B Ref. Ares(2025)3529376 - 30/04/2025

N
(EMPYREAN

TRUSTWORTHY, COGNITIVE AND AI-DRIVEN
COLLABORATIVE ASSOCIATIONS OF IOT DEVICES AND
EDGE RESOURCES FOR DATA PROCESSING

Grant Agreement no. 101136024

Deliverable D3.2
Software-defined Edge Interconnect and Service
Assurance Mechanisms

Programme: HORIZON-CL4-2023-DATA-01-04

Project number: 101136024

Project acronym: EMPYREAN

Start/End date: 01/02/2024 - 31/01/2027

Deliverable type: Report

Related WP: WP3

Responsible Editor: NVIDIA

Due date: 30/04/2025

Actual submission date: 30/04/2025

Dissemination level: Public

Revision: FINAL
AR This project has received funding from the European Union’s Horizon
i = Europe research and innovation programme under grant agreement

i No 101136024

D3.2 —Software-defined Edge Interconnect and Service Assurance Mechanisms E@MPYREAN

Revision History

Date Editor Status | Version Changes
08.01.25 | NVIDIA Draft 0.1 Deliverable ToC
12.03.25 NVIDIA Draft 0.2 Add initial contributions by NVIDIA, ICCS in
sections 4, 6
26.03.25 | NVIDIA Draft 0.3 Add contributions by NVIDIA, NUBIS, RYAX, ICCS
in sections 3,4,5,6,7
16.04.25 NVIDIA, ICCS Draft 0.4 Complete deliverable for internal review
25.04.25 NVIDIA Draft 0.5 Address review comments
29.04.25 | NVIDIA Final
Author List
Organization Author
ICCS Aristotelis Kretsis, Panagiotis Kokkinos, Fotis Kouzinos, Emmanouel
Varvarigos
NVIDIA Dimitris Syrivelis
RYAX Pedro Velho, Yugiang Ma, Michael Mercier, Yiannis Georgiou
NUBIS Anastassios Nanos, Charalampos Mainas, Georgios Ntoutsos, llias
Lagomatis, Konstantinos Papazafeiropoulos, Apostolos Giannousas

Internal Reviewers

Javier Martin (IDEKO)

Roberto Gonzalez (NEC)

empyrean-horizon.eu

2/70

D3.2 — Software-defined Edge Interconnect and Service Assurance Mechanisms U{@MPYREAN

Abstract: Deliverable D3.2 presents the key outcomes of the activities that took place in the
context of Task 3.3 “Software-Defined Edge Interconnect for Distributed Computations and
Hardware Acceleration” and Task 3.4 “Autoscaling, Service Assurance and Computing
Management” during the first implementation period (M04-M15). These tasks focus on the
design and development of critical components within the EMPYREAN platform, including: (i)
software-defined interconnection to organize edge devices into logical clusters, offering a
unified memory layer; (ii) interoperable hardware acceleration functionality across
heterogeneous loT and edge nodes; (iii) Al-enabled workload autoscaling mechanisms; and
(iv) service assurance and low-level computing management mechanisms.

Keywords: Software-Defined Interconnect, Hardware Acceleration, Service Assurance,
EMPYREAN Associations, Vertical Pod Autoscaling, Autos-Scaler

empyrean-horizon.eu 3/70

D3.2 —Software-defined Edge Interconnect and Service Assurance Mechanisms E@MPYREAN

Disclaimer: The information, documentation and figures available in this deliverable are written by the
EMPYREAN Consortium partners under EC co-financing (project HORIZON-CL4-2023-DATA-01-04-
101136024) and do not necessarily reflect the view of the European Commission. The information in
this document is provided “as is”, and no guarantee or warranty is given that the information is fit for
any particular purpose. The reader uses the information at his/her sole risk and liability.

Copyright © 2025 the EMPYREAN Consortium. All rights reserved. This document may not be copied,
reproduced or modified in whole or in part for any purpose without written permission from the
EMPYREAN Consortium. In addition to such written permission to copy, reproduce or modify this
document in whole or part, an acknowledgement of the authors of the document and all applicable
portions of the copyright notice must be clearly referenced.

empyrean-horizon.eu 4/70

D3.2 — Software-defined Edge Interconnect and Service Assurance Mechanisms %@MPYREAN

Table of Contents

1 EXECULIVE SUMMIAIY ceiuiiiiiiiiiiii s 10
B 1o o Yo 1¥ ot 4 o o PSSR 11
2.1 Purpose of this dOCUMENT......cc..uiiiiiiee e e 11
2.2 DOCUMENT SEIUCTUIE . e ettt e e e e e e e s er e e e e e eaees 11
. T ¥ o [T o DU 11

3 EMPYREAN Architecture Mappingcoocuieeieriiiieeeiiiee e eeieee e esireee s sieee e s sree e e s saneee s s ssaees 12
4 Software-Defined INterCONNECTvviieiiii e e e e e 15
4.1 OVEIVIBW i, 15
4.2 Relation to Project Objectives and KPIS........coeeeiieicciiiieiee e 16
4.3 Architecture and INtErfacescccueei i 17
43.1 Data path software public APlooe i 20
4.3.2 Data path hardware interfacecccccveeeieiiie i 22
4.3.3 Software-Defined INTEIrfaceoovvcuiiiiiei e 22

5 Hardware Acceleration AbSTractionscccccuiieeiiiiiiee e e e e 24
5.1 OVEIVIBW i, 24
5.2 Relation to EMPYREAN Objectives and KPIScccurviiieiiiiiccceeeee e 24
5.3 Architecture and Integration Details........cccceveeiieiccciiiiie e 25
5.4 Implementation and Integration POiNtS.......cccccoveciiiiiiei e 26

CINY= T Vol AN U T =T o [= 28
6.1 OVEIVIBW e e 28
6.2 Relation to EMPYREAN Objectives and KPISccccvveveeiieiieiiiiirreeeee e 28
(T8 T Y o] 11 =T U DU 29
Lo [o o1 =T 0 U= o = 1 T o TSRS 32
6.5 REIQtion tO USE CaSES..cciiiiieciiiiieeie e ettt e e e e e et e e e e e e e et re e e e e e e e s e nssreaeeeeeeeens 38

7 Intelligent Autoscaling and Adaptive Computing Management.......cccccooeeecivieeeeeeeeeecnnns 39
7.1 OVEIVIBW i, 39
7.2 Background and ChallENGESeeeeeieeieiciiiiieeiee et rrree e 39
7.2.1 (1 O I - Tt of o |1 V=SSN 42
7.2.2 TIME-SHCING GPUceiiiieeiei ettt ettt e e e e re e e e e e e s e abrareeeeeeeesennnes 42
7.2.3 Multi-INStance GPU (IMIG).....ccccuuvrieiiiiiiiieiittieee et seeabrrr e s e e snaens 43
7.2.4 GPU MuUlti-Process SErvice (IMPS)uuueiiiiiiiiiiiiiiieeiee et ee e 44
7.2.5 Conclusions on GPUS Fractioningccceeeeeieecciiiiieiee e eeevvneee e e e 45

7.3 TheoretiCal ASPECES ..covi i e e e e e e e e e e e e e as 46
7.3.1 Recall the autopilot PAPET ..o e e e e e eeanes 46
7.3.2 VPA-PIIOT ceeiiieiieteeee e e e e e e e e e e e s rrra e e e e e e e s e nnrrraeees 49

7.4 VPA-Pilot IMplementationccccceieeieiiiiiiieeeee e 57
7.4.1 Auto-scaler implementation in Kubernetes cluster.........ccccovevvvveeieeieeiicicnnennn. 57
7.4.2 Implementation with Kubernetes VPA frameworkcccceevieecciiiiieeeeeeeecnns 58

empyrean-horizon.eu 5/70

D3.2 —Software-defined Edge Interconnect and Service Assurance Mechanisms E@MPYREAN

7.4.3 Implementation complexity of VPA-Pilotccooviiiiiiiiiiiiiieeec e, 59
7.4.4 Hyper-parameter tuning with simulatorccccovvvecieiiee e, 60
7.4.5 Auto-scaler Simulator deSI Nceeeiiveecciieeeee e 61
7.4.6 Hyper-parameter tuning: Modelling and solving modelling as an operations
(FSTY T T ol oI oY oT ={] 4 o F USSP 62
7.4.7 Feasible region sampling for dominating hyper-parameters on CPU 63

7.4.8 Sampling and manual methods for dominating hyper-parameters on RAM..... 65
7.4.9 Future improvements for a more balanced hyper-parameter tuning model ... 67

B CONCIUSIONS. ettt ettt ettt e e ettt e s e e et e s e e et e e s e e et e s e e aaaeseeaaaeseetanaeseeeanaeresaanaaaaes 70

empyrean-horizon.eu 6/70

D3.2 — Software-defined Edge Interconnect and Service Assurance Mechanisms U{@MPYREAN

List of Figures

Figure 1: EMPYREAN high-level architecture........oooemiiiiiiei e, 12
Figure 2: Example deployment scenario within EMPYREAN for software-defined interconnect

and hardware acceleration abstractionsccoccveeiiiiiiiiiiniiece e 14
Figure 3: Proactor SOftWare Pattern ...t 16
Figure 4: Single-sided RDMA Circular BUFferoiiiiiiiiiiiiiee e 17
Figure 5: Typical RPC channel disaggregated buffer deployment.........cccccoeeiveeiecieeeeccnnennn. 18
Figure 6: Request Path RDMA Remote Circular Buffer Syncccceeeeeciveeeccciiee e, 19
Figure 7: vAccel and liIbRRR INtEGratioNccceviiiieicciiiiieee ettt 25
Figure 8: Analytics Engine architecture and core components.......cccecvvveeevvcieeeisccieeeesiieeenn. 30
Figure 9: Analytics Engine — Access Interface RESTFUl APL........coocoveeeiviiiiiiiciiee e 34
Figure 10: Analytics Engine — Data Connector plug-ins RESTful northbound interface........... 37
Figure 11: Analytics Engine — Data Manager RESTfUl API.........cooooiiieiciiiie e, 38
Figure 12: lllustration of MIG Strategies, MIG Profiles and Gls on NVIDIA H100 GPU 43

Figure 13: lllustration of the auto-scaler’s behaviour under a deterministic workload,
without(left) or with(right) the RAM post-processor. The purple dashed line means the
workload fails to execute at that time. The red box with an ’X’ indicates the container is
immediately OOM Killed. The green box indicates the container is successfully created

=T To I TN WY oY 1o V=SSR 53
Figure 14: lllustration of the GPU auto-scaler components........cccccceeeeeievccciiieeeee e, 56
Figure 15: Architecture of Kubernetes VPA Frameworkccccovvveeereeiieiiciinreeeee e eeecnvneeenn. 58
Figure 16: Single round implementation of VPA-pilot calculationccccoecviveiiiieeeccinnen. 60
Figure 17: Structure of the auto-scaler SImulatorcccceeeeeeeciiieeee e, 61
Figure 18: Black box function F(X) = y in hyper-parameter tuning modelling........................ 62

Figure 19: VPA-pilot performance on CPU resources with dominating hyper-parameters (d =
0.85714, w, = 0.14285, w, = 0, wag = 0, wam = 0). Compared with Autopilot Rule-bases
DASEIINE ...ttt e e e s e e e s ta e e e s naaaeee s 64

Figure 20: Per-dimension uniform sampling algorithm for dominating hyper-parameters on

Figure 21: VPA-pilot performance on RAM resource with hyper-parameters fixed by samplings
(the top graph), with hyper-parameters fixed manually (the bottom graph). Compared
with Autopilot Rule-bases baselingcoeeviiiieciiiiiiee e 66

empyrean-horizon.eu 7/70

D3.2 —Software-defined Edge Interconnect and Service Assurance Mechanisms E@MPYREAN

List of Tables

Table 1: Data path software API — Available functions in the developed C-language library. 20
Table 2: Data path hardware interface........oeee i 22
Table 3: Analytics Engine - Notification ENgine mMessages........ccocvveeeeiiiieeeesciieeeeecireeeesiveeen 35

Table 4: Statistics comparison between VPA-pilot on CPU resource, with dominating hyper-
parameters [in order (d,wo, Wy, Wag,Wam)], and the Autopilot Rule-based baseline........ 64

Table 5: Statistics comparison among VPA-pilot for RAM resources, with hyper parameters
fixed by samplings (d = 0.01388,w, = 0.80714,w, = 0.04725,war = 0.25499,wam
0.10142), with hyper-parameters fixed manually (d = 0.612,w, = 0.9,w, = 0.01,war
0.0099,wam = 0.00009), and the Autopilot Rule-based baseline............cccoveeeecreneenneen. 66

empyrean-horizon.eu 8/70

D3.2 — Software-defined Edge Interconnect and Service Assurance Mechanisms

‘{@MPYREAN

Abbreviations

Al
AMBA
API
ASGI
CRD
CRUD

FIFO
FPGA
GenOps

GPU
HMAC
1/0
K3s
K8s
KPI
MIG
ML
MPI
MPS
NBI
oom
QoS
QP
RDMA
REST
RPC
RRR
RTT
SBI
SDI
SLO
SM
sQ
sQb
TCP/IP
TLS
TPU
VM
VPA

Artificial Intelligence

Advanced Microcontroller Bus Architecture
Application Programming Interface
Asynchronous Server Gateway Interface
Custom Resource Definition
Create, Read, Update, Delete
Deliverable

First In, First Out
Field-Programmable Gate Array
Generic Operations

GPU Instance

Graphics Processing Unit
Hash-based Message Authentication Code
Input / Output

Lightweight Kubernetes
Kubernetes

Key Performance Indicator
Multi-Instance GPU

Machine Learning

Message Passing Interface
Multi-Process Service

Northbound Interface
Out-Of-Memory

Quality of Service

Queue Pair

Remote Direct Memory Access
Representational State Transfer
Remote Procedure Call

Remote Ring-buffer Runtime
Round Trip Time

Southbound Interface
Software-Defined Interconnect
Service Level Objective

Streaming Multiprocessor

Submit Queue

Submit Queue Data

Transmission Control Protocol/Internet Protocol
Transport Layer Security

Tensor Processing Unit

Virtual Machine

Vertical Pod Autoscaler

empyrean-horizon.eu

9/70

D3.2 — Software-defined Edge Interconnect and Service Assurance Mechanisms %@MPYREAN

1 Executive Summary

This technical report presents a comprehensive overview of the software-defined
interconnect mechanisms and their seamless integration with hardware acceleration
abstractions within the EMPYREAN framework. It explores the design and implementation of
these components, their interaction with the broader EMPYREAN architecture. Emphasis is
placed on the design principles, functionalities, and exposed public APIs of each system
component, offering a detailed technical perspective aligned with the objectives of Task 3.3,
"Software-Defined Edge Interconnect for Distributed Computations and Hardware
Acceleration."

In addition, the deliverable introduces the initial outcomes of Task 3.4, "Autoscaling, Service
Assurance and Computing Management." This includes the design and development of an Al-
enabled vertical autoscaling mechanism for Kubernetes, which intelligently adjusts resource
requests and limits based on workload telemetry. The task further delivers service assurance
capabilities for the EMPYREAN platform, including the development of the Analytics Engine
and Al-enhanced algorithms. These service assurance mechanisms enable the orchestration
services to perform self-adaptive actions such as workload migration and resource
reallocation in response to performance degradation or operational issues.

This deliverable builds upon the EMPYREAN reference architecture defined in deliverable D2.3
(M12), towards the provision of the initial release of the platform’s software-defined
interconnections, hardware acceleration abstractions, service assurance components, and Al-
driven workload auto-scaling framework.

The final release of the components and mechanisms developed under Tasks 3.3 and 3.4 will be
presented in deliverable D3.3 “Final report on security, trust, seamless data and computing
management” (M26).

empyrean-horizon.eu 10/70

D3.2 — Software-defined Edge Interconnect and Service Assurance Mechanisms %@MPYREAN

2 Introduction

2.1 Purpose of this document

This document is a comprehensive technical report detailing the enablements and
methodologies surrounding software-defined interconnects. It explores the integration
strategies with vAccel?, a cutting-edge acceleration framework, while also delving into the
intricate interactions within the broader EMPYREAN stack. These interactions are further
contextualized through an examination of relevant service assurance mechanisms, ensuring a
robust and reliable operational framework.

The report meticulously outlines each system component, providing an in-depth analysis of
their design principles, functionalities, and exposed APIs. These APIs are presented not only
as technical interfaces but also as pivotal tools that facilitate seamless communication
between components. The document aims to offer readers a clear understanding of how
these components are architected to interact harmoniously, emphasizing the rationale
behind various design choices. Furthermore, it elaborates on configurable parameters,
shedding light on the decisions made during the initial stages of development efforts.

2.2 Document structure

The present deliverable is split into 5 major chapters:
e EMPYREAN Architecture Mapping
e Software-defined Interconnect
o Hardware Acceleration Abstraction
® Service Assurance

e |Intelligent Autoscaling and Adaptive Computing management.

2.3 Audience

This document is publicly available and should be of use to anyone interested in the
description of the data interconnection, hardware acceleration, intelligent autoscaling, and
service assurance aspects of EMPYREAN. Moreover, this document can be also be useful to
the general public for obtaining a better understanding of the framework and scope of the
EMPYREAN project.

L https://vaccel.org

empyrean-horizon.eu 11/70

D3.2 —Software-defined Edge Interconnect and Service Assurance Mechanisms @MPYREAN
N

3 EMPYREAN Architecture Mapping

The EMPYREAN architecture was first introduced in deliverable D2.2 "Initial Release of
EMPYREAN Architecture" (MOQ7), and later refined in its final version in D2.3 " Final EMPYREAN
architecture, use cases analysis and KPIs" (M12). This refinement incorporated key insights
gained from the initial implementation phase. D2.3 provides a comprehensive overview of the
architecture, detailing the EMPYREAN components, their interfaces, and the supported

operational flows.

In this section, we present a concise description of the architecture (Figure 1) to support the
discussion of the initial developments in WP3, particularly focusing on dynamic provisioning
of high-performance software-defined edge interconnect, seamless provision of hardware
acceleration abstractions, intelligent and efficient workload autoscaling mechanisms, and
distributed and data-driven service assurance mechanisms within the EMPYREAN.

EMPYREAN Use Cases

Monitoring & Service Layer Security, Trust,
Observability Layer & Privacy Layer
Workflow Dataflow Action Unikernels EMPYREAN
Manager Programming Packaging Builder SDK
Telemetry Service S p-ABC Library
Association Management Layer
3 EMPYREAN Aggregator EMPYREAN Registry Verifiable Data
Persistent Monitoring Registry
Data Storage
Multi-Cluster Orchestration Layer
Analytics Engine Service Orchestrator Decision Engine SWEE S
Resource Management Layer Data Management &
Interconnection Layer Privacy & Security
Telemetry Engine Al-enabled Workload EMPYREAN Manager
Autoscaling Controller Software-Defined loT Query
Unikernel Edge Interconnect Engine

ST ey Depioyment Decentralized & Distributed Data
Container Layers Manager Socyre & Tr:usted
Execution Environment

Monitoring Probes Locality Scheduler Container Runtime

Edge Storage

Gateway Edge Storage

Hardware Acceleration Abstractions

EE <
5

10T / lloT Devices ON-PREMISE DEEP EDGE FAR EDGE

Infrastructure Layer
—3
3
@
]2
Bk
B
Bk
Im
[m
juu
Im
IiiD
juu
@

loT-Edge-Cloud Infrastructure

Figure 1: EMPYREAN high-level architecture

empyrean-horizon.eu 12/70

D3.2 — Software-defined Edge Interconnect and Service Assurance Mechanisms %@MPYREAN

The Service layer facilitates the development of Association-native applications, providing
robust support for application-level adaptations, interoperability, elasticity, and scalability
across the loT-edge-cloud continuum. Deliverable D4.1 (M15) provides a detailed description
of the design and development of this layer’s components.

