B Ref. Ares(2025)3552853 - 01/05/2025

.
@MPYREAN

TRUSTWORTHY, COGNITIVE AND AI-DRIVEN
COLLABORATIVE ASSOCIATIONS OF IOT DEVICES AND
EDGE RESOURCES FOR DATA PROCESSING

Grant Agreement no. 101136024

Deliverable D4.1
Low-code Application Description, Seamless
Deployment, and Analytics-friendly Distributed

Storage
Programme: HORIZON-CL4-2023-DATA-01-04
Project number: 101136024
Project acronym: EMPYREAN
Start/End date: 01/02/2024 —31/01/2027
Deliverable type: Report
Related WP: WP4
Responsible Editor: RYAX
Due date: 30/04/2025
Actual submission date: 30/04/2025
Dissemination level: Public
Revision: FINAL
S This project has received funding from the European Union’s Horizon
g Europe research and innovation programme under grant agreement

Rt No 101136024

D4.1 - Low-code application description, seamless deployment and analytic-friendly distributed '@MPYREAN
storage o

Revision History

Date Editor Status | Version Changes

31.03.25 RYAX Draft 0.1 Initial ToC

02.04.25 RYAX, ZSCALE Draft 0.2 Integrate initial contributions in
Sections 3, 4

08.04.25 NUBIS Draft 0.3 Integrate updated partners
contributions in Sections 5

14.04.25 ICCS, CC Draft 0.4 Integrate final contributions in
Sections 3, 4,5

20.04.25 RYAX, CC, NUBIS Draft 0.9 Complete version for internal review

30.04.25 RYAX Final 1.0 Final version after internal review

Author List

Organization Author

RYAX Michael Mercier, Pedro Velho, Yiannis Georgiou
ZSCALE Ivan Paez

NUBIS Anastassios Nanos

cC Marton Sipos

ICCS Aristotelis Kretsis

Internal Reviewers
Marton Sipos (CC)

Jaime Fuster (NEC)

empyrean-horizon.eu 2/57

D4.1 — Low-code application description, seamless deployment and analytic-friendly distributed f@MPYREAN
storage

Abstract: This Deliverable presents the outcomes of Tasks 4.2 and 4.3 of the EMPYREAN
project, covering the period from M4 to M15. It begins with an overview of the EMPYREAN
architecture, emphasizing the integration and roles of components developed within these
tasks. This deliverable provides in-depth technical documentation of several key components,
including the workflow manager, dataflow programming environment, analytics-friendly
distributed storage, action packaging system, and unikernel builder. Each component is
described with respect to its internal architecture, contributions beyond the state-of-the-art,
configuration and installation procedures, operational workflows, and exposed public APIs.
Ongoing development efforts and planned integrations are discussed, and the report
concludes with a roadmap outlining the next steps for Tasks 4.1 and 4.2, including reporting
in future deliverables.

Keywords: EMPYREAN Architecture, Workflow Manager, Distributed Storage, Multi-
clustering, Hybrid Edge-Cloud Continuum, Dataflow Programming, Unikernels, Environment
Packaging

empyrean-horizon.eu 3/57

D4.1 — Low-code application description, seamless deployment and analytic-friendly distributed @MPYREAN
storage =

Disclaimer: The information, documentation and figures available in this deliverable are written by the
EMPYREAN Consortium partners under EC co-financing (project HORIZON-CL4-2023-DATA-01-04-
101136024) and do not necessarily reflect the view of the European Commission. The information in
this document is provided “as is”, and no guarantee or warranty is given that the information is fit for
any particular purpose. The reader uses the information at his/her sole risk and liability.

Copyright © 2025 the EMPYREAN Consortium. All rights reserved. This document may not be copied,
reproduced or modified in whole or in part for any purpose without written permission from the
EMPYREAN Consortium. In addition to such written permission to copy, reproduce or modify this
document in whole or part, an acknowledgement of the authors of the document and all applicable
portions of the copyright notice must be clearly referenced.

empyrean-horizon.eu 4/57

D4.1 — Low-code application description, seamless deployment and analytic-friendly distributed @MPYREAN
storage =

Table of Contents

1
2

EXECULIVE SUMIMIAIY 1o s s anan 9
g Nd o T [Tl 4 o 1S SRR 10
2.1 Purpose of this dOCUMENT.......cccuuiiiiieeeee e e 10
2.2 [DTo Yol U] g aT=T o | M) {0 ot AU =IO UPPPN 11
2.3 F AN ¥ o 1= ol TP 11
EMPYREAN Architecture MapPing ...cccuueeieiiieeeeiiieeessiitee s ssireeeessieeeesssseeeesssnneeessnsseeee s 12
Application Design with Low-Code and Workflow-based Abstractionsccccveeennne 15
4.1 TaYd o To [Tl d o] o 1RSSR 15
4.2 Background - The Ryax Workflow Manager.........cccceeeecuieeeiciiiee e 16
4.3 Analysis for Ryax Multi-Sit@ SUPPOIt.......cccuiieieiiiiie et 19
4.3.1 Single-Cluster, Multi-Cloud NOAESccceeeieiiiiiiieeee e 20
4.3.2 Multi-Cluster FEAerationcueiiiiieiiiiiiee et e e e e e eaeee e 21
4.3.3 Multi-Cluster with Worker AGENtSccvuieiiiiiiiiciiee et 21
4.3.4 Conclusions and Recommendation..........coocecieieiiiiiiee e e 22
4.4 Ryax Extensions for Multi-Site€ SUPPOIt.......cuiiiiiiiiiie e 23
ot R (U T o | o V=T OO OPPPPTPPRRRPN 24
Ny V1Yo o =] U SSPRRN 25
4.4.3 |Installation and configuration for Ryax multi-siteccccccveeeeiieccciieeeeee e, 26
4.4.4 Multi-constraint and multi-objective scheduling.........ccccovvieeiiiicicciiieeeee e, 29
45 Decentralised and Distributed Data Management Protocolccccceeeeeeiiecnnnnneenn. 30
4.5.1 Towards the initial prototype of Ryax/Zenoh Integrationccccceeeevveeeeveeennee. 33
4.6 (@70 o] [V 1] o o 13RS SRPRSR 35
Analytics-Friendly Distributed STOrage.......ooooeeiii e 36
5.1 Overview and NOVEl FEAtUIEScciii ettt e e e e e 36
5.2 Relation to Project Objectives and KPIScoeerieiieciiiiiieeee e, 37
5.3 TaaY o] (=10 aT=T) =1 o] o U 37
5.3.1 Components shared with the Edge Storage Servicecc.cccouvvvuvrverreeeeriecccnnvenenn. 38
5.4 PUBBIC APIS ettt ettt ettt et e e st e e s ba e e sabe e e sab e e e saneeesanee s 41
5.5 Integration with EMPYREAN Platform Servicesoocvvvvveeieiiieiiciinieeeeee e, 41
5.6 REIQLION 10 USE CASES ...eiiiieiiieeeciiee e ettt et et e e e e s e e e naae e e e e nrae e e e snneeeean 42
Yo oY - Tl & T4 o V-SSR USURRS 43
6.1 TaYd o To [Tl u o] o [RSSUU 43

empyrean-horizon.eu 5/57

D4.1 — Low-code application description, seamless deployment and analytic-friendly distributed @MPYREAN
storage =

8

6.2 2 Lol €= o101 o 1R 43
6.3 RY X Ty DS e 45
6.4 EMPYREAN DEVEIOPMENTS ...eeiiiiiiiieiiiiiieeesiieee e ssiiee e st ee e e svaee e s savaeee s sssaeeessnnaeee s 47
6.4.1 Finer dependencies CONTIOl......ccuuiiiiiiiiiiiiiiee e e 47
6.4.2 Reproducibility of building process........ccoeeeieiiiiicciieee e, 48
6.4.3 Multi-architeCture SUPPOIt........veeieiiiiiccciireee e et e e e s e e e e e e e e eneaeaeeas 51
Y1 G a L= K TV T o [T P 53
7.1 1) oo Yo 18 Lot £ (o) o VA URR PP 53
7.2 Lightweight Environment Packaging with Bunny..........ccccceeeeiieiccciiieeee e, 53
7.3 Relation to Project Objectives and KPl..........cceeveiiieieiiiiiiieeeee e, 54
7.4 TaaY o] (=T 0 Y=Y o) =1 o) o F U 55
T4 1 INTErNAl @rCITECTUIE ..o e et e e et e e e e e e e e e eeeaaeeenenn 55
T 4.2 WWOTKIIOWS oeeveeiiiiiie ettt ettt ettt e ettt s et ttae s et ttaeseettaaeseeeasaseseanasesssnannens 55
7.5 Public APIs and INteGrationc..euveeieeiieieceeeee e 56
20 T R Y o KPR 56
7.5.2 Integration with EMPYREAN Platform Servicescccoovveeeiiiieeeeciieee e 56
7.6 REIGTION 1O USE CASES ..unieieiee ettt e et e e e e e et e e e e eeaeeeeeeaeeeeeenaeeeeeanns 56
CONCIUSIONS . ettt ettt e e e et ee s et e e e s e eae e e s e raaeeseranaeseranneseenanaseeennnaseennnn 57

empyrean-horizon.eu 6/57

D4.1 — Low-code application description, seamless deployment and analytic-friendly distributed @MPYREAN
storage =

List of Figures

Figure 1: EMPYREAN high-level architeCtureccoveeiciieiiieiiiie e 12
Figure 2: RyaX Archit@Cture OVEIVIEWccouvuiiieiiiiiieeeriiee e eeiree et e e s saae e e s s e e e s e e 17
Figure 3: Ryax New Multi-Site Architecture OVErvieW.........occuveeiiiiieeeisiiieee e 23
Figure 4: Ryax Worker ArChit@CTUIEuiii ittt e e s e 26
Figure 5: Eclipse Zenoh protocol stack positioning.ccccveveieiiciiiieeee e, 31
Figure 6: Eclipse Zenoh supported tOPOIOZIES. ...ccceeveeeviiiiieiee e 32
Figure 7: Initial prototype of Ryax and Zenoh integration architecturecccceeeevcvveeennneen. 34
Figure 8: A generic data-flow programming in Zenoh-flow........ccccccveviviiiiiiiniiieee i, 34

Figure 9: An illustration of the data ingest and query workflows of the Analytics-friendly
Distributed Storage. Top image shows a naive approach which retrieves the entire data during
gueries. Bottom image shows our proposed schema, with byte-level access and compression.

Figure 10: An initial evaluation of our proposed technique over a representative dataset. Three
metrics are shown on the different parts of the circle. The different letters correspond to
increasingly more complex techniques. A is the naive baseline approach of retrieving the
entire erasure coded object and E - TREAT is the most complex approach which downloads
only what is needed of the compressed and rearranged dataset, while filtering out unfeasible

deduplicated (compressed) base idS......ccuuiiieriiiii i 40
Figure 11: View of the action library featuring the available built actions..........ccccccvveeennneen. 48
Figure 12: Example of a specific action’s details mentioning info such as inputs, outputs,
VErSioNS aNd IOCKFIE ..ceiiiiiiee e s e e s s ee s 49
Figure 13: Example of an action with a lockfile ready to be built........ccccooveciiiiieeiirice, 50
Figure 14: Action with versions of the same code in both x86 and arm64 architectures....... 52
List of Tables

Table 1: EMPYREAN Technical KPIs related to the Analytics-friendly Distributed Storage..... 37
Table 2: Available input and output types in Ryax ACtions........ccccvvieeieeiieiccciiieeee e, 46
Table 3: EMPYREAN Technical KPIs related to the Unikernels Builder.........cccceevvvieeinnnnennn. 54

empyrean-horizon.eu 7/57

D4.1 — Low-code application description, seamless deployment and analytic-friendly distributed @MPYREAN
storage =

Abbreviations
Al Artificial Intelligence
API Application Programming Interface
Cl/cD Continuous Integration / Continuous Delivery
CL Command Line Interface
CNCF Cloud Native Computing Foundation
CTI Cyber Threat Intelligence
D Deliverable
DAG Direct Acyclic Graph
DDL Data Definition Language
DDS Data Distribution Service
DFP Data Flow Programming
ESG Edge Storage Gateway
Faa$s Function as a Service
GDD Generalized Data Deduplication
GPU Graphics Processing Unit
HPC High Performance Computing
1/0 Input / Output
lloT Industrial Internet of Things
loT Internet of Things
KPI Key Performance Indicator
| Month
MIG Multiple-Instance GPU
ML Machine Learning
MQTT Message Queuing Telemetry Transport
(o] 0] Open Container Initiative
ORM Object Relational Mapper
(01 Operating System
POSIX Portable Operating System Interface
PV Persistent Volume
PVC Persistent Volume Claim
REST Representational State Transfer
RLNC Random Linear Network Coding
RPC Remote Procedure Call
SDK Service Development Kit
SotA State-of-the-Art
SSH Secure Shell Protocol
T Task
TLS Transport Layer Security
uc Use Case
Ul User Interface
VM Virtual Machine
VPN Virtual Private Network
WP Work Package

empyrean-horizon.eu 8/57

D4.1 — Low-code application description, seamless deployment and analytic-friendly distributed f@MPYREAN
storage

1 Executive Summary

This deliverable presents the technical outcomes of Task 4.2: “Workflow-based Design and
Low-code Application Description” and Task 4.3: “Seamless Deployment and Analytic-Friendly
Distributed Storage”, between M4 and M15.

