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Abstract: Deliverable D4.2 presents the key outcomes of the activities that took place in the 

context of Task 4.1 “Cyber Threat Intelligence, Intelligent Resource Management, and Energy 

Efficiency” and Task 4.4 “EMPYREAN Aggregator, Autonomous Management and Monitoring” 

during the first iteration of the incremental implementation plan (M04-M15). These tasks 

focus on the design and development of critical components within the EMPYREAN platform, 

including: (i) cyber threat intelligence through advanced mechanisms for detecting, analyzing, 

and mitigating cybersecurity threats within the EMPYREAN platform; (ii) intelligent resource 

management algorithms for optimizing resource allocation across heterogeneous edge-cloud 

environments, improving efficiency, performance, and resilience; (iii) the EMPYREAN 

Aggregator, a framework enabling autonomous management, monitoring, and data-driven 

decision-making within and across the EMPYREAN Associations;  and (iv) the EMPYREAN 

Registry, a unified system for registering, cataloging, and managing resources, services, and 

Associations within the EMPYREAN ecosystem.  

The deliverable details the methodologies, architectural designs, and initial implementation 

results achieved in these domains. It lays a solid foundation for further advancements and 

refinements in subsequent iterations, driving the evolution of EMPYREAN’s cyber-resilient, 

intelligent, and self-adaptive computing infrastructure. 

 

Keywords: Edge Cloud Continuum, EMPYREAN Platform, EMPYREAN Components, 

Associations, Cognitive Orchestration, Cyber Threat Intelligence, Resource Orchestration, 

Multi-Objective Optimization, Telemetry Service 
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1 Executive Summary 

EMPYREAN seamlessly integrates IoT devices, robotic systems, and computational resources 

into collaborative, dynamic collectives, the Associations. This Association-based continuum 

forms an autonomous and interconnected ecosystem designed to support hyper-distributed 

applications. At the core of EMPYREAN’s platform lies an AI-enabled control and management 

plane, which enables efficient and adaptive operations by optimizing resource utilization, 

system performance, and resiliency across Associations.  

Deliverable 4.2 documents the progress achieved during the first implementation cycle (M4-

M15), specifically focusing on the work carried out in two of the four tasks within WP4. These 

tasks are dedicated to the implementation of intelligent resource management algorithms, 

the development of novel cyber threat intelligence mechanisms, along with the design and 

development of core orchestration and management services. 

The document is organized into nine key chapters, each detailing a major building block of the 

EMPYREAN framework. Section 3 outlines the overall architecture and highlights the 

components relevant to this deliverable. Section 4 describes how these components 

interoperate to support cross-layer orchestration, intelligent management, cyber threat 

intelligence, and distributed coordination. Section 5 details the strategies and mechanisms 

developed for intelligent resource allocation and dynamic workload balancing across 

heterogeneous infrastructures. Section 6 presents the development of the Decision Engine, 

which provides decision-making capabilities within the EMPYREAN platform. Section 7 

elaborates on the cyber threat intelligence capabilities developed to ensure resilience and 

trustworthiness, focusing on intrusion detection, behavioral analysis, and automated 

response mechanisms. Section 8 describes the Service Orchestrator, which governs service 

lifecycle management, deployment placement, and elastic adaptation in Associations. Section 

9 presents the Telemetry Service, responsible for collecting, filtering, and processing 

performance and operational data to support both real-time responsiveness and long-term 

system optimization. Section 10 and 11 cover the EMPYREAN Aggregator and EMPYREAN 

Registry, two critical components of the control and management plane. They manage the 

operations of the Association-based continuum, maintain system-wide awareness, and enable 

secure, scalable, and transparent service discovery and deployment. 

The developments described in this deliverable are key contributors to the initial release of 

the EMPYREAN platform. Furthermore, the developed mechanisms play a significant role in 

supporting the initial implementations of EMPYREAN’s use cases, which will be detailed in 

D5.1 “Use cases technological developments” (M18). As the project advances, these 

foundational developments will be iteratively refined and based on feedback gained through 

ongoing integration activities. The final version of these mechanisms will be presented in D4.3 

“Final report on decentralized intelligence, application development and deployment” (M26).  
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2 Introduction 

2.1 Purpose of this document 
 

Deliverable D4.2 presents the outcomes of Task 4.1 “Cyber Threat Intelligence, Intelligent 

Resource Management and Energy Efficiency” and Task 4.4 “EMPYREAN Aggregator, 

Autonomous Management and Monitoring Fabric”, as part of the first iteration of the 

incremental implementation plan (M04-M15). T4.1 relates to the development of novel multi-

agent and multi-objective algorithms for resource allocation and service orchestration, 

alongside advanced cyber threat intelligence mechanisms. These solutions aim to enable 

collaborative autonomy, cognitive operation, and secure operation within the EMPYREAN 

platform. T4.4 focuses on developing mechanisms that support the cognitive, cooperative, 

and autonomous management of the Association-based continuum, also promoting self-

driven adaptability.  

The objective of D4.2 is to build on the final architecture of the EMPYREAN platform, as 

outlined in deliverable D2.3 (M12), towards the provision of the initial release of the 

EMPYREAN orchestration and decision-making mechanisms (i.e., Service Orchestrator, 

EMPYREAN Controller, Decision Engine), advanced cyber threat intelligence service (i.e., CTI 

Engine), resource allocation algorithms, association management mechanisms (i.e., 

EMPYREAN Aggregator, EMPYREAN Registry), and telemetry mechanisms (i.e., Telemetry 

Engine, Monitoring Probes, Persistent Monitoring Data Storage). 

D4.3 “Final report on decentralized intelligence, application development and deployment” in 

M26 will present the final release of the EMPYREAN components and mechanisms that are 

developed in the context of T4.1 and T4.4. 

 

2.2 Document Structure 
 

The present deliverable is split into nine major chapters: 

• EMPYREAN Architecture Mapping 

• EMPYREAN Platform 

• Intelligent Resource Management 

• Decision Engine 

• Cyber Threat Intelligence 

• Service Orchestrator 

• Telemetry Service 

• EMPYREAN Aggregator 

• EMPYREAN Registry 
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2.3 Audience 
This document is publicly available and intended for anyone interested in the initial 

description of the EMPYREAN mechanisms related to cyber threat intelligence, intelligent 

workload allocation and resource management, telemetry service, autonomous management 

of EMPYREAN Associations, and service orchestration and application deployment 

mechanisms within and across Associations. Additionally, it serves as a valuable resource for 

the general public, providing insights into the design and implementation of the above core 

mechanisms, as well as their role in addressing the requirements of the project’s use cases. 
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3 EMPYREAN Architecture Mapping 

The EMPYREAN architecture was first introduced in deliverable D2.2 "Initial Release of 

EMPYREAN Architecture" (M07), and later refined in its final version in D2.3 " Final EMPYREAN 

architecture, use cases analysis and KPIs" (M12). This refinement incorporated key insights 

gained from the initial implementation phase. D2.3 provides a comprehensive overview of the 

architecture, detailing the EMPYREAN components, their interfaces, and the supported 

operational flows.  

In this section, we present a concise description of the architecture (Figure 1) to support the 

discussion of the initial developments in WP4, particularly focusing on cyber threat 

intelligence, multi-objective resource allocation and service orchestration algorithms, and 

distributed and autonomous Association management and telemetry mechanisms within the 

EMPYREAN. 

 

 

Figure 1: EMPYREAN high-level architecture. 
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The Service layer facilitates the development of Association-native applications, providing 

robust support for application-level adaptations, interoperability, elasticity, and scalability 

across the IoT-edge-cloud continuum. Deliverable D4.1 (M15) provides a detailed description 

for the design and development of this layer’s components. 

The Association Management layer includes components that intelligently and dynamically 

create and manage Associations. Each Association integrates heterogeneous resources across 

multiple providers, connectivity types, and segments of the IoT-edge-cloud continuum. The 

EMPYREAN Registry (Section 11) manages the registration of IoT devices, edge, and cloud 

resources within Associations while tracking available services and resources. It offers an 

abstract and unified view of the Association-based continuum, simplifying application 

development and deployment. Moreover, the EMPYREAN Aggregator (Section 10) handles 

the formation, coordination, and management of Associations, while it facilitates the 

discovery of available resources. Multiple self-managed and interacting Aggregators 

constitute the distributed and data-driven management plane for the EMPYREAN platform. 

The Multi-Cluster Orchestration layer enables efficient service orchestration and resource 

management across the disaggregated and heterogeneous EMPYREAN infrastructure. 

Through autonomous, distributed decision-making mechanisms, this layer orchestrates 

dynamic, hyper-distributed applications while enabling self-driven adaptations. Multiple 

instances of its components provide decentralized operation, optimizing resource utilization 

while ensuring scalability, resiliency, energy efficiency, and service quality.   

The Service Orchestrator (Section 8) oversees application deployment and coordinates the 

necessary resource management actions. Workload distribution and assignment decisions are 

delegated to the Decision Engine (Section 6), which enables decentralized, speculative, and 

multi-objective resource orchestration. The Decision Engine integrates various distributed 

optimization and orchestration algorithms (Section 5) to balance computing tasks and data 

both locally within an Association and across federated Associations.  

The Resource Management layer unifies IoT, edge, and cloud platform management within 

the EMPYREAN platform. Operating within Kubernetes (K8s) or lightweight Kubernetes (K3s) 

clusters, this layer ensures modularity, facilitating seamless hardware and software 

integration.  

The EMPYREAN Controller (Section 8) serves as a bridge, integrating individual IoT, edge, and 

cloud resources under the control of a specific Service Orchestrator. The AI-enabled Workload 

Autoscaling component, detailed in deliverable D3.2 (M15), enhances Kubernetes 

orchestration capabilities by incorporating AI/ML techniques for intelligent workload 

autoscaling. The Environment Packaging component, deliverable D4.1 (M15), supports multi-

environment and multi-architecture packaging for cloud-native applications, improving the 

interoperability and adaptability of workloads. The Unikernel Deployment and Container 

Runtime components, presented in D4.1 (M15), enable flexible container runtime integration, 

allowing cloud-native applications to deploy across various execution environments. The 

Container Layers Locality Scheduler, implemented as a scheduling plugin for the local 

orchestrator in each platform, optimizes workload scheduling at the cluster level. Finally, the 
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Hardware Acceleration Abstractions component, deliverable D3.2 (M15), enables the 

offloading of compute-intensive tasks to hardware accelerators on neighbouring nodes. 

The Data Management and Interconnection layer implements dynamic communication and 

secure data storage across IoT devices and computing resources. Operating at both the cluster 

and Association levels, this layer provides flexible and scalable data management while 

seamlessly integrating IoT, edge, and cloud resources. Deliverables D3.2 (M15) and D4.1 (M15) 

provide further details on the developments of its components. 

Across the EMPYREAN ecosystem resides the Monitoring and Observability layer that 

autonomously collects and analyses telemetry data across the Association-based 

infrastructure and deployed hyper-distributed applications. The EMPYREAN Telemetry Service 

(Section 9) consists of three key components: the Telemetry Engine, Monitoring Probes, and 

Persistent Monitoring Data Storage. These components enable the data collection, 

preprocessing, correlation, and management, facilitating orchestration and service assurance 

mechanisms to optimize performance and reliability. Complementing this, the Analytics 

Engine, detailed in deliverable D3.2 (M15), forms a crucial part of this layer by enabling 

advanced data analysis and insights.  

The Security, Trust, and Privacy layer ensures secure access, data privacy, and trusted 

execution across the EMPYREAN platform, spanning both cluster and Association levels. The 

CTI Engine (Section 7) delivers automated cyber threat analysis, providing valuable intelligence 

on past global cyber threats. By quantifying system risks, the CTI Engine enables proactive 

security adaptations within and across EMPYREAN Associations, significantly strengthening 

the platform’s overall security capabilities. 
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4 EMPYREAN Platform 

The EMPYREAN platform (Figure 2) is designed as a self-optimizing system that continuously 

adapts to its environment by executing a cognitive cycle of sensing (detecting system and 

environmental changes), discerning (interpreting senses), inferring (understand implications), 

deciding (selecting appropriate actions), and acting (executing decisions). This cognitive 

intelligence loop is foundational to EMPYREAN’s ability to support robust, autonomous 

operations across the IoT-edge-cloud continuum.  

Key components such as the Cyber Threat Intelligence (CTI) framework, Association 

management and coordination mechanisms, and intelligent service and resource 

orchestration collectively provide an abstraction layer that automates platform operations 

while optimizing the utilization of heterogeneous, distributed resources. These capabilities 

underpin the Association-based continuum, enabling the seamless deployment and 

coordination of hyper-distributed, cloud-native applications spanning IoT, edge, and cloud 

infrastructures. 

 

 

Figure 2: EMPYREAN Association-based IoT-Edge-Cloud continuum. 

 

The EMPYREAN Registry and EMPYREAN Aggregator are key enablers of autonomous 

collaboration, facilitating efficient deployment, dynamic management, and coordinated 

operation of both Associations and their hosted applications. The architecture includes one 

EMPYREAN Registry and multiple Aggregators for the management of the available 

Associations. As core components of the control and management plane, they provide 

administrators and authorized infrastructure providers with full Association lifecycle 

management capabilities, including the ability to create, update, and delete Associations.  
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Throughout these operations, the Registry and Aggregators interact with the platform’s 

security plane components, such as the Privacy and Security Manager and Distributed Ledger 

Technology, as well as the Telemetry Service, ensuring that all changes are trusted and aligned 

with the system’s governance policies. The interaction flows corresponding to these 

procedures are described in detail in D2.3 (M12) under Operation Flows (OF) 1.1, 1.2, and 1.3. 

Following the setup of Associations, which create secure and collaborative execution 

environments, the next operational phases include the resource onboarding and application 

development. During these stages, the EMPYREAN Registry, along with multiple Aggregator 

instances, play a critical role in the registration and integration of resources. These 

components interface primarily with the Resource Management and the Security, Trust, and 

Privacy layers to onboard heterogeneous resources, register their capabilities and constraints, 

and define access control policies and operational processes that govern their participation in 

the Associations. 

Next, the application deployment is structured into three coordinated phases: (i) high-level 

assignment of cloud-native application microservices to relevant EMPYREAN Associations 

(OF4.1.1); (ii) cognitive orchestration of assigned microservices within the selected 

Associations (OF4.1.2); and (iii) seamless deployment of workloads across the selected 

Kubernetes (K8s) or lightweight Kubernetes (K3s) clusters (OF4.1.3).  

In this context, the Association Management layer components, comprising the EMPYREAN 

Registry and Aggregator, is tightly integrated with the Multi-Cluster Orchestration layer, which 

includes the Service Orchestrator and Decision Engine. These components collaborate during 

the first two phases to enable intelligent, constraint-aware resource orchestration across the 

EMPYREAN continuum.  The orchestration mechanisms consider a wide range of key criteria, 

including latency requirements, performance objectives, energy efficiency, and security 

requirements, ensuring that workloads are optimally distributed to suitable Associations, 

clusters, and infrastructure resources.  

In the final phase, the Service Orchestrator interfaces with components from the Resource 

Management layer, such as the EMPYREAN Controller and the Containers Layer Locality 

Scheduler, to execute the actual workload placement and deployment. These components are 

responsible for selecting the most suitable worker nodes within the targeted K8s/K3s clusters 

and for carrying out the deployment operations based on declarative specifications defined in 

the earlier phases. 

In addition, to supporting collaborative and distributed operations, the EMPYREAN platform 

automates system-level operations to achieve continuous optimizations and self-

management. Central to this capability is the Telemetry Service, which provides a distributed, 

real-time monitoring infrastructure that supports the comprehensive observation of system 

behavior. It enables continuous data collection and the generation of actionable insights to 

optimize both the platform’s performance and that of deployed applications. The service 

monitors a wide range of entities, including infrastructure resources, robots, IoT devices, and 

running workloads. In addition, it captures energy consumption metrics across all resource 

types, contributing to sustainability and energy efficiency goals. The collected telemetry data 
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serves as a vital input for EMPYREAN’s distributed decision-making and analytics mechanisms, 

feeding into intelligent policies for dynamic optimization, anomaly detection, and resource-

aware workload management. 

Complementing this, the Cyber Threat Intelligence (CTI) Engine collects and analyses data 

from trusted sources such as the Cyber Threat Alliance (CTA) and Malware Information Sharing 

Platform (MISP) repositories. By extracting relevant patterns and critical indicators, the CTI 

Engine enhances the platform’s situational awareness and proactive defense capabilities.  The 

CTI framework is integrated with the Telemetry Service, allowing it to ingest real-time 

monitoring data from across the entire EMPYREAN platform. It also interfaces with 

Association-level orchestration and analysis tools, such as the EMPYREAN Aggregator and 

Analytics Engine, to enable localized threat detection, context-aware analysis, and timely 

response actions. This integration supports automated threat intelligence workflows, enabling 

seamless security analytics and dynamic workload and data migration in response to emerging 

risks across Associations. 
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5  Intelligent Resource Management 

EMPYREAN embraces a distributed, speculative, and intelligent approach to orchestrating 

hyper-distributed applications, striking a dynamic balance between centralized and 

decentralized paradigms. This approach enables a more adaptable and efficient 

computational continuum, ensuring that workload distribution and resource management are 

continuously optimized based on real-time conditions, performance constraints, and 

sustainability goals. 

To achieve this, EMPYREAN is developing a suite of novel algorithms that leverage multi-

objective optimization, game theory, AI/ML techniques, and heuristic methods. These 

algorithms are designed to balance trade-offs between optimality and computational 

complexity, ensuring that the system remains scalable, responsive, and efficient even as 

workloads and environmental conditions evolve. 

5.1 Optimization of Cloud-Native Application Execution over 

the Edge-Cloud continuum enabled by DVFS 

5.1.1 Introduction 

The increasing complexity of modern applications is progressively pushing traditional 

monolithic designs out of the spotlight. As a result, the cloud native application model [2] is 

adopted, leading to a paradigm shift from classic monolithic structures to flexible 

microservice-based architectures. This trend is evident in a wide range of new-era, AI-

enhanced applications: industrial control, video analytics, interactive (XR) media, remote 

healthcare, autonomous vehicles, smart agriculture, and general smart city services, among 

others. In the context of EMPYREAN, both the generic IoT applications and the AI-powered 

applications of end-users inside associations can be considered microservice-based.  The fine-

grained decomposition of monolithic entities into distinct components grants significant 

advantages in terms of performance, scalability, and flexibility. Deploying and scaling each 

component individually enables the application to span multi-tenancy and multi-technology 

environments in search for the most suitable resource type according to its specific 

requirements. This is in accordance with the hyper-distributed resource hierarchy of 

EMPYREAN, spanning from low-power edge devices to high-end cloud computers within 

resource Associations.  

However, with the emergence of new applications, their requirements become more 

stringent, especially in terms of end-to-end latency, creating challenges for the resource 

orchestration mechanisms. For instance, remote surgery operations require immediate 

responses, even below 1 millisecond [10]. From the infrastructure operator's perspective, 

increased latency can result in revenue loss, with Amazon reporting that every additional 100 

ms of experienced user latency incurs a 1% loss during traffic spikes [7]. 
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To address the limitations of the traditional "all-to-cloud" approach- in terms of delay when 

transmitting to remote data-centers- computation resources are deployed at the network 

periphery, giving rise to the concept of edge computing. This architecture model complements 

cloud computing by alleviating part of the computing burden, while minimizing latency thanks 

to the spatial proximity of the edge servers to data-generation points [1]. Unfortunately, the 

edge layer inherently possesses a mere fraction of the cloud’s computing capacity, while the 

associated hardware is generally less powerful in terms of performance [5]. 

Microservices, despite being dedicated and loosely coupled, they are not entirely self-

contained in practice. Communication-based dependencies manifest in various forms, such as 

data exchange, querying, and result forwarding flows [13], forming complex execution paths. 

These paths emerge at runtime and can be accurately represented by Directed Acyclic Graphs 

(DAGs) [4], where each node represents a microservice and each arc signifies a downstream 

relationship between connected services. The critical path is the path with the longest end-

to-end latency, thus bounding the total execution time of the application.  

Accelerating the processing of a service can be achieved through various methods. Code-level 

optimizations—such as vectorization, parallelization, and improved data locality—can 

significantly boost performance but rely heavily on developer expertise. From the resource 

orchestrator perspective, services can be accelerated by deploying them on high-performance 

systems, such as a cloud CPUs (e.g., Intel Xeon Gold), GPUs (e.g., NVIDIA RTX 4070) or even 

hardware accelerators (e.g., Iceriver KS5L ASIC). On a more fine-grained level, this work also 

explores the acceleration of services by increasing the processing unit's frequency. To this end, 

we leverage Dynamic Voltage Frequency Scaling (DVFS), a well-established technique that 

allows processors to adjust their operating frequency and voltage, exploiting a trade-off 

between performance and energy efficiency [16] during the resource allocation process. 

Strategically applying DVFS based on the criticality of services within the application's DAG 

enables performance gains while minimizing power wastage. The latter is of paramount 

importance, not only for its environmental impact but also for the sustainability and longevity 

of the infrastructure.  

The aim of this work is to optimize microservice-based applications on the Association edge-

cloud continuum by assigning microservices to infrastructure nodes and processing devices. 

We only consider the internal hierarchical resource-allocation within one association, with the 

high-level decisions guided from the EMPYREAN Decision Engine and subsequently offloaded 

to local orchestrators. Leveraging the DAG structure of the applications, we can identify critical 

and non-critical execution paths. This allows us to accelerate critical services—by placing them 

on high-end processors operating at higher frequencies—to minimize overall execution time, 

while conserving power and energy in less congested areas—by deploying services on low-

power, lower-frequency devices. By taking advantage of the highly heterogenous resource 

pool of EMPYREAN Associations and by strategically fine-tuning the frequency of the 

resources, we show that it is possible to optimize performance without excessive energy 

consumption or allow “green” execution without significantly compromising execution time.  
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5.1.2 Related Work 

Processor frequency scaling has been extensively studied in contemporary research to 

manage the performance-energy consumption trade-off. In [23], the authors employ DVFS to 

optimize energy consumption in ultra-low-power embedded systems. They propose a 

mechanism that dynamically adjusts the processor's frequency, operating at the lowest 

frequency during periods of low demand and scaling up during intensive tasks to maximize 

efficiency. Similarly, the study in [6] investigates the trade-off between performance and 

energy consumption by utilizing DVFS and thread scaling on server processors. The results 

highlight that higher frequencies yield performance gains; interestingly, energy efficiency is 

not attended at the minimum frequency, as a consequence of the prolonged execution time. 

Garcia et al. [8] analyze the impact of various policies implemented by Linux Governors (e.g., 

performance, powersave, ondemand) on performance and energy efficiency. Additionally, in 

[16], different voltage and frequency settings combined with various process placement 

strategies are explored to assess their effects on performance and energy efficiency.  

Application acceleration can be enhanced by targeting specific bottlenecked services instead 

of dealing with the entirety of a microservice-based application. CRISP [22] employs critical 

path analysis over large traces of microservice call graphs in order to pinpoint and optimize 

crucial services. The mechanism was deployed across the entire UBER network and 

successfully identified optimization opportunities. The authors of [17] introduce FIRM, a ML-

enabled framework aiming to reduce service level objective (SLO) violations in microservice-

based application workloads. A support vector machine (SVM) mechanism is employed to 

initially detect critical paths in application structures and subsequently single out the specific 

services responsible for SLO violations. A Deep Deterministic Policy Gradient (DDPG) 

reinforcement learning algorithm is developed to efficiently re-provision resources on the 

critical services.  