The Association Management Layer dynamically manages Associations within the loT-edge-
cloud continuum. Forming resource federations, it enables seamless collaboration, resource
sharing, and data distribution across various segments within the continuum. Together with
the Multi-Cluster Orchestration Layer, it is central to EMPYREAN’s distributed and
autonomous management, establishing a resilient Association-based continuum.

The Multi-Cluster Orchestration Layer handles service orchestration and resource
management across EMPYREAN's disaggregated infrastructure. Using autonomous,
distributed decision-making mechanisms, it orchestrates dynamic, hyper-distributed
applications while enabling self-driven adaptations. Multiple instances of this layer’s
components provide decentralized operation, optimize resource utilization, and ensure
scalability, resiliency, energy efficiency, and high service quality. Deliverable D4.2 (M15)
provides a detailed description for designing and developing the Association Management
and Multi-Cluster Orchestration layers’ components.

The Resource Management Layer unifies the management of loT, edge, and cloud platforms
under the EMPYREAN platform. It integrates software mechanisms for both platform-level
scheduling (e.g., EMPYREAN Controller, Al-enabled Workload Autoscaling) and low-level
mechanisms (e.g., Unikernel Deployment). This layer operates within Kubernetes (K8s) or
Lightweight Kubernetes (K3s) clusters and offers modularity, simplifying the integration of
new hardware and software. The deliverable presents the initial developments for two of its
core components.

The Hardware Acceleration Abstractions (Section 5) component enables offloading compute-
intensive tasks to hardware accelerators on neighbouring nodes. This offloading is performed
while ensuring data security and integrity, thereby enhancing performance for resource-
heavy workloads without compromising on safety. Moreover, the Al-enabled Workload
Autoscaling (Section 7) component enhances the Kubernetes orchestrator by incorporating
Al/ML techniques for intelligent workload autoscaling. By analysing historical data, this
component ensures optimized resource allocation, dynamic application-level adaptations,
and efficient utilization of resources, providing a more responsive and adaptive environment
for workloads.

The Data Management and Interconnection Layer ensures dynamic communication and
secure data storage between loT devices and computing resources. Operating at both cluster
and Association levels, it provides flexible and scalable data management and seamless
integration of loT, edge, and cloud resources. It also supports distributed operation,
facilitating efficient operation in complex, distributed environments.

empyrean-horizon.eu 13/70

D3.2 —Software-defined Edge Interconnect and Service Assurance Mechanisms @MPYREAN
N

VAccel { VAccel
Flex - RDMA Flex - RDMA

e
1 ip P

§ 2%

|

.‘.f_ e EEEEE——

|

.;Z.h: wgs

el
]

#
#

WO B MmN
BOBEBEEOBM Ml
MM n
TR E RN
MMM

!
!
!

Figure 2: Example deployment scenario within EMPYREAN for software-defined interconnect and hardware
acceleration abstractions

The Software-Defined Edge Interconnect (Section 4) serves as a low-level communication
interface and key enabler within this layer. It delivers high-performance data transport service
integrating remote 1/O operations into large computational pipelines, such as Al training
workflows. By leveraging Remote Direct Memory Access (RDMA), it optimally overlaps
computation with network 1/0, significantly enhancing the performance of data-intensive
tasks across distributed environments and thereby supporting real-time processing and
analytics. Figure 2 illustrates how the software-defined interconnect, together with vAccel
framework, enables the dynamic deployment of composable infrastructures at the edge. This
is achieved by enabling seamless resource sharing from a common pool of hardware
acceleration resources across the edge deployment, promoting agility and scalability.

The architecture is complemented by the Security, Trust, and Privacy and the Monitoring and
Observability layers, which are across the other layers, providing critical functionalities for
the overall platform. The former ensures secure access, privacy, and trusted execution across
the EMPYREAN platform. Operating at both the cluster and Association levels, it delivers
distributed trust services, enables secure and trusted execution environments, and provides
controlled data access to guarantee data confidentiality and continuous validation of trust
among entities.

The Monitoring and Observability layer integrates real-time monitoring, observability, and
service assurance components to provide comprehensive visibility and control over the
EMPYREAN platform. The telemetry components are described in deliverable D4.2 (M15). The
Analytics Engine (Section 6) provides service assurance by using Al-driven analytics on top of
monitoring and observability data. This approach ensures that applications perform as
intended by dynamically adjusting deployments based on changing conditions and
requirements.

empyrean-horizon.eu 14/70

D3.2 — Software-defined Edge Interconnect and Service Assurance Mechanisms %@MPYREAN

4 Software-Defined Interconnect

4.1 Overview

The EMPYREAN Software-Defined Interconnect is a low-level, high-performance
communication interface that operates on top of Remote Direct Memory Access (RDMA)
verbs. It offers low-latency round-trip times (RTT) and efficient message aggregation through
a very simple circular-buffer control plane. The software interface resembles the design of the
Linux kernel’s io_uring, adopting the same Proactor pattern for asynchronous operations.
Additionally, we have designed a specialized accelerator interface version that disaggregates
FIFOs offering an Advanced Microcontroller Bus Architecture (AMBA) AXI-S hardware
specification interface, enabling seamless hardware integration.

Value proposition of the EMPYREAN Software-Defined Interconnect (SDI) approach:

1. High-Performance Remote I/0O: Significantly improves remote I/O network data path
performance over RDMA, enabling scalable performance for data-intensive
applications.

2. Standardized Interface: Offers a standard io_uring-like interface at the software level,
following the same Proactor-based asynchronous model used in the local Linux kernel
io_uring interface.

3. Fully User-Space Solution: Operates entirely in user space without requiring kernel-
side servers yet achieving similar performance to a kernel-side implementation, which
is amenable to use with containers and hypervisors.

The in-band data path functionality of the circular buffer is straight forward and lock-free.
Each endpoint manipulates the locally exposed buffer construct by:

e Writing data: updating the head pointer.
e Reading data: updating the tail pointer.

The out-of-band control brings up the described buffer connections across the deployment
and manipulates their depth and head/tail update strategies. The mechanism also controls
Quality of Service (QoS) across the service deployment. This approach is particularly important
especially for latency-sensitive operations, such as vAccel interface disaggregation (Section 5),
where jitter can significantly impact performance.

Applications using the disaggregated circular buffer should follow the Proactor pattern (Figure
3), a well-known software design pattern for handling asynchronous events efficiently. This
pattern is particularly useful in applications that require concurrent execution of operations
without the overhead of multiple threads and are ideal for containerized environments. The
pattern simplifies asynchronous application development by integrating the demultiplexing
of completion events and the dispatching of their corresponding event handlers.

empyrean-horizon.eu 15/70

D3.2 —Software-defined Edge Interconnect and Service Assurance Mechanisms E@MPYREAN

Key participants in the Proactor pattern:

1.

Proactive Initiator: The entity in the application that initiates an asynchronous
operation. It registers both a Completion Handler and Completion Dispatcher with the
Asynchronous Operation Processor.

Asynchronous Operation Processor: It executes asynchronous operations and notifies
the Completion Dispatcher when an operation completes.

Completion Handler: |t processes the results of an asynchronous operation. It is
notified by the Asynchronous Operation Processor when an operation is complete.

Completion Dispatcher: It invokes the correct call to the Completion Handler based on
the execution environment.

Asynchronous Event Demultiplexer: This component blocks waiting for events to
occur on the Completion Event Queue and returns completed events to its caller.

Completion Event Queue: It buffers completion events until they are dequeued by the
Asynchronous Event Demultiplexer.

Proactive “%T;mm“ Asynchonous Completion Completion
It o0 it Operation Tispatcher Hardler
| | | |
[| | |

- | |
| |
| |
| |

e | |
| | F[| |
| | | LIJ
| | |

T | | | |
| | | |

Figure 3: Proactor Software Pattern

4.2 Relation to Project Objectives and KPIs

This component serves the EMPYREAN functional requirement F_S0.12 “Offload acceleration

to nearby devices” and provides enabler EN_3 “High-Performance Data Transport Service”.

Moreover, it contributes to achieving the technical KPIs T4.1 “Increase application-level small-

message transfer performance” and T4.2 “Improve the RDMA programming efficiency of

applications”.

empyrean-horizon.eu 16/70

D3.2 — Software-defined Edge Interconnect and Service Assurance Mechanisms %@MPYREAN

To meet these goals, the deliverable describes the integration of the Software-Defined
Interconnect (SID) with the vAccel (Section 5), enabling the offloading of computationally-
intensive workloads to nearby acceleration devices. The SDI articulates the RDMA transport
capabilities with network facing signalling rates up to 200Gb/sec, providing a high-
throughput, low-latency data path. The proposed approach promotes the circular buffer
interface concept for RDMA network I/0O, directly contributing to the achievement of the KPIs
T4.1 and T4.2. The developed mechanism supports transparent remote synchronization and
enables batching small messages into larger buffers. As a result, it reduces housekeeping
overhead, improves overall throughput, and significantly enhances RDMA programming
efficiency, thereby supporting the targeted technical KPls.

4.3 Architecture and Interfaces

The disaggregated circular buffer communication system is the heart of the software-defined
interconnect architecture developed within EMPYREAN. The main concept is depicted in
Figure 4. In EMPYREAN, we adopt and extend the well-known circular buffer paradigm to
serve as the foundation for a low-level RDMA-based communication library, referred to as
libRRR. Next, we provide an overview of the internal design and operation of this system.

Producer N\ - Consumer
Side [e B Side
e T
e ™~

Figure 4: Single-sided RDMA Circular Buffer

Each RDMA circular buffer is single-sided and the baseline supports one producer and one
consumer. Multi-producer/multi-consumer access is expected to be handled explicitly by the
application that uses the library. The producer pushes data to the buffer and the consumer
pulls from it, using the provided API. Notably, the buffer head and tail need to be polled for
access, as the library does not provide any other notification mechanism. The applications are
not exposed at all to RDMA communication, while form the developer’s perspective
interaction with the buffer is similar to accessing a local buffer, albeit through the exposed
API, abstracting away all RDMA communication complexities.

empyrean-horizon.eu 17/70

D3.2 — Software-defined Edge Interconnect and Service Assurance Mechanisms %@MPYREAN

Each circular buffer instance moves traffic towards one direction. To implement a full-fledged
RPC communication, typically there is a requirement of instantiating two buffers per direction:
one for control and one for data for request side and another set for response side (Figure 5).

The library offers comprehensive wrappers to implement the described RPC transport model.
In this scheme, control and data messages can be transmitted out of order, and there is no
one-on-one requirement for control and data buffers. Each control (Ctrl) command received
at the destination may consume anywhere from zero data entries up to the whole buffer, a
decision that is entirely left to the application.

Figure 5 illustrates the RPC mechanism. The APl uses separate circular buffers for control
(Submit Queue - SQ) and data (Submit Queue Data - SQD), which operate independently. This
separation is crucial because some RPC calls may feature only control operations (e.g., remote
read), while others may involve both control and variable-sized data (e.g., remote write),
potentially end up consuming several entries of the circular buffer data. The circular buffer
entries are of fixed size, defined during initialization, which simplifies memory management
and alignment. The same buffer configuration applies to the asynchronous response path,
which may or may not need to transfer data back to the requestor. To enable full-duplex RPC,
a total of four (4) circular buffers are initiated.

Notably, these buffers are independently synchronized with their remote counterparts
through the same RDMA channel. This design decouples the number of RDMA channels from
the number of disaggregated circular buffers, allowing multiple RPC channels to be
multiplexed over the same RDMA channel. This approach reduces connection context
memory pressure. With buffers supporting lock-free operations, application developers can
even use independent threads to feed control and data channels on each side, if needed by
the application distributed communication. Nevertheless, the circular buffers structure
guarantees in-order delivery within each stream.

Client Server

Q

Q
Q

D

sQ : : ; E S
SQD ; + E sQDb
Request Path --=>
cQ <-- Response path c
cQD C
AN

Figure 5: Typical RPC channel disaggregated buffer deployment

empyrean-horizon.eu 18/70

D3.2 — Software-defined Edge Interconnect and Service Assurance Mechanisms %@MPYREAN

Figure 6 depicts the complete RDMA interaction sequence used to synchronize the contents
of a local buffer with a remote buffer. This process involves three (3) key steps, all performed
exclusively through RDMA memory operations.

Request Client Ring RNIC RNIC Request Server
cmd fiead post(write_data) Cmd Head IDX
RDMA Write
1./Update
SQ ACK sSQ CMD
Completion RDMA Read post(read_data)
2. PULL|/CMD
ACK
Data Head Completion Data Head
RDMA Read post(read_data)
o 3./PULL DATA sqp —
ACK
Completion
WRITE CMPL
READ CMD/DAT

Figure 6: Request Path RDMA Remote Circular Buffer Sync
The first step involves RDMA write operations that update both tail and head entries of the
remote circular buffers (i.e., rings). Specifically, the head is updated for the remote ring that
is receiving new data, while the tail is updated for the ring in the opposite direction, for which
the request initiator has already consumed an entry locally. In most cases, tail updates occur
typically implicitly, as part of head updates in the opposite direction. However, explicit tail
updates are also supported but are left to the application’s responsibility when needed.

The second step is initiated by the receiver, which due to the previous head update, it can
determine which part of the remote command (cmd) ring contains new command data that
is not yet available locally. Using this information, the receiver performs an RDMA read to
fetch all the updated remote command data. At this point batching of remote ring entries in
one transfer is achieved, improving efficiency. If the application logic requires examining the
command entries before deciding which data entries to fetch, a separate RDMA read is issued
to pull in the relevant data ring contents, provided they are available.

In hardware implementations, the circular buffer logic is entirely abstracted from
accelerators, which interact through a simple streaming interface.

Moreover, the software-defined control layer provides an interface for managing
communication link establishment and buffer configurations. It ensures that:

e Links are only activated when endpoints are authenticated and associated.

e Message transmission may include optional authentication (e.g., HMAC?).

e Link-level properties such as jitter and latency are properly configured, as they directly
related to circular buffer configurations.

2 https://datatracker.ietf.org/doc/html/rfc4868

empyrean-horizon.eu 19/70

D3.2 —Software-defined Edge Interconnect and Service Assurance Mechanisms ’?@MPYREAN

This software-defined control plane takes advantage of the capability of bringing up RDMA
Queue Pairs (QPs) out-of-band, thereby decoupling link setup from the application data path.
As a result, the application can remain focused purely on data transmission, free from the
complexities of RDMA connection management.

4.3.1 Data path software public API

The data path software interface is implemented as a C programming language library that
wraps disaggregated circular buffer operations over RDMA. This APl handles the instantiation
of RDMA communication channels and the associated ring buffers, exposing a typical ring
buffer interface that enables efficient and streamlined manipulation of these resources.

Table 1: Data path software APl — Available functions in the developed C-language library

rrr_init_rings

int rrr_init_rings(int sockfd, struct rdma_connection *res, struct rrr_ring_pair *ringp, char *
recv_bufs[], char* send_bufs[],int blocksize,int iodepth, int submit_ctrl_buf_size, int
completion_ctrl_buf_size, bool isServer, bool ext_buf_management)

This function is used both on client and server sides and initializes the ring pairs and associates
them with an RDMA connection.

rrr_register_buffer_for_transfer

int32_t rrr_register_buffer_for_transfer(struct rrr_ring_pair *ringp, struct rdma_connection *res,
unsigned char * buffer, uint32_t bfidx, uint64_t size)

This function registers a user application buffer to the ring associating it effectively with a ring
entry at index bfidx and registers its address for RDMA transfers

rrr_async_rdma_remote_data_buf_list

int rrr_async_rdma_remote_data_buf_list(struct rrr_ring_pair *ringp, struct rdma_connection
*res, uint64_t *laddr, uint32_t *lkey, uint64_t *raddr, uint32_t *rkey, uint32_t *len, int entries)

This function registers a receive-side ring buffer that accepts sent data from remote counterpart.
The async refers to the asynchronous recycling of the receive buffer.

rrr_ring_get_next_head_cmd_buf

void * rrr_ring_get_next_head_cmd_buf(struct rrr_ring_pair *ringp, bool isSubmit)

This function get next head. It can be used either from client or server side

rrr_ring_get_next_tail_cmd_buf

void * rrr_ring_get_next_tail_cmd_buf(struct rrr_ring_pair *ringp, struct rdma_connection *res,
uint32_t *idx, bool isSubmit);

empyrean-horizon.eu 20/70

\
D3.2 — Software-defined Edge Interconnect and Service Assurance Mechanisms '(/MPYREAN

This function gets next tail it can be used either from client or server side.

void * rrr_ring_get_next_tail_fixed_data_buf(struct rrr_ring_pair *ringp, struct rdma_connection
*res, uint32_t *idx, bool isSubmit);

This function is used to get next tail at the receive side when fixed receive buffers are used by the
server for improved performance.

int rrr_submit_ring_get_next_tail_free_data(struct rrr_ring_pair *ringp, uint32_t bufnum,
uint64_t * localbfs, uint64_t *rembfs);

This function gets next tail data from remote ring side and copies them from remotebfs to localbfs
are required updating the tai | in the process.

void rrr_ring_unlock_cmd_buf(struct rrr_ring_pair *ringp, uint32_t *idx, bool isSubmit);

Function protects buffer from being reused/retired until application that uses it stops needing it.

void rrr_ring_synchronous_unlock_data_buf(struct rrr_ring_pair *ringp, uint32_t *idx, bool
isSubmit);

This function protects data buffer contents until application has finished using them.

int32_t rrr_register_buffer_for_transfer(struct rrr_ring_pair *ringp, struct rdma_connection *res,
unsigned char * buffer, uint32_t bfidx, uint64_t size);

This function registers buffer memory for RDMA transfers.

int rrr_ring_data_async_get_next_head(struct rrr_ring_pair *ringp, int bufidx, bool isSubmit);

This function provides asynchronous ring buffer head retrieval

int rrr_ring_commit(struct rrr_ring_pair *ringp, struct rdma_connection *res, bool isSubmit);

This function provides commit / doorbell functionality that initiates remote buffer synching

empyrean-horizon.eu 21/70

D3.2 — Software-defined Edge Interconnect and Service Assurance Mechanisms %@MPYREAN

4.3.2 Data path hardware interface

To support simple hardware sensors and other edge devices, the Software-Defined
Interconnect provides a fully hardware-based data path interface built on the AXI-Stream
protocol®. The circular buffer mechanism described earlier is integrated into the Nvidia
FlexDriver* system, enabling seamless communication between software and hardware
components at the edge.

Table 2: Data path hardware interface

AXI Send Master-Slave Interface

module axi_stream_512 (
input wire clk,

input wire rst_n,

output reg [511:0] m_axis_tdata,
output reg m_axis_tvalid,
input wire m_axis_tready,

output reg m_axis_tlast

This is the verilog module interface that allows 512-bit data to be transmitted in a single cycle. t_data
holds the data, t_valid indicates that data are valid, t_ready sets the interface into ready mode and
t_last indicates the part of t_data 512-bit word that is valid for read in the current cycle.