First, the general EMPYREAN architecture is described, highlighting the role of the various
components developed in the two tasks. The goal is to understand how each component is
positioned in the EMPYREAN platform’s architecture.

This overview is followed by a detailed technical description of each component, including a
description of contributions and beyond state-of-the-art developments, internal architecture
diagrams, installation and configuration details, key operation flows, and public APIs. Different
components such as: the Workflow Manager, the Dataflow Programming, the Analytics-
Friendly Distributed Storage, the Action Packaging and the Unikernels Builder are described in
this deliverable. Beyond the technical descriptions, aspects related to the project’s
management are discussed, continuing the work reported in D2.3 (M12). The relationship of
each component with project objectives is also discussed. Furthermore, a brief description of
ongoing developments and planned integrations with other platform components is provided.

Finally, future steps are highlighted as part of the conclusion. This includes a roadmap for the
following phase of T4.1 and T4.2, including how these contributions will be reported.

empyrean-horizon.eu 9/57

D4.1 — Low-code application description, seamless deployment and analytic-friendly distributed f@MPYREAN
storage

2 Introduction

EMPYREAN envisions a collaborative environment where application owners work together
within Associations, sharing resources and data seamlessly across the edge-cloud continuum.
Realizing this vision requires enabling the design and deployment of applications across
distributed edge-cloud infrastructures, along with support for application packaging and
decentralized storage solutions.

This deliverable focuses on components from Work Package 4: “Decentralized Intelligence and
Application Development and Deployment”. It provides a concise overview of its contents,
outlining the purpose, structure, and intended audience of the document.

2.1 Purpose of this document

This deliverable presents the outcomes of Task 4.2: “Workflow-based Design and Low-code
Application Description” and Task 4.3: “Seamless Deployment and Analytic-Friendly
Distributed Storage”, covering their first 12 (M4 to M15). Four partners - RYAX, NUBIS, CC, and
ZSCALE - were directly involved in the implementation of these tasks. The work builds upon
the foundation laid in Work Package 2, which defined the project’s requirements and
established the overall EMPYREAN architecture.

As one of the project’s initial technical deliverables, provides a detailed description of the
components developed in Tasks 4.2 and 4.3 and how they integrate into the broader
EMPYREAN architecture. It provides a detailed technical description of these components, and
where applicable, typical workflows are provided to illustrate their dynamic behavior
alongside the platform’s static architecture.

The deliverable further outlines the initial developments, components’ internals and API
definitions, as well as the planned integration steps between the various components. These
are essential milestones toward the integration activities that will be carried out in Work
Package 5. Therefore, this document serves as a key technical reference for both platform
service developers and use case providers.

A final report detailing the results of Tasks 4.2 and 4.3 during their second phase will be
presented in Deliverable 4.3, scheduled for M26. While the current deliverable focuses on the
individual technical specifications of each platform component, D4.3 will place greater
emphasis on integration aspects, end-to-end operation flows and API details.

empyrean-horizon.eu 10/57

D4.1 — Low-code application description, seamless deployment and analytic-friendly distributed f@MPYREAN
storage

2.2 Document Structure
The present deliverable is split into five major sections, centred around the components
developed in Task 4.2 and Task 4.3:

e EMPYREAN Architecture Mapping

e Application Design with Low-Code and Workflow-Based Abstractions

® Analytics-Friendly Distributed Storage

® Action Packaging

o Unikernels Builder

2.3 Audience

This document is publicly available and intended for anyone interested in the EMPYREAN
project’s work on multi-clustering, workflow management, distributed storage, environment
packaging, and unikernel building. It provides an initial overview of these components along
with development details and component internals including their architecture, early-stage
contributions, and preliminary interfaces. Additionally, it serves as a useful resource for the
general public to gain a clearer understanding of the EMPYREAN framework and the overall
scope of the project.

empyrean-horizon.eu 11/57

D4.1 - Low-code application description, seamless deployment and analytic-friendly distributed '@MPYREAN
storage o

3 EMPYREAN Architecture Mapping

The EMPYREAN architecture was first introduced in deliverable D2.2 "Initial Release of
EMPYREAN Architecture" (M07), and later refined in its final version in D2.3 "Final EMPYREAN
architecture, use cases analysis and KPIs" (M12). This refinement incorporated key insights
gained from the initial implementation phase. D2.3 provides a comprehensive overview of the
architecture, detailing the EMPYREAN components, their interfaces, and the supported
operational flows.

In this section, we present a concise description of the architecture (Figure 1) to support the
discussion of the initial developments in WP3, particularly focusing on (i) Al-enhanced tools
for the workflow-based design and low-code description of hyper-distributed applications, (ii)
novel application packaging and software delivery framework, (iii) end-to-end systems
software stack for application deployment based on unikernels, (iv) secure and interoperable
container runtime, and (v) analytics-friendly distributed storage solution for loT data.

EMPYREAN Use Cases

Monitoring & Service Layer Security, Trust,
Observability Layer & Privacy Layer
Workflow Dataflow Action Unikernels EMPYREAN
Manager Programming Packaging Builder SDK
Telemetry Service p-ABC Library

Association Management Layer

EMPYREAN Aggregator EMPYREAN Registry Verifiable Data

Persistent Monitoring .
Data Storage Reglstry

Multi-Cluster Orchestration Layer

CTl Engine
Analytics Engine Service Orchestrator Decision Engine 9
Resource Management Layer Data Management &
Interconnection Layer Privacy & Security
Telemetry Engine Al-enabled Workload EMPYREAN Manager
Autoscaling Controller Software-Defined loT Query
Unikernel Edge Interconnect Engine
Enviroment Packaging Depl t
opioymen Decentralized & Distributed Data
Manager Secure & Trusted
Monitoring Probes Sontainer ey Container Runtime Execution Environment
Locality Scheduler
Edge Storage Edge Storage
Gateway 9 9

Hardware Acceleration Abstractions

10T / lloT Devices ON-PREMISE DEEP EDGE FAR EDGE CLouD

Infrastructure Layer
EA
%ﬂ:z 2t
Bk
Bl
Bk
Im
juu
Im
(il
["’\
@
S

loT-Edge-Cloud Infrastructure

Figure 1: EMPYREAN high-level architecture

empyrean-horizon.eu 12/57

D4.1 — Low-code application description, seamless deployment and analytic-friendly distributed f@MPYREAN
storage

The Service Layer supports the development of Association-native applications by offering
mechanisms for application-level adaptability, interoperability, elasticity, and scalability
across the loT-edge-cloud continuum. It addresses several key aspects, including: (a) the
design and management of workflows for hyper-distributed applications, (b) cloud-native
unikernel application development, and (c) data-flow description. This deliverable provides
the detailed design and initial implementation description of this layer’s components, while
the EMPYREAN SDK will be introduced in deliverable D5.2 (M18).

The Workflow Manager (Section 4) offers tools for high-level design, development, and
remote debugging of cloud-native applications, enabling seamless deployment across the
Association-based continuum. The Dataflow Programming (Section 4) complements
workflow-based application management by enabling data-centric, decentralized, and
dynamic data interconnections. It allows declarative specification of data flow requirements
using unified abstractions and location-transparent definitions—facilitating responsive,
adaptive data management in highly heterogeneous and distributed environments. The
Unikernels Builder (Section 5) streamlines the development and deployment of applications
as unikernels in cloud-native environments. It reduces engineering complexity and enables
the generation of highly efficient, secure, and lightweight applications—ideal for both edge
and cloud infrastructures where performance and isolation are essential.

The Association Management Layer dynamically manages Associations across the loT-edge-
cloud continuum. By enabling the formation of resource federations, it supports seamless
collaboration, resource sharing, and data distribution across diverse segments of the
infrastructure. In conjunction with the Multi-Cluster Orchestration Layer, it plays a central role
in EMPYREAN's distributed and autonomous management framework, establishing a resilient
and adaptive Association-based continuum.

The Multi-Cluster Orchestration Layer enables efficient orchestration of services and dynamic
resource management across EMPYREAN's disaggregated infrastructure. Leveraging
distributed, autonomous, decision-making mechanisms, it manages the lifecycle of hyper-
distributed applications and enables self-driven adaptations. Multiple instances of this layer’s
components provide decentralized operations, optimized resource utilization, and scalability,
while also supporting energy efficiency and fault tolerance. The design and development
details on this layer and the Association Management are described in D4.2 (M15).

The Resource Management Layer unifies and coordinates resource management across loT,
edge, and cloud platforms within the EMPYREAN architecture. It integrates both platform-
level scheduling mechanisms (e.g., Al-enabled Workload Autoscaling) and low-level runtime
mechanisms (e.g., Unikernel Deployment). Operating within Kubernetes or K3s clusters, this
layer is designed to be highly modular, simplifying the integration of new hardware and
software components. This deliverable focuses on the initial developments of Environment
Packaging, Unikernel Deployment, and Container Runtime components. Additional related
developments are discussed in deliverables D3.2 (M15) and D4.2 (M15).

empyrean-horizon.eu 13/57

D4.1 — Low-code application description, seamless deployment and analytic-friendly distributed f@MPYREAN
storage

The Action Packaging component (Section 5) supports multi-environment and multi-
architecture packaging for cloud-native applications, improving the interoperability and
adaptability of workloads within the EMPYREAN platform. It streamlines the creation of OCI-
compatible container images that support diverse architectures and programming languages,
ensuring flexibility in deployment across heterogeneous execution environments. The
Unikernel Deployment and Container Runtime components (Section 5) enable the efficient
deployment of unikernel-based applications by integrating them with standard container
runtimes compatible with Kubernetes and serverless platforms. This allows seamless
orchestration of lightweight and secure applications across heterogeneous infrastructures.

The Data Management and Interconnection Layer ensures secure, scalable, and dynamic
data communication and storage between loT devices and computing resources. Operating at
both cluster and Association levels, it integrates distributed data management mechanisms
that support seamless data interaction between loT, edge, and cloud environments. This
deliverable presents the Analytics-friendly Distributed Storage, while the broader data
management mechanisms are covered in deliverable D3.1 (M15), and the software-defined
interconnection framework is detailed in D3.2 (M15). The Analytics-friendly Distributed
Storage (Section 5) provides a distributed storage solution tailored for time series loT data. It
enhances the storage and retrieval of loT time series data, employing erasure coding
techniques to ensure secure, reliable, and efficient data management of large volumes of time
series data.

The Infrastructure Layer comprises heterogeneous resources distributed across multiple
administrative and technological domains including, (i) l1oT/IloT devices, robots, and on-
premise edge resources where data is generated and service requests initiated, (ii) deep and
far-edges, close and further from the end users/devices, for real-time processing and
aggregation, and (iii) federated multi-cloud environments for enhanced robustness, cost-
efficiency, and vendor independence in data storage and replication.

The Security, Trust, and Privacy Layer integrates distributed components to ensure secure
access, privacy-preserving operations, and trusted execution across the platform. Operating
at both cluster and Association levels, it establishes secure execution environments where
trust relationships between data-generating and data-processing entities are continuously
verified through distributed trust mechanisms. In parallel, identity and data access
management components ensure controlled access and data confidentiality among different
entities. The core components of this layer are presented in deliverable D3.1 (M15), while the
Cyber Threat Intelligence (CTI) Engine is detailed D4.2 (M15).

The Monitoring and Observability Layer provides real-time monitoring, observability, and
service assurance through distributed telemetry mechanisms and data-driven analytics. It
dynamically collects and analyzes a wide range of metrics across heterogeneous
infrastructures and deployed applications, ensuring system health, performance, and
availability. These insights support automated control and optimization. These components
are detailed in D4.2 (M15), with the service assurance mechanisms covered in D3.2 (M15).

empyrean-horizon.eu 14/57

D4.1 — Low-code application description, seamless deployment and analytic-friendly distributed f@MPYREAN
storage

4 Application Design with Low-Code and
Workflow-based Abstractions

4.1 Introduction

In EMPYREAN, the Workflow Manager component is provided by the open-source RYAX!
workflow engine. This component enables users to build, deploy and monitor their data
analytics and Al applications through a low-code, workflow-based approach. This section
presents an overview of Ryax’s core features and architecture, and brings forward the specific
enhancements developed in the context of EMPYREAN to provide fine-grained support across
the edge-cloud continuum. Ryax expresses applications as one or more workflows using
YAML-based abstractions, facilitating the development of distributed data analytics
applications. These workflows are then deployed across the underlying hybrid computing
infrastructures.

Several enhancements have been studied and are under active development. The first major
enhancement introduces multi-site workflow support. It involves enabling workflows to
execute across multiple clusters at both the edge and cloud. This capability requires particular
networking and storage configurations to ensure seamless coordination and execution of
workflows across geographically distributed environments. Furthermore, Ryax platform is
being extended with the right mechanisms and abstractions to support user-defined
constraints and objectives that guide optimal workload placement. While initial scheduling
uses Ryax’s build-in first-fit algorithms, more advanced strategies will be enabled through
upcoming integrations with the Decision Engine and Service Orchestrator components of
EMPYREAN.