Somashekar et al. [18] investigate the problem of fine-tuning individual configuration 

parameters for microservices that lie on the critical path of application structures. A 

dimensionality reduction technique is utilized to reduce the exploration space by identifying 

only a subset that contains the most important configuration parameters for each service. 

Then, the fine-tuning is performed at runtime by an iterative process that perturbs the existing 

configuration and evaluates the result. Song et al. [19] demonstrate ChainsFormer, a 

framework that identifies critical chains and nodes in microservice-based applications based 

on a predictor module, and subsequently provision resources leveraging a SARSA 

reinforcement learning algorithm.  

Previous studies generally focus on specific resources or clusters (e.g., a single data center). In 

contrast, our study examines the complexities of serving microservice-based applications over 

the edge-cloud continuum, accounting for device heterogeneity and communication delays. 

While prior work primarily enhances resources through traditional horizontal (replication) and 

vertical (resource augmentation) scaling, we leverage, for the first time, DVFS along with the 

application’s dependencies, represented as a DAG, to determine optimal configurations for 

microservices. Additionally, related studies often assume a fixed deployment scheme and only 
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enhance the pre-established critical path at runtime, which can lead to inefficient resource 

use as new critical paths and services emerge. To our knowledge, though this limitation is 

recognized in the literature, it has not been directly addressed. Our approach, however, 

considers all possible execution paths of the application during runtime and attempts to 

identify the optimal configuration based on the resulting critical path. 

5.1.3 System Model 

5.1.3.1 DVFS, execution time and power consumption model 

Dynamic Voltage-Frequency Scaling enables the dynamic adjustment of the frequency at 

which a processing unit operates, based on the current workload and desired objectives (e.g., 

minimizing power consumption or maximizing performance). By increasing the CPU 

frequency—and consequently the voltage—performance is enhanced during intensive task 

execution. Conversely, decreasing the CPU frequency conserves power and reduces thermal 

output, albeit at the expense of reduced performance. The underlying hardware must support 

multiple power and performance states (often termed P-states), which is common in most 

modern processors, ranging from edge devices (microprocessors and typical desktop/laptop 

CPUs) to high-end server processors. 

DVFS can be realized through a variety of techniques that provide interfaces, policies, and/or 

controls to adjust CPU frequencies and voltages at different levels: Linux kernels support 

frequency scaling configured directly in the OS through the use of governors, which are a set 

of different policies (e.g., Performance, Power-Save, On-Demand) that automate the scaling 

process based on the system load and the desired objective. Third party tools such as AMD 

Ryzen Master and Intel XTU allow for manually scheduling the desired CPU frequency while 

also providing a set of telemetry tools for monitoring real-time power consumption and 

component temperature, among others. Moreover, many modern computing systems allow 

frequency and voltage adjustments directly via the BIOS/UEFI firmware settings.  

In this work, we assume the availability of per-core DVFS, allowing the individual and 

independent tuning of each core in multi-core systems. This fine-grained control adapts to the 

specific needs of each processing core, aligning with the demands of microservice-based 

applications. Per-core DVFS is available on most newer-generation processors. 

To estimate the execution time of a microservice, which is ultimately a piece of executable 

code, we employ the well-known formula: 

𝑇 =  
#𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠 × 𝐶𝑃𝐼 

𝑓
   (1) 

In this equation, the number of instructions (#𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠) can be determined by analyzing 

the code, while 𝐶𝑃𝐼 (Cycles Per Instruction) refers to the average number of CPU cycles 

required to execute one instruction. Different instruction types require varying numbers of 

cycles. For instance, a typical register bit-wise addition in Assembly requires between one and 

two cycles, whereas a division operation takes up to 20 cycles. Control operations such as 

branches (e.g., 𝑖𝑓 statements) and loops heavily depend on the branch prediction mechanism 
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and can consume several hundred cycles in case of mispredictions. Finally, 𝑓 represents the 

operating frequency of the processing unit. This work focuses on compute intensive services, 

therefore we consider computing frequency to be the determining factor of the execution 

time. Nevertheless, we can safely assume timely data-fetching using in-memory computations 

with the newest generation of Double-Data-Read (DDR) RAM memories throughout the 

infrastructure. 

Regarding power consumption (𝑃) and its relationship with frequency, we use the formula: 

𝑃 =  𝐶 ×  𝑉2 ×  𝑓 (2) 

Here 𝐶 is the effective switching capacitance depending on the chip architecture and activity 

factor, 𝑉 is the supply voltage, and 𝑓 is the operating frequency. At first glance, this formula 

suggests that power consumption is linearly correlated with 𝑓. However, in practice, utilizing 

DVFS involves scaling up the frequency, which often necessitates a corresponding increase in 

voltage to maintain stable operation. 

The relationship between voltage and frequency is not strictly linear and varies even among 

processors of the same family due to manufacturing variations—a phenomenon known as the 

"silicon lottery." Therefore, one can estimate the power at a specific frequency based on 

surrogate functions such as the one employed in [11] , or any data measured or disclosed by 

manufacturers or on internal testbeds. 

5.1.3.2 Infrastructure description 

We consider a hierarchical edge-cloud infrastructure, represented by a graph 𝐺 =  (𝑉, 𝐸) . 

Each node 𝑣 ∈  𝑉  represents a geographical location with collocated devices (e.g., a micro-

datacenter) and arcs 𝑒 ∈  𝐸 describe the networking connections between different nodes. 

Let 𝐷 be the total number of distinct types of devices encompassed in the infrastructure, 

indexed by  𝑑 =  1, … , 𝐷. A device denotes a specific model of a computing system that can 

execute microservices, ranging from general-purpose consumer CPUs to high-end server 

processors and GPUs. Each device 𝑑 possesses a total of 𝐶𝑑 processing cores. Therefore, each 

node 𝑣 ∈  𝑉 is characterized by a tuple 𝑐𝑣 = [ 𝑐𝑣,1 , 𝑐𝑣,2   , … , 𝑐𝑣,𝐷], indicating the cumulative 

availability (in terms of the number of available cores) of each type of device at that node 

(with  𝑐𝑣,𝑑 =  0 if device 𝑑 is not available at node 𝑣, or when all the available cores are 

currently occupied). 

Moreover, each device type 𝑑 ∈  {1, 2, … , 𝐷} is characterized by its minimum and maximum 

operating frequencies 𝑓𝑚𝑖𝑛
𝑑  and  𝑓𝑚𝑎𝑥

𝑑 , depending on its specifications. We consider a 

frequency step 𝛥𝑓𝑑 for each type of device  𝑑. Hence, the DVFS controller can fine-tune the 

frequency of a core of a processor 𝑑 at any level 𝑓𝑑 = 𝑓𝑚𝑖𝑛
𝑑 + 𝛼 ⋅  𝛥𝑓𝑑 , 𝑎 ∈ 𝑁+ in the feasible 

region 𝐹𝑑  =  [𝑓𝑚𝑖𝑛
𝑑 , 𝑓𝑚𝑎𝑥

𝑑 ]. Each individual frequency level  𝑓𝑑 has an associated power 

consumption 𝑃(𝑓𝑑), based on Equation (2) or any other data disclosed from the 

manufacturer. Finally, each node 𝑣 ∈  𝑉 has a "power budget" 𝑒𝑣, which is essentially the 

maximum power it can sustain at any given time, constrained by the established power 

policies and cooling systems.  
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5.1.3.3 Application description 

A cloud-native application 𝑎 encompasses a total of 𝐼𝑎microservices, which can be 

represented by a Directed Acyclic Graph (DAG) 𝐺𝑎  =  (𝑉𝑎, 𝐸𝑎). Nodes 𝑣𝑖 ∈  𝑉
𝑎 represent the 

microservices of application 𝑎, where 𝑖 =  1, 2, … , 𝐼𝑎. Each microservice 𝑖 of application 𝑎 is 

characterized by the tuple [ 𝑟𝑖, 𝐿𝑖  ]. Variable 𝑟𝑖 represents the estimated required processing 

cycles for the service's execution, as the product of the instruction set of its underlying code 

with the estimated cycles per instruction (Equation (1). Weight 𝐿𝑖  is the communication delay 

limit of the service. Assuming that 𝑔𝑎 ∈ 𝑉 denotes the data-source node of application 𝑎, 

some microservices are responsible for communicating critical results with the end-user or 

other entities in a timely manner, and therefore require the delay between the data-source 

node and the service node 𝑣 to not exceed their predefined maximum, that is 𝑙𝑔𝑎,𝑣 ≤ 𝐿𝑖. We 

use 𝑙𝑔𝑎,𝑣  to describe the delay, abstracting the underlying physical network connection 

between the application and an infrastructure node into a single value, which can be 

determined, for instance, by applying shortest path algorithms. 

The execution time of microservice 𝑖 on a core of device 𝑑 operating at frequency 𝑓𝑑 can be 

calculated using 

𝑡𝑖,𝑑,𝑓𝑑  =  𝛿𝑖,𝑑 ×  
𝑟𝑖
𝑓𝑑
 (3) 

The coefficient 𝛿𝑖,𝑑 accounts for the fact that high-end server processors generally perform 

better at the same clock speed (frequency) compared to edge-device processors, due to their 

faster cache memories, better pipeline structures, support for ECC memory, and advanced 

branch prediction mechanisms, among others. However, the performance deviations are 

insignificant for typical consumer applications such as gaming, web-browsing, or standard 

working online tools. Hence, depending on the type of service and the device, the execution 

time may vary beyond the simplified formula on Equation (1).  

Furthermore, according to [3], time sharing the same physical core—even across different 

hyper-threads—results in significantly lower throughput for compute-intensive applications 

due to resource contention (e.g., ALUs, caches, pipelines). Therefore, we adopt a one-to-one 

mapping between services and cores to ensure that the theoretically achievable execution 

times are efficiently approximated in practice. 

We also consider microservices that require multiple processing cores due to their parallel 

structure. In our context, such services are modeled as multiple parallel single-core 

microservices equal in number to the cores required by the original service. Nonetheless, 

microservices are typically designed to complete specific sub-tasks of an application and 

usually do not require more than one core. 
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Figure 3: Proposed System Model. 

 

Figure 3 presents an example of a smart surveillance application. Sensor data initiates a 

sequence of microservice interactions: Smart cameras, smoke and motion detectors are 

uploading raw streams to a data processing microservice. The latter undertakes data cleaning 

tasks such as de-colorization, quality enhancement and frame selection. The refined data are 

forwarded in parallel to three microservices. The first performs anomaly detection, essentially 

identifying any operational malfunctions of the end devices. If a malfunction is reported, it is 

forwarded to the subsequent service for further inspection, and finally uploaded for in-depth 

analysis. The second service performs face extraction on the data, and forwards isolated 

bounding-boxes to a face recognition microservice, responsible for identifying the depicted 

people by contrasting the images to a database. The alarm signalling microservice is triggered 

in case of identification of unauthorized parties, along with the emergency call to the 

appropriate authority. The fire detection and extinction path are operating accordingly. This 

application aims to showcase the sequential service invocation that creates different runtime 

execution paths, as described in Section 5.1.1.  

The entire edge-cloud Association is governed by a centralized super-cluster Resource 

orchestrator in accordance with the EMPYREAN architecture. Upon receiving the application's 

Directed Acyclic Graph (DAG) and the corresponding microservice requirements, the 

orchestrator utilizes the proposed mechanisms to determine the optimal configuration for 

each microservice, specifying the target device, operating frequency, and node assignment. 

Once the assignments are established, the orchestrator communicates these configurations 

to the local controllers (local K8S/k3s masters), which then perform the final deployment and 

frequency tuning, utilizing the per-device DVFS controller agents. The DVFS agents then adjust 

the frequency of the designated cores on the selected devices accordingly. As discussed 

earlier, DVFS controllers can range from automated changes in the BIOS/UEFI settings of their 

assigned devices to OS-level controls and third-party tools that enable frequency scaling.  
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Our mechanism aims to provide a collective assignment of microservices to infrastructure 

nodes and devices, with the objective of minimizing a weighted combination of the 

application's execution time (i.e., the resulting critical path's length) and the total energy 

consumption, subject to node capacity and power constraints, the delay limits of the 

microservices, and the available frequency levels of the processing units. 

5.1.4 Problem Formulation 

Upon selecting an assignment tuple [𝑛𝑜𝑑𝑒, 𝑑𝑒𝑣𝑖𝑐𝑒, 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦] = [𝑣, 𝑑, 𝑓] for the 

deployment of each microservice, a set of 𝑀 paths emerge, each characterized by its 

execution time 𝑞𝑚, ∀ 𝑚 ∈  𝑀. The critical path 𝜅 ∈  𝑀 is the one with the longest execution 

time, that is $𝑞𝜅 ≥ 𝑞𝑚, ∀ 𝑚 ∈  𝑀. Furthermore, let 𝑚𝑖 = 1 𝑖𝑓 𝑡ℎ𝑒 𝑖
𝑡ℎ microservice is a 

member of the execution path 𝑚 ∈  𝑀, and 0 otherwise. 

Before we mathematically describe the problem, we introduce some extra notation: Decision 

variable 𝑥𝑖,𝑣,𝑑,𝑓𝑑  equals to 1 if the $𝑖𝑡ℎ microservice is assigned to infrastructure node 𝑣 and a 

core of a device of type 𝑑, operating at frequency 𝑓𝑑, and 0 otherwise. A tightly coupled 

variable 𝑦𝑖,𝑑,𝑓𝑑 is equal to 1 if there is any node on which 𝑥𝑖,𝑣,𝑑,𝑓𝑑 = 1. We use 𝑦 to describe 

the higher-level assignment on device and frequency level, irregardless of the specific 

infrastructure node. For ease of reference, the complete set of variables along with the 

corresponding interpretations are presented in Table \ref{table1}. 

The execution time of service 𝑖 can be defined as: 

𝑡𝑖  = ∑ ∑ 𝑡𝑖,𝑑,𝑓𝑑 ⋅  𝑦𝑖,𝑑,𝑓𝑑

𝑓𝑑∈𝐹𝑑

𝐷

𝑑=1

 (4). 

Therefore, the execution time of path 𝑚 ∈  𝑀, 𝑞𝑚, can be calculated as the cumulative 

execution time of the services that lie on the path: 

𝑞𝑚  = ∑𝑡𝑖 ⋅ 𝑚𝑖

𝐼𝑎

𝑖=1

 (5). 

The execution time of the application, 𝑇,  is the execution time of the resulting critical path: 

𝑇 =  𝑞𝜅 = max
m
𝑞𝑚  (6). 
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Table 1: Summary of Notations. 

Notation Interpretation 

𝐺 =  (𝑉, 𝐸) Directed weighted graph representing the infrastructure 

𝑉 Set of infrastructure nodes 

𝐸 Set of network links between nodes 

𝐷 Set of different types of processing devices in the infrastructure 

𝐶𝑑 Number of cores of device of type 𝑑 

𝑐𝑣,𝑑 Remaining cumulative capacity of device of type 𝑑 at node 𝑣 

𝑓𝑚𝑖𝑛
𝑑  Minimum operating frequency of device 𝑑 

𝑓𝑚𝑎𝑥
𝑑  Maximum operating frequency of device 𝑑 

𝛥𝑓𝑑 Frequency step for DVFS on device 𝑑 

𝐹𝑑  Set of feasible frequency levels of device 𝑑 

𝑃(𝑓𝑑) Power consumption of a core of device 𝑑 at frequency 𝑓𝑑 

𝑒𝑣 Power limit of node 𝑣 

𝑎 A microservice‐based application 

𝐺𝑎  Directed acyclic graph representing application 𝑎 

𝐼𝑎  Total number of microservices of application 𝑎 

𝑟𝑖  Required processing cycles for the execution of service 𝑖 

𝐿𝑖  Communication delay limit of microservice 𝑖 

𝑔𝑎 ∈  𝑉 Data source node of application 𝑎 

𝛿𝑖,𝑑 Coefficient to adjust the execution time of service 𝑖 on device 𝑑 

𝑡𝑖,𝑑,𝑓𝑑  Execution time of service 𝑖 on device 𝑑 and frequency 𝑓𝑑 

𝑥𝑖,𝑣,𝑑,𝑓𝑑  Equal to 1 if the i-th microservice is assigned to node 𝑣 and a core of device 𝑑 at 𝑓𝑑 

𝑦𝑖,𝑑,𝑓𝑑  Equal to 1 if the i-th microservice is assigned to a core of device 𝑑 at 𝑓𝑑 

𝑀 Set of the application’s execution paths 

𝑚𝑖  Equal to 1 if the i-th microservice is part of the execution path 𝑚 ∈  𝑀 

𝑞𝑚 Execution time of path 𝑚 ∈  𝑀 

𝜅 ∈  𝑀 The application's critical path 

𝑡𝑖  Execution time of service 𝑖 

𝑇 The application's execution time 

𝜀𝑖 Energy consumption of service 𝑖 

𝐸 The application's overall energy consumption 

 

The energy consumption of service 𝑖, 𝜀𝑖, can be calculated as the product of the power 

consumption with its execution time: 

𝜀𝑖  = ∑ ∑ 𝑃(𝑓𝑑) ⋅ 𝑡𝑖,𝑑,𝑓𝑑 ⋅ 𝑦𝑖,𝑑,𝑓𝑑

𝑓𝑑∈𝐹𝑑

𝐷

𝑑=1

 (7). 

Hence, the total energy consumption 𝐸 for the application's execution is the sum of all 

individual services: 

𝐸 =  ∑𝜀𝑖 (8).

𝐼𝑎

𝑖=1
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5.1.4.1 MILP Formulation 

The objective function is the minimization of a weighted combination of the execution time 

and the total energy consumption for the application's execution. The weight coefficient 𝑤 is 

used to control the relative importance of each objective: 

min𝑤 ⋅ 𝑇 + (1 − 𝑤) ⋅ 𝐸 (9). 

 

Subject to the following constraints: 

C.1 Each service 𝑖 =  1, … , 𝐼𝑎 must be assigned to exactly one node and one device type 

configured at a specific frequency: 

∑∑ ∑ 𝑥𝑖,𝑣,𝑑,𝑓𝑑 = 1, ∀𝑖 = 1,… , 𝐼𝑎 (10)

𝑓𝑑∈𝐹𝑑

𝐷

𝑑=1𝑣∈𝑉

 

C.2 Decision variables 𝑥 and 𝑦 are coupled by the following constraint: 

𝑦𝑖,𝑑,𝑓𝑑 =∑𝑥𝑖,𝑣,𝑑,𝑓𝑑 , ∀𝑖 = 1, … , 𝐼𝑎, ∀𝑑 = 1,… , 𝐷, ∀𝑓
𝑑 ∈ 𝐹𝑑(11)

𝑣∈𝑉

 

C.3 Node capacity constraint. Each service is assigned to one core on a processing device; 

therefore, the total services assigned to a device cannot exceed the available cores in the 

node: 

∑ ∑ 𝑥𝑖,𝑣,𝑑,𝑓𝑑 ≤ 𝑐𝑣,𝑑, ∀𝑣 ∈ 𝑉, ∀𝑑 = 1, … , 𝐷 (12)

𝑓𝑑∈𝐹𝑑

𝐼𝑎

𝑖=1

 

C.4 Node power constraints. The cumulative active power of the processors should not exceed 

the power limit of the node: 

∑∑ ∑ 𝑃(𝑓𝑑) ⋅ 𝑥𝑖,𝑣,𝑑,𝑓𝑑 ≤ 𝑒𝑣, ∀𝑣 ∈ 𝑉 (13)

𝑓𝑑∈𝐹𝑑

𝐷

𝑑=1

𝐼𝑎

𝑖=1

 

C.5 Services' communication limit. Every service must be assigned to a node that respects the 

delay limit with the data-generation node 𝑔𝑎: 

𝑙𝑣,𝑔𝑎 ⋅ 𝑥𝑖,𝑣,𝑑,𝑓𝑑 ≤ 𝐿𝑖 , ∀𝑖 = 1, … , 𝐼𝑎, ∀𝑣 ∈ 𝑉, ∀𝑑 = 1, … , 𝐷, ∀𝑓
𝑑 ∈ 𝐹𝑑(14) 

Formulated as a Mixed Integer Linear Problem (MILP), the considered problem combines 

elements from the assignment problem and critical path analysis, inherently positioning it in 

the NP class. 
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5.1.5 Metaheuristic Mechanism 

The formulated problem considers the deployment of one microservice-based application. 

Thus, a solution must be acquired for each incoming application in a timely manner, especially 

for time-critical workload. This motivates us to develop a meta-heuristic mechanism to tackle 

the increased problem's complexity.  

5.1.5.1 Problem Decomposition 

The primary problem is decomposed into two distinct yet closely linked sub-problems. The 

first problem involves mapping services to device types and frequency levels without 

accounting for the practical limitations of the existing infrastructure, such as node capacities 

and service delay requirements. This is referred to as the Configuration Selection problem. Its 

solution comprises the configuration tuple [𝑑𝑒𝑣𝑖𝑐𝑒, 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦] = [𝑑, 𝑓𝑑] for each 

microservice, corresponding with the 𝑦𝑖,𝑑,𝑓𝑑  variables.  

The second sub-problem focuses on integrating this configuration within the actual 

infrastructure. Given the optimal 𝑦𝑖,𝑑,𝑓𝑑 variables, the task is to determine the corresponding 

𝑥𝑖,𝑣,𝑑,𝑓𝑑 variables. Thus, this second problem is termed the Resource Allocation and 

Deployment problem, as its solution obtains the final deployment tuple 

[𝑑𝑒𝑣𝑖𝑐𝑒, 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦, 𝑛𝑜𝑑𝑒] = [𝑑, 𝑓𝑑 , 𝑣] for each service. 

By segregating the problem into a high-level assignment and a subsequent detailed mapping 

phase, the overall complexity is significantly reduced. Yet, this separation necessitates 

strategic considerations to ensure seamless interoperability between the two mechanisms. 

Instances may arise where solutions obtained from the Configuration problem are infeasible 

in the actual deployment due to inherent constraints. To mitigate such conflicts, it is essential 

to incorporate relevant high-level constraints within the Configuration problem. A 

complementary technique is to add complexity to the mechanism that addresses the Resource 

Allocation and Deployment problem so as to identify quality alternatives in case of 

misalignments with the exact solution of the Configuration problem. 

5.1.5.2 Genetic Algorithm for the Configuration Selection Problem 

Genetic algorithms are a great option when dealing with vast solution spaces that are not 

highly constrained [12]. For this reason, we choose to employ a genetic algorithm for the 

Configuration Selection problem. This way, the genetic can explore diverse solution spaces 

without the overhead of managing excessive constraints. Below we introduce the algorithm 

and the associated procedures. 