4.3.3 Software-Defined Interface

The Restful APl described below provides the necessary control path support required by the
previous interfaces involved in data forwarding within the EMPYREAN platform. In addition to
managing control operations, this control path interface also performs authentication for
establishing connections initiated by the user.

This software-defined interface is designed to fulfil three primary roles: (i) define endpoint
associations, establishing logical pairs between endpoints intending to utilize EMPYREAN
RDMA secure links, (ii) assign desired performance characteristics, which the system will
attempt to accommodate, and (iii) manage the actual link establishment, ensuring controller
maintain a full overview of the deployment.

3 https://developer.arm.com/documentation/ihi0051/latest/
4 https://dl.acm.org/doi/10.1145/3503222.3507776

empyrean-horizon.eu 22/70

D3.2 — Software-defined Edge Interconnect and Service Assurance Mechanisms %@MPYREAN

The API listed below offers the basic control capabilities and is designed to be triggered and
orchestrated by EMPYREAN platform control and management plane, seamlessly integrating
with the EMPYREAN deployment platforms.

Function: Set User Pair Association and Credentials

Description: Sets a user pair association for link bring up with credentials

URL: /SetPair
HTTP Type: POST

POST JSON Data: { {“Endpoint1”: <Endpoint1 Identifier>"}, {“Endpoint2”: <Endpoint2 Identifier>"},
{“Endpoint2”: <Comms Secret - Optional>"} }

RESPONSE JSON Data: { {“PairlD”: <idenfifier>"}}

Success Response (code 200)

Internal Error Codes: code 500 “Endpoints not found”

Function: Set Link Properties

Description: Sets a user pair association for link bring up with credentials

URL: /SetLinkProperties
HTTP Type: POST
POST JSON Data: { {“PairID”: <identifier>"}, {“litter”: <Value>"}, {“Latency”: <Value>"}}

Success Response (code 200)

Internal Error Codes: code 500 “Values not in Nanosecond format”

REMARKS: SetPair should be issued before to have a valid pair association id. The values reflect
specific configuration of circular buffer that aims to meet requirements. Based on the requested
values (e.g. if are unreasonable) or the overall load of the network the requirement might not be
met so the global controller should have an overview of the deployment and current activity
before configuring.

Function: Bring up Link

Description: Coordinates the link bring up on both sides

URL: /LinkBringUP
HTTP Type: POST
POST JSON Data: {“PairID”: <identifier>"}

Success Response (code 200)

Internal Error Codes: code 500 “Bring up failed”

REMARKS: Function should be called after the previous configuration functions have been issued.

empyrean-horizon.eu 23/70

D3.2 — Software-defined Edge Interconnect and Service Assurance Mechanisms %@MPYREAN

5 Hardware Acceleration Abstractions

5.1 Overview

The vAccel® framework enables seamless acceleration workload offloading by abstracting
hardware acceleration capabilities and offering a unified API for diverse backend targets. In
the context of EMPYREAN, vAccel is integrated to support efficient, low-latency execution of
Al/ML workloads across distributed, heterogeneous environments.

A key aspect of this integration involves supporting libRRR, the RDMA-capable, user-level
communication library described in Section 4, as a vAccel transport plugin. This integration
enables seamless remote Al/ML inference task offloading to hardware-accelerated endpoints
across the EMPYREAN loT-edge-cloud continuum. By embedding the vAccel execution model
within libRRR, EMPYREAN introduces a lightweight, low-latency, and high-performance
mechanism for invoking vAccel plugins over RDMA channels, ensuring optimal performance
and scalability.

5.2 Relation to EMPYREAN Objectives and KPlIs

This component is a key enabler for:

e F_S0.12 - Offload acceleration to nearby devices
e EN_3 - High-Performance Data Transport Service

and directly contributes to the achievement of:

e T4.1 - Increase application-level small-message transfer performance
e T4.2 - Improve RDMA programming efficiency of applications

By abstracting the complexity of RDMA operations and integrating with vAccel's plugin-based
execution model, this integration offers a transparent and efficient offloading mechanism,
particularly suitable for lightweight edge devices. It supports scalable and secure Al inference
capabilities across EMPYREAN Associations.

In scenarios such as anomaly detection in smart factories or real-time image processing in
surveillance systems and smart agriculture, vAccel enables resource-constrained edge devices
to offload processing tasks to nearby accelerators, while maintaining end-to-end TLS
encryption and attestation support. Moreover, vAccel integration extends to federated
learning workflows, enabling distributed training on multiple edge devices and leveraging
accelerated aggregation in more powerful environments (e.g., far edge, cloud) using vAccel-
enabled plugins.

5> https://vaccel.org

empyrean-horizon.eu 24/70

D3.2 — Software-defined Edge Interconnect and Service Assurance Mechanisms %@MPYREAN

5.3 Architecture and Integration Details

The integration of vAccel within EMPYREAN stack adopts a layered, modular architecture,
designed to support efficient offloading and execution of Al/ML workloads across distributed
systems. Communication is orchestrated through the Remote Ring-buffer Runtime (libRRR)
over RDMA, enabling ultra-low latency, zero-copy interactions.

IbRRR API

I
I
1
1
1
1
I
1
1
|
1
1
I
1
1
I
1
1
|

Application

Image Tensorflow Torch GenOP

Inference
vAccel API

vAccel library /3)
vAccel agent \

put cmd desc

put data desc

\
I
I
I =]
® 3}
! =
1ib 1 | 54 o e
ibrrr-client i - -39 %
| [
! | g g . A
put cmd desc _ < D 2 0%
! I & + Iy
get data desc 9 : RDMA : % @ o !]
LA |
o 1 OYne : librrr-server :
a ! \ |
g- | O hanhoaisuis s v s e i o es Sipag iy pems o 1 Sl Vo i i S e e S P G e e S -
g |
put data desc ! ¢ Image Tensorflow Torch GenOP
—— 4 Inference

________________________________ vAccel API

vAccel library

CPU GPU FPGA TPU NPU

Figure 7: vAccel and libRRR integration

The architecture comprises the following key components (Figure 7):

vAccel Application: The user application leverages the vAccel API to issue high-level
acceleration requests.

vAccel Core Library (libvaccel): Acts as the main entry point for applications. It
marshals commands and delegates them to the appropriate client backend (plugin).

vAccel Client Backend (vaccel-client-rrr). Encodes acceleration requests and transmits
them through the libRRR communication layer, leveraging a ring-buffer abstraction for
efficient data exchange.

libRRR (Remote Ring-buffer Runtime): The high-performance communication runtime
mechanism built on top of RDMA transport, facilitating zero-copy, low-latency
command and data descriptor exchanges between client and server (detailed in
Section 4).

vAccel Server Backend (vaccel-server-rrr): Dequeues and interprets incoming
requests, dispatching them to the appropriate hardware backend through the vAccel
plugin interface.

empyrean-horizon.eu 25/70

D3.2 — Software-defined Edge Interconnect and Service Assurance Mechanisms %@MPYREAN

vAccel Plugin Layer: Acts as a bridge between the vAccel runtime and the hardware
acceleration backends, interfacing with the actual transport layer (libRRR) on one side
and supporting hardware devices, such as GPUs, FPGAs, or TPUs on the other side.

Hardware Acceleration Device: The physical endpoint that executes Al/ML tasks, fully
abstracted through the plugin interface for seamless integration and portability.

5.4 Implementation and Integration Points

The integration of vAccel into EMPYREAN platform is implemented through a series of
modular development tasks and well-defined interconnection points, carefully aligned with
the architectural objectives and system-level constraints of hyper-distributed environments.

Key integration steps include:

1.

Development of vaccel-client-rrr and vaccel-server-rrr: These components constitute
the client-server communication model for vAccel over the Remote Ring-buffer
Runtime (RRR). The client component serializes commands and associated arguments
into buffer-length structures, while the server deserializes, validates, and dispatches
them for execution. This modular separation ensures flexibility in deployment, e.g.,
placing clients on loT devices and servers on edge or cloud nodes.

Design and Implementation of libRRR Protocol: The Remote Ring-buffer Runtime
(libRRR) layer provides a zero-copy, lock-free communication mechanism over RDMA.
It abstracts the complexities of RDMA interactions while exposing efficient
enqueue/dequeue operations that are critical for achieving high throughput and low
latency. The libRRR component is described in detail in Section 4.

Deployment of RDMA Transport Infrastructure: High-speed RDMA-based
interconnects (e.g., RoCE, Infiniband) are used to transport ring-buffer payloads,
minimizing latency associated with conventional TCP/IP stack. This is particularly
essential for supporting real-time, latency-sensitive Al workloads in distributed edge-
cloud execution paths.

Implementation of Generic Operations (GenOps). To support frameworks like
TensorFlow® and PyTorch’, high-level tensor operations are abstracted as GenOps,
which are routed through the plugin layer. This approach enables device- and
framework- agnostic acceleration, making it easier to plug in various backend
hardware types seamlessly.

Resource Containerization via vAccel-resource: A lightweight vAccel-resource entity
is introduced to encapsulate hardware contexts and metadata, such as memory
mappings, session states, and device capabilities. This facilitates orchestration and

5 https://www.tensorflow.org
7 https://pytorch.org

empyrean-horizon.eu 26/70

D3.2 — Software-defined Edge Interconnect and Service Assurance Mechanisms %@MPYREAN

resource isolation in multi-tenant and containerized deployment environments within
EMPYREAN.

6. Feedback Loop to EMPYREAN Orchestrator: The vAccel server continuously exports
runtime metrics, such as latency, throughput, queue depth, which are consumed by
EMPYREAN’s orchestration and deployment mechanisms. This enables dynamic
offloading decisions and real-time optimization of distributed workloads based on
system state and workload demands.

As a foundational enabler of hardware-accelerated execution within the EMPYREAN control
and management plane, the vAccel framework, tightly integrated with the IlibRRR
communication layer, plays a critical role in delivering high-performance, low-latency Al/ML
capabilities across all project use cases. Rather than operating as an isolated component,
vAccel is deeply embedded within the EMPYREAN compute and resource orchestration stack.
It seamlessly interoperates with the key platform components such as the EMPYREAN
Aggregator, Service Orchestrator, EMPYREAN Controller, and Telemetry Service.

By leveraging libRRR’s ring-buffer-based transport over RDMA, vAccel enables efficient
offloading of compute-intensive workloads from constrained edge devices to remote
hardware accelerators (e.g., GPUs, FPGAs). This remote execution model dramatically reduces
inference latency, preserves energy on edge nodes, and ensures timely Al operations —
including inference, pattern recognition, and predictive analytics— even when local compute
resources (e.g., loT devices, on-premise edge) are limited.

Moreover, the integration directly supports dynamic optimization strategies driven by the
telemetry and service assurance mechanisms (e.g., Analytics Engine). As the system processes
telemetry data and detects evolving runtime conditions, vAccel’s abstraction layer facilitates
the rapid reallocation or offloading of workloads to the most suitable acceleration resources,
whether local or remote.

This dynamic capability aligns tightly with EMPYREAN's mission and goals enabling:

e Autonomous and resilient workload adaptation, especially under varying edge/cloud
resource constraints.

e Real-time Al inference in mission-critical edge deployments, such as industrial
automation or autonomous mobility scenarios.

e Scalable orchestration of heterogeneous resources, ensuring uniform access to
acceleration across diverse hardware environments.

e Energy-aware, latency-optimized execution, supporting green computing goals while
maintaining strict performance guarantees.

Across all EMPYREAN use cases, the integrated vAccel and libRRR stack enhances the
platform’s ability to balance workloads intelligently, maintain low-latency responsiveness
under load, and deliver inference-as-a-service in a hyper-distributed environment. Its deep
coupling with the control and management plane makes it a key enabler for fulfilling the
project’s performance, scalability, adaptability, and operational efficiency technical KPls.

empyrean-horizon.eu 27/70

D3.2 — Software-defined Edge Interconnect and Service Assurance Mechanisms %@MPYREAN

6 Service Assurance

6.1 Overview

EMPYREAN architecture integrates distributed service assurance mechanisms for the self-
driven adaptability of the loT-edge-cloud continuum through multiple instances of Analytics
Engine that utilize real-time telemetry data. The Analytics Engines are part of the Monitoring
and Observability layer, enabling EMPYREAN Aggregators to continuously monitor and predict
probable performance and security issues in Associations, allowing for prompt response to
anomalies and ensuring efficient resource utilization. Unlike deployment and orchestration
operations, which are generally executed per-request, service assurance operations are
executed in automated closed-loops to ensure applications perform as intended by
dynamically adjusting deployments and Association configuration based on real-time
analytics and telemetry data.

These engines employ continuous analysis techniqgues—such as machine learning, machine
reasoning, swarm intelligence, and robust adaptive optimization—to drive orchestration
mechanisms to (i) adapt resources within the Associations, (ii) provide dynamic load balancing
of processing workloads, and data within and across Associations, (iii) migrate workloads to
optimize energy efficiency, (iv) detect and categorize abnormal situations in
applications/resources, and (v) mitigate resource fragmentation and connectivity issues.
These capabilities ensure that applications perform as intended while proactively or reactively
triggering necessary re-optimizations to provide optimal performance, reliability, and
efficiency across the complex and dynamic Association-based loT-edge-cloud continuum.

By implementing these data-driven mechanisms, the EMPYREAN platform can achieve robust
anomaly mitigation, adaptability, and self-driven recovery, ensuring resilient and efficient
operations in the face of unforeseen issues across the infrastructure.

6.2 Relation to EMPYREAN Objectives and KPlIs

The Analytics Engine is one of EMPYREAN’s enabling technologies that support the
autonomous operation and self-driven adaptability across the Association-based continuum.
To this end, the Analytics Engine contributes to the achievement of the following key
objectives and technical KPlIs:

® T1.2 - Increase reliability in the edge: Anomaly detection and failure prediction using
Al/ML within the Analytics Engine increases reliability by anticipating and pre-empting
failures at the edge. The notifications provide reliable asynchronous communication
for proactive response to performance issues.

e T1.4 - Provide low and predictable latency for hyper-distributed applications:
Integration of time-series databases and publish/subscribe mechanisms facilitates
low-latency data ingestion and real-time event propagation. Moreover, the modular

empyrean-horizon.eu 28/70

D3.2 — Software-defined Edge Interconnect and Service Assurance Mechanisms %@MPYREAN

design enables localized execution of analytics, allowing edge nodes to quickly react
to changes in their local environment.

® T2.3-React fast to rapid changes in computational and data demands to maximize the
number of demands served: It provides continuous learning and inference to detect
resource saturation or performance degradation, triggering rapid re-optimization
actions. Dynamic reconfiguration and orchestration are triggered based on telemetry
data, ensuring responsiveness to changes in demand and resources.

® T2.5-Increase the robustness of the algorithms, ensuring consistent performance even
under uncertain or noisy conditions: By employing robust adaptive optimization and
swarm intelligence, it provides adaptability to uncertainties and non-deterministic
behaviours in edge environments. The feature extraction, data normalization, and
filtering improve input quality, reducing the impact of noisy telemetry.

6.3 Architecture

A key requirement for designing the Analytics Engine is its scalability, both in terms of
integrating diverse data sources and executing Al/ML-based algorithms. Additionally, the
Analytics Engine must efficiently handle data ingestion from all telemetry and monitoring
resources across infrastructure segments, enabling the seamless combination of data from
infrastructure, through Associations, to deployed services and applications. The ability to
merge application and infrastructure-based metrics is closely linked to the Al/ML functions of
the EMPYREAN distributed control and management plane. Facilitating service assurance
mechanisms to aggregate and utilize data from various infrastructure layers and Associations
is essential for implementing more intelligent self-adaptation and self-optimization
mechanisms.

The design of the Analytics Engine follows a modular and scalable microservices-based
approach, providing flexibility for integrating multiple data sources and executing diverse
data-driven algorithms. It comprises four primary services: the Access Interface, Data
Connector, Data Manager, and Event Detection Engine. Figure 8 illustrates the architecture of
the EMPYREAN Analytics Engine, highlighting its key components and their interactions with
other EMPYREAN services.

The Access Interface enables bidirectional communication to exchange commands,
information, and notifications among the Analytic Engine instances and other services within
the distributed EMPYREAN control and management plane. The design includes two distinct
interfaces, each designed to meet specific interaction requirements:

® RESTful API: 1t provides a stateless, synchronous interface for executing control
operations. It is designed to handle standard CRUD operations (Create, Read, Update,
Delete) via standard HTTP methods (POST, GET, PUT, DELETE). The RESTful API is ideal
for tasks requiring instant feedback or control over analytics operations. The AP/ Server
component implement this interface.

empyrean-horizon.eu 29/70

N
D3.2 —Software-defined Edge Interconnect and Service Assurance Mechanisms '@MPYREAN
(Z

e Asynchronous interface: It is provided by the Notification Manager component and is
built on the Eclipse Zenoh?®, supporting flexible, asynchronous, and persistent
communication using its publish/subscribe and query mechanisms. It allows the
Analytics Engine to send real-time notifications and event updates to the service
orchestration mechanisms and platform web-based dashboard.

Y
‘ API Server Notification Manager
A A -~
Access Interface
NBI NBI [NBI | NBI
EMPYREAN DATA
Distributor REST gRPC Prometheus
[SBI_| [sBi SBI SBI / \‘
g
H ﬁl ‘ _| Data Handler
| »
Data Engine | _____________
I
\ Data Connector / : =
1| Time-series =
: Databases
N -~
\ Data Manager
./ A4 \ 4
Dispatcher |« Event Reporter

{ 1

Model Training

Model Execution

Y

\ Ewvent Detaection Engine

Figure 8: Analytics Engine architecture and core components

The Data Connector service manages the collection of raw monitoring and streaming
telemetry data from various sources within the Monitoring and Observability layer. It
functions as pre-processing element, performing tasks such as data filtering and
normalization, before forwarding the processed data to the Data Manager service. The design
supports multiple data ingestion methods (i.e., pull and push) and accommodates diverse
types of monitored data (i.e., metrics, events, streams) through various protocols.

Each data collection mechanism is implemented as a custom plug-in. The initial design
supports: (i) a REST client for managing periodic and on-demand monitoring data collection
through EMPYREAN’s telemetry service default interface, (ii) a gRPC module for handling
streaming telemetry data, (iii) an agent customized to interact with the decentralized
EMPYREAN data distributor service to ensure seamless data sharing within the EMPYREAN

8 Eclipse Zenoh: https://zenoh.io

empyrean-horizon.eu 30/70

D3.2 — Software-defined Edge Interconnect and Service Assurance Mechanisms %@MPYREAN

platform, and (iv) a Prometheus client for collecting and managing monitoring data in the
OpenMetrics® format.

A common design approach has been adopted for these plug-ins, where each implements a
standardized Northbound Interface (NBI) and Southbound Interface (SBI). The NBI provides a
unified interface for receiving configuration instructions from the Access Interface service,
while the SBI forwards the collected data to the Data Engine component.

Pre-processing is implemented as a separate component, the Data Engine, which formats as
well as augments monitoring and telemetry for predictive model creation. It ensures data
normalization for consistency across different telemetry formats, performs feature extraction
and transformation to prepare data for advanced analytics, and applies filtering and
aggregation to reduce noise and enhance meaningful insights before storage and analysis.