Another important enhancement is enabling the Ryax platform to efficiently support both
long-running microservices and short-duration serverless functions for data analytics and Al
applications in the edge-cloud continuum.

Additionally, Ryax is being adapted to integrate with EMPYREAN Associations by interacting
with the Aggregator and incorporating Zenoh? at the communication layer as an alternative
for the message passing needed in Ryax. This integration will provide fine-grained, real-time
data communication capabilities, which is essential for loT-based EMPYREAN use cases.

This deliverable primarily focuses on the multi-site orchestration enhancements, which are
essential for seamless workflow execution across the edge-cloud continuum. Additionally, it
provides a status update on the ongoing work related to execution model support and
integration with EMPYREAN'’s data communication stack.

L https://github.com/RyaxTech/ryax-engine
2 https://zenoh.io

empyrean-horizon.eu 15/57

D4.1 — Low-code application description, seamless deployment and analytic-friendly distributed f@MPYREAN
storage

4.2 Background - The Ryax Workflow Manager

The RYAX platform developed by Ryax Technologies is an open-source low-code, API-first
workflow management system for data analytics. It provides the means to create, deploy,
update, execute, and monitor the execution of data processing workflows on hybrid cloud,
edge, on-premises, and HPC computing infrastructures. It enables users to create their data
automations and expose them with APIs through fully customizable workflows using a low-
code Ul. It uses a powerful, hybrid serverless/microserverices-based runtime, abstracting
completely the complexity of building and deploying containers with their dependencies upon
Cloud infrastructures. The software platform has been designed with a focus on data analytics.
It offers a variety of built-in features and a repository of various integrations to facilitate users
in industrializing cloud backend applications integrating complex data automations.

The Workflow Management system automates the orchestration and execution of task
collections upon computational resources. A common pattern in scientific and cloud
computing involves executing different computational and data manipulation tasks, which are
usually coupled, i.e., the output of one task is used as input on another. Hence, coordination
is required to satisfy data dependencies. The system handles the task execution and can be
distributed among the underlying available computational resources. Consequently, this
introduces further complexity on the system side related to processes such as load balancing,
data storage, data transfer, task monitoring, and fault tolerance. Furthermore, on the
application side, workflows provide an end-to-end view of the processing rather than focusing
on a specific part of the computation, which allows users to control the whole process by
abstracting the complexity of how each task is executed. Automating the aforementioned
aspects of the orchestration process along with the complexity abstraction has led to the
creation of workflow management systems.

The RYAX platform abstracts the complexity of (i) developing data analytics pipelines by using
workflows requiring developers to describe the structure of what will be deployed and how it
will be connected through a simple, intuitive web interface and visual programming tools
connected to a YAML- based declarative design, (ii) building the environments to be deployed
with the necessary dependencies through built-in internal mechanisms based on Nix
functional package manager, (iii) deploying and monitoring containers through a fine-
integration with Kubernetes, and (iv) providing efficient autoscaling capabilities based on
built-in resource management techniques considering the request demands and combining
both Horizontal Pod Autoscaling (Kubernetes) and Cluster Node Autoscaling (Cloud
Infrastructure provider).

The initial internal architecture of Ryax is depicted in Figure 2. As illustrated, the system is
composed of multiple microservices, each managed by the Kubernetes orchestrator. This
design ensures a high degree of interoperability, flexibility, fault tolerance, and resilience,
enabling features such as auto-healing, and easy upgrades or downgrades of individual
components.

empyrean-horizon.eu 16/57

D4.1 — Low-code application description, seamless deployment and analytic-friendly distributed

storage

N
@MPYREAN

In the context of EMPYREAN, this architecture has been further adapted to address the
specific challenges of the edge-cloud continuum. Enhancements have been introduced to
better support heterogeneous and distributed environments, as well as to provide tighter
integration with EMPYREAN Associations. These modifications are detailed in the following

section.

In more detail, the principal concepts of RYAX are:

e An action is an independent task representing a separate building block of a broader
data processing application. It may have inputs, outputs, and a specific code that
manipulates the inputs with some logic to produce the outputs. There are the

following types of actions:

o A trigger, which allows data ingestion from the outside world. They are long-
running processes (micro-services) that can trigger new workflow executions.

o A processor, which is a stateless process (FaaS) that basically can perform
processing. They use their inputs to ingest data from upstream produce
outputs added to the downstream.

o A publisher, which is a stateless process that pushes data to external services,
like a database or an online service for example.

e The workflow, which is a complete data processing application composed of actions
linked together in the form of a DAG. The intermediate links are data streams. Each
action uses some data from the input stream and adds its output data to the stream.
This way, the data that an action outputs is accessible to every downstream action. In
other words, any action has access to the data of upstream actions.

Kubernetes

Lo

Admin

4|—‘{ WebUI
L‘ser
CLI

Ryax

ADM }

W

_"‘ Send requests _T

Clients | |

—_—

External | —l ‘ Store data

RabbitMQ
Infrastructure

— Runner

> Studio

> Repository

'+ Authorization

‘ Datastore

‘ Filestore ‘

!

Kubernetes
API

|

Grafana

HI Prometheus

Action wrapper
— Loki

User code

‘ Broker ‘

‘ Registry ‘

Action
Builder

Figure 2: Ryax Architecture Overview

empyrean-horizon.eu

17/57

D4.1 — Low-code application description, seamless deployment and analytic-friendly distributed f@MPYREAN

storage

In particular, we have:

e The Ryax client services:

O

WebUI, which is a NGINX® server that serves our frontend written with
Angular?,

ADM, which is the administrator tool for Ryax used to deploy, update and
backup/restore a Ryax instance upon a certain infrastructure.

CLI, which is an open-source Python based command line interface that
enables users to build actions and create, submit and monitor workflows.

e The Ryax internal services:

o

Authorization, which manages user and project authorization along with roles
control within Ryax.

Repository, allows the Ryax users to scan Git repositories and import Ryax
actions. It also enables the triggering of the actions built through the action
Builder. Once the build is finished, the actions are sent to the Studio to be
placed in the action Store. It exposes an HTTP Rest APl that is used by the
WebUl and the CLI. It uses the Postgres datastore to persist its state using ORM.

Studio, enables Ryax users to create, edit, and deploy workflows. It exposes an
HTTP Rest API that is used by the WebUI and the CLI. It uses the Postgres
datastore to persist its state using ORM.

Action builder, which receives action build orders from the Repository service,
does the build in a sequential and synchronous way (one at a time) making use
of the Nix functional package management software for dependencies control.

Runner, which plays the role of interface between Ryax and the computing
resources to launch and execute actions & run workflows. Thus, it enables the
deployment, run and schedule of each action of the workflow.
It also manages the execution metadata and data. This micro-service
communicates with the actions through gRPC, and expose workflow runs state
and results through an HTTP Rest API. http and the broker (RabbitMQ?).

Action wrapper, which is used between our system and the user code to be
able to run it. This is not an internal Ryax service, but a wrapper that is put
around user code in order to communicate with Ryax. It creates a gRPC server
with a simple interface that initiates the action and then run executions.
This wrapper works for both processors and trigger source actions with the
same protocol: the trigger source actions are streaming execution response,
while the processors are only sending one response and close the connection.

3 https://nginx.org
4 https://angular.dev
5> https://www.rabbitmg.com

empyrean-horizon.eu 18/57

D4.1 — Low-code application description, seamless deployment and analytic-friendly distributed f@MPYREAN
storage

o The Ryax external services:

o Datastore, which enables the state storage of all stateful services and a
PostgreSQL® database server. Each service has a different access credential and
a separate database.

o Filestore, which is used to store execution 1/0 files and directories is a Minio’
file storage service which exposes an S3 compatible API.

o Broker, which enables internal communication between all services using
messages serialized in Protobuf and is a RabbitMQ message broker.

o Registry, which stores the users' actions created by the action builder in a
Docker registry.

By default, the Ryax architecture enables the execution of actions through the Runner
component on the underlying Kubernetes cluster where Ryax is deployed. For monitoring and
observability, Ryax integrates a robust monitoring stack comprising Prometheus® for metrics
collection, Loki® for log aggregation, and Grafana'® for querying and visualizing operational
data. Network ingress is managed by Traefik, which dynamically routes incoming HTTP
requests based on path prefixes—for example, requests with the /runner prefix are directed
to the Runner service.

4.3 Analysis for Ryax Multi-Site Support

This section evaluates three architectural patterns for enabling Ryax to operate seamlessly
across multiple sites and cloud environments, based on our hands-on experimentation and
industry best practices.

We begin with a single-cluster, multi-cloud nodes approach—demonstrated using Scaleway
Kosmos?!, and comparable to solutions such as AWS EKS Anywhere!? and Google Anthos?®3.
This is followed by an exploration of true multi-cluster federation approaches, utilizing
platforms like Karmada!* and KubeSphere!> to achieve centralized management across
distributed Kubernetes clusters. Finally, we present a lightweight multi-cluster model based
on persistent “worker” agents, which register with a central Ryax instance.

For each pattern, we detail setup complexity, fault-tolerance, autoscaling, storage integration,
and operational overhead. The analysis culminates in identifying the multi-cluster with worker
agents model as the most balanced and extensible solution to support EMPYREAN’s multi-site
deployment and orchestration goals.

5 https://www.postgresql.org

7 https://min.io

8 https://prometheus.io

9 https://github.com/grafana/loki
10 https://grafana.com

empyrean-horizon.eu 19/57

D4.1 — Low-code application description, seamless deployment and analytic-friendly distributed f@MPYREAN
storage

4.3.1 Single-Cluster, Multi-Cloud Nodes

Scaleway’s Kosmos!! cluster enables attaching external instances from any provider into a
single managed Kubernetes control plane, unifying node pools across clouds and on-premises
environments. Similar functionality can be achieved with AWS EKS Anywhere!?, which
leverages the open-source EKS Distro to run Kubernetes on on-premises and edge
infrastructures with automated lifecycle management, or Google Anthos®3, which provides a
consistent control plane for GKE clusters on-cloud, on-premises, and across AWS/Azure via its
multi-cloud APIs. In our prototype, we provisioned the Kosmos control plane via Terraform,
manually added an Azure VM as an external node by registering it with Scaleway’s node-
agent_linux_amd64, and opened WireGuard (UDP 51820), Kubernetes APl (TCP 10250), and
health-check ports (TCP 8134, 9100) on the VM.

Storage & Scheduling Considerations

Out-of-the-box Scaleway CSl is only installed on managed Scaleway Instances; external nodes
require deploying third-party CSI drivers or a Local Path Provisioner to support PVCs. To
mitigate cross-cloud latency—critical for database queries and low-latency RPCs—we pinned
all Ryax services (datastore, file store, RabbitMQ, etc.) to the local node pool via nodeSelector,
draining external nodes during installation and uncordoning them afterward to enforce
locality.

Pros & Cons

e Pros:
0 No Ryax code changes required, enabling rapid proof-of-concept deployment.

o Unified control plane simplifies cluster administration and monitoring.

o Fast setup, achievable within ~2 days using Terraform and minimal manual
steps.

e C(Cons:

o No autoscaling/auto-healing on external node pools, necessitating manual
node management.
Storage integration gaps, with CSI support inconsistency across providers.
Cross-cloud latency, forcing service colocation strategies.

Vendor lock-in, as each provider uses proprietary multi-cloud tooling.

u https://www.scaleway.com/en/kubernetes-kosmos/
12 https://aws.amazon.com/eks/eks-anywhere/
13 https://cloud.google.com/anthos

empyrean-horizon.eu 20/57

D4.1 — Low-code application description, seamless deployment and analytic-friendly distributed f@MPYREAN
storage

4.3.2 Multi-Cluster Federation

Karmada'4 (Kubernetes Armada) is a CNCF incubating project offering a federated control
plane to automate deployment, scaling, and failover across multiple Kubernetes clusters and
clouds without modifying applications. It speaks native Kubernetes APls and provides
advanced scheduling, cross-cluster rolling upgrades, and policy-driven placement.

KubeSphere!® integrates KubeFed to present a central control plane (“host cluster”) managing
multiple member clusters, with unified monitoring, logging, and an App Store for cross-cluster
application deployment. It supports both direct connections and agent-based membership for
network-isolated environments.

Pros & Cons
® Pros:
True cluster isolation, each site retains its own APl server and resource quotas.
Rich federation features, including traffic scheduling, policy enforcement, and
disaster recovery.
e Cons:

o High control-plane complexity, requiring installation and maintenance of
federation controllers.

o0 Network dependencies between clusters, often requiring VPNs or overlay
networks.

O Steep learning curve for federation APIs and operational procedures.

4.3.3 Multi-Cluster with Worker Agents

In this pattern, Ryax runs a single master control plane exposed publicly, while each site
deploys a lightweight worker agent that:

1. Registers to the master using a bootstrap token.

2. Maintains a persistent, encrypted overlay using Skupper'® to route all control-plane
and data-plane traffic through secure, multi-site tunnels without exposing local
clusters directly.