In the context of genetic algorithms, chromosomes encode the solution to a problem, 

analogous to how real chromosomes encode the features of an individual. In our case, each 

chromosome represents a complete assignment of each microservice of an application to a 

device type and an operating frequency, that is the tuple [[𝑑1, 𝑓
𝑑1], [𝑑2, 𝑓

𝑑2], … , [𝑑𝐼𝑎 , 𝑓
𝑑𝐼𝑎]], 

where 𝑑𝑖  is the selected device for microservice 𝑖 and 𝑓𝑑𝑖  represents the chosen operating 

frequency.  
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Given an encoded chromosome, the fitness function aims to evaluate the "goodness" of its 

genetic profile. Following the objective function (Equation (9)), we use the weighted 

combination of the execution time and energy consumption of the chromosome's 

configuration. Based on the assignment provided by the chromosome 

[[𝑑1, 𝑓
𝑑1], [𝑑2, 𝑓

𝑑2], … , [𝑑𝐼𝑎 , 𝑓
𝑑𝐼𝑎]], we can extract the execution time of each service based 

on Equation (4). The energy consumption can be straightforwardly computed using Equations 

(5)and (6). For the application's execution time, we need to identify the resulting critical path 

in order to apply Equations (7)and (8). The critical path is the longest path from any source 

node (with no incoming edges) to any sink node (with no outgoing edges), where the path 

length is the sum of the execution times of the nodes (services) along the path.  

Algorithm 1: Critical Path Algorithm 
Input: An application DAG 𝐺(𝑉, 𝐸), execution times 𝑡[𝑖] for each service 𝑖 ∈ 𝑉 
Output: critical path length 𝑇𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙  
1 Initialize 𝐿𝑖 < −0 ∀𝑖 ∈ 𝑉  
2 𝑡𝑜𝑝𝑜𝑟𝑑𝑒𝑟 < −𝑇𝑜𝑝𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙𝑆𝑜𝑟𝑡(𝐺) 
3 foreach node 𝑖 in 𝑡𝑜𝑝𝑜𝑟𝑑𝑒𝑟 𝒅𝒐 
4  If 𝑖𝑛 − 𝑑𝑒𝑔𝑟𝑒𝑒(𝑖) = 0 𝑡ℎ𝑒𝑛  
5   𝐿[𝑖] < −𝑡[𝑖]  
6  else 
7   𝐿[𝑖] < −𝑡[𝑖] + 𝑚𝑎𝑥𝑗∈𝑝𝑟𝑒𝑑(𝑖)𝐿(𝑗); 
8  end 
9 end 
10 𝑇𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 < −max

𝑖∈𝑉
𝐿[𝑖]; 

11 return 𝑇𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙  

 

To this end, we employ a simple algorithm based on Dynamic Programming (Algorithm 1). The 

topological sort guarantees that every node is examined only after its predecessors, so that 

every node and every edge is visited exactly once in the procedure. For each node, its earliest 

completion time (𝐿[𝑖]) is the sum of its own completion time and the maximum of the 

completion times of its preceding nodes. After calculating for every node, the critical path is 

extracted as the maximum among these values. The algorithmic complexity of the algorithm 

is 𝑂(𝑉 + 𝐸), where 𝑉 is the number of nodes and 𝐸 is the number of edges in the application's 

DAG. 

Once the initial population is established, parent chromosomes must be selected to contribute 

their genetic material to the creation of offspring. We implemented a stochastic ranking-based 

selection method, which increases the likelihood of selecting high-fitness individuals while 

maintaining population diversity. Specifically, chromosomes are ranked in ascending order 

based on their fitness scores. The probability of selecting a chromosome at rank 𝑖 is calculated 

as 
𝑋−𝑖+1

𝑡𝑜𝑡𝑎𝑙
, where 𝑋 is the population size and 𝑡𝑜𝑡𝑎𝑙 =

𝑋⋅(𝑋+1)

2
. This approach ensures that 

higher-fitness chromosomes have a greater chance of being selected as parents without 

entirely eliminating less fit individuals, thereby preserving genetic diversity within the 

population. 
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For the crossover operation, we employed uniform crossover to ensure a thorough mix of the 

selected parent's characteristics in the offspring. Every mating operation results in two 

offspring: The first inherits each gene (device and frequency configuration for a service) with 

𝑎% probability from the first parent and with (1 − 𝑎)% from the second parent, while the 

exact opposite applies to the second offspring. This aims to maintain the "goodness" of each 

parent, while still providing mix-up for enhancements.  

Additionally, each offspring undertakes a mutation either in device, frequency, or both 

compartments of each gene. First, an initial mutation probability for device 𝛽𝑑 and frequency 

𝛽𝑓 is set. However, in order to exploit the evolved generations, this probability decays at a 

rate of1 −
𝑐

𝑁 
,where 𝑐 is the current generation and 𝑁 is the total number of generations. 

Algorithm 2: Genetic Algorithm 

Input: Initial chromosome population, population size 𝑋, number of generations 𝑁, elites 𝐸 
Output: Best resulting chromosome  
1 foreach generation 𝑛 = 1:𝑁 do   
2 Rank chromosomes based on their fitness; 
3 Extract top 𝐸 elites and copy them to the next gen; 
4 Initialize next generation with E elites  

5 while 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑖𝑧𝑒 <  𝑋 do  

6  Perform rank‐based selection; 
7   Perform crossover on selected chromosomes and produce offspring 
8      Add offspring to the next generation pop;  

9 end 
10 Perform mutation operation on the offspring in the next generation; 
11 end 
12 return top‐performing chromosome of generation N; 

 

Finally, we utilized the elitism feature to "save" good solutions throughout generations, while 

making sure that the best-fitting chromosome at one generation is no worse than that of the 

previous one. This means that the highest-performing chromosomes are copied to the next 

generations unchanged. The pseudocode for the algorithm is presented in Algorithm 2.  

 

5.1.5.3 Best-fit heuristic algorithm for the Resource Allocation and Deployment 

problem 

Upon receiving the best configuration for the application’s services (𝑦 variables), the heuristic 

attempts to map this configuration into the infrastructure. The algorithm performs the 

assignment for each service sequentially. After selecting a service 𝑖 and its configuration 

[𝑑𝑖, 𝑓
𝑑𝑖], it first identifies nodes with the required capacity of the selected device. Then, nodes 

that do not respect the delay-limit of the service are pruned. The algorithm proceeds to place 

the service at the node which has the largest “power-capacity”, i.e., the one which is 

percentage-wise the furthest from meeting its power constraint. This ensures a fair load-

balancing across the infrastructure and avoids over-stressing specific nodes. The algorithm 

then proceeds with the following microservice, until all are placed.  
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However, instances arise wherein the heuristic cannot find a feasible mapping for the 

specified device and frequency level. In this case, it searches for an alternative combination of 

device and frequency that produces the “closest” objective value compared to the original. 

This way, the final deployment of the application might not be identical to the one suggested 

by the genetic algorithm, but it will effectively follow its effectiveness in terms of objective 

value. 

Figure 4 shows the interplay between the developed genetic and heuristic mechanisms. 

Initially, the heuristic algorithm, utilizing telemetry agents distributed across the 

infrastructure, provides the genetic algorithm with real-time information on the 

infrastructure’s status. This includes data on delays relative to the data source node, resource 

availability, power constraints, and other relevant parameters.  

 

Figure 4: Interplay between the developed mechanisms. 

 

In response, the genetic algorithm integrates these constraints by modifying the initial 

population and adjusting mutation rates to promote the generation of feasible solutions. For 

example, considering a service’s delay limit and the availability of devices within nodes, the 

genetic algorithm initializes solutions that incorporate only the available devices for that 

service. Moreover, if the orchestrator reports (utilizing the distributed EMPYREAN telemetry 

agents) that a resource is depleted (either malfunctioning or fully occupied), the genetic is 

informed to exclude that resource in its solutions. Once it identifies the best chromosome, 

this configuration is relayed back to the heuristic algorithm. The EMPYREAN orchestrator then 

performs the final resource binding, effectively deploying the application within the 

Association based on the optimized configuration (by communicating its decisions with the 

local orchestrators).  

5.1.6 Evaluation 

5.1.6.1 Experimental Setup 

We conducted a series of experiments to showcase the efficacy of the developed mechanisms 

along with the trade-offs in the objectives for different weighting coefficients 𝑤. The genetic 

algorithm was implemented in Python, utilizing the NetworkX1 library for the realization of the 

                                                      

1 https://networkx.org 
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application's DAG. The heuristic algorithm along with the infrastructure simulation were 

developed in MATLAB. The experiments were conducted on a Ryzen-7 32 GB RAM PC. 

Table 2: Base and Max Frequency of resources. 

Processor Model Base Frequency (Ghz) Max Turbo Freq. (Ghz) 

AMD EPYC™ 9965 3.5 5 

AMD Ryzen™ AI 9 2 5.1 

AMD Ryzen™ 5 PRO 8500G 3.5 5 

Intel Xeon W-11955M 2.6 5 

ARM Cortex-A76 -- 3.3 

 

We considered 10 device types ranging from edge microprocessors (e.g., NVIDIA Jetson 

Series) and edge computer devices (e.g., Intel Core™ i7 series) to high-performance server 

processors (e.g., Intel Xeon, AMD EPYC). For each device, we set the 𝑓𝑚𝑖𝑛
𝑑  to 50% of the 

disclosed base frequency (underclocking), while we allow frequency tuning up to the max 

turbo frequency specified by the manufacturer. Moreover, most processors allow for a 100 

MHz frequency step between the lowest and highest frequencies. However, we adopt a 

coarser approach by creating 10 frequency levels for each device 𝑑, normalizing the step 𝛥𝑓𝑑 

accordingly. Some of the real-world processing devices [15][21] from which we drew the 

experimental values for the base and max frequencies are presented in Table 2. Regarding 

power consumption, we identified measurements on Intel processors [20] and Nvidia edge 

devices [15] (Table 3), and used them as a guide to estimate power consumption for the rest 

of the considered devices, combined with the formula in [11]. Generally, activating a server 

core requires more power than a core of a microprocessor in the edge.   

Table 3: Frequency and associated power consumption of resources. 

Processor Model Base Frequency 
(GHz) 

Base Power 
(W) 

Max Turbo 
(GHz) 

Max Power (W) 

Core i9-11900K 3.5 125 5.2 251 

Core i7-10700 2.9 65 4.9 224 

Core i3-10000T 3 35 3.8 55 

Jetson Nano 0.9 0.9 5 1.5 10 

Jetson AGX Xavier 1.2 10 2.27 30 

 

The infrastructure was modeled as a 3-layered topology. The near-edge layer, the most 

proximal to end-users, comprises a total of 30 nodes, each possessing between 1-5 micro-

processing devices. The delay between near-edge nodes and end-users was normalized in the 

[0.5,2] delay units (d.u.) range. The far-edge layer, positioned amidst the urban areas and the 

remote Data Centers, includes 10 nodes, each of which hosts 5-10 devices of medium 

capabilities. The delay for this layer is set to [3,5] d.u. Finally, the cloud layer consists of 2 

nodes representing the core Data Centers, equipped with 100 high-end server processors. The 

power limit was set to 50% of the maximum achievable power (where all cores work at max 

frequency) for near-edge nodes, while for the far-edge and cloud the limit is 70% and 80% 

accordingly. 



D4.2 – Intelligent Resource Management, Cyber Threat Intelligence and EMPYREAN Aggregator 
 

 

empyrean-horizon.eu  37/126 

Microservices were assumed to demand between 0.1 and 10 Giga-Cycles for their processing, 

reflecting their heterogeneity based on their scope. Coefficient 𝛿𝑖,𝑑 was set in the [1,2] range, 

with some services exhibiting minimal discrepancies between devices, while others benefit 

more from the advanced architecture of the server processors compared to edge. 

In all experiments, the values of application delay and energy consumption were normalized 

in the [0,1] interval utilizing the max-min method. This approach makes the weight parameter 

more intuitive; for example, setting w=0.5 implies that both metrics contribute equally to the 

objective. 

5.1.6.2 Evaluation Results 

First, we evaluated the performance of the genetic algorithm. To this end, we generated an 

application comprising 100 microservices. The corresponding DAG produced by the NetworkX 

is illustrated in Figure 5. The population size of the genetic algorithm was initialized to 100 

chromosomes. Regarding mutation, we set the initial probability for both device and 

frequency mutations for each gene to 15%. Moreover, elitism was employed, retaining the 

top 5% of the population in each generation. 

 

Figure 5: Example of generated DAG. 

 

Figure 6 presents the genetic algorithm's convergence simulation results across different 

weight coefficients 𝑤. After several runs, we chose to terminate the genetic algorithm at 2000 

generations, as it produced the best balance between performance and execution time. The 

resulting optimality gaps were 2.8%, 3.9% and 2.3% for 𝑤 = 0.1, 𝑤 = 0.5 and 𝑤 = 0.9, 

respectively. For 𝑤 = 0.5, execution time and total energy consumption are considered 

equally, which complicates the problem. The algorithm exhibited monotonic convergence, 

facilitated by elitism, ensuring that the best-fit individual in each generation was at least as 

effective as in the preceding generation. Notably, we excluded single-objective optimization 

(i.e., 𝑤 = 0,1), as it is not of practical relevance to completely neglect either execution time 

or energy consumption in a real-world deployment and renders the solution trivial. 
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Figure 6: Convergence of the genetic Algorithm for w=0.1 (left), w=0.5 (middle) and w=0.9 (right). 

 

Regarding the execution time, by parallelizing the chromosome evaluation, the genetic 

algorithm clocked in at 4.21 seconds on average, while the optimal solver based on the PULP 

library averaged at 513 seconds. An initial deployment configuration lasting a few seconds for 

a 100-microservice application is deemed acceptable, as it remains comparable to other 

required steps, such as fetching container images, building them, and starting containers. 

 

 

Figure 7: Comparison of Energy consumption (left) and Execution time (right) across mechanisms. 

 

Next, we employed two baseline algorithms to contrast their results with our proposed 

mechanism: i) The "Performance" policy aims to minimize the application's execution time by 

greedily assigning each microservice to the ([𝑑𝑒𝑣𝑖𝑐𝑒, 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦]) pair that offers the lowest 

execution time within the infrastructure and ii) The "Energy efficiency" policy focuses on 

minimizing energy consumption, by greedily assigning each service to the 

[𝑑𝑒𝑣𝑖𝑐𝑒, 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦] pair that offers the lowest energy consumption.  

Figure 7 presents the execution time, measured in time units (t.u.) along with the total energy 

consumption, measured in energy units (e.u.), across the different mechanisms. We tested 

three different weight coefficients for our mechanism, 𝑤 = 0.1, 𝑤 = 0.5 𝑎𝑛𝑑 𝑤 = 0.9, as 

indicated above the corresponding bars. The lowest energy consumption was achieved by the 

Energy-efficiency policy, outperforming our mechanism when utilizing weight 𝑤 = 0.1 by 

$8.2%$. However, in terms of execution time, the Energy-efficiency policy resulted in a 51.1% 

increment. 
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Interestingly, our mechanism, when tuned with 𝑤 = 0.9, outperformed the Performance 

policy in terms of execution time by 3.2%. This is because our developed metaheuristic 

calculates the resulting critical path and thus optimizes the execution time of the application 

as a whole. In contrast, the Performance policy potentially wastes resources due to its greedy 

nature. Additionally, the configuration provided by our mechanism managed to cut-down 

energy consumption by 31.5% compared to the Performance Policy. By fine-tuning the weight 

coefficient, our mechanism can intelligently balance objectives, achieving enhanced 

performance without excessive energy consumption (𝑤 =  0.9), improved energy efficiency 

without significant performance degradation (𝑤 = 0.1), or a balanced approach (𝑤 = 0.5). 

Finally, Figure 8 presents the distribution of services across the infrastructure layers for each 

examined mechanism. The Energy Efficiency policy opted for the near-edge layer, exploiting 

the inherent lower-power and lower-frequency devices to minimize energy consumption. Our 

mechanism, configured with 𝑤 = 0.1, also predominately utilized the near-edge, but still 

deployed some critical services on the upper tiers to enhance performance. The Performance 

policy favors the high-end systems of the far-edge and the cloud-layer to reduce execution 

time. Our mechanism, when tuned with 𝑤 = 0.9, utilized more of the cloud layer compared 

to Performance. However, it also employed part of the near-edge to enhance energy efficiency 

on non-critical parts of the application.  

 

Figure 8: Service distribution across infrastructure layers. 

 

5.1.7 Conclusion 

This work introduced a DVFS-enabled, critical-path-aware mechanism for deploying 

microservice-based applications over the edge-cloud continuum. We modeled the problem as 

a MILP, targeting to optimize a weighted combination of the application's execution time and 

the total energy consumption. A novel two-phase heuristic approach was developed to tackle 

the problem's inherent complexity, comprising a genetic algorithm for the configuration 

problem, followed by a best-fit heuristic for the resource allocation and placement problem.  
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Our experiments highlighted the efficiency of our proposed method: By properly fine-tuning 

the weight coefficient, our mechanism can intelligently configure and deploy applications, 

leveraging the heterogeneous devices across the infrastructure to meet performance and 

energy objectives. As a future direction, we plan to incorporate the delays between 

infrastructure nodes into the problem formulation and develop real-world testbeds for 

evaluation. 

 

5.2 Risk-Aware Resource Allocation in Edge Computing Using 

Stochastic Forecasting 

5.2.1 Abstract 

Edge computing brings processing closer to data sources, reducing latency and bandwidth 

usage for modern applications. However, the limited capacity of edge resources and volatile 

nature of workload demands create significant challenges for efficient resource management, 

often leading to resource underutilization. In this work, we propose a speculative resource 

allocation framework supported by stochastic workload forecasting, inspired by the Black-

Scholes financial model. This framework dynamically assesses the risk associated with 

fluctuating demands over different time windows and proactively aligns resource allocation 

based on the performed risk assessments. The outcomes of this model drive a multi-objective 

resource allocation mechanism that dynamically manages resources, speculatively aligning 

differing workload demands when placing them within a node, optimizing key performance 

metrics such as latency, infrastructure utilization, cost-effectiveness, and potential application 

disruptions during execution. Our approach does not require training, making it more 

adaptable to fluctuating demands compared to machine learning-based methods. Through 

simulations we demonstrate that our framework improves performance and resource 

utilization, providing a scalable, responsive, and cost-effective solution that benefits both end-

users and operators. 

5.2.2 Introduction 

Edge computing has emerged as a critical paradigm to meet the increasing demands for low-

latency and bandwidth-efficient processing, especially in modern applications driven by IoT, 

AR/VR, autonomous systems, and real-time analytics. It brings processing and storage 

capabilities closer to the data source and helps overcome the limitations of cumbersome 

centralized cloud computing [24]. However, despite its advantages, edge environments face 

significant constraints, primarily due to limited resource capacity. Coupled with the volatile 

and unpredictable nature of workload demands, efficient resource management becomes a 

challenging problem. Existing resource orchestration mechanisms often struggle to optimize 

resource usage, resulting in poor system performance and increased operational costs [25].  
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A key issue in edge resource management arises from the overprovisioning and 

underutilization of resources, primarily caused by reactive resource allocation schemes that 

fail to anticipate dynamic workload patterns. Traditional methods often allocate resources 

based on worst-case assumptions [26] or rely on user-provided estimates [27], approaches 

that are either too conservative or unresponsive to real-time changes in application demands. 

Consequently, this results in wastage of resources; studies have shown that in many data 

centers, up to 76% of CPU resources and 26% of memory resources remain idle for extended 

periods [28],[29]. 

Additionally, proactive solutions, many of whom rely on machine learning (ML) and data-

driven models, face their own limitations. These approaches require extensive training on 

historical data, making them rigid and slow to adapt to dynamic and previously unseen 

workloads without time-consuming retraining processes that undermine their real-time 

applicability [30]. This creates a fundamental trade-off between adaptability and efficiency, 

where resource orchestrators must choose between fast, reactive models with limited 

foresight or proactive models with significant retraining overheads. 

Hence, there is a gap in edge resource management: the need for an adaptable, risk-aware 

resource allocation mechanism that can anticipate demand volatility without relying on static 

assumptions or time-consuming retraining. This mechanism must dynamically allocate 

resources based on real-time workload behavior, while minimizing the risks of both under- 

and over-provisioning, and doing so without significant computational overhead [31]. In this 

work, we draw inspiration from the financial sector, specifically, the Black-Scholes model [32], 

widely used in options pricing and risk management. The analogy between financial markets 

and edge resource management is compelling: in both cases, there is a need to account for 

uncertainty and volatility in dynamic environments. As the Black-Scholes model helps traders 

assess the risk of price fluctuations, a similar approach can assess the risk of workload 

fluctuations. 

Our mechanism emphasizes risk quantification and mitigation, employing a stochastic 

framework to estimate the likelihood that resource demand will exceed available capacity 

within a given time window. This enables speculative resource allocation while managing the 

inherent trade-offs between the risk of resource saturation and the cost associated with the 

underutilization of resources. The proactive risk management approach enables (i) better 

foresight than reactive models and (ii) avoids the retraining process of ML, making it a suitable 

choice in the volatile and resource constrained edge computing environments. 

 

5.2.3 Related Work 

Research efforts in the field of edge-cloud resource orchestration have mainly focused on 

forecasting workload demands and optimizing resource allocation, providing solutions to 

address the complexities of dynamic, interconnected, and distributed computing 

environments.  
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Various methods have been proposed for forecasting workload demands. Statistical models 

such as ARIMA (Auto Regressive Integrated Moving Average) have been the traditional 

approach [33]. These models are widely used for time-series processing and perform well 

under stable data conditions and consistent patterns. However, their main drawback is their 

inability to handle non-linear and volatile workloads commonly found in edge computing 

environments resulting in inaccurate predictions and suboptimal allocation. For this reason, 

ML methods have been employed to enhance the accuracy of workload forecasting and 

provide the needed adaptability through data driven approaches either alone or combined 

with statistical models. The authors in [34] proposed a hybrid model that combines statistical 

forecasting with neural networks in one framework that utilizes a statistical model to generate 

initial predictions, which are then refined by a neural network for enhanced accuracy. 

Time series workloads are particularly well-suited for Recurrent Neural Networks (RNNs) and 

Long Short-Term Memory Networks (LSTMs) [35]. Recently, Transformers have taken over 

many tasks in which RNNs were used traditionally with the authors in [36] proposing an 

Adversarial Transformer model for cloud workload forecasting, which outperformed previous 

LSTM methods in inference time and prediction accuracy. To address the variability of 

applications and the microservices comprising them across different devices, the authors in 

[37] proposed a Transformer model that groups them based on various criteria. Nevertheless, 

this approach necessitates multiple resource intensive models, and similar to all ML models, 

they require frequent fine-tuning with updated data to maintain their high performance [30].  

Another distinction in forecasting approaches lies between the previously mentioned 

proactive methods and reactive ones. The latter, such as Kubernetes' horizontal pod 

autoscaler, adapt to changes in workload demand by adjusting the number of instances based 

on current traffic or CPU usage [38]. Efficient modifications have been proposed [39] but while 

they provide a real-time response to shifts in demand, they are inherently reactive, meaning 

they scale resources after performance has degraded also incurring extra delays. 