The Data Manager service is responsible for managing data storage and facilitating data
exchange between internal and external components. It provides local storage of processed
data, trained models, and analysis results. The EMPYREAN Edge Storage component provides
the repository of trained models, which enables collected data and trained models to be
encrypted and stored in a distributed manner. This approach enhances security, fault
tolerance, and accessibility, ensuring that data remains protected while being readily available
to the Event Detection Engine for analysis, detection, and machine reasoning tasks.

Additionally, the Data Manager incorporates various database technologies to handle both
structured and unstructured data, including NoSQL and time-series databases. NoSQL
databases store unstructured or semi-structured data such as event logs, metadata, analysis
results. and post-analysis content. Time-series databases handle the continuous streams of
monitoring data, telemetry, and event logs from the Data Connector service, which later fuels
the operations of the Event Detection Engine. By combining edge storage, NoSQL, and time-
series databases, the Data Manager ensures efficient data processing, storage, and retrieval,
supporting the EMPYREAN platform’s mission of real-time event detection and intelligence.

The Data Handler component is a RESTful controller that provides a standardized interface for
both Analytics Engine components and external EMPYREAN services to access historical
telemetry data and interact with the other parts of the Data Manager service. It exposes
RESTful methods that simplify data retrieval and management across diverse databases and
storage resources, ensuring a unified and efficient data access layer. These methods abstract
the complexities of data manipulation, allowing for seamless retrieval of telemetry data based
on specified parameters while supporting filtering and query operations. Additionally, the
Data Handler ensures that stored information is properly updated and maintained. For secure
and efficient storage and retrieval, the component interacts with EMPYREAN'’s edge storage
resources, handling both data and trained models through their standardized S3-compatible
APls.

2 OpenMetrics: https://github.com/OpenObservability/OpenMetrics

empyrean-horizon.eu 31/70

D3.2 — Software-defined Edge Interconnect and Service Assurance Mechanisms %@MPYREAN

The Event Detection Engine service implements the core functionality of EMPYREAN's
distributed service assurance framework, leveraging real-time telemetry data and machine
reasoning techniques to ensure system reliability. It enables the integration and execution of
data-driven algorithms that safeguard the performance and availability of deployed
applications and Associations. By incorporating Al/ML-based mechanisms, the Event
Detection Engine builds knowledge and intelligence to sense (detect what is happening),
discern (interpret detected events), and infer (understand implications) over an infinite time
horizon control loop. Its key functions include (i) Al/ML-driven anomaly detection, failure
prediction, and resource optimization, (ii) correlation of infrastructure and application-level
metrics to ensure consistent performance, and (iii) triggering adaptive control mechanisms to
dynamically respond to detected events.

The Event Detection Engine consists of four main components: the Dispatcher, Model
Training, Model Execution, and Event Reporter. The Dispatcher handles interactions with the
Access Interface and Data Manager services as well as it oversees the operation of the internal
components. It also coordinates the execution of inference, analysis, and training operations.
The Model Training supports the selection, configuration, and optimization of Al/ML-based
predictive and analytical models. The implementation will facilitate the definition and
integration of user-defined detection models within the Analytics Engine, provided they align
with the adopted processing pipeline and APls. The Model Execution manages the
instantiation and execution of available detection and analysis methods. Depending on the
available telemetry information, these mechanisms will operate at different timescales. They
will autonomously drive the orchestration mechanisms in re-optimizations and adaptations
within an Association. All detected anomalies and performance issues are forwarded to the
Event Reporter, which then automatically delivered to the appropriate internal components
(e.g., Data Manager) and EMPYREAN orchestration and management services (e.g.,
EMPYREAN Aggregator, Service Orchestrator) to trigger any required remediation actions.

By combining real-time monitoring, Al-driven insights, and adaptive control, the Analytics
Engine (i) ensures fast reaction to rapid changes in computational and data demands to
maximize the number of served demands, (ii) increase robustness, ensuring consistent
performance even under uncertain or noisy conditions, (iii) maintain optimal performance by
quickly identifying and resolving anomalies, and (iv) learns from past anomalies and recovery
actions to improve future responses.

6.4 Implementation

During the reporting period, we focused on implementing the Access Interface, Data
Connector, and Data Manager services. Additionally, we developed the core logic of the Event
Detection Engine, with its full implementation scheduled for the second iteration of the
implementation plane (M16-M26). The overall design of the Analytics Engine, along with the
initial implementation of these services, ensures a robust, adaptable, and cloud-native
application. Bellow, we provide an overview of the functionalities developed during the first
iteration of the implementation plan.

empyrean-horizon.eu 32/70

s
D3.2 — Software-defined Edge Interconnect and Service Assurance Mechanisms '@MPYREAN

The Access Interface components are implemented in Python, with the API Server built using
the FastAPI'® web framework. FastAPI offers high performance, automatic data validation,
and ease of use, making it an excellent choice for RESTful APls and microservices. It is built on
Asynchronous Server Gateway Interface (ASGI)!!, using Starlette!? for async support and
Pydantic®® for automatic validation of request and response data. Figure 9 shows the methods
exposed by the Access Interface’s RESTful API.

Configuration ~

m Japi/vl/fanalytics_engine/config Get available operation configurations of Analylics Engine instance ~
m Japifvl/analytics_engine/config Add a new operation configuration of Analytics Engine instance W
Japi/vl/analytics_engine/config Update cperation configuration of Analytics Engine instance v
Japifvi/analytics_engine/config/{conf_id} Gelspeific cperation configuration of Analytics Engine instance v

Jfapi/vi/analytics_engine/config/{conf_id} Delete a specific operation configuration N ‘

m fapi/vl/analytics_engine/config/activate/{conf_id} Activate aspecific operation configuration v

Japifvifanalytics_engine/config/activate/{conf_id} Temminates a specific operation configuration e ‘

Deployments ~

GET Japi/fvl/analytics_engine/deployments Get registered application deployments for service assurance anaytics ~

fapifvl/fanalytics_engine/deployments Register a new application depioyment for senice assurance analytics v
Jfapifvi/analytics_engine/deployments Update application deployment registration for service assurance analytics W
Jfapi/vi/analytics_engine/deployments/{deployment_id} W

Get detauls for a speific application deployment registration for service assurance analytics

I |

=830 /api/vl/analytics_engine/deployments/{deployment_id} Delete aregistred application deployment from service assruance analytics ~

Associations ~

fapifvi/fanalytics_engine/associations Get registered Associations for service assurance analytics v

T fapi/vli/analytics_engine/associations Register a new Association for service assurance analytics AV

fapifvifanalytics_engine/associations Update an Association registration for service assurance analytics N

GET fapifvi/analytics_engine/associations/{association_id} Get details fora speific Association registration for service assurance analytics s

BEORE

fapi/vifanalytics_engine/associations/{association_id} Delate a reqmstred Associabon from semvice assruance analylics L

10 FastAPI framework: https://fastapi.tiangolo.com
11 ASGI: https://asgi.readthedocs.io/en/latest/

12 Starlette: https://www.starlette.io

13 pydantic: https://docs.pydantic.dev/latest/

empyrean-horizon.eu 33/70

\
D3.2 — Software-defined Edge Interconnect and Service Assurance Mechanisms @MPYREAN

Associations ~
‘ fapi/vifanalytics_engine/associations Get registered Associations for service assurance analytics. v l
[/apifvli/analytics_engine/associations Register a new Association for service assurance analytics. b l
/api/vl/analytics_engine/associations Update Association registration for service assurance analytics. N ‘
‘. /api/vi/analytics_engine/associations/{association_id} o ‘
. Get details for a speific Association registration for service assurance analytics.

[/api/vifanalytics_engine/associations/{association_id} Delete aregistred Association from service assruance analytics. e I

Models ~
[/api/vi/analytics_engine/models Getavailable trained models in the Data Manager. V4 ‘
[/api/vi/analytics_engine/models Create and store a specific trained model in the Data Manager. v l
[api/vi/analytics_engine/models Update and store a specific trained model in the Data Manager. “~ ‘
‘ /api/vi/analytics_engine/models/{model_id} Get details about a specific trained model. ~ l
l /api/vli/analytics_engine/models/{model_id} Delete a specific traided model from the Data Manager. ~ l

Training ~
‘ /api/vi/analytics_engine/training List currently running model training executions. AV l
l fapi/vifanalytics_engine/training Starta new model training execution. N l
{ GET /api/vl/analytics_engine/training/{id} Get details about a specific model training execution. V4 ‘
[Japi/vl/analytics_engine/training/{id} Temminate a specific model training execution. ~]
‘ J/api/vl/analytics_engine/training/logs/{id} Get detail logging information about a specific model training execution. AV ‘

Analytics ~
{ GET /api/vl/analytics_engine/analytics Listanalytics executions (e.g., inference, anomaly detections) currently active. N ‘
‘. fapi/vl/analytics_engine/analytics Start a new analytics execution. N ‘
‘ fapifvifanalytics_engine/analytics/{id} Getdetails for a specific analytics execution. ~ ‘
[/api/vi/analytics_engine/analytics/{id} Terminate a specific analytics execution. V4 }
‘ /api/vifanalytics_engine/analytics/logs/{id} Getdetail logging information about a specific analytics execution. v ‘

Figure 9: Analytics Engine — Access Interface RESTful API

empyrean-horizon.eu 34/70

D3.2 — Software-defined Edge Interconnect and Service Assurance Mechanisms %@MPYREAN

The Notification Engine is built using the Eclipse Zenoh!* and the PyQt!> framework. For the
asynchronous interface and communication, the implementation leverages the Zenoh key
expressions, the topics, to implement efficient and scalable publish-subscribe interactions,
enabling real-time messaging across distributed systems. In this setup, messages published
by components such as the Data Manager or Event Detection Engine are sent to designated
topics. These topics then broadcast all received messages to subscribed clients (e.g.,
EMPYREAN Aggregator, Ul, CLI), ensuring that each component receives the same set of
notifications simultaneously.

The Notification Engine posts messages in JSON format, following a predefined structure:

analytics_engine_uuid: (string): Unique identifier for the Analytics Engine instance.
event (string): Unique identifier for the event.
message (object): Collection of event-related parameters containing the necessary
information.

e timestamp (integer): The timestamp of the event.

Table 3 outlines the detailed structure of notification messages, describing the expected
elements and their roles in the communication process. This structured approach ensures
consistent message delivery across the EMPYREAN platform, improving responsiveness and
facilitating real-time control and management operations.

Table 3: Analytics Engine - Notification Engine messages

Event Identifier Description Parameters
A new worker node is node_id (integer): worker node unique
detected to a specific identifier
NODE UP cluster, triggered on cluster_id: (integer): K8s/K3s cluster
- joining a cluster or an unique identifier
existing one becomes asociation_id: (integer): EMPYREAN
online again. Association unique identifier
node_id (integer): worker node unique
identifier
cluster_id (integer): K8s/K3s cluster unique
Worker node does not identifier
NODE_FAILED operate properly, unable | gssociation_id: (integer): EMPYREAN
to serve workloads. Association unique identifier
message (string): event related
information

14 Eclipse Zenoh: https://zenoh.io
15 pyqt: https://riverbankcomputing.com/software/pyqt/intro

empyrean-horizon.eu 35/70

D3.2 — Software-defined Edge Interconnect and Service Assurance Mechanisms

@M PYREAN

NODE_DOWN

A worker node is detected
unavailable, triggered on
leaving a cluster or
becoming offline.

node_id (integer): worker node unique
identifier.

cluster_id (integer): K8s/K3s cluster unique
identifier.

association_id: (integer): EMPYREAN
Association unique identifier.

NODE_STRESSED

A worker node is stressed
with high load for a

significant amount of time.

node_id (integer): worker node unique
identifier.

cluster_id (integer): K8s/K3s cluster unique
identifier.

association_id: (integer): EMPYREAN
Association unique identifier.
operational_status (object): affected
operational parameters.

ASSOCIATION_STRESSED

An Association is stressed
with a high load for a

significant amount of time.

association_id: (integer): EMPYREAN
Association unique identifier.
operational_status (object): affected
operational parameters.

DEPLOYMENT_FAILED

Deployed application is
failed, triggered when at
least one microservice is

not running properly.

deployment_id (integer): Application
deployment unique identifier.
affected_microservices (array): List of
affected microservices identifier
feedback (object): Information for the
detected issue

DEPLOYMENT_QOS

Quality of service is not
the expected for at least
one microservice

deployment_id (integer): Application
deployment unique identifier.
affected_microservices (array): List of
affected microservices identifier
feedback (object): Information for the
detected issue

DEPLOYMENT_MIGRATION

Suggestion for migrating a
deployment due to
detected issues.

deployment_id (integer): Application
deployment unique identifier.
feedback (object): Information for the
detected issue

The implementation of the Data Connector service follows a modular approach to ensure
flexibility, scalability, and interoperability with the various telemetry sources. It is built using
a combination of open-source frameworks and technologies to facilitate seamless data
ingestion. Each connector component is implemented as a custom plug-in, supporting
different data ingestion methods, while exposing a common RESTful northbound interface
(NBI). Figure 10 presents the initial version of the implemented NBI.

The Southbound Interface (SBI) delivers collected telemetry data to the Data Engine
component, ensuring compatibility with storage and analysis services. To achieve this, SBI
utilizes Pandas®® DataFrames as the primary data structure, offering several key advantages,
such as, (i) efficient data handling as DataFrames provide a structured representation of
telemetry data, enabling easier processing, filtering, and manipulation, (ii) interoperability

16 https://pandas.pydata.org

empyrean-horizon.eu 36/70

D3.2 — Software-defined Edge Interconnect and Service Assurance Mechanisms %@MPYREAN

with popular analysis frameworks (e.g., NumPy, SciPy, Scikit-learn), ensuring smooth data
analysis and transformation workflows, and (iii) performance optimization, as Pandas is
optimized for high-performance operations on structured data, such as vectorized
computations and parallel processing.

Next, the Data Engine enhances the quality of collected data before storage and analysis by
offering data normalization, feature extraction and transformation, filtering and aggregation
and processed data forwarding to the Data Manager service for storage and retrieval.

Data Connectors ~
/apifvifanalytics_engine/data_connectors Listavailable data conneciors w
Japi/vifanalytics_engine/data_connectors Enable a new connector to retrieve data for a specific data source type b
fapifvifanalytics_engine/data_connectors Update the configuration of a data connector. s
/api/vifanalytics_engine/data_connectors/{id} Getdetais abouta specific data connector plug-in configuration & status (uwid. type, configuration_parameters, siatus A4

m /api/vifanalytics_engine/data_connectors/{id} Disable s specific data connector “

Figure 10: Analytics Engine — Data Connector plug-ins RESTful northbound interface

The Data Manager integrates multiple database technologies to efficiently handle diverse
data types, ensuring optimal performance across different workloads. To store event logs,
metadata generated by the Event Detection Engine, post-analysis reports, historical insights,
and processed data results from analytics pipelines, the Data Manager utilizes MongoDBY’, a
document-based NoSQL database for unstructured and semi-structured data. MongoDB was
selected as it offers flexibility in storing dynamic data structures as well as indexing and
aggregation capabilities for supporting fast querying and data retrieval. For managing
continuous telemetry streams, the Data Manager integrates InfluxDB*2, a high-performance
time-series database that provides (i) high-frequency data ingestion from the Data Connector
service, (ii) efficient querying of historical monitoring data for predictive analytics, and (iii)
retention policies to manage the storage lifecycle of telemetry logs. InfluxDB’s built-in query
language enables complex filtering, transformations, and real-time analytics, making it well-
suited for event-driven intelligence in the EMPYREAN platform.

In addition, to ensure local storage and edge-based data management, the EMPYREAN Edge
Storage component is leveraged (for further details, see D3.1 (M15)). This approach provides
a S3-compatible, secure, fault-tolerant, and distributed object storage system that offers (i)
secure encryption for stored data and trained models, (ii) scalability to handle large volumes
of telemetry and analytical data, and (iii) seamless integration with the EMPYREAN platform
via standard S3 APlIs.

7 https://www.mongodb.com
18 https://www.influxdata.com

empyrean-horizon.eu 37/70

D3.2 — Software-defined Edge Interconnect and Service Assurance Mechanisms %@MPYREAN

Moreover, the Data Handler component is implemented in Python using also well-known
frameworks and libraries such as FastAPI, PyQt, PyMongo?®, Boto32°, and InfluxDB 3.0 client??,
It facilitates interactions with the integrated database and storage resources. The Data
Handler exposes RESTful methods that allow Data Connector components to efficiently
populate the data stores and the Event Detection Engine components to retrieve historical
telemetry data. The available RESTful methods are shown in Figure 11.

Data Manager N
/api/vi/analytics_engine/data_manager/clusters/metrics/{cluster_id} Retrieve historical telematry data for the worker nodes within 3 K8&/K3s cluster v
/api/vi/analytics_engine/data_manager/clusters/pods/{cluster_id} Retreve historical telemetry data for the available Pods within 3 K8s/K3s cluste v
/api/vi/analytics_engine/data_manager/associations/metrics/{association_id} Retrieve historical telemetry data for an EMPYREAN Association v
/api/vi/analytics_engine/data_manager/deployments/metrics/{deployment_id} Retneve historical telemetry data for a specific application deployment within EMPYREAN plstform. \V/

/api/vi/analytics_engine/data_manager/clusters/metrics Storetelemetry data for the worker nodes within 3 K8s/K3s cluster v
/api/vi/analytics_engine/data_manager/clusters/pods Store historical telemetry data for the svadable Pods within 3 KSs/K3s cluster. v
/api/vi/analytics_engine/data_manager/associations/metrics Store historical telematry data for an EMPYREAN Association v

/api/vi/analytics_engine/data_manager/deployments/metrics Store historical telemetry data for 3 specific application depioyment within EMPYREAN platform v

Figure 11: Analytics Engine — Data Manager RESTful API

6.5 Relation to Use Cases

As an integral part of the EMPYREAN control and management plane, the Analytics Engine
functions as an intelligence layer that empowers all project use cases with enhanced
situational awareness, adaptive optimization, and context-aware decision-making. Rather
than operating in isolation, the Analytics Engine is tightly integrated with core components
such as the EMPYREAN Aggregator and Service Orchestrator, ensuring seamless access to its
capabilities across the distributed edge-cloud infrastructure.

It processes both real-time and historical telemetry data, applying advanced Al/ML-driven
predictive analytics and event detection algorithms to support a wide range of operational
objectives. This enables the system to proactively respond to dynamic conditions, resource
fluctuations, and performance anomalies, directly contributing to the achievement of each
use case’s KPIs. The Analytics Engine’s value is particularly evident across the project’s use
cases, where it ensures high reliability and low-latency responsiveness in mission-critical edge
scenarios. Additionally, its inference and optimization capabilities support the autonomous
adaptability of workloads, enabling intelligent workload balancing in response to evolving
demands and variations in edge and cloud resource availability.

1% https://github.com/mongodb/mongo-python-driver
20 https://github.com/boto/boto3
21 https://github.com/InfluxCommunity/influxdb3-python

empyrean-horizon.eu 38/70

D3.2 — Software-defined Edge Interconnect and Service Assurance Mechanisms %@MPYREAN

7 Intelligent Autoscaling and Adaptive Computing
Management

7.1 Overview

This work focuses on applying Al/ML techniques to enable vertical auto-scaling within a
Kubernetes cluster within the edge-cloud continuum. Specifically, the objective is to develop
an ML-based vertical auto-scaler, named VPA-pilot, that leverages collected monitoring data
to recommend suitable container size for workloads. By tailoring resource allocations more
precisely, this approach enhances container bin-packing efficiency on worker nodes, reducing
the overall number of active nodes. In cloud environments, this results in lower execution
costs, while in on-premise deployments, it can also allow powering off resources, leading to
improved energy efficiency and further cost savings.