3. Exposes site capacity and executes Ryax Actions via a minimal RPC protocol carried
over the Skupper mesh.

14 https://github.com/karmada-io/karmada

15 https://kubesphere.io/docs/v3.4/multicluster-management/introduction/kubefed-in-

kubesphere/?utm_source=chatgpt.com
16 https://github.com/skupperproject/skupper

empyrean-horizon.eu 21/57

D4.1 — Low-code application description, seamless deployment and analytic-friendly distributed f@MPYREAN
storage

By leveraging Skupper for inter-site networking, all RPC calls, logs, metrics, and file transfers
traverse a single outbound connection per site, simplifying firewall configuration and avoiding
full VPN meshes.

Pros & Cons

® Pros:
o Simplified networking: Skupper handles service-to-service connectivity and
secure routing over existing cloud or on-premise networks.

O Low operational overhead: Only one control plane to maintain, and no
federation controllers.

o Site autonomy: Local policies, quotas, and resource isolation remain fully
under each site’s control.

O Scalability: New sites join simply by deploying the Worker and wiring it into the
Skupper network.

e Cons:

o0 Implementation effort: Requires building the Worker registration logic and
RPC protocol on top of the Skupper fabric.

o Skupper dependency: Relies on maintaining the Skupper overlay—though this
also centralizes connectivity and reduces tunnel sprawl.

O Master availability: The public control plane must be highly available, as all
worker agents depend on it for registration and task dispatch.

4.3.4 Conclusions and Recommendation

We recommend adopting a multi-cluster worker-agent model with all inter-site traffic
tunneled over a Skupper overlay network. In this setup, each remote site runs a lightweight
Ryax Worker that:

1. Securely bootstraps to the central Ryax master using a token-based authentication
mechanism.

2. Joins the Skupper service mesh, enabling all control-plane and data-plane RPCs to
traverse over mutual-TLS—protected, Layer-7 tunnels, eliminating the need for VPNs or
public service exposure.

3. Reports local capacity and executes Actions through a minimal RPC protocol.

Skupper’s dynamic, cost- and locality-aware routing provides high availability and
performance across hybrid clouds and on-premise sites, while also simplifying connectivity
management.

empyrean-horizon.eu 22/57

D4.1 - Low-code application description, seamless deployment and analytic-friendly distributed @MPYREAN
storage o

This pattern strikes the ideal balance between the simplicity of single-cluster, multi-cloud
approaches (e.g., AWS EKS Anywhere’s customer-managed on-prem/cloud clusters) and the
heavy control-plane complexity of full federation (e.g., Karmada). The design mirrors proven
CI/CD architectures—such as GitHub Actions’ self-hosted runners—where distributed agents
connect outbound to a central service, maintain autonomy over local resources, and scale
independently without exposing local APIs.

By combining a single Ryax master with per-site Workers interconnected via Skupper,
EMPYREAN establishes a secure, provider-agnostic, and extensible multi-site fabric with
minimal operational burden.

4.4 Ryax Extensions for Multi-Site Support

The initial version of Ryax supported workflow execution within one site either on-premise or
in the cloud. However, in the context of EMPYREAN, Ryax has been significantly extended to
support the deployment of workflows across multiple sites. Based on these extensions Ryax
will have the ability to deploy parts of workflows on different geographically distributed sites,
enabling a truly distributed orchestration model. The only requirement for a participating site
is the presence of Kubernetes as the orchestrator, which allows seamless integration into the
Ryax-managed continuum.

The updated architecture is illustrated in Figure 3, where the new remote sites are connected
to the central Ryax master site through Skupper, shown in the top-right of the diagram.
Additionally, as part of the effort to enable Ryax to operate across the edge-cloud-HPC
continuum, preliminary design changes have been introduced to support HPC site integration
via SSH-based connectivity (shown at the bottom-right of the figure). However, HPC
integration lies outside the scope of this particular deliverable.

Kubernetes Kubernetes

Admm_l—' ADM

Kubernetes API

HPG Worker Kubernetes AP| Grafana

Worker
skupper
> Runner Worker

I. WebUI Prometheus <}::> (N
i ‘ Datastore ‘Action wrapper
() b o ‘ User code |
User Traefik . Studio Filestore P . /
™ pper
(el () Loki Loki
User code
(HPC
Ryax > Repository Broker
Clients Send requests __T I's A ssh SLURM
Registry
External Store data —> Authorization Action - - <;:'|>
Builder (Action wrapper
RabbitMQ Datastore User code
Infrastructure \) L

Figure 3: Ryax New Multi-Site Architecture Overview

empyrean-horizon.eu 23/57

D4.1 — Low-code application description, seamless deployment and analytic-friendly distributed f@MPYREAN
storage

4.4.1 Runner

The Runner service is the core of the Ryax tool, serving as the execution engine responsible
for managing and orchestrating user workflows. It receives workflow deployment and un-
deployment orders from the Studio component and provides execution feedback and history
on the workflow runs through an HTTP API. Internally, the Runner uses the PostgreSQL
datastore to persist its state, accessed through an Object-Relational Mapping (ORM). As the
key interface between Ryax and the underlying computing resources, the Runner handles the
launching of actions and execution of workflows. Thus, it does the deploying, running, and
scheduling of workflows. It also manages the execution metadata and data flow.

In terms of communication, this microservice uses gRPC for interacting with actions,
RabbitMQ for asynchronous messaging with the Studio, and HTTP to support direct,
standalone access. This multi-protocol design ensures efficient and flexible interactions with
other Ryax components and deployed workflows, forming the backbone of Ryax’s low-code,
distributed orchestration capabilities.

In the new architecture, its responsibilities have been adapted to become the following:

e Deployment
o Communicate with the worker to get computing resources
o Deploy/undeploy actions

e Manage the workflow execution:
O Get new execution triggers
o Fetch/push execution data from/to the filestore (Minio)
O Push data to actions so that they create executions

e Scheduling
o Communicate with the worker to scale the infrastructure
O Scale actions
o Trigger executions (if necessary)
o)

Store waiting executions, and has an algorithm to decide which execution to
start first

® Archiving
O Holds and manages execution metadata
o Keep track of all executions and expose an API for querying execution metadata

o Keep track of the workflow deployment states

empyrean-horizon.eu 24/57

D4.1 — Low-code application description, seamless deployment and analytic-friendly distributed f@MPYREAN

storage

4.4.2 Worker

The worker service makes the link between Ryax and the local sites. The worker registers itself
in Ryax using a gRPC interface. Its responsibilities are the following:

Get access to computing resources
Receive execution trigger

Deploy the action if not already done (might be done beforehand depending on
the deployment policy)

Fetch execution data from remote filestore

Activate the action with its inputs and grab the outputs

Push execution data to local/remote storage

Send results and their metadata to Ryax

Undeploy the action (might be done beforehand depending on the deployment
policy)

Trigger the next execution (go back to step 2)

Deployment scaling, depending on the underlying infra it can have different
policies. For example, it can only allocate resource when a new execution is coming
or keep all actions always deploy for performance reasons.

Figure 4 provides the architecture of the Ryax worker showing how the internals of this new
microservice take place.

Regarding executions, the Worker gets 1/0 from global when an action is triggered from an
external action (action from another site) and pushes I/0 to local storage. The Worker pushes
the data to the global storage if an execution is not on its site. Since the 1/O files are distributed
over multiple sites, we need a way to share data between sites. To do so, we introduce a new
public-facing storage.

In our case, we use our fileStore (Minio), which we expose publicly, but it could also be any
cloud storage. Based on this, the data can be shared between sites using this public storage
with the following policy:

Outputs:

always push I/0 files in local storage.
if one of the next executions is in another site also push data to the global
storage. This is done by the Worker.

if an I/O file comes from an execution done on another site pull I/0 files from
global storage
otherwise pull /0O files from the local storage

empyrean-horizon.eu 25/57

D4.1 — Low-code application description, seamless deployment and analytic-friendly distributed

storage

N
@MPYREAN

Ryax Main Site

Execution Site N

Get Images
From

IV

Deployment
System
(K8s, Docker, ..}

Container
Registry
Deploy Wrapper Action 1
HEI’\{D Execute
atch AND
DED|O},-' Watch
OR
Execute
Ryax s Worker Wrapper Action 2
Deployment
State Local)
Update Execution '
AND 1o .
Execution Wrapper Action 3
Metadata J

Local 10
Storage

Global lo [T——— |
Storage

Global
Execution
1o

Figure 4: Ryax Worker Architecture

4.4.3 Installation and configuration for Ryax multi-site

This section provides details about the installation and configuration of Ryax multi-site
version.

Prerequisites

A Kubernetes cluster (v1.19 +) with a working default StorageClass for dynamic
PersistentVolume (PV) provisioning must be available for each site. To verify or set a default,
the administrator can run:

kubectl get storageclass

kubectl patch storageclass <YourStorageClassName> \

"{"metadata" :{"annotations" :{"storageclass.kubernetes.io/is-default-
class":"true"}}}'

empyrean-horizon.eu 26/57

D4.1 - Low-code application description, seamless deployment and analytic-friendly distributed @MPYREAN
storage o

This leverages the built-in Kubernetes annotation mechanism to mark the desired class as the
default for PVCs. Helm 3.x must be installed on the operator’s workstation (or Cl host) to
manage chart-based deployments. Each Worker node should have at least 2 vCPUs, 2 GiB
memory, and 1 GiB disk. The actual resource needs will scale with the execution of the tasks.

Configuration

In order to configure the Worker, the administrator will need to select one or more node pools
(set of homogeneous nodes) and give the Worker some information about the nodes. We use
node pools on Kubernetes because they allow Ryax to leverage the Kubernetes node
autoscaling. This approach allows the executions to scale up - if the workload needs more
resources - or down - if the workload does not need any more resources. It can even scale
down to zero when there are no workload requests. This brings forward the real benefits of
serverless, which is the core of the Ryax runtime.

The Worker’s worker.yaml must define the site identity and node pools. For AWS clusters, an
example snippet is:

config:
site:
name: aws-k8s-cluster-1
spec:
nodePools:

- name: small
cpu: 2
memory: 4G
selector:
eks.amazonaws.com/nodegroup: default

For Azure AKS-managed pools, the selector will differ:

config:
site:
name: azure-k8s-cluster-2
spec:
nodePools:

- name: small
(o] o] U
memory: 4G
selector:
kubernetes.azure.com/agentpool: default

Values for CPU and memory must match each node’s Allocatable fields; selectors must
uniquely identify the pool by its provider label.

empyrean-horizon.eu 27/57

D4.1 - Low-code application description, seamless deployment and analytic-friendly distributed @MPYREAN
storage o

Skupper Networking Setup

To establish a secure, application-level mesh between the central Ryax control plane and site
Workers, Skupper is deployed in the ryaxns namespace on both clusters. After creating the
namespaces:

kubectl create namespace ryaxns

kubectl create namespace ryaxns-execs

the master site initializes Skupper with:

skupper init -n ryaxns --site-name main
skupper token create ~/main.token -n ryaxns

and each remote site links using:

skupper init -n ryaxns --ingress none --site-name site-1

skupper link create ~/main.token -n ryaxns

This installs the Skupper router and configures an encrypted, mutual-TLS overlay for all
subsequent service traffic.

Exposing Ryax Services

The Worker requires access to the image registry and messaging broker. On the master site,
these are made available over Skupper by exposing the in-cluster services:

skupper -n ryaxns expose service minio --address minio-ext

skupper -n ryaxns expose service ryax-broker --address ryax-broker-ext

Operator secrets (e.g., Docker credentials, broker tokens) are then extracted from the master
namespace and applied to the remote cluster’s ryaxns namespace.

Helm Deployment of the Worker

With networking and secrets in place, the Ryax Worker chart can then be installed via:

helm upgrade --install ryax-worker oci://registry.ryax.org/release-

charts/worker \
--values worker.yaml -n ryaxns

Using helm upgrade --install ensures idempotent deployment: first install if absent, or an
upgrade if already present. Once the Worker pods are Running, the site will automatically
register with the central Ryax Ul and appear as a target for Kubernetes-based Action
execution.

empyrean-horizon.eu 28/57

D4.1 — Low-code application description, seamless deployment and analytic-friendly distributed f@MPYREAN
storage

4.4.4 Multi-constraint and multi-objective scheduling

RYAX scheduler employs a multi-stage, multi-criteria optimization framework that evaluates
available node pools across cloud providers and on-premise sites. Each node pool is scored
from 0 to 100 on three orthogonal axes—performance, energy efficiency, and cost—and these
scores drive both the initial filtering of candidates and the final placement decision via a
weighted objective function. Ryax implements this through a sophisticated multi-stage
scheduling system that combines constraint satisfaction with objective-based optimization
that balances user priorities and infrastructure characteristics. The initial scheduling is based
on simple first-fit algorithms but more sophisticated approaches will be brought through the
integration with EMPYREAN’s Service Orchestration and Decision Engine. Furthermore,
integration with real-time telemetry may be performed to allow the refinement of all scores
over time, enabling adaptive, data-driven workload distribution.

Scoring System

The Performance Score reflects raw computational capability and real-world throughput.
Initially seeded from hardware specifications (e.g., GPU model, network bandwidth), it is
continuously calibrated against actual task execution times and throughput metrics to capture
application-specific behavior.