The second focus of edge cloud resource orchestration, i.e., resource allocation, is a field in 

which there have been many optimization efforts, with the most advanced of these also 

leveraging forecasting insights to facilitate informed decision-making [40]. Some techniques 

emphasize execution speed and simplicity employing greedy heuristic methods in its offline 

version [41]. In online scenarios where user requests arrive constantly, the continuous horizon 

nature of the task scheduling problem makes it an ideal case for Reinforcement Learning [42], 

a subcategory of ML, where reactive agents dynamically interact with the infrastructure to 

maximize service profitability and Quality-of-Service (QoS), that is however subject to the 

same drawbacks as ML. In [43] the authors propose a multi-layer hierarchical system for joint 

online task scheduling, resource allocation and caching. A Double Deep Q-Network (DDQN) 

approach, proposed in [44], dynamically adjusts the resource allocation decisions to changing 

resource statuses and workloads, ensuring optimal decision-making in real-time. Multi-Agent 

methods have also been introduced to decentralize orchestration, federating allocation 

decisions and creating a flexible framework that efficiently utilizes the distributed 

infrastructure [42]. 
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The works described underline the complexity of managing distributed infrastructures, with 

dynamic resource allocations mechanisms adaptively responding to the varying application 

requirements. While effective, ML mechanisms often rely on data-driven forecasting methods 

to guide their operations. Their effectiveness and applicability in real-world cases is thus 

constrained by the ever-changing data patterns requiring periodic recalibration with scarce 

data in a time consuming and resource intensive process. Moreover, the volatile needs of such 

environments demand intelligent solutions that efficiently handle dynamicity in real-time 

scenarios but operate under strict time constraints in distributed settings without 

compromising performance, thus necessitating a mix of both reactive and proactive policies. 

Hence, our approach is explicitly designed to handle dynamicity by employing stochastic 

forecasting inspired by financial models, enabling accurate allocation with little overhead, 

using current usage data, and also reacting to real-time events by rearranging resources in an 

efficient manner. 

5.2.4 System Model 

We model the edge-cloud infrastructure as a distributed computing environment that spans 

across multiple nodes, ranging from near edge devices to centralized cloud resources (Figure 

9). This infrastructure is represented as an undirected weighted graph 𝐺 = (𝑉, 𝐸), where the 

set of vertices 𝑉  represents the locations where computing resources are placed, and the 

edges 𝑒 ∈ 𝐸  represent the network connections between these locations. The weight of each 

edge 𝑑𝑒 corresponds to the network latency delay between these nodes, a parameter that 

needs to be considered during the allocation of the workload demands to resources. Each 

node 𝑣 ∈ 𝑉  represents a physical computing node, ranging from personal devices 

(Raspberries, Home Servers etc.) to small- and large-scale data centers. These nodes are 

characterized by a tuple 𝜏𝑣 = [𝑐𝑣, 𝑜𝑣, 𝑏𝑣]; (i) the CPU capacity 𝑐𝑢 of the node, measured in the 

number of cores available for processing, (ii) the operating cost per CPU core used 𝑜𝑢, and (iii) 

the bandwidth cost of 𝑣  𝑏𝑣 per bandwidth unit (b.u.) transferred. 

The workload is modelled as a set of application demands A, each consisting of multiple 

microservices. Applications 𝑎 ∈ 𝐴 , are represented as directed acyclic graphs 𝐺𝑎 = (𝑉
𝑎, 𝐸𝑎), 

where each node 𝑣𝑎 ∈ 𝑉𝑎 corresponds to a microservice and the edges 𝐸𝑎 represent the 

dependencies between those microservices. The weight of an edge 𝑤𝑖,𝑗
𝑎  represents the 

maximum acceptable communication delay among microservices 𝑖  and 𝑗  of application α. 

Each microservice requires 𝑚𝑣𝑎  b.u. to be transferred to a node prior to execution, prone to 

bandwidth utilization billings. 

Time in our system model is divided into discrete fixed duration periods. Applications arrive 

dynamically, with each application 𝑎 ∈ 𝐴  having a start time and a duration, defining the 

number of periods it will run for. Each microservice has specific computational requirements 

for each distinct period expressed as 𝑆𝑎,𝑖,𝑡, which represents the CPU demand for the 

microservice during time period 𝑡 . This demand fluctuates over time, and we represent it as 

a time series over the different periods to capture its dynamic nature. 
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Figure 9: The allocation of resources across the distributed edge-cloud infrastructures. 

5.2.5 Speculative Application Resource Allocation through Stochastic 

Risk Assessment 

In this section, we introduce the speculative resource allocation mechanism enabled by 

stochastic risk assessment, presented in Figure 9. Designed to manage the uncertainty of 

workload demands in edge-cloud environments, it addresses these challenges by proactively 

adjusting resources based on workloads’ risk to surpass a pre-defined threshold. This can be 

set by system administrators or service-level agreements to ensure QoS and avoid resource 

saturation. The mechanism directly utilizes the workload’s volatility, allowing dynamic 

resource reallocation before demand spikes to nodes that minimize the risk of over-

provisioning. When placing the workload demands to nodes the assignment is done in a 

manner that minimizes the cumulative risk of resource exhaust within the node. This 

combination ensures efficient, real-time allocation, while accounting for risk, increasing 

utilization and minimizing service disruptions. 

The process operates in two alternating stages. The first stage involves the forecasting 

mechanism, which calculates both the expected growth rate 𝜇𝛼,𝑖 and the volatility parameter 

𝜎𝛼,𝑖 for each microservice 𝑖  in application 𝑎  over a past window T. While volatility 𝜎𝛼,𝑖,𝑡 

quantifies the uncertainty in the microservice’s CPU demand 𝜀𝑎,𝑖,𝑡 over time, 𝜇𝛼,𝑖,𝑡 captures 

the anticipated trend in CPU usage. Using these parameters, the system estimates the future 

CPU requirements within the next time window, incorporating a given risk threshold 𝑅  to 

balance resource allocation with potential demand fluctuations. This forecasting step repeats 

every 𝑇  periods to ensure the system continuously adapts to changing workloads. By 

modifying the forecasting horizon T and changing the frequency of execution for the resource 

allocation algorithm we can define the granularity of our predictions, managing a trade-off 

between forecasting accuracy and computational intensity. Performing the risk assessment 

and workload forecasting locally, the system minimizes real-time telemetry data transfers, 

only sending critical estimates and risk levels to the orchestrator enhancing reaction speed 

and reducing communication overhead. The combination of joint risk assessment and 

volatility-based workload assignment ensures a steady temporal resource allocation, 

increasing infrastructure utilization and reducing potential QoS degradations. 
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In the second stage, between forecasting windows, the Speculative Resource Allocation (SRA) 

mechanism monitors node utilization and assesses the risk of overuse based on the current 

volatility 𝜎𝛼,𝑖,𝑡.  If the risk of exceeding the available resources surpasses the defined QoS 

threshold 𝑅 , the system notifies the central orchestrator to reallocate resources 

preemptively. This enables proactive, multi-objective optimization that accounts for 

overprovisioning risks as well as other criteria like end-to-end latency and cost efficiency. 

5.2.5.1 Stochastic forecast and risk assessment mechanism 

We introduce the stochastic forecasting and risk assessment mechanism designed to monitor 

individual microservices and nodes with minimal computational overhead. This mechanism 

provides a QoS, represented by the probability that actual CPU demand will not exceed the 

allocated resources. To achieve this, we model the CPU demand of microservices 𝑆𝑎,𝑖,𝑡 using 

Geometric Brownian Motion (GBM), a widely used method for representing fluctuating 

variables. The GBM model for the CPU demand is defined by the equation: 

𝑑𝑆𝑎,𝑖,𝑡 = 𝜇𝑎,𝑖,𝑡𝑆𝑎,𝑖,𝑡𝑑𝑡 + 𝜎𝑎,𝑖,𝑡𝑆𝑎,𝑖,𝑡𝑑𝑊𝑎,𝑖,𝑡 (1) 
 

where 𝜇𝑎,𝑖,𝑡 the drift rate (expected growth rate of CPU demand), 𝜎𝑎,𝑖,𝑡 the volatility (standard 

deviation of CPU demand), 𝑊𝑎,𝑖,𝑡 a Wiener process for a microservice 𝑖  of an application 𝑎  as 

calculated at time 𝑡 . 

This modelling choice is justified by the similarities between distributed computational 

systems and financial markets: both operate continuously, experience uncertainties from 

external factors such as hardware malfunctions and fluctuating user demand [8] and generate 

data that can be leveraged by data-driven approaches for resource orchestration. Just as stock 

prices fluctuate based on trading activity, CPU demand for applications and their 

microservices is driven by user behaviour. Thus, we can predict CPU demand over a prediction 

horizon H and allocate resources, accordingly, minimizing the risk of under-provisioning. In 

this analogy, the CPU demand of a microservice reflects the volatility 𝜎𝑎,𝑖, while the allocated 

resources act as a threshold 𝐾𝑎,𝑖,𝑡+𝐻 ensuring adequate provisioning. Following properties of 

GBM, the logarithmic ratio of future CPU demands 𝐾𝑎,𝑖,𝑡+𝐻 to current demands 𝐾𝑎,𝑖,𝑡 follows 

a normal distribution. 

ln (
𝐾𝑎,𝑖,𝑡+𝐻
𝐾𝑎,𝑖,𝑡

)~𝑁 ((𝜇𝑎,𝑖,𝑡 −
𝜎𝑎,𝑖,𝑡
2

2
)𝐻, 𝜎𝑎,𝑖,𝑡

2 𝐻) (2) 

Therefore, the required resources 𝐾𝑎,𝑖,𝑡 that need to be allocated at time 𝑡  and a prediction 

horizon 𝐻  to meet the QoS threshold 𝑅  as given in [45] is presented below: 

𝐾𝑎,𝑖,𝑡 = 𝑆𝑎,𝑖,𝑡 ∙ 𝑒
−𝑁−1(𝑅)∙𝜎𝑎,𝑖,𝑡√𝐻+(𝜇𝑎,𝑖,𝑡−

𝜎𝑎,𝑖,𝑡
2

2
)∙𝐻 

 
(3) 

where 𝑁−1(𝑅)) is the inverse cumulative distribution function of the standard normal 

distribution at probability 𝑅 . Eq. (3) allows us to determine the resource level that must be 

allocated for microservice 𝑖  of application a to ensure that, with probability 𝑅 , the CPU 

demand will not exceed the allocation over the prediction horizon 𝐻 . In an analogy to the 
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Black-Scholes model, the QoS threshold 𝑅  mirrors the probability that an option will expire 

in-the-money, and the model’s prediction horizon H is akin to the time-to-expiry. 

To assess the risk 𝑅𝑢,𝑡 at time t that the CPU resources of a node u may be insufficient until 

time 𝑡 + 𝐻 , it is essential to define the aggregated expected growth rate 𝜇𝑢,𝑡 and aggregated 

volatility 𝜎𝑢,𝑡  of CPU demand on node 𝑢  at time 𝑡 . Let node u host a set of applications 𝑀𝑢,𝑡 

a and a set of microservices 𝑀𝑢,𝑡. Each microservice 𝑀𝑢,𝑡 in application a assigned to node 𝑢  

has an expected CPU demand growth rate 𝜇𝑎,𝑖,𝑡 and volatility 𝜎𝑎,𝑖,𝑡. Assuming that the CPU 

demands of microservices across different applications are independent, while microservices 

within the same application may exhibit dependencies, the aggregated parameters for node 

𝑢  are derived as follows: 

𝜇𝑢,𝑡 = ∑ ∑ 𝜇𝑎,𝑖,𝑡
𝑖∈𝑀𝑢,𝑡(𝑎)𝑎∈𝐴𝑢,𝑡

 (4) 

𝜎𝑢,𝑡
2 =∑ ∑ 𝜎𝑎,𝑖,𝑡

2

𝑖∈𝑀𝑢,𝑡(𝑎)𝐴𝑢,𝑡

+ 2 ∙∑ ∑ 𝐶𝑜𝑣

𝑖,𝑗∈𝑀𝑢,𝑡(𝑎)𝐴𝑢,𝑡

(𝑆𝑎,𝑖,𝑡, 𝑆𝑎,𝑗,𝑡) (5) 

Note that the volatility calculated by Eq. (5) considers the covariance for each pair of 

dependent microservices, i.e., the microservices of the same application to account for their 

joint variability. Using the aforementioned parameters, the risk 𝑅𝑢,𝑡 that node’s 𝑢 capacity will 

be exceeded is quantified as: 

𝑅𝑢,𝑡 = 1 − 𝑁

(

 
 
ln (

𝐾𝑢
𝑆𝑢,𝑡
) − (𝜇𝑢,𝑡 −

𝜎𝑢,𝑡
2

2 ) ∙ 𝐻

𝜎𝑢,𝑡√𝐻

)

 
 

 (6) 

5.2.5.2 Speculative Cloud native application Resource Allocation mechanism 

The proposed SRA mechanism leverages the output of the forecasting mechanism for task 

assignment across the distributed infrastructure. At the start of each period, the SRA 

mechanism executes a sequence of operations: (i) Resource Deallocation: The expired 

resources allocated to applications are released, updating the respective nodes’ resource 

availability; (ii) Resource Allocation: a greedy best-fit heuristic is employed, to allocate 

resources for new applications requests using the predictions provided. The greedy best-fit 

heuristic processes application demands sequentially with two modes of operation. In the 

case of node overutilization, the mechanism evaluates the individual resource requirements 

only for microservices affected by the event, while it assesses all the applications’ 

microservices when updating the total allocation using new predictions. For each 

microservice, it identifies candidate nodes that possess the necessary CPU capacity and 

computes an evaluation metric that encapsulates the node’s suitability. The value of this 

metric is the weighted sum of (i) the expected communication latency from hosting the 

microservice; (ii) the cost of utilizing the node; and (iii) the risk associated with potential 

resource saturation. The nodes are then sorted in descending order based on their heuristic 

scores. 
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Depending on the mode of operation the mechanism then attempts to assign the affected 

microservices or all microservices to a node in the ranked list, moving on to the next if a node's 

resources fall short or the application’s latency constraints are not satisfied. The allocation 

process continues until it has either successfully assigned all microservices or until the 

exhaustion of the candidates list, in which case there is no viable assignment scheme with the 

current allocation and a backtracking procedure is initiated, systematically freeing up 

resources for all microservices related to the applications in question. Resource allocation is 

then reattempted with a greater number of candidate nodes, allowing for greater flexibility 

while giving priority to the node a microservice is initially hosted at to minimize the number 

of re-locations of microservices. In this way, the allocation decision takes the forecasted 

resource utilization patterns into consideration for the already served applications. A high-

level overview of the SRA mechanism is provided in the pseudocode in Figure 10. 

 

Figure 10: The pseudocode of the speculative resource allocation mechanism. 

 

 

 

Speculative Resource Allocation Mechanism 
Input: Nodes, Applications, Risk Threshold 
Output: AllocationStatus, NodeStates 
1 for each timeslot t do: 
2  for each node v in V do: 
3   for each application a in allocated with end time ≤ t do: 
4    Free allocated resources  
5    Remove application a from allocated 
6   end for 
7  end for 
8  for each application a starting at time slot t do: 
9   for each microservice i in a do: 
10    candidates = [for v in V with enough resources] 
11    Calculate heuristic score 
12    Order nodes based on objective function 
13    if candidate_node do: 
14     Allocate resources of candidate node 
15     Append microservice to served  
16    else (no candidate node): 
17     for the previous allocated microservice do: 
18      Free Resources (prev_micro) 
19      Try to allocate resources to freed microservices 
20    end if 
21   end for 
22  end for 
23  for each node v in V where Rv, t > Risk Threshold do: 
24   for microservice i in allocated in v do: 
25    Reallocate Microservice i 
26   end for 
27  end for 
28 end for 
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5.2.6 Simulation Experiments 

5.2.6.1 Simulation Setup Description 

For our simulation experiments, we considered a fully connected network topology consisting 

of 47 nodes to comprehensively evaluate the performance of the SRA mechanism across a 

distributed edge-cloud infrastructure. This setup allowed us to mimic a realistic and scalable 

edge cloud continuum infrastructure. The specific characteristics of each node type, including 

the number of nodes, CPU units, latency metrics in latency units (l.u.), operating and 

bandwidth costs in cost units (c.u.), are detailed in Table 4. When a reallocation is performed, 

we assume an increased cost of execution equal to 10 times the operating node’s cost to 

penalize urgent service disruptions. 

Table 4: Infrastructure characteristics. 

Node Type # of nodes # of CPU units 
Latency Units 

(l.u.) 

Operating 

Cost (c.u.) 
B/W cost (c.u) 

Near Edge 40 [4,8] [3-10] [4-6] [5-10] 

Far Edge 6 [80-120] [20-50] [2-3] [2-5] 

Cloud 1 500 100 1 2 

 

For the user workloads, we employed the Alibaba Cluster Trace [46], which captures data from 

a production cluster over a 12-hour period, to test our framework’s predictions’ applicability 

on realistic data. Average resource demands in 5-minute intervals were extracted to 

accurately model fluctuations. The microservices specifications were randomly generated 

based on a uniform distribution to create a versatile framework for various applications. Each 

application comprised 1 to 6 microservices, with their computational intensities—low, 

medium, or high—assigned probabilities of 0.45, 0.30, and 0.25, respectively. This setup 

captures the heterogeneity of possible workloads while simultaneously utilizing real demand 

from the Alibaba trace. Dependencies among microservices were established randomly with 

a probability of 0.5 to simulate necessary interactions within the applications. Latency 

communication constraints ranged from 5 to 50 l.u. among interdependent microservices. The 

proposed mechanisms were developed in Python and simulations were conducted on a Ryzen 

7-32GB RAM PC. 

5.2.6.2 Performance Analysis 

Initially, we examined the SRA mechanism’s efficacy. We gradually increased the model’s risk 

limits 𝑅 from 1% to 5% and compared their outcomes with those of a baseline model that 

operates based on a static worst-case resource allocation. The metrics of focus were the 

Utilization Ratio, reflecting the ratio of actively utilized to total allocated resources, and the 

number of relocations, indicating the frequency of microservice migrations due to resource 

unavailability. Our findings, depicted in Figure 11, reveal that the SRA mechanism significantly 

enhances resource utilization under all forecasting scenarios improving utilization upon the 
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baseline model by up to 1.59 times, underscoring the effectiveness of our forecasting 

mechanism. Moreover, it achieves this efficiency while concurrently reducing the number of 

relocations by up to 78%. Notably, as the risk limit increases, the following trade-off emerges: 

a higher risk limit leads to greater resource allocation upfront, and less efficient utilization. On 

the other hand, it diminishes the need for subsequent relocations. This adaptability is crucial 

when applications with varying requirements and constraints are served, allowing for a 

flexible framework that can achieve high QoS while maintaining efficiency. 

 

Figure 11: The effect of shifting forecasting risk limit R in the utilization of allocated resources and 

the number of reallocations of services. 

 

 

Figure 12: The effect of shifting the prediction time horizon H in the operational cost and the end-

to-end application latency. 

 

Next, we examined the impact of the forecasting horizon H on the total cost and latency of 

the proposed method (Figure 12). Our simulations present a fixed allocation model that 

considers the worst-case requirements for the demands of the microservices (H=0), and the 

SRA mechanism with a risk threshold R=5% and a gradually increasing prediction time horizon 

H that ranges from 4 to 16 periods. When the forecasting mechanism is not utilized, services 

are allocated statically based on worst case assumptions. This results in increased cost due to 
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overallocation of edge resources and a greater number of reallocations. Also, as the capacity 

of both the near and far edge resources is limited, this results in the extinction of available 

edge resources, guiding the remaining applications to the cloud which results in increased 

latency and thus a deterioration in the offered QoS. When the SRA makes use of the 

forecasting output it decreases the total cost and the experienced end-to-end latency of the 

applications assignment by up to 55% and 23% respectively. We also notice that as the time 

horizon H increases, the SRA mechanism achieves a slightly improved performance. 

Finally, we examined the robustness of the proposed SRA mechanism with respect to 

workload volatility. Particularly, we adjusted the CPU volatility of the microservices’ 

requirements within a fixed topology by adding Gaussian White Noise with a gradually 

increasing variance to observe how the model responds. As shown in Figure 13, we compare 

a forecasting model set with risk threshold R=1% against a worst-case estimate model, which 

allocates a static provision of 2 CPU cores per microservice. The findings reveal that the 

forecasting model's utilization ratio declines as volatility intensifies, which hints at a decrease 

in predictive accuracy, consequently leading to more conservative estimates but maintaining 

the same level of under provisioning events. Contrastingly, the fixed model’s performance is 

less affected by the volatility, maintaining a consistently lower utilization rate. The proposed 

SRA mechanism demonstrates resilience, surpassing the worst-case model’s efficiency and 

maintaining stable performance even under extreme volatility scenarios. This underscores the 

SRA model's potential in managing resources in dynamic, uncertain environments. 

 

Figure 13: The number of anomalous events and the utilization of allocated resources for different 

degrees of workload volatility. 

5.2.6.3 Conclusion 

In this work, we presented a Speculative Resource Allocation (SRA) mechanism, that leverages 

a stochastic forecasting model drawn on the principles of the Black-Scholes financial model. 

Designed to address the inherent inefficiencies within edge computing orchestration, 

characterized by rigid forecasting and disruptive resource scaling, our mechanism performs a 

speculative risk aware approach. It proactively adjusts to the variable demands of 

applications, reducing latency and operational costs. The SRA mechanism considers the risk of 

overprovision events among its objectives, handling the unpredictability of workload 
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demands. Through this risk-aware approach, it not only anticipates potential demand spikes 

but also selects the allocation of resources in a way that minimizes the impact of such events. 

Extensive simulation experiments, based on real-world data, have shown that the proposed 

mechanism optimizes resource utilization and minimizes service disruption. The results affirm 

the mechanism's compatibility within the landscape of distributed computing, suggesting a 

scalable and adaptive solution for the resource orchestration that can competently handle 

diverse and dynamic, fluctuating workloads with a minimal computational overhead. 

5.3 Distributed Knowledge Graphs for the Allocation of 

Federated Edge-Cloud Resources 

5.3.1 Introduction 

As the landscape of IoT systems expands, modern applications demand increasingly 

sophisticated infrastructures that can process large volumes of data in real-time. Traditionally, 

this processing has relied on centralized cloud resources or simple edge nodes, forming what 

is commonly referred to as the IoT-edge-cloud continuum. However, the complexity of 

emerging AI-driven and hyper-distributed applications often exposes the limitations of these 

monolithic systems, particularly in terms of scalability, privacy, and resource management. To 

overcome these limitations, we introduce a novel approach based on federations of 

collaborative, heterogeneous IoT devices and resources, to be referred to as IoT-Edge 

Associations or simply Associations (Figure 14). These Associations function as federated 

entities that leverage distributed, AI-driven decision-making to balance computing tasks and 

optimize resource usage across various providers, networks, and locations. 

 

Figure 14: Associations-based continuum. 
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This work explores an advanced resource allocation framework within such a federated IoT-

edge-cloud environment, namely Associations based-continuum, where the interplay 

between distributed IoT devices, edge nodes and cloud resources are key. Our framework 

utilizes Distributed Knowledge Graphs (DKGs), a structured approach to formally represent 

and manage relationships between heterogeneous computational resources, workload tasks, 

and user entities. Each Knowledge Graph (KG) represents data in a graph-based model, where 

nodes represent entities (such as resources or jobs), and edges represent relationships 

between them, in a particular Association. In the context of our framework, DKGs enable each 

Association to make informed decisions locally, based on aggregated knowledge, while also 

overcoming the privacy and scalability challenges typically associated with distributed 

resources by controlling the granularity of information exchanged. 

The goal of this work is to address the challenges of optimizing resource allocation in dynamic 

environments, specifically within federations of Associations, by balancing the trade-offs 

between execution time, precision, and scalability. Our proposed mechanisms aim to improve 

collaboration among distributed entities without compromising individual job and resource 

privacy. 