In the edge-cloud continuum, besides traditional workloads that use CPU and RAM resources,
the emerging hyper-distributed Al applications also require GPU resources. However, unlike
CPU and memory, dynamic GPU fractioning remains an immature and evolving area within
Kubernetes. Therefore, a key focus of this work is to research state-of-the-art methods for
dynamic GPU fractioning, and to explore how vertical auto-scaling techniques can be
extended to support GPU workloads in hyper-distributed environments.

7.2 Background and Challenges

Kubernetes is the de-facto industry standard for cloud infrastructure resource management
and orchestration, and it has also been adopted as the main low-level orchestration software
for the edge-cloud continuum. In a Kubernetes cluster, a large number of workloads of
different applications are running on a cluster of computers called nodes. A workload does
not exclusively occupy a node but runs with others together on a node. A workload is hosted
in a corresponding container, which keeps the workload isolated from others on the same
host computer(node). Containers work like VMs but with different mechanisms and much less
overhead. When we deploy an application in a Kubernetes cluster, we create a Deployment
object representing the application deployed in the cluster. Besides, instead of deploying
individual containers, we deploy groups of co-located containers - so-called pods. A pod is a
group of one or more closely related containers that run together on the same worker node
and need to share certain Linux namespaces.

To bring intelligence to the low-level orchestrator in the edge-cloud continuum, we enable
the autonomous and adaptive workload auto-scaling on the low-level Kubernetes platforms.
A common workload auto-scaling technique is horizontal auto-scaling, which already exists in
Kubernetes and allows applications to decrease or increase the number of replicas. This is a
powerful feature that enables the system to automatically adapt its resource allocation based
on real traffic. However, if the limits are not set correctly, the average utilisation might grow

empyrean-horizon.eu 39/70

D3.2 — Software-defined Edge Interconnect and Service Assurance Mechanisms %@MPYREAN

the application in a non-optimal way. Instead, we could keep more resources powered down
and gain a lot in the system’s energy consumption. Hence, another technique to address the
adaptation of workload is vertical auto scaling, which enables the automated setting of limits
for each replica.

The workload runs inside a container located in a pod, with the assumption that each pod
contains exactly one container. A deployment manages several homogeneous pods (i.e.,
related containers). The goal is to implement a vertical auto-scaler that collects historical
resource usage data, predicts a suitable container size, and applies this prediction across all
containers in the deployment. The auto-scaled resources in this work are CPU, RAM, and GPU.

The vertical auto-scaling problem in this context has three key aspects:

e Auto-scaler Input: The input consists of stable, real-time collected and aggregated
telemetry data from the Kubernetes cluster. We specifically focus on historical actual
usage metrics for CPU, RAM, and GPU, referred to as workload usage. Other potential
inputs, such as container size history or workload scheduling information, are
intentionally excluded.

e Auto-scaler Prediction Algorithm: The core ML-based algorithm that predicts future
resource usage and estimates appropriate container request and limit values. The
prediction should not exceed the (future) workload usage too much, as
overestimations can lead to resource waste. It should also not be underestimated as
this may disrupt workload execution and even cause service level objective (SLO)
violations. The aim is for the ML algorithm to outperform traditional rule-based
algorithms, such as threshold- or heuristic-based auto-scalers.

e Auto-scaler Output: The output includes both the predicted resource requests and
limits, given by the core prediction algorithm, as well as the mechanism to gracefully
apply them across all containers in the deployment. Specifically, we need to properly
configure the container resource request and limit settings according to the
algorithm’s prediction, followed by resource fractioning and assignment of the
appropriate fractioned slice to each container. Two main challenges arise: (i) GPU
resources fractioning, which lacks native Kubernetes support (unlike CPU and RAM)
and (ii) ensuring performance stability across the deployment when applying auto-
scaling on containers.

The theoretical challenge in vertical auto-scaling is making accurate predictions for future
container size predictions under a non-clairvoyant situation — without access to future
workload usage patterns. As such, the auto-scaler must behave as an online algorithm, making
real-time decisions with limited information. Although ML techniques can help to mitigate this
challenge, their effective application in an online problem setting remains an issue and is the
key focus of this work. To this end, the performance of the proposed auto-scaling algorithm
will be thoroughly evaluated through a variety of experiments and benchmarks,
demonstrating its effectiveness across CPU, RAM, and GPU scaling scenarios.

empyrean-horizon.eu 40/70

D3.2 — Software-defined Edge Interconnect and Service Assurance Mechanisms %@MPYREAN

The practical challenge addressed in this work is the actual implementation of an auto-scaler
in the Kubernetes cluster, with the long-term goal of deploying it in a production environment
across the edge-cloud continuum. This requires the auto-scaler to adapt and optimise CPU
and memory consumption based on different edge or cloud devices. It also requires
addressing differences between the theoretical model and real environment, handling cases
that are not well considered in the theories (e.g. dealing with Out-Of-Memory Kills), and
having enough robustness to handle diverse workloads and the edge-cloud environment.

The first version of our efforts focusses on a vertical auto-scaler inspired by Rzadca’s Autopilot
algorithm??2. We introduce several theoretical refinements that include alighments for
improving both algorithm’s accuracy and efficiency, including as well as a RAM post-processor
specifically designed to successfully addresses the Out-Of-Memory (OOM) kills, which were
not adequately considered in the original work.

Building on this initial work, we then implemented VPA-pilot that is an actual auto-scaler built
as service upon Kubernetes and based on an open-source framework. Special attention was
given to edge-cloud adaptability by optimizing the CPU and RAM consumption of the
Autopilot ML implementation, based on complexity analysis. The implementation
demonstrates low overhead, even when running with high scale and precision (e.g., 20000
sub-models). Algorithm’s resource usage remains minimal (12.441 millicore CPU and
17.898MB RAM), which is not even dominate the consumption of the auto-scaler framework’s
system logic.

To further enhance performance, we developed a long-term auto-scaler simulator along with
appropriate methodologies to tune the VPA-pilot’s hyper-parameters. The hyper-parameters
tuning problem is modelled as an Operations Research (OR) program. Using combinations of
sampling- and manual-based methods, we solved the OR program. The dominating set of
hyper-parameters is successfully found on CPU resources. However, the RAM tuning
presented suboptimal performance, suggesting the need for future improvements on the
hyper-parameters tuning model, which are also presented.

Recognizing the growing importance of GPU acceleration in edge-cloud applications, we
extend our methodology to include dynamic GPU fractioning and vertical auto-scaling using
Multi-Instance GPU (MIG) technology. By leveraging our ML-based approach, we demonstrate
a practical pathway for enabling GPU-aware vertical scaling in Kubernetes environments that
currently lack native support for dynamic GPU partitioning.

22 Rzadca K, Findeisen P, Swiderski J, Zych P, Broniek P, Kusmierek J, Nowak P, Strack B, Witusowski P, Hand S,
Wilkes J. Autopilot: workload autoscaling at google. InProceedings of the Fifteenth European Conference on
Computer Systems 2020 Apr 15 (pp. 1-16).

empyrean-horizon.eu 41/70

D3.2 — Software-defined Edge Interconnect and Service Assurance Mechanisms %@MPYREAN

7.2.1 GPU Fractioning

The purpose of fractioning is to divide the entire resources into multiple slices and allocate
them to each container respectively. Good fractioning technologies should be able to limit
resources for each container, and should have good isolation between different containers.

This work concerns CPU, RAM and GPU resources in Kubernetes nodes. For CPU and RAM,
there are mature technologies such as Cgroups. However, Kubernetes has no native support
for GPU. There is also no technology as mature and dominating as Cgroups. This section
investigates 3 available GPU fractioning technologies on NVIDIA GPUs. Then compare them
and choose one for GPU vertical auto-scaling in this work.

GPU has its own computing and memory resources. Here we consider the combination of
Streaming Multiprocessor (SM) and Global Memory (GPU Memory), which is similar to the
CPU/RAM combination. SM is a fundamental computing component of NVIDIA GPUs that
executes instructions in parallel. As for memory, GPUs have a (more complicated) hierarchical
architecture like ordinary memory: L1/L2/constant cache, shared/local/global/texture and
constant memory. Among these, the global memory is similar to the ordinary "memory"
concept. So, for convenience, we use GPU Memory in this work to refer to the global memory.

7.2.2 Time-Slicing GPU

To access and configure GPU resources in Kubernetes, NVIDIA proposed the NVIDIA GPU
Operator, which is a set of components installed in a Kubernetes cluster. Among these
components, there is one called NVIDIA Kubernetes Device Plugin. This plugin implements the
Time-Slicing GPU feature.

Time-Slicing GPU enables the system manager to define a set of replicas for a GPU. Each
replica can be used independently by a container to run the workload. Internally, Time-Slicing
is used to multiplex workloads from replicas of the same underlying GPU. Time-Slicing allows
each workload to use the entire SMs of a GPU in turn, like the context switch of CPUs. The
GPU Memory is split and assigned to each workload, but without any memory and fault
isolation.

Time-Slicing is a bad fractioning method for auto-scaling. First, auto-scaling aims to improve
resource utilization when there are multiple workloads, each of which is small compared to
the entire resource. However, with Time-Slicing, each small workload still uses the whole GPU
during its round. The wasting of SMs is not relieved at all (i.e., we do not simply want
parallelism here). Second, isolation is important for Kubernetes containers. So, no isolation of
GPU Memory in Time-Slicing is unacceptable.

empyrean-horizon.eu 42/70

N
D3.2 —Software-defined Edge Interconnect and Service Assurance Mechanisms @MPYREAN
N

7.2.3 Multi-Instance GPU (MIG)

Multi-Instance GPU (MIG) is a new feature proposed on NVIDIA GPUs starting from the
Ampere architecture. MIG allows GPUs to be securely partitioned into up to 7 separate GPU
Instances (Gls), then assigning each Gl to different workloads. Different from Time-Slicing,
each Gl owns a certain part of the resources (SM and GPU Memory) of the entire GPU
spatially. The SMs and GPU Memory between different Gls are completely isolated and their
resource usages are strictly limited, as if the workloads are running on different GPUs. In
Kubernetes cluster, the NVIDIA Kubernetes Device Plugin also implemented MIG support.
With this Kubernetes support, we can read the MIG information of the GPUs in the cluster,
configure MIG, and assign the Gls to different containers.

Fractioning illustration on NVIDIA H100 GPU

| T || i o Bty Sasineet
single | 1g.10GB | 7 |[1a]1a[ta[19]1a]1a]1a] [woc8]i0ce]10ce]10ae[r0a8] 0B 10c8[><]| 10GB wasted
single | 1920GB | 4 ([19]to|tw|w[><T] [mee | wee | wee | wee || 3gwasted
single | 20.20GB 3 ‘ 2 | 20 | 2 N ‘ 20GB | 20GB | 20GB |>< 1g and 20GB wasted
single | 3g.40GB 2 ‘ 3 | 3g N ‘ 40GB | 40GB ‘ 1g wasted
single | 4g.40GB 1 ‘ . |><‘ ‘ 40GB |><‘ 3g and 40GB wasted
single | 79.806B | 1 | 79 |] 8068 |

rics froaomd 5 [[n] & [| [efou me | ew]|wnieiee s

Figure 12: lllustration of MIG Strategies, MIG Profiles and Gls on NVIDIA H100 GPU

For vertical auto-scaling, MIG perfectly satisfies the requirements of limiting and isolating
resources. However, MIG has unignorable drawbacks in flexibility.

The sizes of Gls are not arbitrary. We cannot request an arbitrary part of the GPU as we did
on CPU or RAM. With MIG, the SMs on the GPU are grouped into 7 compute slices of the same
size. The entire GPU memory is also divided into 8 memory slices of the same size. These
compute slices and memory slices are grouped into several GPU Instances (Gls). Due to
technical limits at the GPU level, the grouping of these slices is not arbitrary (less than 10 valid
grouping methods for each GPU architecture)?3. In this way above, a GPU is finally fractioned
into a combination of Gls. Each valid combination is called a MIG Profile. The size of a Gl is
measured by the number of compute slices and memory slices it owns, denoted as Ag.BGB if
the Gl owns A compute slices and B GB of memory slices.

23 Nvidia multi-instance GPU user guide. https://docs.nvidia.com/datacenter/tesla/mig-user-guide/index.html

empyrean-horizon.eu 43/70

https://docs.nvidia.com/datacenter/tesla/mig-user-guide/index.html

D3.2 — Software-defined Edge Interconnect and Service Assurance Mechanisms %@MPYREAN

In Kubernetes cluster, the MIG support allows us to configure a MIG profile for each GPU
device independently. In Kubernetes MIG support, the MIG Profiles are categorized into 2 MIG
Strategies: Single Strategy if each Gl in the MIG profile have the same size, or Mixed Strategy
if they have different size. To configure MIG for a GPU in the cluster, we need first to choose
the MIG Strategy, then choose a MIG Profile that belongs to it. After configuring, we can assign
a Gl to a container by labelling it in the manifest YAML file.

As a particular example, Figure 12 shows the valid MIG Strategies, MIG Profiles, and their
combination of Gls on a Kubernetes nodes with NVIDIA H100 GPU with 80 GB GPU Memory.

Changing a container’s Gl size is not fully dynamic. In Kubernetes cluster with MIG fractioned
GPU, switching the MIG Profile and MIG Strategy requires additional time overhead. In our
experiment on a Scaleway Kubernetes node with one NVIDIA H100 GPU, switching MIG Profile
takes 36-39 seconds and switching MIG Strategy takes 33-36 seconds. If considering the pod
recreating time, the total time overhead is up to 70-110 seconds. During this period the pod
cannot provide service, which may cause SLO violation problems in auto-scaling depending
on how to deal with this overhead. Moreover, we need to ensure that all containers using this
GPU are stopped before switching MIG Profile or MIG Strategy, otherwise the switching will
fail. This is also a limit in auto-scaling.

We have 3 ways to change the size of a container’s current Gl: 1. Reallocating another Gl in a
fixed MIG Profile under Mixed Strategy. 2. Switching the MIG Profile under Single Strategy. 3.
Switching MIG Strategy between Single and Mixed. The second and third ways both have the
switching overhead. Only the first way can avoid this. However, in the vertical auto-scaling
context, this first way has other problems with resource utilization. This will be discussed in
follow-up subsection.

7.2.4 GPU Multi-Process Service (MPS)

Multi-Process Service (MPS) is a CUDA API binary-compatible runtime implementation,
allowing multiple CUDA kernels to be concurrently on the same GPU [14]. MPS is a client
server architecture. Each user owns a single MPS client attached to the user’s CPU process.
This MPS client submits the task and its CUDA context to the MPS server. The MPS server
combines the contexts of the received client tasks and lets them run on the GPU as a single
ap plication, to reach higher GPU utilization. Starting from Volta architecture, the MPS server
is no longer a separate component. Its functionality is taken by GPU hardware and MPS
clients.

MPS is designed mainly for multi-process collaboration programs like Message Passing
Interface (MPI). However, MPS can also be used in Kubernetes to fraction GPU. A third-party
fork of the NVIDIA Kubernetes Device Plugin implemented MPS support in Kubernetes. After
replacing the official Kubernetes Device Plugin to this fork in the cluster, we can configure
MPS and assign fractioned GPU slices to containers by manifest YAML files. Thanks to MPS
server’s functionality, MPS can fraction the SMs spatially, different from context-switching in
Time-Slicing. We can arbitrarily create the limit on maximum SM usage for each
container(task).

empyrean-horizon.eu 44/70

D3.2 — Software-defined Edge Interconnect and Service Assurance Mechanisms %@MPYREAN

Regarding GPU Memory, we can also arbitrarily limit each container(task)’s allocatable GPU
Memory size. Each container has isolated address space. However, the GPU Memory access
is not fully isolated. An out-of-range write in a CUDA Kernel can modify the CUDA accessible
memory state of another process. In the experiment on Kubernetes node with NVIDIA H100
GPU, a container knows the existing workloads in other containers, and also the GPU Memory
size of other containers. The fault isolation is also bad. A fatal GPU fault generated by an MPS
client process will be shared with some of the other clients on the same GPU. These bad
isolations are unacceptable in vertical auto-scaling.

7.2.5 Conclusions on GPUs Fractioning

Regarding the choice of this work, as presented previously, our goal is to guarantee a stable
auto-scaler implementation rather than chasing for top performance. We first discard Time-
Slicing GPU, as discussed in comments. Then as for MPS, we appreciate its flexibility to
arbitrarily slice GPU, as how Cgroups manages CPU and RAM. However, poor isolation is
unacceptable for a Kubernetes implementation. Although there are safe isolation methods
based on CUDA logic or practical analysis, they are not open-source. Studying and
implementing these novel techniques from scratch is not a stable choice. Therefore, we
discard MPS as our GPU fractioning implementation.

MIG is a very safe and stable choice for our goal. To fraction GPU using MIG, we need to
choose a specific way to change the container’s Gl size:

Using Mixed Strategy is the most flexible, as we only need to reallocate another Gl under the
same MIG Profile. However, if the sizes of workloads are not uniformly distributed, Mixed
Strategy can lead to severe resource waste. For example, if each NVIDIA H100 GPU in the
cluster is configured as the Mixed Strategy in Figure 12, and all workloads are 1g.10GB in size.
Then the 2g.20GB and 3g.40GB Gls will all remain unused. This will waste 71.4% of the SMs
and 75% GPU memory. Unfortunately, we cannot guarantee the uniform distribution of
workloads. Thus, the Mixed Strategy has to be aborted.

Alternatively, by using the Single Strategy for all GPUs in the cluster while dynamically
configuring the MIG profile on each GPU, we can adapt to any distribution of workload sizes
and avoid resource waste. For example, when there are more 1g.10GB workloads, we can
configure more free H100 GPUs as 1g.10GB MIG Profile. Regarding the Profile switching
overhead (up to 70-110s), we can reduce the frequency of switching to lower the total
overhead. Besides, the auto-scaler will be integrated into the Ryax platform?4, which provides
higher-level scheduling information. We can schedule tasks and prepare for the switching in
advance, which can mitigate the service interruption caused by switching. Overall, we choose
MIG technology with dynamically configured MIG Profiles under Single Strategy for GPU
fractioning in this work.

24 https://github.com/RyaxTech/ryax-engine

empyrean-horizon.eu 45/70

D3.2 — Software-defined Edge Interconnect and Service Assurance Mechanisms %@MPYREAN

7.3 Theoretical Aspects

This section presents the main theoretical contributions of our vertical auto-scaler in this
work. The contributions include refining the auto-scaler’s core recommendation algorithm,
and designing the dynamic GPU fractioning algorithm on the auto-scaler output side.

About the core recommendation algorithm this work chooses the Autopilot ML algorithm to
implement and refine. In this section, we first briefly recall the contributions of the Autopilot
paper, including the ML model that we will refine, and a rule-based algorithm that will be used
as a baseline in performance evaluation. Then, we present the refined ML model in detail
which is named VPA-pilot.

About the dynamic GPU fractioning algorithm as the auto-scaler’s output, this work chooses
MIG with dynamically configured Profiles under Single Strategy. In the follow-up sections we
will present the theoretical details of our dynamic GPU fractioning algorithm based on the
MIG and VPA-pilot model.

