)]𝑇

0 ≤ 𝑋[𝑖] ≤ 1, 𝑖 ∈ {1 … 5}

where:

 𝑋 = [𝑑, 𝑤𝑜 , 𝑤𝑢, 𝑤𝛥𝑅, 𝑤𝛥𝑚]

𝑦′ = [𝑎𝑣𝑒𝑟𝑎𝑔𝑒_𝑔𝑎𝑝, 𝑎𝑑𝑗𝑢𝑠𝑡_𝑡𝑖𝑚𝑒𝑠, 𝑜𝑣𝑒𝑟𝑟𝑢𝑛_𝑠𝑒𝑐𝑜𝑛𝑑𝑠, 𝑂𝑂𝑀 𝐾𝑖𝑙𝑙𝑠(𝑅𝐴𝑀 𝑜𝑛𝑙𝑦)] (4.2)

To effectively limit the number of OOM kills, we add "OOM Kills" support in the simulator thus

adding the corresponding element to the vector y′. Besides, to further evaluate the details of

the auto-scaler actions, we can add more detailed metrics like "the balance of the gap values

during all periods of the trace", etc. into y′ vector in Equation 4.2, and assign corresponding

weight in the calculation of y.

D3.2 – Software-defined Edge Interconnect and Service Assurance Mechanisms

empyrean-horizon.eu 69/70

Besides, to get more robust behaviour in production, we still need to introduce more

representative workload traces, and tune hyper-parameters in the same way as we discussed

on these representative traces. To be specific, we planned to use Apache Spark27 to extract

multiple (at least 10+) representative traces from the Google Workload Trace28 by filtering

keywords and merging sub-tasks, then randomly shuffle fragments of these traces to create

new sequences for running hyper-parameters tuning.

However, the Google Workload Trace is a massive dataset (2.4TB, compressed). Due to the

lack of time and enough resources to process such a size, we only processed 1 one-month

trace used above and did not go further for multiple traces.

Moving such a system to production we need to consider the workload trace (historical data)

of the system we aim to optimize. To be specific, for the future hyper-parameters tuning in

the edge-cloud continuum, we can broadly collect usage data from representative workloads

running on different edge-cloud clusters, and use Apache Spark to filter and categorize those

from similar clusters. After some human review, we can shuffle and concatenate the data

fragments from similar clusters. The hyper-parameters will be tuned respectively on these

concatenated data for the corresponding clusters.

The development of the complete methodology to consider when analysing historical

workload traces using Apache Spark to better prepare the hyperparameters for each

production case remains a future work.

27 https://spark.apache.org
28 Clusterdata 2019 traces google/cluster-data.
https://github.com/google/cluster-data/blob/master/ClusterData2019.md

https://github.com/google/cluster-data/blob/master/ClusterData2019.md

D3.2 – Software-defined Edge Interconnect and Service Assurance Mechanisms

empyrean-horizon.eu 70/70

8 Conclusions

The EMPYREAN platform pursues a very ambitious goal: to unify operations across multiple

layers of the computing stack, spanning from low -level interconnects and container

virtualization to high-level resource management, autoscaling, and service assurance.

The platform is designed to support, among others, the deployment of large-scale distributed

and collaborative systems in both the scale-up (horizontal scaling, software-defined

interconnects, and hardware acceleration abstractions for containerized workloads) and

scale-out (dynamic autoscaling of containers on Kubernetes clusters) dimensions. These

capabilities enable fine-grained and efficient resource sharing across heterogeneous

environments within the IoT-edge-cloud continuum.

The developments presented in this report reflect the progress made during the first iteration

of the implementation phase (M4-M15) under Tasks 3.3 “Software-Defined Edge Interconnect

for Distributed Computations and Hardware Acceleration” and Task 3.4 “Autoscaling, Service

Assurance, and Computing Management” of Work Package 3, laying the foundation of

EMPYREAN’s unified and collaborative platform. Moreover, the detailed mechanisms

empower EMPYREAN to achieve key technical and performance objectives. Final

implementations and integration outcomes will be detailed in the forthcoming Deliverable

D3.3, scheduled for M26.