Figure 15 illustrates the overall system architecture, integrating Distributed Knowledge 

Graphs (DKG) into the Association-based continuum consisting of IoT devices, edge, and cloud 

resources, user, and provider entities. We assume that a central entity, namely Registry, is 

responsible for maintaining the DKG. The Registry also hosts the resource allocation strategies 

proposed in this work that are tailored to federated IoT-edge-cloud environments. 

 

Figure 15: System Architecture: Federated IoT-Edge-Cloud Continuum with DKG for Resource 

Allocation. 

Key research objectives and contributions of this work include: 

• A privacy-preserving Distributed Knowledge Graph (DKG) based architecture to 

manage resource allocation efficiently while maintaining data privacy. This allows 

resource providers to share only aggregated data without compromising the system’s 

ability to make informed decisions. 

• A novel clustering algorithm with a fixed centroids approach for resource allocation. 

This method is compared with a Mixed Integer Programming (MIP) baseline, offering 
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insights into the trade-offs between computational efficiency, adaptability, and 

precision. Our approach is designed to optimize load balancing and right-sizing under 

different levels of information granularity. 

• A comparative evaluation of our method on different information granularity levels. 

Our study investigates how varying levels of information granularity—ranging from 

high granularity with detailed job and resource data to reduced granularity with 

aggregated information—impact resource allocation efficiency and decision speed. 

5.3.2 Related Work 

The efficient allocation of workload to edge-cloud resources has been addressed using various 

techniques across different computing paradigms. Integer Linear Programming (ILP) models, 

multi-objective optimization and metaheuristics techniques have been employed to optimize 

multiple objectives, such as minimizing server usage while maximizing resource utilization or 

balancing energy consumption with service level agreements. 

Relative recently, Machine learning (ML) techniques have emerged as powerful tools for 

optimizing resource allocation. ML models predict resource demand, enabling systems to 

adjust resource distribution dynamically [47][48]. Xiong et al. [49][50] and Qadeer et al. [54] 

apply deep reinforcement learning (DRL) to resource allocation in mobile edge computing, 

improving job completion time and resource usage. Recent works have also integrated 

knowledge graphs with machine learning for advanced resource management, network 

optimization and event detection Mitropoulou et al. [51][52].  

Federated knowledge graphs are promising for managing resources in distributed 

environments by enabling data integration and sharing across different nodes, facilitating 

efficient resource allocation and optimization. Federated learning (FL) and federated 

knowledge graphs (FKG) address challenges of data integration and privacy in distributed 

systems [53][54]. These approaches allow devices to collaboratively learn a shared model 

without sharing raw data, preserving privacy while benefiting from collective learning. 

Zhu et al. [55][56]  discuss the use of federated knowledge graphs for optimizing resource 

allocation in edge computing environments, highlighting the benefits of data integration and 

collaboration. Chen and Liu [56] propose a federated deep reinforcement learning-based task 

offloading and resource allocation method for smart cities, demonstrating the potential of 

collaborative resource management in complex environments. 

In federated computing environments, balancing efficiency with privacy is critical in resource 

allocation. Techniques such as differential privacy and secure multiparty computation protect 

data integrity but can introduce computational overhead [57]. Adaptive algorithms that 

consider both resource constraints and privacy policies enhance system resilience and 

efficiency, as seen in IoT environments with heterogeneous devices and data sensitivity [58]. 

Dandoush et al. [59] highlight the importance of decentralized data training without direct 

data sharing in federated systems, addressing privacy concerns in next-generation networks. 

Zhan et al. [60] discuss the challenges posed by the diversity of devices in federated networks, 

which pose significant challenges in resource allocation due to heterogeneity. Sarikaya [61] 
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explores adaptive strategies that tailor resource allocation based on the specific 

characteristics of each client, enhancing system efficiency and fairness. Yang et al. [62] address 

challenges of non-id data distributions in federated environments, impacting model 

performance in resource allocation. Yu et al. [63] discuss the integration of deep 

reinforcement learning with federated learning as a promising direction for future research in 

resource allocation, offering significant potential for improving resource utilization. 

Our approach leverages both MIP and custom clustering algorithms to optimize resource 

allocation within a federated distributed system. By using distributed knowledge graphs, we 

enhance our ability to integrate and share data across different associations while preserving 

privacy. Compared to traditional methods, our approach offers enhanced privacy ensuring 

sensitive data remains decentralized, improved efficiency by balancing trade-offs between 

objectives, and scalability with the growing number of IoT devices and edge resources. 

5.3.3 Problem Formulation 

5.3.3.1 Model 

The primary objective of our study is to optimize resource allocation in a federated IoT-edge-

cloud environment. This consists of collaborative computing ecosystems of heterogeneous IoT 

devices and resources, from different resource owners (providers), operating in various 

regions and using various connectivity types. Each such ecosystem, is what we call an 

Association that realizes an autonomous, secure, and trusted collective. Each Association can 

adjust the level of information provided to other Associations or third-party entities, regarding 

its dynamic or static status, in terms of: storage and processing capacities, of resources’ 

specific characteristics (e.g., resource‐constrained devices, RISC-V architecture etc), utilization 

and other parameters of interest.  

The envisaged Association-based continuum serves as a bridge between infrastructure and 

service providers (the supply side) and application developers and end users (the demand 

side) who require high-performing, low-latency, hyper-distributed applications. 

In particular, the key stakeholders considered are the following: 

• Providers: There are various types of providers: IoT providers, Edge providers and 

Cloud providers. IoT providers make available IoT infrastructures (e.g., sensors, robots) 

that generate data. Edge providers offer edge computing and storage resources. Cloud 

providers provide centralized resources. Service providers also share domain-specific 

and generic platforms (e.g., for analytics) as a service. 

• Regions: Regions reflect the distribution of the resources in various locations. For 

instance: Provider A can have resources in different regions such as 'factory A', 

'factory-B', while Provider's B resources can be in 'factor-B' and 'factory-C' etc. 

• Groups: We further group Resources within each region into groups (e.g., factory-A-1, 

factory-A-2), indicating particular resource pools. Groups operating in different regions 
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can be controlled by different resource owners (providers) and used in shared manner 

by various Users/Customers. 

• Application Developers: Create hyper-distributed continuum-native applications that 

are deployed in the continuum and utilize the providers' resources. 

• Users/Consumers: The end-users are those who interact with and use the hyper-

distributed applications. 

In practice, these stakeholders can take on multiple roles. For example, an organization can 

act as both an infrastructure provider and a user. In this dual role, it can contribute a portion 

of its infrastructure resources to the continuum via an Association, making them available to 

other users. At the same time, as an application developer and user, the organization can 

utilize the platform's decentralized intelligence and its application development and 

deployment solutions to enhance its applications' performance. 

Also, this hierarchical resource distribution model consisting of multiple providers, in different 

regions and groups provides a portrayal of the complexities involved in managing distributed 

resources across a wide array of locations and administrative domains. Associations 

collaborate making decentralized decisions to balance the workload intelligently across the 

decentralized computing environments: inside an Association, between Associations, 

between Associations and other edge resources or central cloud computing centers.  

Our work aims to achieve optimal allocation of computational workloads (jobs) to the 

resources of each Association, in a way that minimizes allocation inefficiencies while adhering 

to resource constraints and considering the granularity of available information.  

5.3.3.2 Approach 

Our pipeline is structured into distinct phases, each crucial for exploring and enhancing 

resource management strategies within complex federated environments. 

• Data Acquisition from Associations: In the initial phase, data from multiple associations 

are collected to construct the Distributed Knowledge Graph (DKG). This data 

encompasses information about providers, regions, resources, and users within each 

Association. The granularity of information shared varies across different scenarios 

impacts the optimality of any resource allocation algorithm. 

• Modelling with Distributed Knowledge Graphs (DKG): This, post data generation, phase 

involves structuring the synthetic data into a Distributed Knowledge Graph. The DKG 

encapsulates various entities (e.g., providers, regions, resources, and consumers) and 

their interrelationships within multiple Associations. Each Association operates 

autonomously yet collaboratively within the continuum.  

• Resource Allocation Optimization: Building on the structured insights provided by the 

DKG, this phase employs two optimization techniques, developed in this work: Mixed 

Integer Programming (MIP) and a Custom Clustering (CC) approach. These techniques 

are assessed for their effectiveness in efficiently allocating resources, based on the 

granularity of information provided by the DKG. 
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• Assignment of Resources to Associations: The final stage of the pipeline focuses on the 

practical application of optimized allocation strategies, where resources are assigned 

to specific associations. This stage tests the effectiveness of allocation strategies under 

varying informational scenarios. 

 

5.3.3.3 Modelling with Distributed Knowledge Graphs 

Distributed Knowledge Graphs (DKGs) serve as the architectural backbone for modelling the 

interactions and relationships within the Associations-based continuum. This is a federated 

system constructed around multiple Associations, each represented as an individual 

Knowledge Graph (KG). 

Each Association's KG encapsulates a subset of the system's resources, users, and operational 

metadata that vary in type, capacity, and function. As depicted in the metagraph of Figure 16, 

these resources range from high-performance computing units to simpler storage solutions, 

all linked via a network that mimics real-world distributed computing environments. The 

various entities (Providers, Regions, Groups, Resources, Users/Consumers and Jobs) are 

represented as nodes while their interconnections are represented as edges. The granularity 

of the data captured within each Association's knowledge graph includes specific attributes, 

namely CPU cores, GPU cores, memory capacity, and network bandwidth that are represented 

as node properties. As shown, the KG is a disconnected graph since there are no edges 

between the resources and the demands. These edges will be created after the allocation 

process is complete, as a result of our resource allocation algorithms. 

 

 

Figure 16: Metagraph of Association Knowledge Graph. 
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Central to our model is the Registry, a meta-layer that oversees and interacts with the 

individual Associations. The Registry's role is to compile and synthesize information across 

different Associations, forming a comprehensive view of the network's resources and 

demands. The consolidated view offered by this knowledge graph facilitates strategic 

decision-making processes, particularly in the optimization of resource allocation across the 

federated system. The Registry can access varying levels of detail from each Association, 

depending on the granularity of information provided. 

5.3.3.4 Scenarios of Information Granularity 

The efficacy of resource allocation strategies is significantly influenced by the level of detail 

available within the Registry's KG. To explore this, we consider two distinct scenarios: 

• High Granularity Scenario: In this scenario, each Association provides the Registry with 

detailed information about individual resources and consumer demands. This includes 

precise specifications of resource capacities and the specific requirements of each job 

or process. By sharing this level of detail, the Registry can make highly informed and 

accurate resource matching and allocation decisions, potentially optimizing utilization 

and improving efficiency across the network. 

• Reduced Granularity Scenario: This scenario restricts the information to aggregated 

data at the group level within each region managed by the providers. Associations 

offer summarized details about the resources, such as total CPU and GPU capacities 

per group, without revealing information about individual units. Similarly, consumer 

demands are aggregated, reflecting the overall demand per consumer rather than 

specific job requirements. This scenario evaluates the efficiency of resource allocation 

under data limitations, simulating conditions where privacy concerns or restricted data 

availability hinder the flow of detailed operational data. 

These scenarios enable the assessment of how varying levels of transparency within a 

federated system, such as the Association-based continuum, influence the performance and 

outcomes of resource allocation strategies. 

5.3.4 Resource Allocation optimization approaches  

5.3.4.1 Resource Allocation Optimization using Mixed Integer Programming 

(MIP) 

Mixed Integer Programming (MIP) is a robust mathematical optimization technique widely 

employed to solve problems involving both continuous and discrete variables. To address the 

resource allocation problem within the federated distributed system, we formulated the 

following MIP model. 

The primary objective is to optimize the allocation of heterogeneous resources to jobs and at 

the same time foster fairness for all involved parties, providers, and consumers.  
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To this end, we formulate the optimization problem to achieve two main goals: 

1. Right Sizing: Ensuring that the resources allocated to each job closely match their 

requirements to minimize wastage and redundant charging. 

2. Load Balancing: Distributing the load evenly across available resources to avoid 

overloading any single resource and improve overall system performance. 

 

Binary Decision Variables 

As mentioned, the resource allocation problem is translated to an edge creation problem for 

the disconnected DKG. An edge that connects the job i to the resource j can be modelled as a 

binary variable that indicates whether this edge exists. Therefore, the decision variables xij of 

the above problem, are defined as follows: 

 

Objective Function  

The objective function of the MIP model is a combination of two parts, reflecting the goals of 

right sizing and load balancing. The purpose is to define penalizing metrics for each one of 

them and proceed by minimizing the overall penalty:  

Right Sizing (RZ): This part of the objective function penalizes the oversupply of resources j 

with regard to the requirements of each job i. The oversupply of each requirement (CPU, GPU, 

Memory and Bandwidth) is calculated as a squared percentage relative to the job’s demand. 

By design, there is no prioritization among requirements. Hence, the total oversupply per job 

is calculated as the sum of the individual oversupplies. GPU requirement has the particularity 

that it may be equal to zero. We utilize the max operator to prevent division by zero resulting 

in infinite terms. The following equation depicts the calculation for the entire Association: 
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Load Balancing (LB):  This part ensures that the workload is balanced across the resources, 

aiming for an even percentage utilization relative to an overall system balance parameter for 

each requirement. The system balance is defined as the total demand by the total supply 

within the Association. In order to achieve overall balance, we need to ensure that the 

resource utilization follows a uniform distribution that has a mean value equal to the system 

balance. For each resource we calculate and penalize the squared difference between its 

percentage utilization and the system balance. Similarly to the above part, there is no 

prioritization among requirements, hence, the total difference is calculated as the sum of the 

individual differences. Additionally, we utilize the max operator to prevent division by zero in 

GPU related terms.  

The following equations depict these calculations: 

 

Constraints  

The model incorporates several constraints to ensure that the resource allocation is feasible 

and respects the capacity limits of the resources: Resource Capacity Constraints, ensure that 

the total jobs served by each resource do not exceed its available capacities: 
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Allocation Constraints, ensure that each resource is allocated to exactly one job: 

 

Serving Constraints, ensure that each job is served by at least one resource: 

 

Optimization Model 

The Mixed Integer Programming (MIP) model:  

• Minimize Right Sizing and Load Balancing  

• subject to:  

o Resource Capacity Constraints 

o Allocation Constraints 

o Serving Constraints 

MIP Algorithm 

The following algorithm provides a detailed outline of the implementation of the MIP model 

for resource allocation: 
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5.3.4.2 Custom Clustering Approach with Fixed Centroids 

As an alternative to the Mixed Integer Programming (MIP) approach, we developed a Custom 

Clustering method to optimize resource allocation. This approach aims to combat the 

convergence time of MIP by materializing a clustering model with fixed centroids and a custom 

distance metric. The primary goal is to efficiently assign jobs to resource pools while 

respecting the resource constraints and ensuring a balanced load distribution. 

Similarly to the MIP approach, we aim at optimizing two elements, namely the Right Sizing 

and the Load Balancing. The goal is to minimize the overall discrepancy of the federated 

system, which is equivalent to the cumulative discrepancies produced by each allocation. In 

the scope of a clustering task, where the purpose is to minimize the distance between the 

points to their assigned centroids, this is translated to minimize the distance from the optimal 

allocation, which ultimately results in minimizing the cumulative distance within the set of 

points. 

Consequently, the distance in our custom clustering approach is equivalent to the objective 

function from MIP, but without the summation over all allocations. Instead, we calculate a 

custom metric that comprises the discrepancy as the sum of the two penalties (Right Sizing 

and Load Balancing), between the points (jobs) and the centroids (resource types) and aim at 

minimizing it. To incorporate the existing constraints into our custom distance metric, we add 
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an additional penalty term of a greater order of magnitude as described in the Penalty 

equation. This ensures that infeasible allocations are heavily penalized, thereby preventing 

them from occurring. 

The summation occurs iteratively during the clustering process, where in each iteration, jobs 

(points) are assigned to the nearest resource pools (centroids), and the discrepancies are 

computed and minimized iteratively. This iterative process continues until the assignments 

are stable and the total discrepancy is minimized. 

Another concept we introduce in our custom clustering approach is the cluster size. This 

means that every cluster can comprise up to a specific number of points. Since every centroid 

corresponds to a resource type available in the federated system, and each resource type has 

a fixed number of instances, each cluster has an upper limit on the number of points it can 

include. In other words, this means there is a maximum number of jobs that each resource 

type can handle. 

The core idea of our custom clustering algorithm involves the following steps, depicted in 

more detail in Algorithm 2: 

1) Data Preparation: Jobs are represented in space by their resource requirements (CPU, 

GPU, memory, bandwidth). Resource pools are represented by their capacities and 

number of occurrences within the federated system, which serve as fixed centroids 

and cluster sizes respectively. 

2) System Balance Calculation: We compute the total demand and capacity for each 

resource type (CPU, GPU, memory, bandwidth) across all jobs and resource pools. The 

system balance is calculated by dividing the total demand by the total capacity for each 

resource type. 

3) Clustering Algorithm: 

o Initialization: The algorithm starts with fixed centroids that represent the 

capacities of the resource pools. Each centroid is defined by its resource 

capacities, including CPU, GPU, memory, and bandwidth. The system balance 

was calculated as the ratio of total demand to total capacity for each resource 

type. 

o Assignment: Each job is assigned to the nearest resource pool (centroid) based 

on the custom distance metric we describe above that incorporates the penalty 

term for the constraint handling. The distance metric used for this assignment 

is:   
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o Iterative Adjustment: Unlike traditional K-Means, where centroids are updated 

iteratively, our centroids remain fixed. Instead, the assignment of jobs to 

centroids is iteratively adjusted to minimize the total discrepancy with regard 

to the two goals explained in Problem Formulation. The algorithm re-evaluates 

assignments in each iteration, reassigning jobs from over-allocated pools to 

those with available capacity. The process continued until the loss function 

converged to a predefined tolerance level or a maximum number of iterations 

was reached. 

o Handling of Constraints: Constraints are managed through the penalty within 

the custom distance metric. Distance imposes significant penalties for 

assignments exceeding resource capacities. This ensures that resource 

allocations remain within feasible limits. 

4) Cluster Size Handling: The algorithm ensures that the number of points assigned to 

each centroid does not exceed the predefined cluster size. If a resource pool is over-

allocated, the algorithm reassigns jobs to other pools, balancing the load while 

respecting the threshold of each cluster.    

5) Output: The final output is the assignment of jobs to resource pools, ensuring that each 

job is allocated to a resource pool that can meet its requirements without exceeding 

the pool's capacities. 

The following algorithm provides a detailed outline of the implementation of the Custom 

Clustering based mechanism for resource allocation: 
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5.3.4.3 Comparison of Mixed Integer Programming with Custom Clustering 

with Fixed Centroids 

Both the Mixed Integer Programming (MIP) and Custom Clustering approaches aim to solve 

the resource allocation optimization problem efficiently, but they do so from different 

perspectives. 

The MIP approach formulates the resource allocation problem as a mathematical optimization 

problem involving both continuous and discrete variables. This method systematically 

evaluates each possible allocation, ensuring that resource utilization is maximized and the 

load is evenly distributed across available resources. However, the computational complexity 

and convergence time of MIP can be significant, especially for large-scale problems. 
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In contrast, the Custom Clustering approach simplifies the problem by using fixed centroids, 

representing resource pools with predefined capacities. This method clusters jobs based on 

their resource requirements, assigning them to the most suitable resource pools. The fixed 

centroids guide the assignment process, while the iterative process reduces the complexity 

and improves the scalability of the solution. While this approach may not guarantee an 

optimal solution like MIP, it provides a more efficient method for resource allocation, 

particularly suitable for scenarios with stable resource characteristics. 

The objective functions in both approaches aim to achieve right sizing and load balancing but 

are tailored to their respective methodologies. In the MIP approach, the objective function is 

defined with a comprehensive exploration of all possibilities, ensuring the best possible 

resource utilization and load balancing. The Custom Clustering approach adapts the objective 

function to define the distance metric used to fit the clustering model, focusing on minimizing 

the discrepancy between job requirements and resource capacities while ensuring balanced 

load distribution. 

5.3.5 Performance Evaluation 

This section presents the performance evaluation of the two optimization algorithms 

developed: Mixed Integer Programming (MIP) and Custom Clustering. Our simulation includes 

multiple associations, resource types, and consumer job profiles, designed to mirror real-

world distributed computing environments (Table 5). These variations in size allow us to 

explore how each method scales and adapts under increasing complexity and load. The 

experiments examine key performance metrics: consumers served, load balancing, right 

sizing, and execution time. We consider both high granularity and reduced granularity 

scenarios to understand how each algorithm performs under varying levels of information 

availability. 

Table 5: Simulation Sizes. 
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Figure 17 displays the percentage of consumers served using MIP and Custom Clustering. In 

the high granularity scenario, MIP consistently manages to serve all consumers across all 

tested simulation sizes. The availability of detailed job-specific data allows MIP to allocate 

resources optimally, fully matching job demands to the available resource capacities.  Like 

MIP, Custom Clustering achieves 100% consumer coverage in the high granularity scenario 

across all simulation sizes as it offers a feasible solution, leveraging the availability of detailed 

information. 

 

Figure 17: Comparison of consumers served between different scenarios under the MIP and the 

Custom Clustering algorithms. 

 

In contrast to the high granularity use case, the reduced granularity scenario presents 

significant challenges. Here, Custom Clustering is unable to serve all consumers, as aggregated 

information limits the algorithm’s visibility into individual job requirements. As expected, this 

leads to inefficiencies in resource allocation. The reduction in served consumers is not affected 

by larger simulation sizes, fluctuating between 80% and 90% respectively. On the other hand, 

the MIP approach shows greater resilience than Custom Clustering in reduced granularity 

settings. While it also experiences a decrease in the number of consumers served, the drop is 

less pronounced compared to Custom Clustering. This robustness stems from its inherent 

flexibility in grouping jobs and resources, even with partial information, allowing it to maintain 

relatively high levels of job fulfillment and consumer satisfaction. 

MIP achieves more precise right-sizing by closely matching resource allocations to the specific 

needs of individual jobs than Custom Clustering (Figure 18). This is evident in the lower right-

sizing penalties observed in the experiments, in both high and low granularity scenarios. 
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Figure 18: Comparison of Right Sizing penalty between different scenarios under the MIP and the 

Custom Clustering algorithms. 

 

On the other hand, Custom Clustering shows a remarkable ability to achieve better load 

balancing under the same high granularity conditions (Figure 19). Despite not being designed 

to find the absolute optimal allocation, it manages to distribute workloads across resources 

with efficiency, as reflected in the consistently lower load balancing penalties compared to 

MIP. This flexibility and adaptability give Custom Clustering an edge in scenarios where 

minimizing computational overhead and execution time are more critical than achieving the 

absolute minimum in allocation penalties. 

 

 

Figure 19: Comparison of Load Balancing penalty between different scenarios under the MIP and 

the Custom Clustering algorithms. 
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Figure 20 reveals that MIP’s execution time is significantly longer, especially as the simulation 

size increases. While Custom Clustering is, by definition, less optimal in terms of resource 

allocation, its much faster execution times make it a more practical option for real-time or 

time-sensitive applications where decision-making speed is essential. 