7.3.1 Recall the autopilot paper

Rzadca’s Autopilot paper presents an ML and a rule-based vertical auto-scaling algorithm that
inputs CPU and RAM usage data and outputs the corresponding resource limit.

7.3.1.1 Autopilot ML

This subsection recalls the Autopilot ML algorithm(model). In Rzadca’s original work, some
descriptions and formulas are unclear. So, we provide some additions and modifications, e.g.
Equation 3.1 and 3.2 in the model’s input, Equation 3.6, 3.7 and 3.8 in the model selector.

In Autopilot ML, the workloads are called tasks. Several concurrent tasks are grouped as a job.
Autopilot ML takes task-level usage data and outputs resource limit recommendations at the
job level using an ML algorithm.

We first model the input of Autopilot ML. The resource usage data of task i at time tis denoted

as ui[t]. For each resource of each task, the frequency of uj[t] is 1 per second. For CPU, ui[t] is

CPU

measured in cores, denoted as u;” - [t]. For RAM, ui[t], is measured in bytes and denoted as

uRAM],

Then for each task, every 5 minutes we aggregate per resource type uj[t] into one histogram
si[t], where t is the 5-minute window and t &€t. A histogram s;[t] has K buckets, and the upper
bound of each bucket is b[k], k €{1...K}. The histogram structure is identical for each resource
type but varies between different resource types, i.e. KV buckets and b*?Y[k], k € {1...K*"Y}
upper bounds for a CPU histogram, KfM buckets and b*M[k], k € {1...K**M} upper bounds for
a RAM histogram.

empyrean-horizon.eu 46/70

D3.2 — Software-defined Edge Interconnect and Service Assurance Mechanisms %@MPYREAN

The CPU histogram is aggregated as Equation 3.1 below. Each bucket contains the number of
usage data points that fall into this bucket.

sEPULEI[k] = [{wlr] : T €t Ablk—1] < wr] < b[k]}] (3.2)

The RAM histogram only records the peak usage, as equation 3.2 below, because we usually
want to provision for close to the peak RAM usage.

SLRAM[t][k] — {1 if blk—1] <max {u;[t]|T€t}<blk] (3.2)

0 otherwise

Right after each aggregation, the task-level histograms are merged into job-level ones:

slellkl =) slellk] (33)
l
This merged histogram serves as the actual input of the Autopilot ML model. Now we describe
the core model of Autopilot ML. As mentioned in the state of the art described in D2.1 section
3.1.2.2.3, Autopilot ML is a Hierarchical (HMS) model containing multiple sub-models and a
global model selector. In Autopilot ML, each sub-model m is an argmin function that outputs
a resource limit value Lm[t] at aggregation window t given the historical usage s[t],
parameterized by a decay rate dm, and a safety margin M.

In detail, inside each sub-model, every possible limit value L is evaluated. An overrun cost and
an underrun cost that counts the number of data points in buckets above/below the limit L
are calculated as Equation 3.4 below.

o(L[t] = (1 — dp) (oLt — 11 + dpn(Tpj151 S[E1T)
u(D)[t] = (1 = dp) W@t — 1D + d (T 151 S[EIUT) (3.4)

Then the sub-model chooses an L value that minimizes a function consisting of overrun and
underrun cost above, and a limit switching cost, as shown in Equation 3.5 below. The limit
switching cost aims to avoid frequent limit changing, because in auto-scaler implementation,
each changing causes an eviction and corresponding workload restarting. Finally, the sub-
model specific safety margin Mm is added to the argmin function output.

Lin[t] = argmin, (wo0(L)[t] + wyu(L)[t] + wa AL, L[t — 1]))
Lm[t] = L,nl[t] + M, (3.5)

where A(x, y) = 1 if x # y and 0 otherwise. wo, Wy, wa;, are hyper-parameters representing the
weights of each cost.

The global model selector holds a cost function for each sub-model, and an argmin function
that dynamically selects the best sub-model based on their cost functions. This per sub-model
cost function is shown in Equation 3.6 below.

empyrean-horizon.eu 47/70

D3.2 — Software-defined Edge Interconnect and Service Assurance Mechanisms U{@MPYREAN

cmlt] = d(Woom(Lm[t],t) +Wutm(Lm[t], t) +warA(Lm[t], Lm[t -1])) +

(1-d)cm(t -1] (3.6)

where 0y, (L[t) = Zjpfjisimier SEII] and U L[t 8) = Tptjicsmie SN wor wi
wa. are the same hyper-parameters as Equation 3.5, which are consistent across all sub-
models. d is another hyper-parameter representing the decaying weight of the history cost.

This cost function is built based on the assumption that both the recent past workload usage
and the scaling method performance are likely to represent the near future: hence using
recent past statistics to represent the near future. So here the overrun/underrun cost of each
sub-model’s prediction is evaluated on current usage data.

Then the best sub-model m[t] at the current aggregation window t is selected by:

m[t] = argmin,, (cplt] + wpnd(m[t — 1],m) + wy AL[t — 1], L, [t]D) (3.7)

Where wamis another hyper-parameter that weighs how much we should avoid frequent sub
model changing: frequently switching sub-models causes more SLO violations.

Finally, the limit value given by the best sub-model is used as the output of the entire Autopilot
ML auto-scaler:

L[t] = Lyglt] (3.8)

7.3.1.2 Autopilot rule-based: a baseline

This subsection recalls the rule-based auto-scaler in Rzadca’s work, which will be used as a
baseline in the following sections. This auto-scaler gives resource limit recommendations
based on statistics on the same input histogram of Autopilot ML, i.e. s[t][k] in Equation 3.3.

For CPU resources, a raw recommendation is calculated by the 90%ile of an adjusted usage
histogram. The histogram is defined as:

hit]lk] = b[k] - XZowl(t] - s[t —7][k] (3.9)
where w/(t] is a decaying weight at time t, defined as:

w[r]=2 ‘vz (3.10)
where t12is a config parameter representing the decaying half-life.

The raw recommendation value at current time t is: Spoo[t] = Poo(h[t]).

For RAM resources, we use the max of recent input samples as the raw:

Smax(t] = Mmaxce(t—(N-1)..t} {bljl:s[z]lj] >0} (3.11)

empyrean-horizon.eu 48/70

D3.2 — Software-defined Edge Interconnect and Service Assurance Mechanisms %@MPYREAN

Finally, a 10-15 safety margin is added to the raw recommendations above, and we use the
maximum margined recommendation value over the last hour as the final output of this rule-
based auto-scaler.

7.3.2 VPA-pilot

In the context of EMPYREAN, we improved the Autopilot ML described previously to propose
VPA-pilot as our vertical auto-scaler’s core recommendation algorithm. VPA-pilot takes the
resources usage of the workloads running in each container of the deployment as input, and
predicts the corresponding resource request and limit for these containers. This section
presents the theoretical model of VPA-pilot.

VPA-pilot includes two major enhancements. The first is aligning the recommended request
values with bucket bounds thus calculating on array indexes (i.e. integers instead of floats), to
reduce computation and increase accuracy. The second is introducing a post-processor for
RAM resources to address the Out-of-Memory Kill (OOM Kill) issue that was not well handled
in Autopilot paper. The following subsections detail the process of the whole model while
describing these 2 enhancements respectively.

In addition to major enhancements, this work also performs several minor enhancements,
adaptations to our requirements, and clarifications of Rzadca’s Autopilot work. These will not
be presented in dedicated subsections but within the following 2 major enhancements
subsections as they arise.

7.3.2.1 Alignment: more lightweight, efficient, and accurate

Although Autopilot ML is well designed, from the implementation perspective, Autopilot ML
still has drawbacks on its efficiency and accuracy:

e Floating-point errors: The function A(x, y) is frequently applied to floating-point
numbers, e.g. in Equation 3.5, 3.6, 3.7, the floating-point limit values L serve as inputs
to A(x, y). This causes frequent equality comparisons between floating-point numbers.
Due to floating-point errors, directly comparing the equality of floating-point numbers
is inaccurate. An alternative is to consider the floating-point numbers equal if their
difference is less than a small threshold €. However, if the model frequently calls this
alternative, the additional statements involved can be a bottleneck, significantly
impacting the model’s efficiency (i.e. speed, CPU usage). Therefore, we are considering
whether we can replace floating-point values with integer values while keeping the
same mathematical meaning.

e Redundancy on the limit L variable: From Equations 3.4 and 3.5, we know that the
optimization variable L influences the sub-model’s output Lm[t] only through its
comparison with the bucket bounds b[k], k € {1...K}, which are finite number of
elements. For the infinite amount of possible real numbers L : b[k] < L < b[k +1], the
optimal value of the argmin function in Equation 3.5 is the same. Thus, although
evaluating L as every possible real-number value seems to increase the model’s

empyrean-horizon.eu 49/70

D3.2 — Software-defined Edge Interconnect and Service Assurance Mechanisms %@MPYREAN

precision, the L : b[k] < L < b[k+1] values are completely unuseful, so this precision
increase is actually not realized. Therefore, we can just align L to the bound of buckets,
i.e. L €{blk]}, k €{1...K}.

e Invalid penalties on switching limits: In Equations 3.5, 3.6 and 3.7, the penalties of
switching limits are all calculated by A(x, y) with 2 real numbers. In the infinite real
numbers set, achieving equality between two elements is difficult, even allowing for a
threshold €. Therefore, these penalties all become invalid, which leads to frequent
switching of recommended limit value, and finally causes SLO violations. In Equation
3.5, by aligning L to bucket bounds as described above, the penalty A(L,L'm[t- 1])
becomes valid again, and the value L's[t] is also aligned to the bucket bounds. Then to
ensure the penalties in Equations 3.6 and 3.7 are valid, any Lx[t] must also be aligned
to bucket bounds. Known that L'»[t] is already aligned, aligning Lm[t] requires: (1) the
histogram should be linear, i.e. b[k] = k - b[1], and (2) the safety margin of each sub
model M, should align with bucket bounds, i.e. Mm= b[mp], mm E€{1...K} . While these
requirements seem to cause a precision loss, this is necessary for the model to function
properly. Moreover, if the number of buckets is large enough, this precision loss is
negligible.

Based on the analysis above, we use linear histogram (i.e. b[k] = k - b[1], k €{1...K}), and align
L and M to histogram bucket bounds b[k] in VPA-pilot’s design. We also noticed that before
the global model selector outputs the final recommendation, all limit values (L, Lm[t], etc.) are
only used to compare with other limits or the bucket bounds. Besides, the linear histogram
has monotonic increasing property, i.e. for any ki< ka, b[k1] < b[kz]. Therefore, before the final
output, we can all use the index of the bucket bounds as the unit and perform integer
calculations and comparisons, instead of calculating the exact floating-point values at the very
beginning and then performing floating-point comparisons. This perfectly solves the floating-
point errors. During implementation, this can also save the model’s RAM consumption, and
some CPU on specific architectures.

Based on these designs, we now present the VPA-pilot’s theoretical model for auto-scaling
CPU and RAM resources (GPU will be present together with MIG in following section). On the
input side, the linear histogram s[t][k] in Equation 3.3 is used as the model’s input at the
aggregation window t. Its aggregation methods are the same as Equations 3.1 and 3.2.
Because in our problem context we have the deployment and containers(pods) instead of the
job and tasks, so in these equations, sj[t][k] represents the histogram on the container’s level,
and s[t][k] is the histogram on the deployment’s level. The bucket amount K and per bucket
size b[1] in the linear histogram are set as follows: We use 400 buckets for CPU resource (K**Y
= 400), and 500 buckets for RAM (K*Y = 500), because the number of RAM is larger and
requires higher precision for effective fractioning. Assuming a node’s total amount of current
scaled resource is B and the number of pods(containers) in the deployment is C, then the size

. . B
of each linear histogram bucket b[1] = T this is because containers in the deployment exist

concurrently, each container uses no more than B/C resources.

empyrean-horizon.eu 50/70

D3.2 — Software-defined Edge Interconnect and Service Assurance Mechanisms %@MPYREAN

Different from Rzadca’s Autopilot work, VPA-pilot recommends the containers’ resource
requests instead of limits. Thus, in the sub-models of VPA-pilot, we need to evaluate every
possible request value R € {b[k]}, k € {1...K}. Then based on the previous paragraph’s
discussion, we set r as the index of the bucket whose bound is aligned by R, i.e. R=bl[r], r €
{1...K}. We iterate on all possible r values instead of R.

The sub-models of VPA-pilot are parameterized by the decay rate dn €[0,1] and the index mn
of a bucket whose bound is aligned by the safety margin My, i.e. My, = b[mp] as discussed in
"invalid penalties on switching limits" above. To ensure that the sub-models cover all possible
scenarios as thoroughly and representatively as possible, we uniformly sample Nam values for
dmfrom its interval [0,1], and select mm, from Nmm possible integers starting from 0: {0,...,Nmm
-1}. By pairing each dmand each mm, we have Ngm:Nmm sub-models in VPA-pilot.

In each sub-model, inspired by Equation 3.4, we calculate the overrun and underrun cost by:

o(M)[t] = (1 — dy) (e[t — 1] + dp(T).j>r s[El])
u@tl = 1 —dp) @t — 1D + dn(T).j<r slell]) (3.12)

Then each sub-model outputs the index rm[t] of a bucket whose bound is aligned with the
recommended resource request Rm[t], i.e. Rm[t] = b[rm[t]]. Inspired by Equation 3.5, the sub
model’s recommendation (bucket) index is calculated by:

rnlt] = argmin, (Woo(r)[t] + wu(r)[t] + ward(r, rp[t — 1))

Tmlt] = min(ry,[t] + my, K) (3.13)

where A(x, y) = 1if x #y and 0 otherwise. w,, w,,, wsg are hyper-parameters. The min function
prevents the recommendation index from exceeding the histogram’s upper bound so that the
real resource request value can be retrieved using this index in the future.

The global model selector of VPA-pilot maintains a cost function for each sub model. This
function cm[t] is inspired by Equation 3.6 while using the comparison between bucket indexes
instead of limit values:

Cm[t] = d(Wo(Zj:j>rm[t] S[t] []])) + Wu(Zj:j<rm[t] S[t] []]) + WARA(rm[t]:Tm[t - 1]) +
(1-dey[t—1] (3.14)

where d is another hyper-parameter.

Then the global model selector iterates all the sub-models m and chooses the best sub-model
m[t] at aggregation window t according to this argmin function (inspired by Equation 3.7):

m[t] = argmin,, (cp[t] + wpmd(m[t — 1], m) + wygA(r[t — 1], [t])) (3.15)

where wy,, is another hyper-parameter.

empyrean-horizon.eu 51/70

D3.2 — Software-defined Edge Interconnect and Service Assurance Mechanisms %@MPYREAN

Finally, the global model selector takes the recommended bucket index r[t] given by the
selected sub-model, and calculates its corresponding bucket bound value as the resource
request recommendation R[t] of the whole algorithm:

R[t] = b[r[t]] (3.16)

7.3.2.2 Resource Limit and the RAM Post-Processor for OOM Kill

In the Kubernetes cluster, a container has both request and limit values for each of its CPU
and RAM resources. Previously, we enabled the VPA-pilot algorithm to recommend the
request values. Now we decide the resource limit values for CPU and RAM by discussing the
underlying mechanisms of request and limit values in Kubernetes.

CPU limits

The CPU request is implemented using the cpu_shares field in Cgroups®. If all containers use
CPU simultaneously, the CPU time is allocated to each container based on the proportion of
their cpu_shares values. When some containers are idle, the

CPU time is allocated proportionally among the remaining active containers. This mechanism
prevents the waste of CPU time while ensuring the lower bound of CPU time for each
container. The CPU request is also a basis for Kubernetes to schedule each pod placed on
which node, instead of the CPU limit. Therefore, the request is more important than the limit
for the workload bin-packing performance of our auto-scaler.

The CPU limit is implemented using the ratio of fields cpu_quota to cpu_period in Cgroups.
Within the time of cpu_period, if a container uses more CPU time than its cou_quota value, it
will enter the CPU throttling state. During CPU throttling, the container cannot use CPU until
the next cpu_period. This mechanism effectively limits the upper bound of CPU usage for
containers but can cause significant execution delays of the workload inside the container.

In our context, the CPU request value is properly set by the VPA-pilot algorithm. In this case,
setting the CPU limit brings no advantage but only the CPU throttling drawbacks. This is
because the sharing mechanism behind the CPU request and the node’s Linux kernel already
can efficiently handle CPU bursts without too much work load delay, e.g. the CPU Burst
feature in Linux kernel from 5.14. Even if the user workloads’ CPU bursts are excessive, causing
insufficient CPU time for the system’s daemon services, we can move the daemon services to
another node, or employ additional recovery mechanisms to temporarily set limits to prevent
system crashes.

Overall, we decided to set no CPU limit in VPA-pilot’s output.

%5 The fields mentioned here all refer to Cgroups V1. Our experimental environment Scaleway Kubernetes cluster
uses a new version: Cgroups V2. The fields in Cgroups V2 are more complex than in Cgroups V1, but the
underlying mechanisms are very similar.

empyrean-horizon.eu 52/70

D3.2 —Software-defined Edge Interconnect and Service Assurance Mechanisms E@MPYREAN

RAM limits

The RAM request is mainly used as an indication for the Kubernetes scheduler to determine
each pod placed on which node. There are no mechanisms related to the RAM request in
Cgroups (V1), so Kubernetes does not intervene in the container’s actual RAM usage if only
the RAM request is set.

The RAM limit is implemented by the limit_in_bytes field in Cgroups. If the container tries to
allocate more memory than the RAM limit, the Linux kernel out-of-memory subsystem is
activated, to intervene by stopping one of the processes in the container that tried to allocate
memory. This is called Out-Of-Memory Kill (OOM Kill). After this, an OOM Killed event is raised
and the pod is evicted.

In our auto-scaling context, if we do not set the RAM limit or set it higher than the RAM
request, a container might use more RAM resources than Kubernetes is aware of. If many
containers do this at the same time, the RAM of the node’s Linux system will be exhausted
before Kubernetes realizes that the node’s available RAM is full and prevents it. This can lead
to hidden system crashes in the cluster that are difficult to diagnose from Kubernetes.
Therefore, we decided to set the RAM limit equal to the RAM request in VPA-pilot’s output.

In the vertical auto-scaling problem, the consequences of the container’s CPU or RAM usage
exceeding the corresponding limit are entirely different. We assume that the workload in the
container is deterministic (i.e. denote the state of the workload at time t as oft), if o(t)
executed successfully but o(t' +1) failed, the workload will retry exactly with state o(t +1)
rather than any other state). If the CPU usage exceeds the limit, the workload enters CPU
throttling but the container remains running. In this case, the auto-scaler can still collect this
extremely high CPU usage data and use this data to enhance future container size. However,
if the RAM usage exceeds the limit, an OOM Kill will be triggered and the container
(corresponding pod) will be evicted. In this case, the auto-scaler cannot obtain the
corresponding extremely high RAM usage and will recreate the pod with the original size.
Then the deterministic workload will use RAM exceeding the limit again. Thus, a dead loop is
formed here. The left of Figure 13 illustrates this RAM exceeding dead loop.

input with
new Workload ,,,

input] input
(past workload data only) (past workload data only)
(no OOM killed part) (no OOM killed part)

container size container size

4 new
past ills past , workload
workload) 1.2.3.. workload / 200M usage
- ' ' usage, ; Kills
> ‘ .
time time

Figure 13: lllustration of the auto-scaler’s behaviour under a deterministic workload, without(left) or
with(right) the RAM post-processor. The purple dashed line means the workload fails to execute at that
time. The red box with an ’X’ indicates the container is immediately OOM Killed. The green box indicates the
container is successfully created and is running.

empyrean-horizon.eu 53/70

D3.2 — Software-defined Edge Interconnect and Service Assurance Mechanisms %@MPYREAN

In the RAM exceeding situation with a deterministic workload, any auto-scaling algorithm that
only relies on workload usage as input can do nothing, including the VPA-pilot algorithm
described previously. Therefore, VPA-pilot requires a RAM post processor that is triggered by
OOM Kill events and outputs the new request and limit values after considering the OOM Kill
event.