The Energy Score represents datacenter power efficiency. It incorporates published PUE
(Power Usage Effectiveness) values, cooling effectiveness, and observed resource utilization.
Node pools in regions with advanced cooling or high renewable energy penetration
accordingly receive higher scores, incentivizing greener scheduling choices.

The Cost Score aggregates financial factors such as on-demand pricing, sustained-use
discounts, and resource granularity (e.g., support for fine-grained GPU partitioning via NVIDIA
MIG). Pools offering finer allocation units and volume discounts score higher, ensuring that
workloads are matched to the most cost-effective infrastructure.

The implementation has been performed in a modular way allowing scores to be adapted or
other scores to be added (e.g. network congestion or latency scores).

Multi-Criteria Optimization Process

The initial filtering is done using the following:

1. Architecture Compatibility: Discards node pools that do not match required CPU
architectures (x86_64, arm64, etc.).

2. Resource Availability: Verifies that each candidate pool can satisfy requested CPU,
memory, GPU, and storage quotas.

3. Constraint Enforcement: Applies any user-specified placement constraints (e.g.,
geographic location, compliance zones).

empyrean-horizon.eu 29/57

D4.1 - Low-code application description, seamless deployment and analytic-friendly distributed '@MPYREAN
storage o

Then the Objective Function Computation is done through the following path. For each remaining
node pool, the scheduler computes a composite score using the formula:

total_score = (perf_weight x perf_score) +
(energy_weight x energy_score) +

(cost_weight x cost_score)

User-defined weights allow dynamic prioritization—favoring performance, cost savings, or
energy efficiency as needed. The final placement routine integrates temporal and spatial
analyses:

e Builds a temporal map by correlating average function durations with container
startup times to anticipate peak resource demands.

e Weighs dynamic energy patterns, combining static power draw with measured
utilization spikes.

e Executes a first-fit search across candidate pools based on the computed total_score,
ensuring that each workload is assigned to the node pool that maximizes the weighted
objective while honoring capacity and policy constraints.

This initial version of RYAX scheduling introduces a 2-level scheduling schema: one to select
the site to run each action and one within the site itself performed by the underlying
Kubernetes cluster (or SLURM in the case of the HPC site). It brings an initial first-fit algorithm
and the whole framework is now setup to open the way for more sophisticated algorithms
through the integration with EMPYREAN'’s Decision Engine and Service Orchestration.

4.5 Decentralised and Distributed Data Management
Protocol

The steady increase in network-connected devices in the last couple of years has brought a
new level of heterogeneity concerning computing, storage, and communication capabilities
and new challenges concerning the scale at which data is produced and needs to be
consumed.

The goal is to interconnect a system that spans from the data center down to the
microcontroller and needs to smoothly operate across the continuum with increased
performance, efficiency, improved privacy, and security, thus data should be processed as
close as possible to the source, while at the same time not hindering access to geographically
remote applications. In other terms, we are experiencing an architectural switch from cloud-
centric paradigms in which data is stored, processed, and retrieved from the cloud to an edge-

empyrean-horizon.eu 30/57

D4.1 — Low-code application description, seamless deployment and analytic-friendly distributed '@MPYREAN

storage

centric paradigm where data is stored and processed where it makes the most sense for
performance, energy efficiency, and security matters.

EMPYREAN leverages the Eclipse Zenoh'’ open-source project. Zenoh has been designed to
address the requirements of those applications that need to deal with data in movement, data
at rest, and computation in a scalable, efficient, and location-transparent data manner. Eclipse
Zenoh unifies data in motion, data in use, data at rest, and computations. It carefully blends
traditional pub/sub with geo-distributed storages, queries, and computations, while retaining
a level of time and space efficiency higher than the mainstream stacks.

Key features include:

Zenoh provides a small set of primitives to deal with data in motion, data at rest, and
computations. i.e. pub, sub, queriable, query.

Give total control of storage location and back-end technology integration.

Minimize network overhead — the minimal wire overhead of a data message a data
message is 5 bytes.

Support extremely constrained devices — its footprint on Arduino Uno is 300 bytes.

Supports devices with low duty-cycle by allowing the negotiation of data exchange
modes and schedules.

Provides a rich set of abstractions for distributing, querying, and storing data along the
entire system.

Provide extremely low latency and high throughput. We also provide analytical and
empirical comparison of Zenoh ’s efficiency against mainstream protocols such as DDS
and MQTT.

Make available a lower-level APl that gives full control on Zenoh primitives to the
developers.

Application

Eclipse Zenoh

/7o
ia Transport

Network

Data Link

Physical

Figure 5: Eclipse Zenoh protocol stack positioning.

17 https://github.com/eclipse-zenoh/zenoh

empyrean-horizon.eu 31/57

https://github.com/eclipse-zenoh/zenoh

D4.1 - Low-code application description, seamless deployment and analytic-friendly distributed @MPYREAN

storage

Client

Client

Client

Figure 6: Eclipse Zenoh supported topologies.

Protocol abstractions

e Resources, Key Expression, and Selectors: Zenoh operates over resources. A resource

is a (key, value) tuple, where the key is an array of arrays of characters. When
representing keys we usually use the “/” as a separator. Thus,
home/kitchen/sensor/temp is a resource’s key. A set of keys can be expressed using a
key selector, which may include * or ** represent a wildcard.

Publisher, Subscriber, and Queryable: The Zenoh protocol defines three different
kinds of network entities, publisher, subscribers, and queryables. A publisher should
be thought of as the source for resources matching key expressions. As an example, a
publisher could be defined for a key, such as home/kitchen/sensor/temp, or for a set
of keys, such as home/kitchen/sensor/* or home/kitchen/**. Symmetrically, a
subscriber should be thought, of as a sink for resources matching key expressions. As
an example, a subscriber could be defined for a key, such

as home/kitchen/sensor/temp, or for a set of keys, such as home/**/sensor/*. A
queryable should be thought of as a well for resources whose key matches a key
expression. As such a queryable for home/kitchen/** essentially promises that if
queried for keys that match this key expression it will have something to say.

Primitives: Zenoh has a very constrained number of orthogonal primitives, these are:
Declarations: these primitives, namely, declare_resource, declare publisher,

declare_subscriber, and declare_queryable allow declaring a resource, a publisher a
subscriber, and a queryable respectively.

Producing Data: the put operation is used to produce a (key, value). This operation
provides options that allow to specify the congestion control applied to it, the
associated priority, and a few other non-functional properties.

empyrean-horizon.eu 32/57

D4.1 — Low-code application description, seamless deployment and analytic-friendly distributed @MPYREAN
storage =

Deleting Data: zenoh provides a delete operation that makes it possible to indicate the
desire for a resource shall be deleted.

Query. Zenoh provides a get operation that allows to issuing of a query. This query will
be served by a set of queryable that cover, in a set-theoretical sense, the key
expression portion of the query.

The Eclipse Zenoh protocol does not impose any topological constraints on how an application
may communicate. As shown in Figure 6, Zenoh supports peer-to-peer over complete
connectivity graphs as well as over arbitrary mesh. It supports routed communication and
both routers as well as peers, can broker communication for clients. This generality allows the
developer to support a multitude of use cases and to scale the protocol at the Internet scale.
Finally, it is worth mentioning that Zenoh’s routers are software-based and can run very
efficiently on a Raspberry Pi.

At the moment of writing this deliverable, Eclipse Zenoh is in the release v1.3.0, and the API
has been stabilized. For further information please refer to the official Eclipse Foundation
Github repository?8.

4.5.1 Towards the initial prototype of Ryax/Zenoh Integration

In particular, there are several integration scenarios under evaluation between ZettaScale’s
Eclipse Zenoh and Ryax’s intelligent workflow orchestrator, as illustrated in Figure 7.

a. RPC-based Action Interconnectivity

One potential integration approach is to leverage Eclipse Zenoh as a generic Remote
Procedure Call (RPC) mechanism for interconnecting Ryax actions across distributed
orchestrators. This would enable efficient and low-latency communication between workflow
components, even across disparate locations, supporting more resilient and scalable workflow
execution.

b. Unified Data Layer via Zenoh-backed Storage

Another potential integration point lies in Zenoh’s support for cloud and object storage
systems, including the Amazon S3'° buckets or MinlO?° object storage through the Zenoh-
backend-s3% plugin, or the use of SQL-based data storage backends. This storage integration
offers a unified and efficient data abstraction layer across the edge-cloud continuum, enabling
Ryax workflows to interact seamlessly with distributed and heterogeneous data stores.

18 https://github.com/eclipse-zenohqg/zenoh

19 https://aws.amazon.com/fr/s3/

20 https://min.io/

21 https://github.com/eclipse-zenoh/zenoh-backend-s3

empyrean-horizon.eu 33/57

D4.1 - Low-code application description, seamless deployment and analytic-friendly distributed @MPYREAN
storage o

Kubernetes

Q)

P (e '
N\ ADM Mml?/SS baset’lr Kubernetes Grat
Admin file store (4 API ratana

> Runner - T
-~ > WebUI Hl Prometheus
i
User Traefikk —> Studio [T
» pper
CLI — Loki
User code
—> Repository ‘ Broker ‘
Ryax
Registry ‘
Clients Send requests J horizath ‘ :
—» Authorization Action
Builder
External 1 Store data
— sql-based
Eclipse Ve
P data storepipf
Infrastructure zenoh L 4

Figure 7: Initial prototype of Ryax and Zenoh integration architecture

Once the initial integration has been carried out, we plan to build an application that adopts
the pipes and filters programming paradigm, which consists of splitting a complex task into a
well-defined series of simple and independent processing steps called filters. While this
pattern has proven to work well when the application runs on a single and isolated machine,
forthcoming robotics, automotive, and edge computing scenarios are showing that (i)
computations will need to span across multiple locations, from an onboard vehicle and up to
the edge of the cloud, and (ii) complex and dynamic data interactions need to be taken into
account, as shown in Figure 8. Data Flow Programming (DFP) appears as a potential candidate,
since it generalizes pipes-and-filters by allowing applications to be represented as directed
graph of components, called operators, as opposed to a linear pipeline.

— Link @ Operator (o) Output Node (1) Input Node

Input K. O-}—- Output

Figure 8: A generic data-flow programming in Zenoh-flow??

v
v

22 Baldoni, G., Loudet, J., Guimardes, C., Nair, S. and Corsaro, A., 2023, October. A Data Flow Programming
Framework for 6G-Enabled Internet of Things Applications. In 2023 IEEE 9th World Forum on Internet of Things
(WF-10T) (pp. 1-8). IEEE.

empyrean-horizon.eu 34/57

D4.1 — Low-code application description, seamless deployment and analytic-friendly distributed f@MPYREAN
storage

This dataflow programming paradigm could be integrated with RYAX’s to operate complex
event-driven streaming data flows, commonly used in Industrial loT (lloT) or other
manufacturing 4.0 applications. Popular use cases usually involve collecting data from various
machine sensors in real-time, cleaning it, filtering it, injecting it into a processing algorithm,
and outputting valuable results as quickly as possible. Predictive workflows are widely used in
industrial contexts to anticipate machine failures, production peaks, or plan maintenance.
Ryax is well-suited for this kind of application. Collaborating efforts are ongoing to find the
right collaboration mechanisms in the context of EMPYREAN and the defined UCs.

4.6 Conclusions

The enhancements provided in Ryax for the multi-site support and the framework for multi-
constraint and multi-objective scheduling is now implemented and is available in the
production version since the Ryax release 24.10.0%3. The new enhancements and integrations
with Decision Engine, Service Orchestrator, Zenoh and Telemetry services in the context of
Empyrean are currently being developed and will appear in follow-up releases of Ryax.

2 https://github.com/RyaxTech/ryax-engine/releases/tag/24.10.0

empyrean-horizon.eu 35/57

D4.1 — Low-code application description, seamless deployment and analytic-friendly distributed f@MPYREAN
storage

5 Analytics-Friendly Distributed Storage

5.1 Overview and Novel Features

Beyond the object storage solution developed in T3.2, the EMPYREAN platform introduces a
second, loT-focused storage solution: the Analytics-Friendly Distributed Storage. This system
combines the cost-effectiveness and reliability of erasure-coded distributed storage with the
ability to efficiently execute queries over time-series data. To achieve this capability,
EMPYREAN is developing a novel data alignment and coding scheme.

Conventional state-of-the-art object storage systems support analytics-type workloads in a
limited fashion. During query execution, these systems typically have to load, parse, and scan
the entire objects to evaluate predicates and produce the correct results. If the objects have
a predefined schema and data is replicated, byte-level access is possible, reducing the amount
of data retrieved. However, many state-of-the-art storage systems rely on erasure coding
instead of replication, as it provides the same level of reliability with significantly less storage
overhead. To support data analytics, such storage systems have two suboptimal options:
either replicate queryable files—incurring high storage costs—or reconstruct erasure-coded
files on-the-fly during query evaluation—resulting in performance degradation and increased
data transfer. This is because erasure-coded fragments generally need to be fully decoded
even when only a small subset is required for the query.