 

Figure 20: Comparison of execution time between different granularity scenarios, under the MIP 

and the Custom Clustering algorithms. 
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6 Decision Engine 

6.1 Overview 

The management of infrastructures across the IoT-edge-cloud continuum and deployment of 

cloud-native applications usually rely on hierarchical orchestration models. In these systems, 

a high-level orchestrator assigns application microservices and workloads to local 

orchestrators, which, in turn, control subsets of infrastructure resources. Although this 

approach has been effective, it follows a monolithic paradigm inadequate for the next 

generation of hyper-distributed and AI/ML-based applications. These applications demand 

real-time adaptability, low latency, and stringent performance guarantees. 

Instead of relying on a rigid, centralized hierarchy, EMPYREAN’s Decision Engine leverages an 

Association-based model that promotes local decision-making and collaborative intelligence. 

This approach provides cognitive, AI-driven optimizations and autonomous multi-agent 

coordination towards a self-adaptive and federated continuum. As presented in D2.3 (M12), 

the deployment of cloud-native applications within the EMPYREAN platform is structured into 

three distinct phases. The first phase involves decentralized and speculative resource 

orchestration, where application workloads are strategically distributed to specific 

Associations according to deployment objectives. The second phase encompasses hierarchical 

cognitive resource orchestration within the selected Associations, further refining the 

deployment plan based on platform-specific deployment objectives. The third phase involves 

the selection of specific worker nodes across the utilized clusters and the actual deployment. 

The Decision Engine plays a crucial role in the first two key phases, acting as the intelligence 

layer that enables EMPYREAN to seamlessly orchestrate hyper-distributed applications, 

ensuring scalability, efficiency, and sustainability across the edge-cloud continuum. According 

to the EMPYREAN architecture, the Decision Engine supports the EMPYREAN Aggregator and 

Service Orchestrator to (i) orchestrate the hyper-distributed applications and distribute their 

workloads considering the local resource state and characteristics while trying to fulfil their 

objectives, (ii) coordinate the efficient load-balancing of data and workload within and across 

the available Associations, and (iii) support the efficient operation of Associations.  

6.2 Relation to EMPYREAN Objectives and KPIs 

The Decision Engine is one of EMPYREAN’s enabling technologies that, in cooperation with the 

EMPYREAN Aggregator and Service Orchestrator, support efficient and cognitive 

orchestration and workload placement across the Association-based continuum. To this end, 

the Decision Engine contributes to the achievement of the following key objectives and 

technical KPIs2:  

                                                      

2 Technical KPI identifiers introduced in D2.3 (M12). 
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• T1.1 - Reduce cloud and increase edge utilization via workload balancing optimization: 

Decision Engine enables decentralized and multi-agent orchestration, dynamically 

guiding the distribution of application workloads across edge and cloud resources, 

reducing reliance on centralized cloud computing. Its speculative resource allocation 

and AI-driven heuristics will optimize workload placement closer to data sources, 

minimizing latency and unnecessary cloud usage. 

• T2.1 - Improve overall performance compared to SotA: The Decision Engine leverages 

AI-enhanced heuristics, game theory, and reinforcement learning to optimize 

execution strategies beyond traditional orchestration solutions. 

• T2.2 - Reduce energy consumption on Associations compared to standard execution: 

The Decision Engine incorporates energy constraints into its optimization models, 

prioritizing workload execution on low-power and renewable-powered devices. It will 

provide energy-aware scheduling and load redistribution for energy efficiency, 

favouring green resources to minimize overall carbon footprint.  

• T2.4 - Boost AI-driven decision-making accuracy: The Decision Engine supports 

cooperative and competitive AI agents, allowing for dynamic, context-aware decision-

making. It also leverages historical data and reinforcement learning to enhance 

decision accuracy over time, surpassing rule-based orchestration systems. 

 

6.3 Architecture 

The Decision Engine is designed to function seamlessly across diverse computing 

environments, ranging from edge devices to central cloud infrastructures. By integrating AI-

driven, decentralized orchestration, EMPYREAN ensures system-wide welfare optimality, 

enabling a more efficient, resilient, and scalable computing paradigm for next-generation IoT, 

AI, and hyper-distributed applications. 

Within the EMPYREAN project, efforts focus on extending the open-source Resource 

Optimization Toolkit (ROT), initially developed in the H2020 SERRANO3 EU project by the ICCS, 

into the cloud-native Decision Engine component. As a cloud-native and scalable service, the 

Decision Engine is specifically designed and built to support the EMPYREAN Multi-Cluster 

Orchestration layer’s cognitive and distributed orchestration requirements. It also integrates 

a wide range of decision-making algorithms.   

As illustrated in Figure 21, the Decision Engine architecture includes a Decision Engine 

Controller and multiple Execution Engines, which function as the actual workers. Each worker 

consists of the Execution Engine and the library of decision algorithms, ensuring both flexibility 

and scalability. This modular design enables the Decision Engine to efficiently process a high 

volume of execution requests from the Service Orchestrator, even in highly complex 

infrastructures.  

                                                      

3 https://ict-serrano.eu 
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The Decision Engine interacts directly with the Service Orchestrator, processing service 

requests while leveraging real-time telemetry data from the EMPYREAN Telemetry Service to 

make informed, adaptive decisions. Additionally, it utilizes the Distributed Data Broker service, 

which leveraging Eclipse Zenoh’s4 capabilities, providing a scalable and dynamic 

communication environment to support multi-agent operations. This environment supports 

efficient information sharing, helping agents to coordinate, exchange insights, and 

collaboratively make decisions as they work towards a common optimization goal. 

 

 

Figure 21:  Decision Engine architecture. 

 

The Decision Engine Controller provides bidirectional communication interfaces, enabling the 

exchange of requests, responses, information, and notifications. To ensure loose coupling 

between the Decision Engine and other EMPYREAN services, the Access Interface exposes 

RESTful and asynchronous APIs that provide flexible and scalable integration. A detailed 

description of the provided methods is available in the next section.  

At the core of the Decision Engine Controller lies the Dispatcher, which provides intelligent 

task coordination for managing execution requests and facilitating interactions with multiple 

instances of the Execution Engine. Key functionalities of the Dispatcher include (i) processing 

and adapting incoming service requests, ensuring alignment with the Decision Engine’s 

execution model, (ii) retrieving real-time telemetry data, including resource characteristics, 

system status, and application deployments, (iii) creating and managing the communication 

channels for the multi-agent operation, and (iv) preparing execution parameters and 

efficiently distributing requests to available Execution Engines for processing.  

                                                      

4 https://zenoh.io 
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The Execution Engine processes service requests dispatched by the Decision Engine Controller. 

Each request is handled as a discrete task that can involve either starting a new execution, 

including all required input parameters, or terminating an ongoing execution.  

The Execution Engine Interface first validates incoming service requests from the Dispatcher 

before forwarding them to the Execution Manager, which handles the actual execution 

lifecycle. The Execution Manager determines whether to terminate an execution or initialize 

a new one with the assistance of the Execution Helper. The Execution Helper focuses on task 

execution and monitoring by: (i) setting up the execution environment, ensuring all 

dependencies and configurations are in place, (ii) tracking execution progress and reporting 

real-time updates to the Execution Manager, and (iii) handling execution results and managing 

potential failures. 

The Decision Algorithms is the library of multi-objective optimization and orchestration 

algorithms. These algorithms drive intelligent decision-making by dynamically balancing trade-

offs between performance, resource utilization, energy efficiency, and latency constraints. By 

leveraging advanced AI-driven heuristics, game theory, and real-time analytics, the Decision 

Engine continuously refines execution strategies to enhance efficiency, scalability, and 

adaptability within the EMPYREAN platform. 

The updated Decision Engine design introduces capabilities, enabling its evolution into a multi-

agent system that significantly improves flexibility, scalability, and decision-making efficiency 

within the distributed, Association-based continuum of the EMPYREAN platform. By adopting 

a multi-agent architecture (Figure 22), the Decision Engine supports both cooperative and 

competitive operations, enabling decentralized and speculative resource orchestration across 

Associations. This advancement allows multiple autonomous agents, each representing an 

independent Decision Engine instance orchestrating specific clusters within an Association, to 

collaborate dynamically for optimizing decision-making. 

 

 

Figure 22: Multi-agent system architecture utilizing multiples instances of Decision Engines across 

EMPYREAN Associations. 
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Agents collaborate to optimize workload placement and resource allocation, ensuring efficient 

use of heterogeneous computing resources across the edge-cloud continuum. By sharing 

telemetry insights and resource status information, agents collectively negotiate the best 

possible execution strategies while minimizing bottlenecks and balancing loads across 

federated Associations. When necessary, agents compete for limited resources, dynamically 

adjusting their strategies based on game-theoretic principles to ensure fair and efficient 

resource utilization. Agents use reinforcement learning and adaptive heuristics to 

continuously improve decision-making based on past performance, real-time demand, and 

system constraints. 

One of the significant aspects of multi-agent decision-making is the ability of agents to convey 

information and synchronize their actions through communication. Adequate communication 

is a prerequisite for group work, synchronization, and conflict resolution of agents. To this 

end, the updated design of the Decision Engine incorporates a lightweight and scalable 

communication layer based on the Eclipse Zenoh. This middleware provides the necessary 

mechanisms for inter-agent communication, facilitating the exchange of state information, 

coordination signals, and messages between Decision Engine instances.  

 

6.4 Implementation 

The Decision Engine components are implemented in Python language and packaged in 

container images, ensuring a smooth and efficient development workflow. There are separate 

container images for the Decision Engine Controller and Execution Engine.  

The Access Interface component provides two Northbound Interfaces (NBIs): one based on 

REST APIs and the other on an asynchronous messaging interface using the Advanced Message 

Queuing Protocol (AMQP). The first interface (Figure 23) offers control operations for 

managing and inspecting the execution of deployment algorithms, retrieving information 

about the available Execution Engines, and administering end users. The second interface 

enables asynchronous communication between the Decision Engine Controller and end users, 

facilitating the exchange of notification messages and results. 

The asynchronous interface uses a predefined set of topics for exchanging messages that 

correspond to various notifications related to the operation of the Decision Engine. These 

messages are described in JavaScript Object Notation (JSON) format using the following 

predefined syntax: (a) event (string): event unique identifier and (b) data (element): a set of 

event-related parameters that provide the required information. 
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Figure 23: Decision Engine – Access Interface REST API. 
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Moreover, the workload assignment algorithms are accessible from the Execution Engine 

internal components through a custom plug-in mechanism. This mechanism exposes a 

common interface, independent of the implementation technology and algorithm internal 

logic, that, among others, will determine the explicit syntax of the input parameters and the 

results for all algorithms. In addition, the common interface uses the JSON as a data-

interchange format for providing the input and output parameters.  

Next, we provide a detailed workflow description (Figure 24) outlining the multi-agent 

operation across EMPYREAN Associations, highlighting the roles of the Decision Engine 

components and their interactions with other services.  

1. When the Service Orchestrator needs to determine the initial placement of an 

application’s microservices within the EMPYREAN platform, it sends a service request 

to its associated Decision Engine (DE) via the Access Interface. This request (POST 

/api/v1/decision_engine/multi_agent/execution) initiates the multi-agent decision-

making process. Additionally, the Decision Engine in the originating Association acts as 

the supervisor during the multi-agent operation. 

2. Through the Dispatcher component, the supervisor Decision Engine queries the 

EMPYREAN Registry to identify Associations that meet the required deployment 

criteria, utilizing the Registry’s exposed RESTful API (Section 11.4). 

3. The Decision Engine dynamically creates exchange topics within the Distributed Data 

Broker to facilitate bidirectional communication among the participating Decision 

Engines. 

4. The supervisor Decision Engine notifies the selected Decision Engines for the created 

topics (POST /api/v1/decision_engine/multi_agent/configuration). 

5. The selected Decision Engines register to the created topics and send through them 

acknowledge messages to the supervisor Decision Engine. 

6. Once the supervisor Decision Engine receives all expected acknowledgments, it 

initiates the multi-agent execution by sending a request via each Decision Engine’s 

Access Interface (POST /api/v1/decision_engine/multi_agent/start). 

7. Each Decision Engine retrieves updated information on available resources from the 

Telemetry Service within its respective Association. Using speculative and auction-

based algorithms, the Decision Engines provide their offered allocations.  

8. The supervisor Decision Engine collects responses from the collaborating Decision 

Engines via the Distributed Data Broker’s exchange topics. 

9. Based on the received responses, the supervisor Decision Engine determines the 

distribution of application’s microservices across the Associations to meet user 

requirements while optimizing resource utilization. 

10. The supervisor Decision Engine notifies the other Decision Engines of the multi-agent 

process completion by sending a termination request via their exposed RESTful API 

(DELETE /api/v1/decision_engine/multi_agent/configuration/UUID). 

11. The exchange topics created within the Distributed Data Broker are then removed. 
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12. The Decision Engine forwards placement decisions to the Service Orchestrator, which 

proceeds with the next phase of the orchestration and deployment process.  

13. Finally, the default EMPYREAN Aggregator is informed of these decisions and, if 

necessary, coordinates with other Aggregators.  

 

 

Figure 24: Decision Engine – Multi-agent operation. 

 

6.5 Relation to Use Cases 

As an integral part of the EMPYREAN orchestration and deployment mechanisms, the Decision 

Engine is critical in supporting all project use cases. In most scenarios, its functionalities will 

be accessed indirectly through the Service Orchestrator, which acts as an intermediary for 

handling service requests and optimizing resource utilization. Integrating decentralized AI-

driven orchestration, multi-agent coordination, real-time telemetry, and energy-aware 

optimization, the EMPYREAN Decision Engine effectively meets the use cases requirements, 

contributing directly to their targeted technical KPIs.  

To achieve this, the Decision Engine will integrate novel workload assignment and resource 

allocation algorithms to execute the following key functions: (a) application workload 

placement across and within Associations, (b) dynamic load balancing of processing and data 

across Associations, (c) adjusting available computing, networking, and storage resources to 

meet application-specific demands and QoS requirements, and (d) autonomous Association 

management. These functions are critical to the control and management plane of the 

EMPYREAN platform, ensuring efficient resource utilization, enhanced performance, reduced 

energy consumption, and highly accurate AI-based decision-making. 
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7 Cyber Threat Intelligence 

Cyber Threat Intelligence (CTI) refers to collecting, analysing, and disseminating data regarding 

potential or existing cyber threats. The EMPYREAN CTI Platform has been designed to 

streamline and enhance cyber threat intelligence management. It automates routine and 

time-consuming tasks, allowing security experts to concentrate on critical data and high-

priority analysis, while providing real-time, actionable insights through relevant reporting 

mechanisms. The following section discusses state-of-the-art CTI data analysis and presents 

the ongoing development of the EMPYREAN CTI Platform.   

7.1 State of the art 

The analysis of CTI and Indicators of Compromise (IoC) makes clear the use of legitimate 

services such as CDN, Cloud Services, Instant Messaging, File Sharing Systems for the 

propagation of malicious files or malicious links related to C2C architecture (Command and 

Control) or malware infection. Among these services, we find AWS, Dropbox, Google Docs, 

and Discord. This poses a difficulty in countering the problem with traditional blocking 

methods. In this scenario, different works have attempted to characterize the main problem, 

the quality of the Security Information and Event Management (SIEM) dataset, the 

methodology for analyzing and detecting URLs, malware infrastructure organization, and 

trends. In this section, we list previous efforts to define methodologies and propose an active 

solution for all challenges related to this topic using Machine Learning. 

Network entities and organizations have implemented countermeasures to prevent attacks 

by blocking content previously identified as malicious or suspicious by other entities that have 

suffered such attacks. However, the lack of standardization in how they should report their 

incidents limits the ability of other entities to take advantage of such previous experiences. To 

resolve this limitation, different organizations have standardized how to share CTI information 

in recent years with the Structured Threat Information Expression (STIX) format. The STIX 

format represents incidents in entity-relationship graphs connecting different significant 

attack components for a specific threat. Initiatives such as QRadar5 or OpenTaxi6 make this 

type of forensic information public in STIX format. However, only some private initiatives, such 

as the Cyber Threat Alliance, use this information to improve cybersecurity solutions. 

STIX datasets have already been leveraged in different ways. A notable trend among CTI is to 

group different sources provided in the form of textual reports or lists of indicators of 

compromise into a Semantic Entity Database. For example, [64] proposes a Unified 

Cybersecurity Ontology (UCO). Then, several works are based on similar concepts (i.e., 

ontologies) to retrieve knowledge graphs from external CTI sources (including STIX providers) 

and apply semantic queries. STIX knowledge graphs are often used as search engines from 

                                                      

5 https://www.ibm.com/docs/en/qsip/7.5 
6 https://opentaxii.readthedocs.io/en/stable/ 
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which assumptions can be derived that help and enhance the work of a human expert. In [65], 

an external STIX dataset is used to derive a new database schema and extract well-defined 

security rules in standardized formats such as YARA and Snort. Therefore, STIX-based graphs 

are used prominently as databases to perform user-defined queries.  

However, these works depend on constructing ontologies from a structured database and 

integrating them with an external knowledge source. This implies an additional phase of 

ontology construction and entity retrieval, often obtained through the analysis of plain text 

sources. This is the case of the work in [66], which proposes using a heterogeneous 

information network instead of a canonical extraction of Resource Description Framework 

(RDF) triples to build the base graph. This configuration is then used to perform a downstream 

task, such as predicting the maliciousness of a domain that interacted with network entities 

in the graph. Therefore, given the increasing use of the standard and the well-defined entity-

relationship model, it is possible to avoid the semantic web architecture and build the graph 

by applying the standard rules, enriching it, when necessary, with custom external fields, and 

adding redundant information. 

The study in [70] examines the value of commercial threat intelligence, revealing minimal 

overlap between different providers and open feeds. Paid services often have delayed and 

limited coverage, raising concerns about their timeliness. Interviews with clients indicate that 

they prioritize workflow optimization over threat detection, assessing threat intelligence 

informally rather than using quantitative metrics. [71]  investigates the COVID-19 Cyber Threat 

Coalition (CTC), a voluntary security information sharing community with over 4,000 

members. It examines if large-scale collaboration improves coverage and if free threat data 

enhances defenders' abilities. The CTC largely aggregates existing industry sources but 

demonstrated unique value by including COVID-19-related domains unknown to current 

abuse detection systems. The findings offer three lessons for future threat data sharing 

initiatives. 

[82] focuses on classifying attacks in Infrastructure as a Service (IaaS) cloud environment, 

particularly those involving Virtual Machines (VMs), using Virtual Machine Introspection (VMI) 

techniques. The classification method considers the source, target, and direction of attacks, 

helping cloud actors deploy suitable monitoring architectures. The paper includes statistical 

analysis on reported vulnerabilities and their financial impact on business processes, 

emphasizing the significance of these attacks in IaaS clouds. The authors of [69] uncover 

security risks posed by obsolete NS records in active domains, particularly those within the 

domain's zone. They demonstrate practical exploitation of these records, leading to stealthy 

domain hijacking. Analysis of high-profile domains, DNS hosting providers, and public resolver 

operators identifies numerous vulnerable entities, including government bodies, payment 

services, Amazon Route 53, and CloudFlare. The paper also discusses mitigation techniques 

for affected parties, offering a comprehensive understanding of this new security risk. 

[80] presents a system that learns regular expressions to extract Autonomous System 

Numbers (ASN) from router interface hostnames, incorporating topological constraints and 

PeeringDB data. By altering an existing method, the accuracy of ASN extraction improves, 
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increasing agreement levels with inferred ASNs from 87.4% to 97.1% and reducing errors. This 

research broadens possibilities for inferring router ownership based on evidential data. 

The study in [89] investigates malware’s abuse of web applications for attacker-controlled 

servers. Delays in incident responder and web application provider collaborations facilitate 

malware proliferation. The authors develop Marsea, an automated malware analysis pipeline, 

identifying 893 malware instances across 97 families and showing a 226% increase since 2020. 

They note a 13.7% decrease in malware relying on attacker-controlled servers and successfully 

collaborate to dismantle 50% of malicious web application content. 

[74] provides a longitudinal measurement of the malicious file delivery ecosystem on the web, 

analyzing network infrastructures and files downloaded over various periods (one day, one 

month, one year). It identifies two distinct ecosystems: one for delivering potentially 

unwanted programs (PUP) and another separate network for malware. Despite mostly 

disjointed ecosystems, there is a crossover between the two. The study reveals biased 

proportions of PUP to malware, periodic malicious network activity, and offers insights for 

improving takedown techniques. 

[83] presents a detailed analysis of malicious URLs hosted on Twitter, highlighting challenges 

in blocking resources when legitimate file-sharing platforms are used. It underscores Twitter's 

poor countermeasures regarding timeliness and coverage. [68] analyzes a dataset of URLs 

from SIEM Threat Intelligence platforms, proposing grouping them into attack campaigns with 

shared characteristics. A significant finding is the persistence of numerous malicious URLs 

remaining active even after being marked as malicious. The study in [81] addresses the 

proactive identification of malicious URLs, emphasizing ML techniques for efficient in-memory 

detection. Authors evaluate detection rates and false positives by analyzing a 6,000,000 URL 

dataset over 48 weeks, providing insights into the evolving malware landscape and internet 

attack vectors. 

[91] assesses VirusTotal file labeling challenges by reviewing 115 academic papers, 

categorizing common methods used by researchers, and evaluating the dynamics of anti-

malware engine labels. Daily snapshots of VirusTotal labels for files from 65 engines show the 

benefits of threshold-based label aggregation. The study reveals underperforming 'trusted' 

engines, correlated engine clusters, and false positives and suggests improved data 

annotation practices.  

In analyzing Private Information shared with third-party domains by mobile applications, the 

study in [86] provides metrics on domain popularity, geographic distribution, categorization, 

etc. Focusing on Potentially Harmful Applications (PHA) on Android, it offers related works on 

malware distribution analysis and domain characterization that are useful for future 

investigations. Building on previous work, [75] examines malware delivery operations' 

responses to takedown attempts. Findings highlight the prevalence of distributed delivery 

architectures, the significance of identifying 'super-binaries,' and behaviors post-takedown. 

The study emphasizes improving security strategies, service provider coordination, and threat 

monitoring techniques. [79] focuses on the attacked side of the malware delivery ecosystem 

by setting up isolated virtual machines infected by various droppers. The work examines the 
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temporal behavior of droppers and downloaded malware, trying to correlate victim 

characteristics with malicious software choices left by droppers. 

Using a large dataset from a mobile security product, [85] applies graph representation 

learning to predict future installations of Potentially Harmful Applications (PHA) on Android 

devices. It highlights the extensive collection and transmission of sensitive data to third parties 

by mobile applications, and reveals regional variations in data collection, raising concerns 

about regulation and accountability. 

[73] provides a comprehensive analysis of malware distribution networks and adversary 

strategies. Analyzing a dataset of 99,312 binary malware samples from 38,659 distribution 

sites over 287 days, it reveals current trends in malware distribution, clustering based on file 

similarity, and distribution site details. Conclusions offer insights into adversary strategies and 

future directions for combating malware distribution. [78] introduces a downloader graph 

abstraction to differentiate between benign and malicious downloader trojans. By analyzing 

19 million downloader graphs from 5 million hosts, researchers identify indicators of malicious 

activity. A machine learning system achieves a true positive rate of 96.0%, false positive rate 

of 1.0%, and detects malware earlier than existing antivirus products. 