Now we describe the RAM post-processor designed in this work. The RAM post-processor
contains a configuration parameter b,b > 1 representing the bump-up ratio, and maintains a
state value PR[t]; represents the post-processed request value after considering the i OOM
Kill event during the current 5-minute aggregation window t. At the beginning of each
aggregation window t, this value is (re-)initialized as the current request recommendation
given by the algorithm in Alignment subsection:

PR[t]y = R[t] (3.17)

Then, if an it OOM kill event occurs within this aggregation window, the post-processor
calculates the new state value as follows:

This state value PR|t]; is also the output of the RAM post-processor in real-time. The right of
Figure 13 illustrates how this RAM post-processor handles the RAM exceeding situation with
a deterministic workload. When the coming deterministic workload usage u[t] is extremely
high, after j consecutive restarts (OOM Kills), from Equations 3.17 and 3.18 we derive the
current RAM request value PR[t]; = R[t] - b.

Therefore, after [logb(%)] restarts, the container will have a suitable RAM request (and

limit) to let the workload run without OOM Kill. Then this high-usage data can be successfully
passed into the Refined Autopilot ML algorithm, to get its suitable recommendation as it does
for CPU resources. After this, the post-processor finishes handling this OOM Kill, and then
reset at the beginning of the next aggregation window.

The above derivation demonstrates the performance of this post-processor under the most
challenging and representative deterministic workload scenario. This proves that the RAM
post-processor is sufficient to handle any OOM Kill issues.

Finally, combining the post-processor with previous discussions about resource limits, we
summarize the output of the entire VPA-pilot algorithm on the container’s CPU and RAM
resources:

e For CPU resources, the recommended container’s request at aggregation window t is
R[t], and no limit is set to the container.

e For RAM resources, if there are already i OOM Kills in the current aggregation window
t, then both the recommended container’s request and limit values are PR|[t];.

empyrean-horizon.eu 54/70

D3.2 — Software-defined Edge Interconnect and Service Assurance Mechanisms %@MPYREAN

7.3.2.3 GPU auto-scaling with VPA-pilot

In this section, we present the GPU resource vertical auto-scaling model, based on VPA-pilot
and MIG technology.

We start by modelling the dynamic GPU fractioning method to decide the object to be
managed by the auto-scaler. As discussed previously, we fraction the GPU using MIG
technology with dynamically configured MIG Profiles under Single Strategy. Therefore, in our
model, a GPU can dynamically adopt one of the P pre-defined MIG Profiles. In each MIG
profile, a GPU is divided into ng’ Gls with the same size. We model a fractioned GPU using an
element in an (increasingly) ordered set of Profiles, where each Profile is denoted with a key-
value pair: The key is the Gl type, and the value is the number of Gls in the Profile.

GPU € Profiles = { GI,,n§'},p € {1...P}(3.19)
A Gl type is further denoted as a combination of its SM and GPU Memory size:
Glp=Apg.BoGB, p €{1...P}(3.20)

Notice that the Profiles set is a pre-defined constant based on analysis of the specific GPU’s
MIG configuration, and the elements (K-V pairs) in the set are indexed in increasing order of
their GI's SM and GPU Memory size. For example, on the NVIDIA H100 80G GPU illustrated in
Figure 2.6, there are 6 different MIG Profiles under Single Strategy. Among these, the 4g.40GB
one is strictly worse than the 7g.80GB one because it wastes more space to get the same
number of fractions, so we discard the 4g.40GB Gl.

Therefore, we set the valid Profiles number P =5, and the sorted elements in the Profiles set
are:

(Gly = 1g.10GB, n®; = 7), (Gl,= 1g.20GB, n® ;= 4), (Gl3 = 2g.20GB, n ;= 3),

(Gls= 3g.40GB, n® 4= 2), (Gls = 7g.80GB, n%' 5= 1)

Based on the dynamic GPU fractioning settings above, we design the GPU vertical auto-scaling
model that adopts VPA-pilot, taking the workload’s GPU usage as input to recommend a
suitable Gl type for the container. The structure of our designed GPU auto-scaler is shown in
Figure 14. The GPU usage data of SM and GPU Memory resources are processed separately
by 2 VPA-pilot models without post-processor (the part in subsection 7.3.2.1 that outputs R[],
without post-processing and limit-setting parts in subsection 7.3.2.2), to get SM and GPU
Memory raw recommendation values. Then, these 2 raw recommendations enter the
combiner to get a suitable Gl type that can accommodate the recommended SM and GPU
Memory size. GPU Memory OOM events are processed finally to get the final Gl type
recommendation. In the next paragraphs, we formally model the details of the GPU auto-
scaler.

empyrean-horizon.eu 55/70

D3.2 —Software-defined Edge Interconnect and Service Assurance Mechanisms E@MPYREAN

GPU OOM event:

I

GPU Auto-scaler
GPU workload
pastSMusage | L,/ Refined Autopilot ML | geneq sy l Y
ugage ~ | without post-processor | =) Gl GPU OOM Gl
e | N D e . combiner —» > ——» recommendation
pastGPU irput| [Refined Autopilot ML Request ~ |~ recommendation’ "~ post processor output
Memory usage without post-processor GPUMEM !

Figure 14: lllustration of the GPU auto-scaler components

On the usage data input side, at every second t we collect SM usage data u’*Y*"[t] and GPU

Memory data usage data uf?YMEM[1] for each container i. Then, at every 5-minute window t,

ufPUSM[7] are aggregated into histogram sfPUsM[t] with the same method as CPU in

Equation 3.1, uf PYMEM[1] are aggregated into histogram s{PUMEM[t] as RAM in Equation 3.2.
The workload level histograms s®PUSM[t][k], s¢PUMEM[t][k] are calculated the same way as

in Equation 3.3.

As for the bucket size b[1] and bucket number K in the histogram (remind: the bucket bounds
are also the set of possible model recommendations), we first need to ensure a linear
histogram. Then since our auto-scaling units are the Gls, making the recommendation
granularity smaller than the Gl sizes is meaningless. Therefore, for SM or GPU Memory
resources, we set its histogram bucket size equal to the greatest common divisor (gcd) of the
corresponding resource size values of all Gls. Then, the number of buckets should ensure the
histogram covers the resource size of the maximum GlI.

The Equation 3.21 below formalizes these bucket settings.

max{Ap}
bOPUSM[1] = gcd {4,},p € {1..P}, KCPUSM = bGTSM”m
BEPUMEN[1] = ged (B,}p € {1...P}, KSPUMEM = 2ol (3.21)

Then, two "VPA-pilot without post-processor" models take histograms s®PUM[t][k],
SCPUMEMIt][k] respectively, and output raw resource re quest recommendations R¢?U*M[t] and
RCPUMEM[t] at every aggregation window t. The model remains unchanged except for fine-
tuning the hyper-parameters.

Next, a combiner takes the R°PYM[t] and RCPUMEM[¢] as input. The combiner scans all types of
Gls in the Profiles set in Equation 3.19 in increasing order, and chooses the smallest Gl that
can accommodate both RCPYSM[t] and REPUMEM(¢] as its output GI[t] at the window t:

rOlt] = minyeqs.p) (p | Ay = ROPUSM[£] A B, = ROPUMEM[1])

RGI[t] = GIT'GI[t] (3.22)

empyrean-horizon.eu 56/70

D3.2 — Software-defined Edge Interconnect and Service Assurance Mechanisms %@MPYREAN

Similar to RAM, when a GPU Memory allocation attempt exceeds the allocatable GPU Memory
size, the GPU will raise an event similar to the RAM OOM Kill (not the same thing because
RAM OOM Kill is raised by the Linux Kernel) through the NVIDIA GPU Operator, we name it
GPU OOM. At the same time, the corresponding container will be evicted.

Thus, a post-processor is attached as the GPU auto-scaler’s last component, for handling the
GPU OOM events. Similar to the RAM one, this post-processor maintains a state value pr°/[t];
represents the ID of post-processed Gl request after considering the ith GPU OOM Kill event
during the current 5-minute aggregation window t. When a GPU OOM Kill event happens, this
means the GPU Memory size of the current Gl is not enough, so we directly use the larger
Gl(pr®[t]i-1+ 1) to continue the workload. At the beginning of each aggregation window t, this
value is (re-)initialized as the ID of current Gl recommendation r¢%[t]. Finally, the GI
recommendation is calculated from the ID of the post-processed Gl request.

pré(tlo = r[t]
pré[t]; = min(pr¢t];_1 + 1, P)
PRGI[t]l = GIPTGI[t]i (3.23)

If there are already i GPU OOM Kills in the current aggregation window t, then the container’s
recommended Gl is PRE[t].

7.4 VPA-Pilot Implementation

7.4.1 Auto-scaler implementation in Kubernetes cluster

Now we discuss the efficient and accurate implementation of the VPA-pilot model in the
Kubernetes cluster. Since this work focuses more on the algorithm part, we choose not to
develop an auto-scaler from scratch. Instead, we implement VPA-pilot for RAM and CPU based
on an efficient open-source vertical auto-scaler framework called Kubernetes VPA (Vertical
Pod Autoscaler), in Golang. Due to time constraints, this work also did not implement the GPU
auto-scaling in the Kubernetes cluster. The evaluation of GPU auto-scaling will only be
performed on the simulator in the next section. In future, the whole VPA-pilot auto-scaler for
CPU, RAM and GPU will be implemented as part of the optimizations in the Ryax open-source
platform.

This section first presents the Kubernetes VPA Framework, and how the VPA-pilot will be
implemented based on this framework. Next, we present the detailed implementation of the
formalized model, focusing on optimizing the resource consumption to adapt to the edge-
cloud environment.

empyrean-horizon.eu 57/70

D3.2 —Software-defined Edge Interconnect and Service Assurance Mechanisms @MPYREAN
N

7.4.2 Implementation with Kubernetes VPA framework

Kubernetes VPA is an open-source implementation of a vertical auto-scaler for the Kubernetes
cluster. It contains a built-in, simple threshold-based auto-scaling algorithm, which can
provide rough container size recommendations. This algorithmic component has a well-
defined interaction APl with the system, making it ideal for adapting and implementing
custom auto-scaling algorithms.

Kubernetes VPA consists of 3 main components, as shown in Figure 15:

Recommender is the component where the core algorithm resides. It receives real-
time usage information for all workloads through the Kubernetes Metrics Server API
and extracts the workload usage specific to the containers (pods) of the deployment
currently being auto-scaled. This usage data is input into the core algorithm
implemented by the developer. Finally, the algorithm’s recommendation outputs are
stored in a Kubernetes Custom Resource Definition (CRD) object.

Updater is the component that compares the latest container size recommendation
in the CRD with the current actual container size. If it determines that the current
container size needs to be updated, it gracefully evicts the pods hosting the containers
that require resizing according to specific rules. This allows the pods to be restarted
with the updated container size.

Admission controller is a common component that intercepts requests to the
Kubernetes API server, to validate or modify requests to create, delete, and modify
objects. In this VPA framework, the admission controller modifies the pod creating
requests to create the new pod with an updated container size.

pod(container) kubernetes
apiserver
workload '
Q | <.I réquesl pod recreate
dsage data M create pod after eviction
—¥ ewctl pod_with new size———
1
e I >
recommender| | updater ac?;:tlzzsl:g?
[& : initiate a request
OUIPUL it new size ; T — U
~ different from request .
container 4 one? new pod size data/action
| size €--: | ' transfer
Valuesg - - - - - -- oo l

Kubernetes VPA Framework

Figure 15: Architecture of Kubernetes VPA Framework

empyrean-horizon.eu 58/70

D3.2 — Software-defined Edge Interconnect and Service Assurance Mechanisms %@MPYREAN

We implement VPA-pilot in the recommender component, by replacing its built-in threshold-
based algorithm. For each resource type in a deployment being auto-scaled, we maintain a
VPA-pilot instance. The instance starts running as an endless loop since the recommender is
initiated. Every second, this instance takes the usage data of each related container as the
input signal ui[t]. Every 5 minutes, the instance aggregates the input signals of all containers
in a deployment, runs a round of VPA-pilot, and outputs the final request and limit
recommendation to the CRD.

7.4.3 Implementation complexity of VPA-pilot

Next, we describe the specific implementation of the VPA-pilot algorithm, focusing on
minimizing time and space complexity. This ensures low resource consumption of the auto
scaler with a large number of sub-models.

We start by analysing the equations presented before. We notice that:

1) The aggregation signal s[k] is only used for calculating the number of samples
above/under different bucket bounds. Therefore, instead of repeating this calculation in
each sub-model, we pre-calculate them using dynamic programming right after we get
the s[k] signal.

2) Among the Ny, - N, Sub-models, the ones with the same dm values share the same
o(r)[t] and u(r)[t] values in Equation 3.12, and the same 7;,,[t] values in Equation 3.13.
Thus, we can share these values among the sub-models with the same dp, thus saving
N,,,m times of resource consumption.

3) All time series (variables with [t]) are iterated only based on the latest value, so we don’t
need to store the entire time series. Instead, we just keep updating on a single variable
for each time series.

Taking these optimizations, the VPA-pilot is implemented as Algorithm 1 (Figure 16). This
algorithm describes a single round in the infinite loop, i.e. the recommendation in an
aggregation window t. Based on the analysis (3) above, we remove the [t] in every time series
and replace them with corresponding single variable. The values of these variables are
retained and reused in the next round.

Because K > Nmm (no need to set safety margin higher than the maximum available resource
size), the time complexity of this implementation is O(K - N,;,). Its space complexity is also

empyrean-horizon.eu 59/70

N
D3.2 —Software-defined Edge Interconnect and Service Assurance Mechanisms '@MPYREAN
(Z

Algorithm 1 Implementation of 1 round of VPA-pilot calculation
Input: sk ke {l.. K}
Output: R
Init arrays: s_above[K] = { 0}, s_under[K] = {0}
fork= 21w Kdo
s_under[k] & s_under[k] + s[k — 1]
end for
forkt=K—1toldo
5_abave[k] & s_abovelk+ 1] +s[k+ 1]
end for
Init arrays: o[r][Vy,] u[r] Vi,] rNa]
for Nl = {' . ..l"l.'r,lr,"_,l do
dy = :E.‘m—:lr (Uniform sampling in [0, IT)
forrE{l.. K} do
olrllng,] = (1 —dy) ofr]lng,] +dy - s_above[r]

ulr]fng,] = (1 —du) -ulr]frg,] + dn - s_snder([r] (Eq.3.12)
e!ld for
rulng, 1= arg min{w, - ofr]g, 1+ vy ulr]ng,] + war - A5 ":;_-[”rf...]jj (Eq.3.13)
rE{LLK}
end for

Init 2d arrays ry [Ny,][N, 1 cmlN, TV,]
for .. = {' . ..'"'.'r,;"'} do
dy = ::‘:'L (Unitorm sampling in [0, 1])
for my, € {0. . N, —1} do
Record: preving = rylng, Jlmm]
T, Jfrim] = min(rJI?.'[HI’J'|||] + iy, K) (Eq.3.13)
cman] = d{we - s_above[rp[ng, Jmn]] +w, - s_under [rang, mm]]
+wag A r g) preveg)) (L —d)enlng, Jima] (Eqg. 3.14)

end for
end for
M= arg min (emlm, Jimm] + wandd M, m) + ward{ 5 r[ng, i)
= gy E{La N, b M S0 Ny, = 1
r= g, Jbnw] 5.t M = (ng,, i) (Eq.3.15 and 3.16)

return R = b[r]

Figure 16: Single round implementation of VPA-pilot calculation

7.4.4 Hyper-parameter tuning with simulator

In the previous subsection, we mentioned 5 hyper-parameters (d, wo, Wy, Wag, Wam) in our VPA-
pilot algorithm. Their values need to be determined before running the algorithm and should
be passed as configuration parameters to the VPA recommender. In Rzadca’s Autopilot work,
they tune these hyper-parameters of Autopilot in off-line experiments during which they
simulate Autopilot behaviour on a sample of saved traces taken from representative jobs. We
adopt this way and present a detailed method for tuning the hyper-parameters of VPA-pilot.

We employ a one (1) month’s Google Workload Traces?® on CPU and RAM usage as the
"sample of saved traces taken from representative jobs". In this section, we first design a VPA-
pilot simulator for offline experiments and evaluation on the long-term Google Workload
Traces. Then we discuss our detailed method of tuning hyper-parameters based on the
simulator.

26 Clusterdata 2019 traces google/cluster-data. https://github.com/google/ cluster-
data/blob/master/ClusterData2019.md. Accessed: 25/07/2024.

empyrean-horizon.eu 60/70

D3.2 — Software-defined Edge Interconnect and Service Assurance Mechanisms

E@MPYREAN

7.4.5 Auto-scaler simulator design

To tune the hyper-parameters on long traces, and evaluate the long-term behaviour of the
auto scaler, it would be highly time-consuming and impractical to run it for a long time in a
real-world environment to collect the necessary data. We need to overcome the time
constraints and obtain the long-term data within a short time. To achieve this, we design the
auto-scaler simulator. This subsection focuses on the auto-scaler simulator for CPU and RAM
resources. The one for GPU has a very similar structure and behaviour.

The structure of the auto-scaler simulator is shown in Figure 17. We first pre-process the
Google Workload Trace using Apache Spark into a trace data sequence with a frequency of 1
second, then pass the sequence into the simulator. The simulator runs in the form of iteration
over the sequence. At each time step (second), a logical workload generates CPU and RAM
usage according to the trace sequence value. The VPA-pilot algorithm takes the CPU and RAM
usage as signals uf?Y[r] and uf4M[z] per second and outputs recommended container
requests and limits every 300-time steps, to simulate the 5-minutes aggregation time. A
logical container is set with the recommended size, to communicate with logical workload to
simulate system events like OOM Kills. Finally, on the global layer outside the per-second loop,
a metrics collector gathers all required metrics to generate graphs and statistics tables after

the whole execution.

Auto-scaler logical simulator

lterate over the whole trace data sequence

| CPU/RAM

jnce ian ——> logical workload | usage

sequence : s " '
i ! OOM-__ . :
: i Kills 1| Refined Autopilot |_: hyper |
i logical container | | [N SERENT] | | RSO
: i |CPU/RAM ! :
| il request |.
' values ! !
Sesacssanzsnnasanasag) R ST \ SRR R e e R

metrics collector
(summarize the whole iteration)

v)) v

summary
summary statistics
graph

values

Figure 17: Structure of the auto-scaler simulator

To simplify our development, the simulator ignores the overhead of container (pod) restarts
in the VPA Framework implementation. This is because we focus on the algorithm itself rather
than the VPA Framework’s efficiency. We can evaluate the number of restarts in the statistics
and calculate their real impact. Thus, if we adjust the container size at the current time step,
it will be immediately applied to the logical container in the next time step. Similarly, for OOM
Kill events, the RAM post-processor can make i bump-ups in only i time steps.

empyrean-horizon.eu 61/70

D3.2 — Software-defined Edge Interconnect and Service Assurance Mechanisms %@MPYREAN

. X[5]
function F(X) ->y
— wo
Auto-scaler logical simulator
trace data ‘ Refined Autopilot ML algorithm «———| WY
sequence |
—wdR
summary
statistics —wdm
values
4 3 -
y[3] (average\ (adjust) /overrun

gap | | times seconds/

Figure 18: Black box function F(X) = y in hyper-parameter tuning modelling

7.4.6 Hyper-parameter tuning: Modelling and solving modelling as
an operations research program

Now we present our way of tuning the 5 hyper-parameters (d, w,, Wy, War, Wam), in VPA-pilot
using the auto-scaler simulator presented in the previous subsection. This subsection also
dedicates only CPU and RAM resources.