EMPYREAN aims to advance state-of-the-art by introducing a novel storage scheme. Through
a set of judiciously designed data structures and data alignment techniques, coupled with
Random Linear Network Coding (RLNC), we avoid having to reconstruct complete files when
evaluating queries. Critically, access to individual bytes of data can be achieved with very little
to no overhead compared to replication. At the same time, we maintain the benefits of
erasure coding by leveraging the Edge Storage system’s core storage architecture.

A second significant contribution to the field will be explored in EMPYREAN: Can data be
compressed, while maintaining some level of byte-level access? To answer this question, we
have begun evaluating Generalized Data Deduplication (GDD), a special form of data
deduplication that can be effective on smaller data volumes, compared to traditional
deduplication techniques. Using deduplication to compress, instead of a traditional
compression algorithm like DEFLATE, opens up the possibility of having a deterministic
relationship between bytes in the uncompressed and compressed data. We also aim to
determine whether this technique can be applied in conjunction with erasure coding to
further enhance the system’s cost-effectiveness.

This endeavour is a part of CC’s basic research efforts. As such, it has a relatively low TRL as a
goal. Instead, we aim to establish the feasibility of the aforementioned techniques and
perform an initial evaluation of their effectiveness.

empyrean-horizon.eu 36/57

D4.1 - Low-code application description, seamless deployment and analytic-friendly distributed ?@MPYREAN
storage .

5.2 Relation to Project Objectives and KPlIs

There are two technical KPIs - T4.4 and T4.5- that pertain to the Analytics-friendly Distributed
Storage. Both require a deep scientific evaluation of the concepts involved and are driven by
the very real need to limit costs and wasted time in transferring data from cloud locations. We
seek formulas with proofs that characterize the overhead, along with hopefully minimal
constraints on the schema or the queries.

Table 1: EMPYREAN Technical KPIs related to the Analytics-friendly Distributed Storage

ID Indicator Success Criteria Objective

Ta.4 EnSt.Jre that the amount of erasure coded data i Obj.4
retrieved for a query scales linearly.

Provide an upper limit on the overhead
T4.5 | incurred, that is either constant or a linear - Obj.4
function.

The component is relevant in achieving several project objectives:

® Most of the requirements described for the Edge Storage Service.

e F_DCM.2 is directly tied to this service, describing the requirements which were used
during the design phase.

5.3 Implementation

Most of the Analytics-friendly Distributed Storage features are implemented as a module of
the Edge Storage Gateway. This component provides the public APIs and performs most of
data processing, including transformations, compression, and erasure coding. The gateway is
also in charge of distributing the erasure coded fragments to the cloud storage locations. A
detailed description of this component is available in deliverable D3.1 (M15). In order to have
byte-level access to these fragments, a set of Cloud Lambdas offers a convenient and effective
solution. The HTTP standard has a solution in the form of Range requests??, but unfortunately
cloud object storage services typically do not fully support this feature. Most only allow the
client to specify a single range of bytes to retrieve. Furthermore, the extra headers and
boundary bytes make HTTP Range requests very inefficient for this application.

24 HTTP range requests: https://developer.mozilla.org/en-US/docs/Web/HTTP/Guides/Range requests

empyrean-horizon.eu 37/57

https://developer.mozilla.org/en-US/docs/Web/HTTP/Guides/Range_requests

D4.1 — Low-code application description, seamless deployment and analytic-friendly distributed f@MPYREAN
storage

5.3.1 Components shared with the Edge Storage Service

The Analytics-friendly Distributed Storage shares its core storage functionality with the Edge
Storage Service. The Edge Storage Gateway (ESG) provides the user-facing APIs and performs
most of data processing. The additional functionality required to serve loT data queries is
provided through a separate module. The SkyFlok.com backend handles tasks such as user
management and authentication, file metadata, and storage resource management, to name
a few.

For the moment, storage locations are limited to those provided by the three largest cloud
providers: Amazon, Google, and Microsoft. It would also be possible to support edge locations,
but there is less incentive to do so as there are no transfer costs inside associations, and
connections should, generally, have high bandwidth and low latency.

5.3.1.1 Cloud Lambdas

A key difference from the Edge Storage Gateway is how data is read from the storage
locations. The ESG offers object storage semantics and thus - with the exception of HTTP
Range queries - always returns the entire object as part of an S3 GetObject request. Analytics-
related queries, on the other hand, require byte-level access to the erasure coded fragments.
To accomplish this, we introduced a set of new components on the cloud storage locations.

For each major cloud storage provider, Amazon, Google, and Microsoft, we have implemented
a FaaS component, AWS Lambda, Cloud Function and Azure Function respectively. These
lambdas are deployed in the same cloud region as the object storage services. When the ESG
requests specific bytes from the storage, it uses a standard HTTP request with a Range header,
as defined in RFC7233%°. The lambda supports the full multipart syntax, e.g., "Range: bytes=0-
50, 100-150", in contrast with the storage provider APls themselves, which either have limited
or no support of this feature. The lambdas parse the header, download the originally
requested object from the storage service and return only the requested bytes. To further
increase efficiency, the response uses a custom format, which has significantly less overhead
compared to what is defined by the HTTP standard.

The data transfer between the storage service and the lambda does not leave the region and
is, therefore, free. Thus, by only returning the typically small number of specified bytes, the
billed data egress can be significantly reduced in exchange for a small computational
overhead.

25 https://datatracker.ietf.org/doc/html/rfc7233

empyrean-horizon.eu 38/57

D4.1 — Low-code application description, seamless deployment and analytic-friendly distributed @MPYREAN
storage =

5.3.1.2 Workflows

Three separate workflows can be defined based on the time series data’s lifecycle.

To begin with, the application developer must provide a schema that defines the different
dimensions of the data, specifying the type and number of bytes required for each field.
Conceptually, this process is similar to using a Data Definition Language (DDL) in a relational
database (e.g., SQL). However, in EMPYREAN, schema definition is facilitated through a
simplified JSON-based interface, enabling intuitive and flexible specification of data layouts
suitable for time-series workloads.

STANDARD

OO

7

A 1
UPLOAD ! DOWNLOAD
: v)2
AllARA] A
ENCODE 1 I DECODE
1
1
A : |A|
ey . QUERY
: v
1
? =
L 7=
PROPOSED
B Y o T .
N N N N
UPLOAD DOWNLOAD
EEhVARE
DECODE

allal|a
ENCODE \

COMPRESS

1

%I DECOMPRESS

i
|A|
v

?1=-©

Figure 9: An illustration of the data ingest and query workflows of the Analytics-friendly Distributed Storage.
Top image shows a naive approach which retrieves the entire data during queries. Bottom image shows our
proposed schema, with byte-level access and compression.

QUERY

empyrean-horizon.eu 39/57

D4.1 - Low-code application description, seamless deployment and analytic-friendly distributed @MPYREAN
storage o

Once the schema is established, data can be stored in batches. Ideally, batches should be at
least on the order of megabytes. Smaller batches may lead to reduced performance and
increased metadata storage. This phase is conceptually equivalent to SQL INSERT operations.

After data ingestion, the data becomes available for querying. Applications may provide
filtering conditions along with a list of projected dimensions. This is equivalent to the basic
SQL SELECT operation, though many features such as aggregation or cursors are not
supported.

Figure 9 shows a schematic representation of the data ingestion and querying processes.

5.3.1.3 Results

We have conducted an initial evaluation of the system?®. The paper goes into great detail
explaining the different techniques we proposed and evaluated over several different
datasets. Figure 10 shows results for a dataset?” with 500k+ rows and several columns.

Speed Gain

60 0 © 207 1x ® 60,
66%) 2
Necessary 132%O Q Csx

@ D
(] (&7 ata
over 3 (@) g 8 @) ? transfer
downloaded 0 @) ;
dut @) reduction
ata 2 O o 4
1 5

(7.4) Intel 1ab
= A @ B @ C @@= D O~ &-TREAT (1...5) npredicates

Figure 10: An initial evaluation of our proposed technique over a representative dataset. Three metrics are
shown on the different parts of the circle. The different letters correspond to increasingly more complex
techniques. A is the naive baseline approach of retrieving the entire erasure coded object and E - TREAT is
the most complex approach which downloads only what is needed of the compressed and rearranged
dataset, while filtering out unfeasible deduplicated (compressed) base ids.

26 Francesco Taurone, Marcell Fehér, Marton Sipos, and Daniel E. Lucani. 2024. TREAT - Two wRongs makE A
righT: efficient distributed storage and queries of loT datasets with erasure coding and compression. In
Proceedings of the 18th ACM International Conference on Distributed and Event-based Systems (DEBS '24).
Association for Computing Machinery, New York, NY, USA, 147-158. https://doi.org/10.1145/3629104.3666039
2 Berkeley Research Lab. 2004. Intel Berkeley Research Lab Sensor Data.
https://db.csail.mit.edu/labdata/labdata.html

empyrean-horizon.eu 40/57

https://doi.org/10.1145/3629104.3666039
https://db.csail.mit.edu/labdata/labdata.html

D4.1 — Low-code application description, seamless deployment and analytic-friendly distributed f@MPYREAN
storage

A is the naive baseline approach of retrieving the entire erasure coded object and E - TREAT is
the most complex approach which downloads only what is needed of the compressed and
rearranged dataset, while filtering out unfeasible deduplicated (compressed) base ids.

The main goal of making queries cost-efficient is best achieved with the most complex
technique, both in terms of the absolute data transfer reduction and the relative query
efficiency (shown as necessary over downloaded data on the figure and expressing the
overhead of fetching ‘unneeded’ data). In terms of the speed gain that can be expected, the
picture is less clear as the added complexity can lead to worse performance. The paper
performs the evaluation over five different datasets and goes into details on each of the
proposed techniques.

5.4 Public APIs

The Analytics-friendly Distributed Storage will provide three separate APls, each tied to the
lifecycle of the data:

Schema definition API

Each dataset that is to be stored needs to have a well-defined schema that specifies the
dimensions of the data, as well as the type and size of each dimension. This will likely be
provided by the user as a JSON file. We have previously implemented a more complex API to
manage schemas, but for the moment at least, it is superfluous, when considering the
project’s objectives.

Data ingest API

Uploading data will likely be handled using a simple REST API. Applications must also specify
the dataset to which they are uploading data.

Query API

Data retrieval will happen using queries, not too dissimilar to SQL SELECT statements.
Applications will use a REST API, specifying: (i) the queried dataset, (ii) filtering conditions,
such as the dimensions, comparison values and relationship between the conditions, and (iii)
the projected dimensions that will make up the result set.

5.5 Integration with EMPYREAN Platform services

The Analytics-friendly Distributed Storage is implemented through the Edge Storage Service,
described in Deliverable 3.1 (M15), submitted concurrently with the current document. The
two offer substantially different services to EMPYREAN applications, reflected in their
respective APls. However, the core storage layer is shared, bringing the core benefits such as
hybrid storage defined using storage policies and erasure coding to both.

empyrean-horizon.eu 41/57

D4.1 — Low-code application description, seamless deployment and analytic-friendly distributed f@MPYREAN
storage

5.6 Relation to use cases

The Analytics-friendly Distributed Storage provides a way for the three use cases to cost-
effectively store time series data. By erasure coding and compressing data, it can be stored
reliably, with high availability over a long period of time. Subsequently, when analytics
workloads need to be run on the accumulated data to evaluate different queries, parts of the
time series can be retrieved with relatively little overhead, without the need to decode and
decompress the entire series or entire erasure coded blocks in advance. This provides a clear
advantage over current systems, where application designers must choose between having
the cost, availability and reliability benefits of erasure coding and query efficiency.

UC1 - Anomaly Detection in Robotic Machining Cells

The first use case stores measurements from machining equipment as time series data.
Processes try to detect anomalous events based on this data in order to determine when a
machine component has reached the end of its lifetime and must be replaced. The accuracy
of this process is paramount, as machining objects with defective/worn out tools carries a
heavy financial cost. One possible way the Analytics-friendly Distributed Storage can further
enhance this process is by reliably storing the data over a long period of time. When a new
type of anomaly is found, previously stored data can be queried to ascertain whether the
event had happened before. Following this, measurements surrounding these past events can
be retrieved efficiently.

UC2 - Proximal Sensing in Agriculture Fields

The second use case stores different types of information regarding the state of agricultural
fields. Measurements like soil organic carbon levels are performed over a span of several years
and thus should be stored reliably and cost-efficiently. When the need arises to present trends
across seasons and different years, the data can be queried efficiently using the Analytics-
friendly Distributed Storage. With a well-defined schema, only the dimensions that are
relevant to the analysis need be retrieved. There is no need to know which of the dimensions
will be relevant at the time of data ingest.

Another option is to train machine learning models from the measurement datasets. For
example, following an initial analysis on which dimensions are most important (e.g., using
Principal Component Analysis), the input to the model can be queried, projecting only the
dimensions with the greatest weights. Similarly, if the need arises to train a model based only
on the parts of the dataset that meet some criteria (e.g. only when temperatures are above a
certain threshold), then these parts can be efficiently retrieved by setting the appropriate
filter.

empyrean-horizon.eu 42/57

D4.1 — Low-code application description, seamless deployment and analytic-friendly distributed f@MPYREAN
storage

6 Action Packaging

6.1 Introduction

EMPYREAN leverages the Nix?® functional package manager as a foundational component of
its unified action packaging tool. This approach enables a declarative and reproducible process
for building lightweight, OCl-compliant containers, ensuring consistency across diverse
environments.