The study in [87] analyzes 328 million reports for 235 million samples collected over a year, 

characterizing VirusTotal’s (VT) file feed and clustering methods. Feature value grouping (FVG) 

clustering scales well and produces high-precision clusters, aiding in detecting potentially 

malicious samples. [77] presents a risk analysis method for malware distribution networks 

(MDN), examining their structural characteristics and network centrality. By identifying central 

malware sites and assessing global dynamic risk, the model predicts potential cyberattacks 

with high accuracy based on initial MDN risk levels and connectivity changes. Addressing 

malware distribution and installation challenges, [76] presents Nazca, a system detecting 

infections by analyzing collective network traffic. Nazca focuses on malicious network 

infrastructures and achieves low false-positive rates, bypassing coverage gaps in reputation 

databases while being resilient to code obfuscation. [88] focuses on identifying landing pages 

tied to drive-by download attacks in Malware Distribution Networks (MDN). It proposes a 

feature selection approach to detect malicious landing page content, expanding 

understanding of MDNs. The system achieves a confirmation rate of 57% for predicted landing 

pages, extending MDN footprint by 17%. 

Leveraging the dataset from [74], this study in  [84] proposes a prediction algorithm based on 

word embedding techniques for security events. It analyzes CVE numerically, tracking 

evolution over time, and explores dynamic temporal embedding analysis. This method offers 

a new way to examine CVEs without feature engineering, potentially applicable to other STIX 

model nodes. Introducing a Bayesian label propagation model for malware detection in 

malicious distribution graphs, [67] combines file download relationships and network 

topology. The evaluation shows efficient and accurate detection without source code 

inspection, confirming effectiveness on real-world download events. [72] develops a machine 

learning approach to detect URLs hosted by exploit kits, based on analyzing workflows of 40 

kits. WEBWINNOW uses attack-centered and self-defense behavior features for detection, 

demonstrating high effectiveness with minimal false positives in real-world data. 
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7.2 Cyber Threat Alliance Platform 

We obtain data from the Cyber Threat Alliance (CTA) exchange, where CTA members send 

threat intelligence to share it and where they download threat intelligence shared by others. 

All CTA members have access to the data in the CTA exchange, including data sent before they 

joined the CTA. To maintain access to the exchange, CTA members need to keep a minimum 

average weekly contribution. 

7.2.1 STIX 

The data in the CTA exchange is encoded using the Structured Threat Information Expression 

(STIX) standard, version 2.0, which is machine-readable. Although STIX 2.1 was officially 

approved in June 2021, it has not yet been adopted by the CTA. There are other competing 

standards for threat intelligence sharing, such as Malware Information Sharing Platform 

(MISP) and Incident Object Description Exchange Format (IODEF). The use of STIX in the CTA 

exchange indicates that STIX has considerable industry support as the leading standard for 

threat intelligence sharing. 

The STIX 2.0 data model revolves around JSON-formatted objects. Each STIX object has a 

universally unique identifier (UUID), an object type, and a set of properties (name, value) (i.e., 

fields). The STIX 2.0 standard defines 14 object types. It also allows creating custom object 

types, but the CTA exchange only supports the 14 standard object types. STIX defines a set of 

standard object properties, but it also allows defining custom properties that must begin with 

the prefix "x_". The standard defines common properties that apply to all object types, such 

as the creator’s identity ("created_by_ref"), creation timestamp ("created"), and last 

modification timestamp ("modified"). It also defines specific properties for each object type 

and which common and specific properties of each object are required (i.e., mandatory) or 

optional. For example, the "malware" object must contain a "name" property that identifies 

a malware (e.g., Win.Trojan.Agent-1). 

7.2.2 The STIX graph model 

STIX uses a graph model with two main types of objects: STIX Domain Objects (SDOs), which 

correspond to the graph nodes, and STIX Relationship Objects (SROs), which explicitly define 

the edges. Of the 14 standard object types, 12 are SDOs and 2 are SROs. There are two ways 

to create edges between objects: (1) embedded relationships and (2) explicit relationships 

defined by SROs. 

Embedded relationships are object properties that contain the UUID of a target object, which 

may be part of the same package or part of a previously sent package. Embedded relationships 

implicitly define the source object for an edge, which is the object containing the embedded 

reference. For example, the "created_by_ref" property, required in each object, contains the 

UUID of an "identity" object that captures the entity that created the object. That "identity" 

object may be included in the sent package or may have been sent in a previous package. 
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The STIX standard defines two SROs to capture explicit relationships: "relationship" and 

"sighting". The "relationship" object contains references to a source SDO and a destination 

SDO, as well as the type of relationship between both objects. For example, the "indicator 

indicates malware" relationship captures that the observation of a source "indicator" object 

indicates a specific type of malware. The other SRO is the "sighting" object, which asserts that 

an object was observed. It captures which SDO was sighted (e.g., "indicator", "malware", 

"campaign"), who sighted it (i.e., an "identity" object), and what was actually observed 

represented as an array of "observed-data" objects. 

 

Figure 25: Example of a graph of a bundle in STIX. 

 

Figure 25 shows a graph with four objects: a "sighting" of an "indicator" (a file captured by its 

MD5, SHA1, and SHA256 hashes) linked to a "malware" family (ircbot) through a "relationship" 

object (indicates). The edges are annotated with their corresponding property. Solid edges 

correspond to embedded properties of SDOs (i.e., "sighting_of_ref") or properties of SROs 

(e.g., "src_ref", "dst_ref"). Dotted edges represent properties that contain object values. We 

omitted the edges due to the "created_by" property, which would link each object to the 

"identity" of its creator. 

7.2.3 IoCs 

In STIX terminology, indicators of compromise (IoC) such as URLs, domains, IP addresses, and 

file hashes are called "cyber observables". Confusingly, the "indicator" object does not directly 

contain IoCs. Instead, it contains a detection pattern that may include multiple IoCs. Due to 

licensing restrictions on popular pattern languages like those used by YARA and Snort, STIX 

opted to define its own pattern language. The STIX pattern language supports detection rules 

for both host-based and network-based tools, allowing complex patterns that combine 

expressions of comparing IoC values with operators (e.g., AND, OR, FOLLOWED-BY) and 

quantifiers (e.g., REPEATS x TIMES, WITHIN x SECONDS). For example, the pattern "network-

traffic:protocols = 'UDP' AND ipv4-addr:value = '112.184.32.238' AND network-traffic:dst_port 

= '7724'" captures traffic sent to the IP address 112.184.32.238 on destination port 7724/udp. 
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7.2.4 Data exchange process 

The CTA has developed and maintains its own exchange software called "Magellan", which 

provides a repository of STIX objects and a REST API that allows, among other things, sending 

STIX objects for sharing, obtaining statistics on sent objects, and querying specific objects. In 

the past, a Trusted Automated Exchange of Intelligence Information (TAXII) server was also 

provided, but currently, the data is only accessible through the Magellan platform. 

CTA members send batches of STIX objects called "bundles". The STIX standard states that 

objects in the same bundle do not need to be semantically related, although CTA members 

may create separate bundles for distinct events. 

Each bundle sent is validated, scored, and stored. The validation step requires each bundle 

sent to contain a "sighting" object, an "indicator" object, and any of the following objects: 

"attack-pattern", "campaign", "intrusion-set", "malware", "threat-actor", or "tool". Validation 

also requires "indicator" objects to have the optional "kill_chain_phases" property and all 

"sighting" objects to have the optional "first_seen" and "last_seen" dates. 

The CTA scores each bundle sent, assigning a predetermined number of points to required 

and important optional properties, while other optional properties do not provide points. The 

sum of the scores of all bundles sent by a member during a week determines whether the 

member is contributing the expected minimum volume of threat intelligence. 

During the submission process, the CTA adds a series of custom properties to the objects, such 

as a unique submission identifier for the bundle ("x_cta_submission_id") and the identity of 

the CTA member submitting the bundle ("x_cta_submitted_by"). The sender may differ from 

the creator ("created_by_ref") if the CTA member is simply forwarding an object created by 

someone else. The bundle score ("x_cta_score") is added to the mandatory "sighting" object. 

7.3 CTA Data Analysis 

7.3.1 Contribution by member 

This section compares each member’s contribution (anonymized) to the CTA exchange. Each 

object specifies its creator using the standard property created_by_ref and its sender using 

the custom property x_cta_submitted_by, introduced in January 2021. Throughout the 

period, we observed 54 creators and 38 submitters. All 38 submitters are among the 54 

creators. We used the CTA API to verify the 16 UUIDs of creators who do not appear as 

submitters. Of these, 4 are CTA members and the other 12 are unknown entities that create 

objects forwarded to the CTA exchange by a member. Overall, we observed 42 entities related 

to the CTA: 41 CTA members and the CTA administrators. Table 6 summarizes the creators, 

submitters, and members by year. 
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Table 6: Contribution by year. 

Entities All 2020 2021 2022 2023 

Creators 54 31 39 46 38 

Submitters 38 - 31 36 35 

Members 41 24 27 32 34 

 

To obtain a single submitter per object, from now on, we define the submitter of an object as 

the UUID in the property x_cta_submitted_by if it exists (i.e., after January 2021), otherwise 

we use the UUID of the creator in the property created_by_ref if it belongs to the 42 CTA 

entities, otherwise we set it to null, which only occurs for 0.001% of the objects. 

For each member, we calculate their activity by obtaining the first and last day the member 

submits an object, the lifespan in days obtained by subtracting both dates, the number of days 

the member contributes objects, the total number of bundles sent, and the total number of 

objects in those bundles. We also calculate the daily average of bundles and objects by 

dividing those totals by the lifespan in days.  

On average, a CTA member contributes 3,694.6 daily bundles containing 22,186.2 objects. The 

median number of objects in a bundle is 6.0, a low value indicating that most members use 

separate bundles for objects that belong to the same incident. However, the average number 

of objects per bundle is 198.2 because submissions by 5 members contain hundreds or 

thousands of objects, indicating that their bundles contain unrelated objects from different 

incidents. 

 

 

Figure 26: Member contribution: average daily CTA score (above) and average daily contributed 

objects (below). Members can contribute as much as they want above the minimum required 

score. 
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Figure 26 shows, for each member, the average daily CTA score (in red above zero) and the 

average daily volume of objects (in blue below zero). Daily values are obtained by dividing the 

total number of objects the member contributes and the sum of the CTA scores in all 

contributed sighting objects, by the number of days they are a member.  

The plot shows significant differences among members. While the top contributor clearly 

dominates the CTA score, the contribution of objects is more balanced, with 9.6% of objects 

for the top contributor compared to 8.6% for the second. The four most active members 

contribute more than a third (34.4%) of the objects and the top 10 members two-thirds 

(66.3%). Some members have a higher rank for the CTA score compared to their contributed 

objects, indicating that they may focus on maximizing the score of their submissions. 

CTA membership has been increasing over the years, from 24 members in 2020 to 34 in 2023. 

Only 7 members have left the alliance. Of these, two seem to leave due to being acquired. The 

other three are the members with the lowest daily average of contributed objects and the 

lowest fraction of active days, possibly indicating that they could not maintain the minimum 

required contribution. On average, a member submits objects 86% of the days. Therefore, 

submissions arrive daily (with some gaps due to downtime or maintenance windows). 

The long membership periods and low dropout rate indicate that shared data is considered 

valuable, although being seen as a member of a select club of leading security providers may 

also play a role in membership. 

On average, a CTA member contributes more than 22K objects daily. Some members 

contribute well above the minimum required, with 4 members contributing a third (33.4%) of 

the objects and 10 members contributing two-thirds (66.3%). Most members use small 

bundles with a median of 5.4 objects that likely capture an event. But 5 members send large 

bundles of probably unrelated objects. 

7.4 EMPYREAN CTI Platform Design 

The platform is conceived as an integral tool that supports process automation and report 

customization, ensuring that security experts can access contextualized and relevant 

information in real-time. Below, the technical features, operational benefits, and expected 

impacts of this tool in the field of digital security are detailed. 

7.4.1 Periodic data download 

The platform for report generation is designed to handle and process large volumes of data 

efficiently and systematically. Data collection is performed daily, capturing vital information 

from multiple entry points to ensure all relevant data is considered in cybersecurity analyses. 

Data is automatically collected each day and sent to a dedicated machine hosting a MongoDB 

database. This NoSQL database system is chosen for its ability to handle large amounts of 

unstructured data and its flexibility in managing it, essential characteristics to adapt to the 

varied forms of data in cybersecurity. 
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Once stored, the data is accessible through an advanced platform that runs the necessary 

algorithms for analysis and report generation. This platform is equipped with data analysis 

tools that enable the execution of complex queries and trend analyses, as well as real-time 

detection of attack patterns and anomalies. The integration of MongoDB with this platform 

facilitates a smooth and efficient workflow, where data is processed and visualized in ways 

that directly support decision-making and incident response. 

This infrastructure not only optimizes speed and accuracy in report generation but also 

enhances the capability of security experts to act based on operational and strategic insights 

derived from continuous data analysis. 

 

Figure 27: Data analysis platform architecture. 

 

Figure 27 illustrates the operational infrastructure of the cybersecurity report generation 

platform. Data is collected from the CTA cloud and sent in JSON format to a MongoDB 

database, where it is stored and managed. Through the Autoreport module, this data is 

processed and transformed into reports accessible via the CTA Web platform interface, 

allowing users to visualize and analyze security information in real-time. 

Figure 28 shows the platform’s operation mode. In it, we employ a series of automated scripts 

that play a crucial role in data collection and analysis from the Cyber Threat Alliance (CTA). 

These scripts are programmed to run daily, ensuring that the latest and most relevant data is 

systematically downloaded without manual intervention. This automation process is 

fundamental to maintaining the continuity and currency of the information we handle, which 

is essential in the dynamic field of cybersecurity.  

Each day, the automated scripts activate to connect with the CTA, using secure APIs and data 

transfer protocols to download the latest updates. These data include detailed threat reports, 

indicators of compromise (IoCs), and other essential metrics critical for real-time security 

analysis. Once the data is downloaded, its integrity and format are verified to ensure it is fit 

for subsequent analysis and storage. 
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Figure 28: Data analysis platform architecture. 

Once collected, the data is immediately subjected to thorough analysis using a set of 

algorithms designed to detect patterns, trends, and anomalies. This analysis is performed both 

daily and weekly, allowing our analysts and end-users to gain a comprehensive view of the 

threat landscape on different time scales. The analysis scripts not only evaluate the frequency 

and severity of threats but also categorize the data according to various criteria, such as type 

of threat, origin, and potential impacts. 

Once processed, the analysis results are stored in a MongoDB database. This database has 

been selected for its efficiency in handling large volumes of unstructured data and its 

capability for high-speed operations. MongoDB facilitates quick and efficient access to data, 

which is crucial for agile responses to emerging cyber threats. The database structure is 

optimized for fast queries and data retrieval, enabling efficient management of the vast 

volume of information we handle. 

The data stored in MongoDB directly feeds our web platform, CTA Web, where users can 

search and access detailed reports. The web interface is designed to be intuitive and easy to 

use, allowing users to filter and search specifically for the information they need without 

delays. In addition to searches, users can set up personalized alerts and view data 

visualizations that help interpret threat trends more effectively. 

7.4.2 Data analysis 

We have dedicated considerable effort to developing and implementing advanced analysis 

algorithms that allow us not only to capture and report the most common indicators of 

compromise (IoCs) but also to discover and understand underlying trends in cybersecurity 

data. These algorithms are at the heart of our ability to provide contextualized and accurate 

threat analysis, which is essential for proactive cybersecurity management. 

We are currently actively working on perfecting our algorithms. This continuous improvement 

process ensures that our analysis methods remain at the forefront of threat detection and 

assessment. Our developers and data analysts collaborate closely to integrate the latest 

research and data analysis techniques into our processes.  
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One of the most innovative aspects of our algorithm suite is its ability to identify trends in IoC 

usage. Beyond simply listing the most frequent IoCs, our algorithms are designed to detect 

significant changes in the frequency of use of these indicators over time. For example, we can 

identify an IoC that has been relatively uncommon in the past but has seen an increase in use 

in the last week. This ability to track the dynamics of IoCs allows users to anticipate and react 

more effectively to emerging threats. 

In addition to IoCs, our algorithms are also equipped to calculate and report the most used 

vulnerabilities and types of malware. By analyzing large datasets, we can identify which 

vulnerabilities are being exploited most frequently and which malware are on the rise. This 

information is not only crucial for immediate incident response but also for strategic long-

term defense planning. 

Another important facet of our analytical technology is the ability to summarize content. 

These algorithms are designed to process and condense obtained information, transforming 

large volumes of data into concise and understandable summaries. This process allows users 

to quickly gain a clear view of the situation without manually examining vast amounts of data. 

This capability facilitates the quick identification of key points and significant trends in security 

data. 

 

7.4.3 Data presentation 

This section presents the early mockups of the web interface designed to allow users to 

visualize the data. 

 

Figure 29: Web mock-up to explore information. 
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Figure 30: Web mock-up to observe trends in Attack-patterns. 

 

 

Figure 31: Web mock-up to observe trends in vulnerabilities. 
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8 Service Orchestrator 

8.1 Overview 

Managing and deploying services across distributed computing infrastructures is inherently 

complex due to their heterogeneity. Moreover, the seamless integration of computing and 

storage resources across the disaggregated IoT-edge-cloud continuum requires automated 

and intelligent orchestration mechanisms. To address these challenges, the EMPYREAN 

control plane introduces advanced services for cognitive and efficient orchestration, providing 

optimized resource management for cloud-native applications.  

The Service Orchestrator operates within an EMPYREAN Association, coordinating multiple 

platform-specific container orchestration systems such as Kubernetes (K8s) and Lightweight 

Kubernetes (K3s). These systems manage distinct segments of the infrastructure, while the 

Service Orchestrator ensures abstracted and unified service deployment through hierarchical 

and distributed orchestration mechanisms at the Association-level.   

At its core, the Service Orchestrator leverages the Decision Engine (Section 6) to optimize 

workload distribution across available platforms within an Association, aligning deployments 

with application-specific requirements. Once the high-level placement is determined, the 

Service Orchestrator delegates the final deployment decisions, such as selecting Worker 

Nodes, to Local Orchestrators on the target platforms. This process follows a declarative 

approach, where workload requirements are specified to Local Orchestrators rather than 

issuing direct imperative commands.  

In addition, EMPYREAN Controllers, also known as Orchestration Drivers, are deployed on 

each platform to handle low-level interactions with the platform-level mechanisms and their 

Local Orchestrators. This layered approach abstracts infrastructure heterogeneity, providing 

efficient management across distributed environments while ensuring seamless 

interoperability between edge and cloud platforms.  

8.2 Relation to EMPYREAN Objectives and KPIs 

The Service Orchestrator and EMPYREAN Controllers are key components of EMPYREAN’s 

cognitive and distributed service orchestration and deployment framework, providing 

seamless service deployment and efficient operation within EMPYREAN Associations. To 

address the platform’s key objectives and technical KPIs, these services leverage a 

combination of hierarchical orchestration, cognitive workload placement, and adaptive 

resource management.  
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Below is a breakdown of how their design and implementation contribute to each related KPI: 

• T1.1 - Reduce cloud and increase edge utilization via workload balancing optimization: 

The Service Orchestrator, through its integration with the Decision Engine, assesses 

workload placement based on real-time resource availability and application 

requirements. It ensures optimal distribution of workloads, reducing reliance on 

centralized cloud resources. The EMPYREAN Controllers enforce these decisions 

locally, dynamically adjusting deployments to maximize edge utilization while 

preventing resource saturation. 

• T1.3 - Increase statistical multiplexing gains through associations: The Associations 

Deployment model allows multiple EMPYREAN Associations to share resources 

dynamically, increasing statistical multiplexing across edge and cloud infrastructures. 

• T1.4 - Provide low and predictable latency for hyper-distributed applications: The 

EMPYREAN Controllers enable near-real-time application deployment at the edge, 

ensuring low-latency responses. The Declarative approach in workload placement at 

the platform-level ensures that service provisioning adapts dynamically to latency 

constraints without manual intervention. 

• T2.1 - Improve overall performance compared to SotA: The Service Orchestrator’s 

hierarchical architecture improves scalability and efficiency compared to traditional 

monolithic orchestrators. Moreover, the distributed orchestration approach increases 

computational throughput, enabling better performance compared to state-of-the-art 

orchestration solutions. 

• T2.3 - React fast to rapid changes in computational and data demands so as to 

maximize the number of demands served: The EMPYREAN Controllers support event-

driven orchestration, allowing rapid redeployment and scaling based on real-time 

telemetry data. The Datastore’s event-based notifications mechanism ensures that 

changes in computational demand trigger immediate corrective actions. 

 

8.3 Architecture 

The Service Orchestrator and EMPYREAN Controller are built upon the Resource Orchestrator 

service, originally developed by ICCS within the H2020 SERRANO7 EU project. The Resource 

Orchestrator is a high-level orchestration framework designed to operate seamlessly across 

diverse cloud and HPC platforms. In EMPYREAN, its design and implementation are being 

extended to support the requirements of an Association-based and collaborative IoT-edge-

cloud continuum. Additionally, a new EMPYREAN Controller tailored for K3s platforms is 

introduced, along with a high-level Python API to abstract the deployment and management 

of cloud-native applications.  

                                                      

7 https://ict-serrano.eu 
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The Service Orchestrator (Figure 32) is a cloud-native application implemented in Python, 

comprising two core services: the Orchestration API Server and Orchestration Manager. The 

EMPYREAN Controllers (Orchestration Drivers) and the Datastore complete the architecture. 

The Datastore is a critical component for the overall operation and coordination among the 

Service Orchestrator services and EMPYREAN Controllers.  

 

 

Figure 32: Service Orchestrator and EMPYREAN Controller architecture and its main components. 

 

The Orchestration API Server includes the Access Interface component, which implements the 

necessary mechanisms for bidirectional communication, enabling the exchange of commands, 

information, and notifications. Before forwarding requests to the Dispatcher, the Access 

Interface validates them. The exposed RESTful API (Section 8.4) supports deployment and 

management of cloud-native applications and facilitates autonomous interactions between 

the Orchestration Manager, EMPYREAN Controllers, and the Datastore. The Dispatcher 

exclusively manages interactions with the Datastore, enabling the creation, management, and 

query of Orchestration API objects along with the subscription of external services to watch 

specific topics in the Datastore.  

The Orchestration Manager is responsible for coordinating the workload placement and 

initiating application deployment and service provisioning. It operates based on Orchestration 

API objects (Section 8.4) created by the Orchestration API Server. The Orchestration Manager 

incorporates four specialized controllers that monitor specific topics and Orchestration API 
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objects within the Datastore. These controllers execute the required operations to serve 

requests, interact with other EMPYREAN control plane services, such as the Decision Engine, 

the EMPYREAN Aggregator, and the Telemetry Service, and communicate with the EMPYREAN 

Controllers managing the underlying platforms.  

The Cluster Controller attaches K8s and K3s clusters to the Service Orchestrator and oversees 

their operational state. The Scheduling Controller interacts with the Decision Engine to 

retrieve the instructions for the cognitive application deployment. The interaction is based on 

the REST API exposed by the Decision Engine Controller (Section 6.4). The Network Controller 

enables dynamic network service provisioning by interacting with dedicated network 

management services. Finally, the Execution Controller prepares the required application 

deployment instructions (declarative approach) with the assistance of the Scheduling and 

Network controllers, coordinates the required data movement by interacting with the storage 

services within the EMPYREAN platform, and finally triggers the actual deployment by 

interacting with the EMPYREAN Controllers at the selected edge and cloud platforms. 