We start with modelling the hyper-parameter tuning problem. Our goal refers to the criteria
of Rzadca’s Autopilot paper: This tuning aims to produce a configuration that dominates
alternative algorithms (such as the moving window recommenders) over a large portion of the
sample, with a similar (or slightly lower) number of overruns and limit adjustments, and
significantly higher utilization. Based on this description, we can model the process of finding
the dominating hyper-parameters on one 1-month Google Workload Trace sample as an OR
(Operations Research) program including a black box function F(X) = y.

The function is built as in Figure 18 that treats the whole execution of the simulator as a black
box with only hyper-parameters and summary statistics exposed. X is the input hyper-
parameters set of Refined Autopilot ML. We normalize each hyper-parameter between [0,1].
This is because d is the decaying weight originally between [0,1]. w,, Wy, Wag, Wa,, are weights
that are only compared with each other, so normalizing them only brings convenience without
changing their meanings.

y is composed of 3 key global performances of VPA-pilot:

e average gap is the 1 month’s average of (container raw request - workload usage)
values at every time step. The container raw request here is the VPA-pilot’s raw output
without RAM post-processor (i.e. R[t] in Equation 3.16). We use this R[t] because the
5 hyper-parameters only affect the behaviour of the core model part, not the RAM
post-processor. The lower average gap means the higher utilization in Rzadca’s
criteria, because we have the same usage in this model for one workload sample.

empyrean-horizon.eu 62/70

D3.2 — Software-defined Edge Interconnect and Service Assurance Mechanisms %@MPYREAN

e adjust times is the number of occurrences where container raw requests R[t] differ
between adjacent time steps. Higher adjust times mean higher limit adjustments and
more pod (containers) restarts, which we do not want.

e overrun seconds is the number of time steps in which workload usage is larger than
the container’s raw request R[t]. This value represents the number of overruns in
Rzadca’s criteria.

The OR program modelling the hyper-parameter tuning problem on a single trace sample is
shown in Equation 4.1 below. The baseline adjust times and baseline overrun seconds are the
corresponding metrics generated from the simulator with the Autopilot Rule-based algorithm
in subsection 7.3.1.2. € is a small relaxation on the constraints to avoid no solution. At the
beginning of our solving attempt, we let € = 0.5 to only limit the order of magnitude. It can be
reduced in future attempts for better results.

Minimize: y[1]
subjectto: F(X) =y
0<X[i]<1,i€e{l..5}
0 < y[2] < baseline_adjust_times - (1+ ¢)

0 < y[3] < baseline_overrun_seconds - (1 + €)

where:

X = [d, Wo, Wy, WaR, WAm]

y = [average_gap, adjust_times, overrun_seconds| (4.1)

We compare the optimal value y[0] of this OR program with the average gap of the Autopilot
Rule-based baseline. If our solution is significantly smaller, the X vector in the optimal solution
is our best hyper-parameters on this workload sample.

7.4.7 Feasible region sampling for dominating hyper-parameters on
CPU

After successfully modelling the tuning problem as the OR program in Equation 4.1, we try to
solve it. This OR program is very hard to solve because the F(X) function is not composed of
mathematical formulas but is based on real program execution results. This makes F(X) a
complete black box from the mathematical point of view. Therefore, it is impossible to
calculate the gradient or to prove the convexity of F(X).

empyrean-horizon.eu 63/70

CPU Resource (Cores)

D3.2 — Software-defined Edge Interconnect and Service Assurance Mechanisms %@MPYREAN

o o o =
» o @ ©
|

o
¥

Because of the hardness above, this work does not successfully find the OR program’s optimal
solution. However, we can approximate the optimal solution by sampling within the feasible
region of X, then filtering all samples where y[1] and y[2]] satisfy the constraints, and sorting
them in ascending order based on y[0]. If in a solution obtained through sampling, the value
y[1] (average gap) is still significantly smaller than the baseline, then the hyper-parameters
set Xin the solution also make our VPA-pilot dominate the Autopilot Rule-based baseline. We
name a such sampled set of hyper-parameters dominating hyper-parameters.

To sample the feasible region X,0 < X[i] < 1,i € {1 ... 5}, we start with uniform sampling on
the whole 5D feasible region. If we sample n points in each dimension, then the whole uniform
sampling has a complexity of O(n®). Therefore, although our simulator is fast, we can only
afford to sample up to 10 points for each hyper-parameter (n = 10 in each dimension).

On the CPU resource, we did a round of n = 10 uniform sampling as above. We found that the
samples with the smallest y[1] (average gap) values all have X[3] = X[4] = X[5] = 0, which
means in the dominating hyper-parameters set, w,, Wg, Wy, are the most likely to be 0.
Although we cannot prove this, we continue with this assumption X[3] = X[4] = X[5] = 0.
Therefore, the dimension of the sampling space is greatly reduced, allowing us to perform
more detailed sampling with n = 300 in X[1] and X[2] dimensions. After this detailed
sampling, we successfully find several sets of dominating hyper-parameters. Table 4 compares
the sample of the most dominating hyper-parameters, with the Autopilot Rule-based
baseline.

Figure 19 compares the long-term performance of VPA-pilot under the dominating hyper-
parameters set, with the Autopilot Rule-based baseline algorithm. From Table 4 and Figure
19, we can validate that the dominating hyper-parameters set (d = 0.85714,w, = 0.14285,w, =
0,war = 0,wam = 0) is the best for CPU resource above the given 1 month’s Google Workload
Trace sample.

Table 4: Statistics comparison between VPA-pilot on CPU resource, with dominating hyper-parameters [in
order (d,wo,wy,War,Wwam)], and the Autopilot Rule-based baseline

Statistics for CPU resource Average Gap Adjust Times Overrun Seconds

VPA-pilot Rule-Based 275.20660 425 12896

VPA-pilot hyper-param:

(0.85714,0.14285,0,0,0) 237.71037 127 14355

—— Container request by Refined Autopilot ML
Container request by Autopilot Rule-based
—— Worklead usage

T T T T T T T
0 5 10 15 20 25 30
Time (Days)

Figure 19: VPA-pilot performance on CPU resources with dominating hyper-parameters (d = 0.85714, w, =
0.14285, wu= 0, war= 0, wam = 0). Compared with Autopilot Rule-bases baseline

empyrean-horizon.eu 64/70

D3.2 —Software-defined Edge Interconnect and Service Assurance Mechanisms E@MPYREAN

7.4.8 Sampling and manual methods for dominating hyper-
parameters on RAM

Encouraged by the success on CPU above, we start on RAM also by performing exhaustive
uniform sampling of the 5D feasible region of X with n = 10 in each dimension. Unfortunately,
we cannot find any patterns in the results. As a result, we are not able to reduce the dimension
to perform more detailed sampling. Therefore, we propose another two sampling methods to
attempt to find more accurate dominating hyper-parameters.

The first sampling method is per-dimension uniform sampling as shown in Algorithm 2 (Figure
20). This sampling starts with Xo, yo, which are the above n = 10 exhaustive uniform sampling’s
solution with the minimum y[1] (average gap) value. Outputs a more fine-grained sampling
solution Xiopt, Viopt. This sampling tries to find a "local minimum" that is near to the above n =
10 exhaustive sampling’s minimum solution. Although we cannot prove any relation between
this local minimum and the global minimum, this local minimum should be much better than
the n = 10 exhaustive sampling’s solution.

The second sampling method is pure random sampling: We repeatedly randomize the 5
elements of input X as real numbers in [0,1], limit y[2], y[3] and gather the minimum y[1]. We
let this random program run for 1 day on a cloud server.

Algorithm 2 Per-dimension sampling for dominating hyper-parameters on RAM

Input: Xy, wy
Output: Xpope, Viope
X.‘:J,l:'r = Xo, Viope * ¥0
fories{l..5} do
for j & {0...20000} do
sample_val j = m
Make X.u.lr.ll;l.'u t"]l" replace Xu'rl;l.' [I] 11}'_,]' Make ¥ sample F{X.qm.u:u'e'}
if vsmpte [11 < Yiopre [L] Vsampie [2] = baseline_adjust, yaumpe [3] = baseline_overrun then
X."rl_r'.' - X.qm.u:u'ﬁ Yiope £ Neampie
end if
end for
end for

return Xy, yiop

Figure 20: Per-dimension uniform sampling algorithm for dominating hyper-parameters on RAM

It is interesting that, although neither of the above 2 sampling methods can be proved to find
solutions close to the global minimum of y[1], the y vectors (average gap, adjust times and
overrun seconds) produced by the two sampling methods are relatively close, although the
corresponding X (hyper-parameters) vectors are completely different. Therefore, we guess
that the two methods yield nearly the optimal solution, multiple hyper-parameters sets can
lead to this solution. However, we are not able to prove this.

empyrean-horizon.eu 65/70

D3.2 —Software-defined Edge Interconnect and Service Assurance Mechanisms @MPYREAN
N

The hyper-parameters obtained by random sampling are (d = 0.01388, w, = 0.80714, w, =
0.04725, war=0.25499, wam = 0.10142). Corresponding y values are shown in the third row of
Table 5. Its corresponding VPA-pilot performance is shown in Figure 21. Unfortunately, the
average gap value of VPA-pilot with randomly sampled parameters is larger than that of the
Autopilot Rule-based baseline. This means for RAM resources, we cannot get dominating
hyper-parameters with our sampling methods.

Table 5: Statistics comparison among VPA-pilot for RAM resources, with hyper parameters fixed by
samplings (d = 0.01388,w, = 0.80714,wu = 0.04725,war = 0.25499,wam = 0.10142), with hyper-parameters
fixed manually (d = 0.612,w, = 0.9,wy, = 0.01,war = 0.0099,wam = 0.00009), and the Autopilot Rule-based

baseline
Statistics for RAM resource Average Gap '.LI_:’::: g::;;:z ?(f:::l
Autopilot Rule-Based 261822531 63 301 3
(001385, 00714, 0.04325, 6.09455, 0.a00a2) | 32630700 | 2 | 35 | 0
(051205, 001, 000bs, oo0o0s) | M7 | & | e |

Besides sampling, we also attempted to manually search for hyper-parameters and observe
their performance, regardless of the strict constraints in Equation 4.1, because we roughly
understand the practical meaning of each hyper-parameter thanks to the good
interpretability of VPA-pilot. We manually discovered a set of hyper-parameters that are
worth dis cussing: (d = 0.612,w, = 0.9,w, = 0.01, wag = 0.0099, wam = 0.00009), whose statistics
is shown in the third row of Table 5 and whose performance is shown as the bottom graph of
Figure 21.

1000

RAM Resource (MB)

L
400]
200 4
04

T T T T T T T
0 5 10 15 20 25 30
Time (Days)

800 4 L | —— Container request&limit by Refined Autopilot ML
Container request&limit by Autopilot Rule-based
600 - | —— Workload usage

% OOM kill by Refined Autopilot ML

e

RAM Resource (MB)
&
[=]
[=)

T T T T T T T
0 5 10 15 20 25 30
Time (Days)

Figure 21: VPA-pilot performance on RAM resource with hyper-parameters fixed by samplings (the top
graph), with hyper-parameters fixed manually (the bottom graph). Compared with Autopilot Rule-bases
baseline

empyrean-horizon.eu 66/70

D3.2 — Software-defined Edge Interconnect and Service Assurance Mechanisms %@MPYREAN

Now we concern the 3 key global performances (average gap, adjust times, overrun seconds)
brought by our manually discovered hyper-parameters: In Table 5 compared to the Autopilot
Rule-based baseline, our manually discovered hyper-parameters leads to significantly smaller
average gap, slightly reduced adjust times, but a great increase in overrun seconds. These
make the hyper-parameters good but not standard dominating. Although not dominating,
based on the overall assessment of the results, this is the best solution we can find. In the
following section, we discuss the reasons for this situation, what we can learn from the
positive aspects, and how to improve the bad overrun seconds.

For a RAM auto-scaler, OOM Kills is actually a more critical performance than overrun seconds
in our OR program, as it directly leads to pod eviction. Therefore, for memory resources, our
simulator additionally generate OOM Kills performance for RAM:

e OOM kills (for RAM) is the number of events where the OOM Kills triggers the RAM
post-processor.

These OOM Kill statistics are shown in the last column of Table 5. It shows that the Refined
Autopilot ML with 2 different hyper-parameters sets both have significantly higher OOM Kills
compared to the baseline, which is not good. This indicates that the lack of OOM Kill control
in Rzadca’s Autopilot paper criteria and our OR program is problematic. In the following
"Future improvements" part, we will attempt to add OOM Kill control in our hyper-parameter
tuning model.

7.4.9 Future improvements for a more balanced hyper-parameter
tuning model

We argue and study whether the VPA-pilot with sampled hyper-parameters (top of Figure 21)
or the one with manually found hyper-parameters (bottom of Figure 21) performs better.
Based on our analysis, we tend to favour the manually found hyper-parameters, although the
sampled ones are selected entirely following Rzadca’s Autopilot paper criteria and the OR
model. Next, we discuss this conflict in detail.

First, we should admit that the VPA-pilot is not universally good for all types of workloads.
Due to the lack of decaying weight in the resource amount itself like in Autopilot Rule-based,
when faced with a workload usage that suddenly decays and then persists for a long time as
in Figure 21, VPA-pilot often tries to fit by making abrupt changes in recommended container
size, rather than gradually reducing it. This naturally makes the auto-scaler generate more
overruns on this specific type of workload.

The issue with the sampling hyper-parameters method is that it relies too strictly on the 1
month’s global performance metrics but rarely cares about the specific auto-scaling
behaviour. Therefore, when faced with the workload in Figure 21, if we strictly adhere to the
criteria and the OR model we have established to tune hyper-parameters, to force VPA-pilot
generates less overruns than the Autopilot Rule-based. Then the auto-scaler will attempt to
aggressively increase the container size at the beginning of the trace and then maintain a high
container size to avoid overruns, as shown in the top graph of Figure 21.

empyrean-horizon.eu 67/70

D3.2 — Software-defined Edge Interconnect and Service Assurance Mechanisms %@MPYREAN

This is not good auto scaler behaviour in a production environment. However, the global
criteria and our OR model have no punishment for this behaviour. In contrast, the manually
selected hyper-parameters do not strictly adhere to the 1 month’s global performance
metrics, especially on "overrun seconds". However, this actually results in better auto-scaling
behaviour.

The comparison above is enough to demonstrate that the limits on adjust times and overrun
seconds in our current OR model (Equation 4.1) and Rzadca’s original criteria are sometimes
too strict, particularly for hyper-parameters tuning on RAM resources.

However, completely relaxing these restrictions is also unacceptable. The exploding overrun
seconds by manually selected hyper-parameters is the result. Therefore, even if strictly
limiting them is not feasible, we still need to apply some appropriate constraints. The same
issue applies to the OOM Kills caused by VPA-pilot. Thus, we also need to add OOM Kills limit
to the current 3 key global performances.

Based on all the above discussions, we designed a more balanced and flexible approach to
improve the OR program: to assign weights to each element in vector y in the OR program of
Equation 4.1, based on practical requirements, thereby constructing a new single objective
value y in the OR program.

The improved OR program is shown in Equation 4.2 below:

Minimize: y
subject to:
FX)=y'
y = y' X [weight,, weight,, weights weights ram oniy)]”
0<X[i]<1i€ {1..5}
where:

X = [d, Wo, Wul WARiWAm]
y' = [average_gap, adjust_times, overrun_seconds, 00M Kills(RAM only)] (4.2)

To effectively limit the number of OOM kills, we add "OOM Kills" support in the simulator thus
adding the corresponding element to the vector y'. Besides, to further evaluate the details of
the auto-scaler actions, we can add more detailed metrics like "the balance of the gap values
during all periods of the trace", etc. into y vector in Equation 4.2, and assign corresponding
weight in the calculation of y.

empyrean-horizon.eu 68/70

D3.2 — Software-defined Edge Interconnect and Service Assurance Mechanisms %@MPYREAN

Besides, to get more robust behaviour in production, we still need to introduce more
representative workload traces, and tune hyper-parameters in the same way as we discussed
on these representative traces. To be specific, we planned to use Apache Spark?’ to extract
multiple (at least 10+) representative traces from the Google Workload Trace?® by filtering
keywords and merging sub-tasks, then randomly shuffle fragments of these traces to create
new sequences for running hyper-parameters tuning.

However, the Google Workload Trace is a massive dataset (2.4TB, compressed). Due to the
lack of time and enough resources to process such a size, we only processed 1 one-month
trace used above and did not go further for multiple traces.

Moving such a system to production we need to consider the workload trace (historical data)
of the system we aim to optimize. To be specific, for the future hyper-parameters tuning in
the edge-cloud continuum, we can broadly collect usage data from representative workloads
running on different edge-cloud clusters, and use Apache Spark to filter and categorize those
from similar clusters. After some human review, we can shuffle and concatenate the data
fragments from similar clusters. The hyper-parameters will be tuned respectively on these
concatenated data for the corresponding clusters.

The development of the complete methodology to consider when analysing historical
workload traces using Apache Spark to better prepare the hyperparameters for each
production case remains a future work.

27 https://spark.apache.org
28 Clusterdata 2019 traces google/cluster-data.
https://github.com/google/cluster-data/blob/master/ClusterData2019.md

empyrean-horizon.eu 69/70

https://github.com/google/cluster-data/blob/master/ClusterData2019.md

D3.2 — Software-defined Edge Interconnect and Service Assurance Mechanisms %_@MPYREAN

8 Conclusions

The EMPYREAN platform pursues a very ambitious goal: to unify operations across multiple
layers of the computing stack, spanning from low -level interconnects and container
virtualization to high-level resource management, autoscaling, and service assurance.

The platform is designed to support, among others, the deployment of large-scale distributed
and collaborative systems in both the scale-up (horizontal scaling, software-defined
interconnects, and hardware acceleration abstractions for containerized workloads) and
scale-out (dynamic autoscaling of containers on Kubernetes clusters) dimensions. These
capabilities enable fine-grained and efficient resource sharing across heterogeneous
environments within the loT-edge-cloud continuum.

The developments presented in this report reflect the progress made during the first iteration
of the implementation phase (M4-M15) under Tasks 3.3 “Software-Defined Edge Interconnect
for Distributed Computations and Hardware Acceleration” and Task 3.4 “Autoscaling, Service
Assurance, and Computing Management” of Work Package 3, laying the foundation of
EMPYREAN’s unified and collaborative platform. Moreover, the detailed mechanisms
empower EMPYREAN to achieve key technical and performance objectives. Final
implementations and integration outcomes will be detailed in the forthcoming Deliverable
D3.3, scheduled for M26.

empyrean-horizon.eu 70/70