The EMPYREAN action packaging tool, which is part of Ryax Workflow Engine, has been
significantly enhanced with various new features to support seamless packaging of diverse
workloads. Key enhancements include: (i) support for multiple architectures, extending
beyond x86 architectures to include arm64, thus enabling deployment across a broader range
of edge and embedded platform, (ii) improved reproducibility through finer-grained control
over environment dependencies, and (iii) tight integration with NUBIS’ unikernel builder,
enabling packaging of microservices, serverless functions, and even loT firmware into OCI-
compatible images.

These enhancements promote architecture-agnostic deployment across the edge-cloud
continuum and support a modular, flexible application design in polyglot environments.

6.2 Background

The action packaging tool has been implemented as part of the Ryax Workflow Engine,
supporting the packaging of actions in several languages. The initial focus was on Python3,
NodelS, and C#. Within Ryax, an action or a trigger requires at least two files: (i) the python
code in a .py file, and (ii) the Ryax metadata file: ryax_metadata.yaml.

If the action has external dependencies, such as PyPi packages or anything outside the Python
standard library (e.g., pandas, TensorFlow), these must be listed in a standard
requirements.txt file. Each dependency should appear on a separate line in plain text. To
specify the Python version, the ryax metadata.yaml! file should include the filed
spec.option.python.version, following the format major.minor (e.g., 3.11). The action
packaging tool automatically looks for a requirements.txt file at the root of the action
directory. This file informs the tool about the external Python libraries needed to properly
package and execute the user’s code. An action description requires the inclusion of a
ryax_metadata.yaml file at the root of the action directory. This file provides a high-level
definition of the action, including its inputs and outputs. It follows the YAML format and must
conform to the schema expected by the Ryax Workflow Engine.

28 https://nixos.org

empyrean-horizon.eu 43/57

D4.1 - Low-code application description, seamless deployment and analytic-friendly distributed @MPYREAN
storage o

Below is an example of a basic ryax_metadata.yaml file:

apiVersion: "ryax.tech/v2.8"
kind: Processor
spec:
id: tfdetection
human_name: Tag objects
description: "Tag detected objects on images using Tensorflow”
type: python3
version: "1.0"
logo: mylogo.png
resources:
cpu: 2
memory: 4G
dependencies:
- opencv
inputs:
- help: Model used to tag the images
human_name: Model name
name: model
type: enum
enum_values:
- ssdlite_mobilenet_v2_coco_2018_05_09
- mask_rcnn_inception_v2_coco_2018_01_28
default_value: ssdlite_mobilenet_v2_coco_2018_65_69
help: An image to be tagged; in any format accepted by OpenCV
human_name: Image
name: image
type: file
outputs:
- help: Path of the tagged image
human_name: Tagged image
name: tagged_image
type: file

Below is the reference definition of each field in the ryax_metadata.yaml file:

e kind: to tell the kind of the action: accepted values are Trigger, Processor, Publisher
e id: unique name of the action (must contains only alphanumeric characters and dash)

e version: unique version of the action (must contains only alphanumeric characters
and dash)

® human_name: a short name, readable by a human
e description: a description of the action

e type: the programming language. Supported values are: python3, python3-cuda,
nodejs, csharp-dotnet6

empyrean-horizon.eu 44/57

D4.1 - Low-code application description, seamless deployment and analytic-friendly distributed @MPYREAN
storage o

e |ogo (optional): a relative path to a logo file
® resources: to set the amount of resources that your Action will ask by default
o0 cpu (float): the number of cpu core (can be a fraction of cpu, i.e 0.5)
o memory (string | int): the amount of memory in bytes. Allowed units are
(K,M,G,T)
O time (string | int): the maximum time in seconds that should be allocated to
the action execution before it is cancelled. Allowed units are (s,m,h,d)
o gpu (int): the number of GPU

e dependencies (optional list(string)): list of packages to add to your Action’s
environment (See above for more details)

e categories (optional list(string)): list of labels to be added to your action. This is only
used as metadata (e.g. filtering in the dashboard)

e dynamic_outputs (boolean): optional, and only for advanced usage. (default to false).
Only triggers may have dynamic outputs. This is useful in some cases such as when
using an online form which can be filled out, to trigger workflows. This feature allows
for the reuse of all the code for that trigger, while also allowing users to re-define the
fields on that form in different workflow

e inputs: list of inputs values injected in the action context:

O name: the name of your variable in your code. Is must not contain spaces or
special characters except for . The input dict of you handler contains an
entry with this name

human_name: a human readable name
help: describes your variable usage
type: the action |0 types. See the following table

optional: whether your 10 is optional or not. If true it will accept a None value

O O O O O

enum_values (Only for enum type): a list of values accepted by your enum
o default_value (Optional and only for inputs): give a default value for this input

e outputs: list of outputs returned by the action. Uses the same format as inputs

6.3 Ryax Types

Each input and output declared in ryax_metadata.yaml must specify a type, chosen from the
supported types that are listed in Table 2.

empyrean-horizon.eu 45/57

D4.1 - Low-code application description, seamless deployment and analytic-friendly distributed '@MPYREAN
storage o

Table 2: Available input and output types in Ryax Actions

Type Description
string String of characters
longstring Use for long text (Larger Ul inputs)
password String hidden on the Ul
integer 64-bit integer
float floating-point number
boolean True of False
enum Enumeration with a list of possible values
file File (imported and exported by Ryax)
directory Directory containing a set of files (imported and exported by Ryax)

Ones the action is built, Ryax executes it by importing a Python module and running a specific
function within it.

Depending on the kind of the action, two different filenames are used:

e ryax_run.py for triggers
e ryax_handler.py for all other actions

When creating an action, Ryax copies all the files located in the action directory. This means
that if the code is split across multiple Python files or includes resource files, they will be
copied into the action.

If the action has non-python dependencies (called “binary dependencies”), these can be
declared in the dependencies field of the ryax_metadata.yaml file. Ryax uses the Nix package
manager to install these binary dependencies. Users can search for available packages and
supported versions using the nixpkgs?® search tool.

For example, to add git and opencv to an action, users may add:

spec:
dependencies:

- git
- opencv

2 https://search.nixos.org/packages

empyrean-horizon.eu 46/57

D4.1 - Low-code application description, seamless deployment and analytic-friendly distributed @MPYREAN
storage o

6.4 EMPYREAN Developments

6.4.1 Finer dependencies control

One of the key enhancements implemented in the context of EMPYREAN is the improved
control over dependency management during the packaging process. In this context, we have
enhanced the action packaging tool to enable the declaration of NIX packages and overlays to
be used for the particular environment.

As part of this enhancement, users can now define the version of nixpkgs repository to be
used by specifying the field spec.options.nixpkgs.version in the ryax_metadata.yaml file. The
value can be either a branch name, a tag or a specific commit SHA from the nixpkgs repository.
For example, to use the unstable branch of nixgpks3°, the configuration would look like:

spec:
options:

nixpkgs:
version: nixos-unstable

In cases where users need to customize some packages or include new ones not available in
the nixpkgs repository, Ryax supports the definition of Nix Overlays. To do so, users need to
create an overlays.nix file in the action directory. This file will be automatically detected and
loaded during the build process, and added to the action environment. To ensure these
custom packages are available in the action environment, users have to add them in the binary
dependency list of the ryax_metadata.yaml file.

For example, if an action requires opencv with Tesseract support enabled, users can define
the overlays.nix file to customize the action packaging accordingly:

(self: super: {

opencvWithTesseract = self.opencv.override { enableTesseract = true; };

1)
]

And in the ryax_metadata.yaml.

spec:

dependencies:
- opencvWithTesseract

30 The website https://lazama.co.uk/nix-versions helps you find the nixpkgs version that contains the version of
a package.

empyrean-horizon.eu 47/57

https://lazamar.co.uk/nix-versions/
https://lazamar.co.uk/nix-versions/

D4.1 — Low-code application description, seamless deployment and analytic-friendly distributed @MPYREAN
storage =

6.4.2 Reproducibility of building process

When building a Ryax action, the dependencies used are specific to the time of building.
Without proper version tracking, rebuilding the same action at a later time might pull different
versions of these dependencies, which can lead to breaking changes and development issues.

To solve this, Ryax automatically generates a lockfile during the build process. This lockfile
captures the complete build environment, ensuring full reproducibility. It includes:

e Python version used
e Versions of all Python dependencies
e Nixpkgs version, and dependencies

e Action version

This lockfile can be committed with the action code and will be used in future builds to ensure
that the exact same environment is reproduced.

The first time an action is built, it has no lockfile. To generate it, users need to initiate a build
via the web application, in the Library section. Once the action build is complete, users can
display its information on the library page (Figure 11). To view the lockfile and action details,
users have to navigate to the Library page and click on the corresponding action image in the
right-hand panel.

3)1@ rgox Dashboard Library Monitoring userl ¥

Action library O | Add

Repositories

directory | - of a file

. . Cat . Emit
H Archive a % content Every

MName Repository URL Actions state X _ with Stop
Archive a dir Get the cont N Create a new..
https:/gitlab.com/adfaure/default- W= 2@
actions.git 0 0®

Figure 11: View of the action library featuring the available built actions

The lockfile will be named ryax_lock.json and by clicking on it we can display the lockfile
content of the build (Figure 12).

empyrean-horizon.eu 48/57

D4.1 - Low-code application description, seamless deployment and analytic-friendly distributed @MPYREAN
storage o

Action "Archive a directory"

Archive a directory n Inputs

Reference name Display name Type Help
Action ID
9ecc7cb-7a56-446d-a7f6-d878bc0BBI2b director Director

directory Directo

Versions (1)
Ouputs
Reference name
Description
Archive a directory into a zip file

Kind

Publizher

Categories
Default Actions Content & Fles | Action

Resources

cPU No request

Output Lockfile:

fal alle

Figure 12: Example of a specific action’s details mentioning info such as inputs, outputs, versions and lockfile

The lockfile looks like this:

"actionNix": "63dacbh46bf939521bdc93981b4cbb7ech58427a0",
"actionNixOriginal": "",

"nixpkgsPython": "7c550bca7e6cf95898e32eb2173efe7ebb447460",
"python": {

"lockedRequirements" :)

"originalRequirements":)
"pythonVersion": "3.11.9",

"pythonVersionOriginal":

o
"wrapperRevision": "8ec851e39a3355831a8c24df8e397ca40b1b7666"

empyrean-horizon.eu 49/57

D4.1 - Low-code application description, seamless deployment and analytic-friendly distributed @MPYREAN
storage o

When the user needs to use the action for a different instance, the generated lockfile should
be committed to the action’s folder, under the name ryax_lock.json, with the content
obtained from the previous section. During repository scanning on the web interface, the
lockfile will be automatically detected as part of the action. To confirm successful detection,
users can navigate to the repository page of the action, where the presence of the lock file will
be visible, as depicted in the image below.

SJIQ rgOX Dashboard Library Monitorin userl ¥

[< oo |

https://gitlab.com/adfaure/default-actions.git

Scanned Bult Bullding Lastscan: 19 hours ago D
— Cat content of a file =t
actions/catfilefryax_metadata yaml
Scan for commit f094e9744527a2 lelaOcfd580 File name: catfile

i) Version: 1.0.0
Archive a directory

dir-archive Language: python3

Description: Get the content of a file and put in the output of this action, as a

Cat content of a file string.

catfile

Lockfile: ryax_Lock json (Hide)

Figure 13: Example of an action with a lockfile ready to be built

While lockfiles ensure reproducible builds, they do not override the dependencies defined in
the ryax_metadata.yaml (see here3! for details). When a user rebuilds an action, Ryax follows
these steps: (1) compares the current dependencies with those captured in the existing
lockfile, (2) identifies any differences between the two, and (3) updates the lockfile to reflect
the new specifications.

For example, if the lockfile specifies Python 3.9 but ryax_metadata.yaml specifies Python 3.12
(spec.options.python.version), then the build will use Python 3.12 and a new lockfile will be
generated reflecting this change.

Moreover, in case one or several fields are not specified, default values will be used and will
show in the resulting lockfile.

31 https://docs.ryax.tech/reference/action_python3.html

empyrean-horizon.eu 50/57

https://docs.ryax.tech/reference/action_python3.html

D4.1 — Low-code application description, seamless deployment and analytic-friendly distributed f@MPYREAN
storage

6.4.3 Multi-architecture support

Supporting multiple CPU architectures within EMPYREAN Associations and Ryax workflows
requires a strategy for building and distributing architecture-specific images. The standard
approach involves creating one OCl-compatible image per architecture (e.g., x86_64, ARM64),
and then pushing these images to a container registry under a common manifest. This
manifest serves as a reference point, allowing the runtime environment to automatically
select the appropriate image based on the node’s architecture.

While cross-building images at the wrapper level is relatively straightforward, similar to what
is done in Cl pipelines, integrating this functionality directly into the Action Builder component
presents more complex challenges. Cross-compilation within the Action Builder requires
support for binfmt_misc, which allows execution of binaries compiled for different
architectures. However, this capability must be enabled at the host level, and involves
installing and configuring gemu-user-static and binfmt-support. This setup is not typically
feasible in most managed Kubernetes environments due to restrictions on modifying host
configurations.

To overcome these limitations, one potential solution is to deploy a dedicated Action Builder
service for each architecture present in the cluster. Each service would handle native builds
for its specific architecture. While this ensures compatibility and build correctness, it
introduces synchronization complexity. In particular, a coordination mechanism is required
during assembling and pushing a unified multi-architecture image manifest. One of the
builders must eventually aggregate the results and push the manifest, and without careful
orchestration this can lead to race conditions and added complexity.

A more scalable and secure alternative leverages Nix’s remote build capabilities. In this model,
a single centralized Ryax Action Builder service coordinates the build processes but delegates
actual compilation to remote Nix builders deployed on nodes with the appropriate hardware
architectures. This setup provides several key benefits:

e Parallelized native builds across architectures, improving build efficiency and reducing
total build time.

e Decoupling of build orchestration logic from underlying hardware, increasing
deployment flexibility and maintainability.

e Enhanced security and scalability, since the main Action Builder can operate in a
minimal, isolated environment while offloading potentially untrusted or resource-
intensive builds to remote workers.

By leveraging these advanced capabilities of Nix, EMPYREAN establishes a robust,
maintainable, and future-proof mechanism for supporting heterogeneous infrastructure
across the edge-cloud continuum.

empyrean-horizon.eu 51/57

D4.1 - Low-code application description, seamless deployment and analytic-friendly distributed @MPYREAN
storage o

Towards the goal of supporting multi-architecture builds, development of this feature has
already begun. At the time of writing this report, the feature is advanced and the action
packaging tool has the ability to build successfully containers in different architectures (x86 or
arm64). Tis is achieved by moving the Action Builder microservice to a node that matches the
target architecture.

Currently, this feature is in experimental mode. It requires manual intervention from the
system administrator of the action packaging tool to move the Action Builder microservice to
the appropriate architecture. Despite this limitation, the system can already seamlessly build
and produce valid architecture-specific images, on x86 or arm64, from the same code. This
makes the feature usable in production environments, provided it is set by default on one
architecture from the beginning. Our next objective is to eliminate the need for manual
intervention and make this capability completely transparent to end-users. This will be
achieved by following the architecture previously outlined, which includes support for
automatic delegation to remote Nix builders based on architecture requirements.

Figure 14 shows a screenshot of an action built through the packaging tool of Ryax as part of
the actions’ repository, featuring in the left the availability of different versions arm64 and
x86.

o 8 el wfa 59 L ¢
\“J ryax e
Action "Detect patterns in agriculture images"

Detect patterns in agriculture images Inputs

e
i
P

Action ID
76693d13-bdB3-4606-a733-d6cd33e136a2 input_image nput_image

Versions. (4)

0.0.3-armé4
0.0.4 mages fram agriculture,
0.0.3-arm64

003 Refarence name Display name Type Help

Time [before the action is killed) Mo request

Output Lockfile:

Figure 14: Action with versions of the same code in both x86 and arm64 architectures

empyrean-horizon.eu 52/57

D4.1 — Low-code application description, seamless deployment and analytic-friendly distributed f@MPYREAN
storage

7 Unikernels Builder

7.1 Introduction

Traditional deployment models in cloud-native environments assume POSIX-like containers
and standardized runtime environments. While this suits many applications, it introduces
significant overhead for lightweight, single-purpose workloads such as network services or
low-level functions. The Unikernels Builder, developed under the project codename Bunny,
introduces a minimalistic and high-performance framework for deploying cloud-native
workloads as unikernel images. This system responds directly to EMPYREAN’s objective of
delivering secure, lightweight, and scalable application deployments across the loT-edge-
cloud continuum. Unlike traditional POSIX containers, which incur runtime and security
overheads, unikernels are compiled into single-purpose bootable VM images with no
userland, shell, or external dependencies.

Bunny facilitates this process through a fully integrated toolchain that automates the build,
packaging, publishing, and deployment of unikernel applications. It adopts OCl-compatible
packaging to ensure seamless compatibility with container registries while leveraging
orchestration engines like Kubernetes through urunc (a unikernel-friendly container
runtime). This enables the execution of unikernels alongside traditional workloads using
common DevOps pipelines.

Through Bunny, EMPYREAN gains a flexible, composable deployment method that drastically
reduces memory usage, boot time, and attack surface—critical features for edge and
embedded devices operating in sensitive environments.

7.2 Lightweight Environment Packaging with Bunny

As part of the EMPYREAN platform’s efforts to support novel deployment models, Bunny
bridges the gap between existing container ecosystems and emerging unikernel-based
runtimes. Bunny is designed to streamline the process of building, packaging, and deploying
unikernels, enabling transparent integration with CI/CD pipelines and container registries. The
toolchain focuses on high reproducibility, minimal developer overhead, and seamless
orchestration integration (e.g., Kubernetes) while taking advantage of the efficiency and
isolation provided by unikernels.

Prior tools like Unikraft3? and Mirage0S3? have introduced unikernel build systems, but lack
native integration with cloud-native infrastructure and lifecycle tooling. Systems such as OSv3*
attempted POSIX compatibility in VM-based lightweight OSes but incurred extra complexity.

32 https://unikraft.org
33 https://mirage.io
34 https://osv.io

empyrean-horizon.eu 53/57

https://unikraft.org/
https://mirage.io/
http://osv.io/

D4.1 — Low-code application description, seamless deployment and analytic-friendly distributed @MPYREAN

storage

Bunny instead adopts a streamlined approach, tailored to the needs of minimalistic
applications and cloud deployment constraints.

The Bunny toolchain introduces several innovations aimed at addressing the unikernel
packaging gap:

OCl-compatible Unikernel Packaging: Bunny packages unikernels in OCl-compliant
container images, allowing them to be pushed to standard container registries and
executed using compatible runtimes (e.g., urunc).

Unikernel Build Automation: Provides a declarative, reproducible build pipeline that
integrates with modern GitOps workflows and cloud-native Cl/CD systems.

Minimal Runtime Metadata: Bunny strips container metadata down to essentials,
replacing filesystem-based resources with static linking and memory-mapped assets.
This approach drastically reduces the attack surface and boot latency.

Boot as Main: Follows the “boot = main” philosophy, packaging applications as
bootable VMs where the unikernel is the application.

Orchestration-Aware: Compatible with orchestration layers like Knative®®, enabling
on-demand execution and scale-to-zero for unikernel workloads.

7.3 Relation to Project Objectives and KPI

The Bunny toolchain directly contributes to EMPYREAN'’s objective of redefining workload
deployment models across the loT-Edge-Cloud continuum. The lightweight unikernel
execution model is ideal for compute-constrained environments and latency-sensitive
services. Bunny’s contribution is most closely aligned with the KPIs in the following table.

T5.1

T5.2

T4.3

T5.5

Table 3: EMPYREAN Technical KPIs related to the Unikernels Builder

Indicator Success Criteria Objective
Reduce the development time of continuum- >20% decrease Obi5
native applications compared to SotA).

Number of supported hardware architectures for

seamless deployment of an application. >3 Obj.5

Reduce memory and space required for deploying 570% decrease of
(o]

app!lcatlon in resource-constrained loT/Edge T — Obj.5
devices.
Reduce memory and storage overhead for function | >30% reduction over Obj.5

workloads container baseline

35 https://knative.dev/docs/

empyrean-horizon.eu 54/57

D4.1 - Low-code application description, seamless deployment and analytic-friendly distributed f@MPYREAN

storage

7.4 Implementation

7.4.1 Internal architecture

The Bunny system is composed of the following core modules, each designed to streamline
the process of building, packaging, and deploying unikernel-based applications:

Bunny Builder: A modular build system comprising a set of rules and templates
(currently based on Unikraft) that transforms minimal application logic into a
lightweight, bootable unikernel image.

Bunny Packager: Wraps the generated unikernel binary into a minimal Open Container
Initiative (OCI) image, ensuring compatibility with urunc and other containerd-based
container runtimes.

Bunny Publisher: Handles image distribution by pushes the packaged unikernel image
to a container registry (e.g., GitHub Container Registry), using standard tools such as
docker push or oras®®.

Bunny Deploy Helper: Facilitates deployment by generating the required manifests
(e.g., Knative Service YAML descriptions), which reference the packaged unikernel
images and can be directly applied to Kubernetes clusters.

7.4.2 Workflows

The Bunny toolchain adheres to a structured lifecycle consisting of four key phases:

1.

2.

3.
4.

Build Phase: The application source code is compiled into a standalone unikernel
binary using Bunny’s predefined build recipes.

Package Phase: The resulting binary is encapsulated into a lightweight OCl-compliant
image containing only the essential bootloader and metadata required for runtime
execution.

Publish Phase: The packaged image is pushed to a standard container registry.

Deploy Phase: Deployment descriptors (e.g., Kubernetes Custom Resource
Definitions) reference the unikernel image, enabling orchestration engines to
seamlessly pull and run the unikernel on demand.

Compared to minimal Linux-based containers, Bunny unikernel packages offer significantly
smaller image footprints and faster startup times, while providing enhanced isolation
guarantees due to the complete absence of userland components, shell access, and traditional
operating system services.

36 https://oras.land

empyrean-horizon.eu 55/57

D4.1 — Low-code application description, seamless deployment and analytic-friendly distributed f@MPYREAN
storage

7.5 Public APIs and Integration

7.5.1 APIs

Bunny does not expose runtime APIs, but integrates with DevOps tooling:

e CLI Commands: bunny build, bunny package, bunny push, bunny deploy
e CI/CD Integration: GitHub Actions or GitLab Cl with YAML snippets

e Registry Support: Works with docker, oras, and nerdctl-compatible registries

7.5.2 Integration with EMPYREAN Platform Services

Bunny integrates with the EMPYREAN orchestration stack through urunc, a lightweight
unikernel runtime designed interface with containerd and Kubernetes. This integration
enables EMPYREAN users to develop and deploy bootable unikernel-based images using
standard container workflows, treating them as regular OCI containers. As a result, it ensures
smooth and consistent deployment across hybrid environments, supporting a mix of
traditional containerized services and high-performance unikernel workloads with minimal
adaptation.

7.6 Relation to Use Cases

The Bunny toolchain facilitates rapid deployment and high-density execution of isolated
functions and microservices, fully aligned with the needs of all three EMPYREAN use cases:

e UC1 - Anomaly Detection in Robotic Machining Cells: Bunny enables the deployment
of trusted control logic and lightweight monitoring agents as unikernels with minimal
runtime overhead, significantly reducing the system's attack surface and enhancing
overall security.

e UC2 - Proximal Sensing in Agriculture Fields: Through the use of minimal unikernel-
based agents, Bunny allows for local processing of sensor data directly at the edge.
This improves data locality, reduces communication latency, and minimizes the risk of
sensitive data leakage to external entities.

empyrean-horizon.eu 56/57

D4.1 — Low-code application description, seamless deployment and analytic-friendly distributed f@MPYREAN
storage

8 Conclusions

The deliverable outlines how the technical outcomes of Tasks 4.2 and 4.3 play a key role in
providing (i) enhanced tools for the workflow-based design and low-code description of hyper-
distributed applications, (ii) novel application packaging, software delivery and deployment
framework, and (iii) analytics-friendly distributed storage solution for loT data. It provides a
detailed description of each component’s implementation, highlighting critical design
decisions, internal architecture, and public APIs. Furthermore, it demonstrates the relevance
of each component by mapping them to the project’s requirements, KPIs, and use cases.

To achieve the goals of Work Package 4, and ultimately those of the broader EMPYREAN
project, these components implement a wide range of features, many of which are directly
exposed to EMPYREAN application developers and operators. This deliverable presents
mechanisms for:

e Enabling low-code, multi-site workflow orchestration with support for user-defined
constraints and hybrid edge-cloud deployments through the Ryax workflow engine.

e proposing a unified data communication layer introduced through Zenoh, supporting
efficient pub/sub, distributed storage access, and computation across geo-distributed
systems.

e novel coding and alignment techniques to enable efficient query execution directly on
erasure-coded, time-series data without full reconstruction through the analytics-
friendly distributed storage.

e contributing a reproducible and architecture-agnostic packaging system using NIX and
OCI standards, brought with Ryax action packaging, supporting a broad range of
workloads and plans for integration with unikernel building.

e introducing a minimal, OCl-compliant toolchain to compile and deploy secure,
lightweight unikernel applications tailored for the loT-edge-cloud continuum.

In the next phase of Tasks 4.2 and 4.3, efforts will focus on finalizing the development of each
component in alighment with the initial plans, and progressing with their integration to
compose a unified EMPYREAN platform. Additionally, each component will contribute to
validating the achievement of the project’s technical goals and the attainment of its KPI
targets. Importantly, the outcomes of WP4 will remain central to the project’s progression,
directly supporting the activities in Work Packages 5 and 6.

empyrean-horizon.eu 57/57