The Datastore is based on etcd8, an open-source distributed key-value store, and maintains 

configuration and state data for the Orchestrator API objects. A key feature of etcd is its 

“watch” function, accessed through the Watch API, which provides an event-driven interface 

for asynchronously monitoring changes to stored keys. This functionality is utilized in the 

design of the Service Orchestrator to facilitate communication between the Orchestration API 

Server, Orchestration Manager, and EMPYREAN Controllers (Orchestration Drivers). By 

leveraging this event-driven approach, the Service Orchestrator can continuously track both 

the actual and desired state of deployed applications and across the unified infrastructure. 

There are two types of EMPYREAN Controllers, both following a common design (Figure 32). 

The Orchestration Interface component provides an infrastructure-agnostic layer between the 

Service Orchestrator (i.e., Orchestration Manager) and local orchestration mechanisms. It 

enables a generic representation of application description, deployment preferences and 

constraints. The Orchestration Plug-in translates the infrastructure-aware deployment 

objectives from the Service Orchestrator into platform-specific requests for the local 

orchestration mechanisms. This component varies for each EMPYREAN Controller type and is 

designed to interact with the APIs exposed by each local orchestration platform. 

8.4  Implementation 

The Service Orchestrator and EMPYREAN Controller components are implemented in Python 

and packaged as container images, ensuring an efficient and modular development and 

deployment workflow. The Orchestration API Server, Orchestration Manager, and the 

available EMPYREAN Controllers are each deployed as separate container images to enhance 

scalability and maintainability. 

                                                      

8 https://etcd.io 
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The REST API exposed by the Orchestration API Server is organized into two main categories. 

The first set of methods (Figure 33) supports the deployment and management of cloud-native 

applications and facilitates the provision of services. The second set (Figure 34) abstracts the 

interaction of the Orchestration Manager and EMPYREAN Controller services with the 

Datastore by enabling them to create, update, and query relevant information along with their 

subscription for watching specific topics in the Datastore.   

In the Orchestration API server, the functionality of the Access Interface and Dispatcher 

components has been enhanced to support provisioning and management of cloud-native 

applications within the EMPYREAN Association-based continuum. Specifically, the northbound 

interface of the Service Orchestrator has been extended with new methods that enable the 

definition and management of deployment requests across multiple Associations (methods at 

endpoint /api/v1/service_orchestrator/associations/deployments). Additionally, the REST API 

responsible for inter-component communication has been expanded to support newly 

introduced Orchestration API Objects (i.e., Associations, and Application) for EMPYREAN to 

ensure seamless integration. 
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Figure 33: Service Orchestrator REST API. 
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Figure 34: Service Orchestrator REST API – Methods related to inter-component communication. 

 

Service requests are expressed as Orchestration API objects (Figure 35) that serve as the 

primary communication mechanism between different system components. These objects 

encapsulate all necessary information for serving, managing, and monitoring service requests. 

Specific pairs of Service Orchestrator services are responsible for creating, updating, deleting, 

and watching these Orchestration API objects to facilitate the interaction between the 

orchestrator services. This distributed responsibility model optimizes request handling and 

enables seamless system operation.  

The main Orchestration API objects are the following: 

• Associations Deployment: It represents the high-level description required for 

deploying a cloud-native application across multiple EMPYREAN Associations. This 

object includes the application description along with the user-defined deployment 

objectives. It is created and deleted by the Orchestration API server, while it is watched 

and used by Orchestration Manager.  

• Deployment: It defines the deployment description of cloud-native application within 

a specific EMPYREAN Association. It is created and deleted by the Orchestration API 

server, while it is watched and used by Orchestration Manager. These entities are 

immutable during the final orchestration and deployment phases (OF4.1.2 and 

OF4.1.3) since application’s microservice distribution into available clusters and 

infrastructure-specific instructions are expressed through the Assignment and Bundle 

objects.  
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• Storage Policy: It specifies the high-level description for creating and managing a 

storage policy. It is created and deleted by the Orchestration API server and watched 

and used by the Scheduling and Execution Controllers within the Orchestration 

Manager that execute all the required operations.  

• Application: It corresponds to the complete application description, including its 

microservices, their characteristics, dependencies, and interconnections. This object is 

created in case of multi-Association deployment and is used by the Orchestration 

Manager. 

• Association: It provides an overview of the active Associations that are managed by 

the specific Service Orchestrator. These objects are created and updated based on the 

information from the EMPYREAN Aggregator and used by the Orchestration Manager. 

• Cluster: It provides an overview of the available platforms (edge, cloud). These objects 

are created and updated based on the information from the EMPYREAN Controllers 

while watched and used by the Orchestration Manager.  

• Assignment: It is an internal object that captures the assignment of application 

microservices to a specific edge/cloud cluster. They are created, updated, and deleted 

by the Orchestration Manager according to the decisions from the Decision Engine 

while they are watched and used by the EMPYREAN Controllers (Orchestration 

Drivers).  

• Bundle: It includes the microservices description along with parameters and platform-

specific deployment objectives based on Decision Engine suggestions that will guide 

the low-level orchestration mechanisms at the selected platforms (declarative 

approach). These entities are created, updated, and deleted by the Orchestration 

Manager and they are watched and used by the EMPYREAN Controllers. 

 

 

Figure 35: Orchestration API objects and their relationship. 
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Figure 35 presents the relationships and interactions between the Orchestration API objects, 

illustrating how these components are interconnected within the system. Complementing this 

visual description, Table 7 lists the relevant topics for each Orchestration API object stored 

and managed within the Datastore. These topics ensure proper coordination, management, 

and functionality of the orchestration mechanisms within an Association and across 

Associations, contributing to the overall efficiency and reliability of the EMPYREAN platform. 

Table 7: Datastore topics (keys) for the main Orchestration API objects. 

API Object Topic 

Associations 
Deployment 

/service/orchestrator/associations_deployments/deployment/DEPLOYMENT_UUID 

Deployment /service/orchestrator/deployments/deployment/DEPLOYMENT_UUID 

Storage Policy /service/orchestrator/storage_policies/policy/POLICY_UUID 

Application /service/orchestrator/applications/application/APPLICATION_UUID 

Association /service/orchestrator/associations/association/ASSOCIATION_UUID 

Cluster /service/orchestrator/clusters/cluster/CLUSTER_UUID 

Assignment /service/orchestrator/assignments/CLUSTER_UUID/assignment/ASSIGNMENT_UUID 

Bundle /service/orchestrator/bundles/bundle/BUNDLE_UUID 

  

The EMPYREAN Controllers are available in two distinct types (i.e., K8s and K3s) both 

implemented in Python as plug-ins. They share a common Orchestration Interface 

implementation, while their Orchestration Plug-in component differs based on the controller 

type. This distinction is necessary because the Orchestration Plug-in translates infrastructure-

specific deployment objectives from the Service Orchestrator into platform-specific 

instructions for the local orchestration mechanisms. Each plug-in interacts with the respective 

local orchestration platform through its exposed API.  

For example, the K8s Orchestration Plug-in communicates with the Kubernetes API Server 

(kube-apiserver) to manage platform-level services, requesting the deployment and 

management of container-based workloads based on the objectives defined by the Service 

Orchestrator and Decision Engine. Similarly, the K3s Orchestration Plug-in interacts with the 

K3s API Server, managing platform resources such as Deployments, Pods, ConfigMaps, and 

Services. 

The workflow in Figure 36 outlines the operation of an EMPYREAN Controller. During its 

initialization phase, it registers with the Orchestration API Server, subscribing to watch for any 

changes related to assignments in its dedicated topic in the Datastore. It also reports a 

summary of available resources on its managed platform, allowing the Orchestration API 

Server to update the corresponding Datastore entries. The controller periodically sends 

heartbeat messages to the Orchestration API Server to confirm availability. These steps are 

common across all EMPYREAN Controller types and are handled by the Orchestration 

Interface using a set of methods that all Orchestration Plug-ins must implement.  
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When a change occurs in its subscribed topic, the EMPYREAN Controller is notified. Based on 

the event type, it triggers the appropriate actions to serve the request from the Orchestration 

Manager. To this end, it formats the appropriate instructions to the underlying control plane 

and forwards them using the corresponding exposed API. The EMPYREAN Controller 

continuously tracks the deployed requests and notifies the Orchestration Manager whenever 

the actual state differs from the desired state. 

 

Figure 36: EMPYREAN Controller operation workflow. 

8.5 Relation to Use Cases 

The Service Orchestrator and EMPYREAN Controllers enable a cognitive, distributed, and 

adaptive orchestration framework that optimizes resource utilization, enhances performance, 

and ensures resilience in heterogeneous IoT-edge-cloud environments. Across all use cases, 

the Service Orchestrator and EMPYREAN Controllers provide efficient, collaborative, and 

adaptive application deployment that meets the specific needs of each domain, from 

industrial manufacturing to agricultural sensing and smart factory security. 

UC1 - Anomaly Detection in Robotic Machining Cells: The Service Orchestrator ensures that 

computational tasks related to anomaly detection models are placed close to robotic cells at 

the edge, minimizing latency and enabling real-time decision-making. The EMPYREAN 

Controllers dynamically allocate resources to support adaptive AI inference pipelines, 

balancing execution between on-site edge devices and cloud resources when higher 

computational power is required. The orchestration framework supports event-driven data 

processing, enabling fast response times to detected anomalies, ensuring system reliability in 

high-precision manufacturing environments. 

UC2 - Proximal Sensing in Agriculture Fields: The Service Orchestrator facilitates the 

deployment of proximal sensing applications across dispersed edge nodes within agricultural 

fields, ensuring efficient data collection from various sensors. The EMPYREAN Controllers 

manage workload distribution based on real-time environmental data, optimizing sensor-

driven computations at the edge while leveraging cloud resources for historical trend analysis 

and AI model training. The orchestration mechanisms enable fault tolerance, ensuring 

continuous operation even in environments with intermittent network connectivity by 

dynamically reconfiguring workloads across available compute nodes. 
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UC4 - Security in Smart Factories (S. Korea International Collaboration): The Service 

Orchestrator plays a key role in deploying cybersecurity services across distributed factory 

infrastructures, ensuring real-time threat detection and response at both edge and cloud 

layers. The EMPYREAN Controllers support automated scaling of security monitoring 

applications based on anomalous behavior patterns, adapting to real-time variations in 

network activity. The platform's ability to provide low-latency orchestration ensures that 

security policies and protective measures are enforced dynamically across global industrial 

deployments, maintaining data integrity and operational continuity. 
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9 Telemetry Service  

9.1 Overview 

The EMPYREAN Telemetry Service is a core enabler of intelligent and adaptive management 

within the hyper-distributed and federated environment of the EMPYREAN platform. It is 

designed to provide seamless, real-time monitoring and observability across the full IoT-edge-

cloud continuum, ensuring that critical infrastructure components, devices, and workloads are 

continuously supervised and optimized. The telemetry infrastructure is not conceived as a 

standalone module but as an integrated, dynamic ecosystem that interacts with orchestration, 

analytics, decision-making, and security components, providing them with high-quality, 

actionable data to drive autonomous and informed operations across Associations. 

The EMPYREAN Telemetry Service delivers comprehensive and adaptive monitoring across the 

IoT-edge-cloud continuum. It supports continuous discovery of heterogeneous resources, 

such as IoT devices, robotic systems, edge nodes, and cloud services, enabling dynamic 

adaptation to infrastructure changes. The service collects real-time performance metrics 

(CPU, memory, network, and energy usage), providing an up-to-date view of system health. 

Distributed Telemetry Engines handle pre-processing and filtering to manage high data 

volumes, ensuring only relevant information is propagated. Data is stored in the Persistent 

Monitoring Data Storage (PMDS) for historical analysis and informed decision-making. The 

service also adapts its configurations in response to lifecycle events like deployments, 

migrations, and failures through integration with orchestration components. By extending 

established observability tools like Prometheus, Grafana, and InfluxDB to support 

EMPYREAN’s federated architecture, it ensures seamless interoperability in distributed 

environments. Standardized interfaces expose telemetry streams to components such as the 

Decision Engine, Analytics Engine, and CTI Engine, enabling advanced analytics, security, and 

autonomous operations. 

The EMPYREAN Telemetry Service goes beyond traditional monitoring solutions by offering a 

federated observability framework for the IoT-edge-cloud continuum. It maintains global 

visibility over highly heterogeneous and mobile resources, supporting dynamic and distributed 

infrastructures. Native energy consumption monitoring enables energy-aware optimization 

strategies that support sustainability objectives. The service autonomously reconfigures its 

monitoring processes in real-time, adapting to events like migrations, deployments, and 

failures without manual intervention. High-fidelity telemetry streams power advanced multi-

agent algorithms in the Decision Engine, which coordinate to optimize performance, 

resilience, and resource usage across Associations. With its scalable, lightweight, and 

distributed architecture, the Telemetry Service addresses the complexity of hyper-distributed 

environments beyond the capabilities of existing solutions. 
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9.2 Relation to EMPYREAN Objectives and KPIs 

The EMPYREAN Telemetry Service is fundamental in supporting several of the project's key 

objectives and technical KPIs. Specifically, the Telemetry Service directly contributes to the 

achievement of the following KPIs: 

● T1.1: Supplying comprehensive operational metrics, the Telemetry Service enables 

workload balancing strategies that reduce reliance on the core cloud and increase edge 

utilization. 

● T1.2: Through its continuous observability mechanisms, the Telemetry Service 

enhances system reliability by detecting failures and performance degradations at the 

edge. 

● T1.4: Real-time monitoring and Decision Engine integration enable quick adjustments 

to maintain low and stable latency in hyper-distributed applications. 

● T2.2: Collecting detailed energy consumption metrics across all platform resources 

supports energy optimization, contributing to reduced consumption across 

Associations. 

● T2.3: Real-time telemetry streams allow the system to promptly detect and react to 

sudden changes in workload and resource demands, maximizing the number of 

successfully served requests. 

● T2.4: By delivering accurate and high-fidelity telemetry data, the service improves the 

effectiveness of AI-driven decision-making algorithms, directly boosting their accuracy. 

● T2.5: The robust monitoring capabilities facilitate the early detection of anomalies and 

noisy conditions, increasing the overall robustness of algorithmic operations. 

Overall, the Telemetry Service is a key enabler of EMPYREAN's mission to deliver an intelligent, 

adaptive, and resilient continuum platform, ensuring optimal performance, resource 

efficiency, and reliability across federated environments. 

9.3 Architecture 

The EMPYREAN Telemetry Service is designed as a distributed architecture composed of three 

main components that provide comprehensive monitoring, analysis, and storage of telemetry 

data across the IoT-edge-cloud continuum. 

● Telemetry Engines: These components manage and orchestrate the Telemetry Service 

as wells as process telemetry data from different infrastructure segments. Operating 

in a distributed manner, they ensure a unified and consistent view of system health, 

pre-process raw telemetry data, and provide relevant insights to other platform 

components such as the Decision Engine and the Analytics Engine. 
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● Monitoring Probes: Lightweight components deployed across the platform to 

continuously collect real-time performance metrics, logs, and events from specific 

resources, including hardware, applications, and services. 

● Persistent Monitoring Data Storage (PMDS): Serves as a centralized repository for 

storing telemetry data over time. It enables historical analysis, trend detection, and 

long-term resource optimization, supporting the platform’s decision-making processes 

with accurate and timestamped data that can also be used for advanced analytics and 

reporting. 

 

           Figure 37: EMPYREAN Telemetry Service components and dependencies. 

 

9.4 Implementation 

The EMPYREAN Telemetry Service follows a modular and scalable approach, relying on widely 

adopted open-source technologies to ensure reliable telemetry collection, processing, and 

visualization across the continuum. Although the design is still in its early stages, the following 

components and flow are envisioned: 

● Telemetry Collection: Metrics will be gathered from multiple sources, including both 

Kubernetes-based infrastructures and distributed IoT devices. For the cloud-native 

stack, components such as kube-state-metrics9 (which collects the state of Kubernetes 

resources) and Node Exporter10 (which exposes hardware/system metrics) will be 

used. For IoT environments, lightweight telemetry clients or gateway nodes will collect 

metrics and forward them to the monitoring infrastructure using messaging protocols 

such as MQTT and AMQP. These protocols ensure low-overhead, reliable 

communication from resource-constrained or intermittently connected devices. 

                                                      

9 https://github.com/kubernetes/kube-state-metrics 
10 https://prometheus.io/docs/guides/node-exporter/ 
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Specialized adapters or receivers within the OpenTelemetry (OTEL) Collector11 will 

subscribe to these data streams and ingest telemetry in a structured format, allowing 

seamless integration with the rest of the monitoring pipeline. 

● Data Processing and Storage: The OTEL Collector will apply necessary transformations 

and filtering to incoming telemetry, ensuring only relevant and clean data is 

forwarded. This process includes metrics from cloud-native workloads, infrastructure 

nodes, and IoT devices. The processed data will then be sent to Prometheus12, the core 

time-series database, responsible for storing, indexing, and exposing telemetry data. 

● Data Consumption: Once stored in Prometheus, telemetry data becomes accessible to 

various components and users across the platform. A REST API exposes metric 

endpoints, enabling EMPYREAN modules—such as the Decision Engine, Analytics 

Engine, and Orchestration Engine—to retrieve both real-time and historical data for 

intelligent decision-making, anomaly detection, and workload optimization. 

Additionally, AlertManager continuously evaluates telemetry against predefined rules 

and thresholds, triggering alerts in response to abnormal behaviors, performance 

degradation, or failures. This approach enables proactive incident response and 

system self-healing mechanisms. Moreover, for human operators and developers, 

Grafana13 will offer rich, dynamic dashboards to visualize telemetry data. These 

dashboards support custom queries, temporal comparisons, and multi-source 

overlays, providing deep insights into distributed components’ health, performance, 

and trends across the IoT-edge-cloud landscape. 

 

 

Figure 38: EMPYREAN Telemetry Service implementation. 

 

                                                      

11 https://opentelemetry.io/docs/collector/ 
12 https://prometheus.io 
13 https://grafana.com 
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This telemetry pipeline ensures continuous monitoring and analysis of system performance, 

enabling other EMPYREAN components—such as orchestration, resource management, and 

security modules—to leverage this information for optimizing operations and responding to 

potential incidents. Figure 38 summarizes the implementation process described above, 

illustrating the flow of telemetry data from collection to consumption across the platform.  

9.5 Public APIs 

The Telemetry Service exposes a public API—agent API—that allows external systems to 

dynamically manage telemetry pipelines within the monitoring infrastructure. Built with 

FastAPI, this API enables the creation, modification, and deletion of pipelines without manual 

intervention, making it easy to adapt observability workflows in Kubernetes environments. 

Key features include: 

● Dynamic pipeline management: Supports registering and updating pipelines by 

adjusting the configuration of components like the OpenTelemetry Collector, adding 

new receivers, processors, and exporters as needed. 

● Lifecycle operations: Provides endpoints to safely create, modify, and remove 

pipelines in a controlled way. 

● Integration with Kubernetes resources: Works within specific namespaces and 

manages resources like ConfigMaps to apply changes, whether running inside or 

outside the cluster. 

● Support for observability tasks: Includes operations to inspect component status, list 

active pods, search by labels, and trigger configuration reloads. 

The API is designed to be modular and extensible, with future improvements planned such as 

automated pipeline adaptation and integration with advanced orchestration systems. 

The infrastructure also exposes the Prometheus public API, allowing external systems and 

users to query telemetry data in real-time. This interface supports a wide range of use cases, 

including resource utilization analysis, anomaly detection, and the creation of custom 

dashboards. Through the API—using PromQL (Prometheus Query Language)—clients can 

retrieve metrics such as CPU usage, memory consumption, network traffic, and other key 

indicators at both system and application levels. These queries can be filtered by time ranges, 

labels, or resource types, supporting both automated and manual data consumption. The API 

is also compatible with tools like Grafana, enabling dynamic and interactive data visualization. 

This makes the Prometheus API a core enabler of observability within EMPYREAN, offering 

standardized and secure access to performance data across the platform. 

Moreover, the EMPYREAN Telemetry Service incorporates the Persistent Monitoring Data 

Storage (PMDS) component, which enables the long-term retention of collected, timestamped 

telemetry data. PMDS provides a central repository, retaining the state of heterogeneous 

resources and deployed applications. This historical telemetry data is critical for feeding the 

various AI/ML-driven decision-making and analytics mechanisms within the EMPYREAN platform.   
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The PMDS is implemented using InfluxDB14, an open-source, high-performance time-series 

database. To ensure interoperability and facilitate integration with other platform components 

and external services, PMDS exposes a RESTful API.  This API abstracts direct database interactions 

and offers advanced query capabilities, including time-range filtering, conditional retrieval based 

on resource or application attributes, and aggregation operations. Through this interface, both 

internal modules and authorized users can efficiently access and analyze historical telemetry 

datasets, supporting informed, data-driven operations and enabling continuous system 

adaptation within the edge-cloud continuum. 

 

9.6 Integration with EMPYREAN Platform Services 

The EMPYREAN Telemetry Service is designed to seamlessly integrate with the platform’s core 

services (Figure 39), ensuring efficient data exchange and adaptive observability across the 

entire system. A key integration point is the Decision Engine, which relies on continuous, high-

fidelity telemetry streams to execute complex multi-agent decision algorithms. Τhe Telemetry 

Service exposes real-time and historical metrics covering resource utilization, performance 

trends, and energy consumption through standardized public APIs. These APIs allow the 

Decision Engine to retrieve the necessary data to support workload placement, scaling 

decisions, and failure recovery, ensuring that management strategies are informed by up-to-

date insights from both local and federated environments.  

 

 

Figure 39: EMPYREAN Telemetry Service integration. 

 

In addition, the Analytics Engine interacts with the Telemetry Service to feed advanced 

monitoring data into machine learning pipelines and anomaly detection frameworks. By 

accessing aggregated and pre-processed telemetry through public RESTful APIs, the Analytics 

Engine can perform deep analysis on system behaviour, identify performance degradations, 

and trigger predictive actions. This collaboration enhances the platform's ability to adapt 

                                                      

14 https://github.com/influxdata/influxdb 
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proactively to evolving workloads and infrastructure conditions, leveraging telemetry as a 

foundational element for intelligent operations across Associations.  

Moreover, the Telemetry Service maintains tight coordination with the EMPYREAN Aggregator 

and Service Orchestrator, ensuring that monitoring configurations dynamically adapt to 

lifecycle events such as workload migrations, deployments, and scaling actions. By consuming 

event notifications from the orchestration mechanisms and exposing APIs to update 

monitoring policies, the Telemetry Service guarantees that observability remains consistent 

as the system evolves. This bidirectional interaction not only ensures robust monitoring under 

dynamic conditions but also provides valuable feedback to the orchestrator, supporting 

informed resource allocation and scheduling decisions.  

9.7 Relation to Use Cases 

Next, we provide an overview of how the Telemetry Service integrates with and supports the 

specific use cases within the EMPYREAN platform. Each use case presents unique challenges 

that benefit from continuous monitoring, real-time data collection, and advanced analytics 

provided by the Telemetry Service. By detailing the interactions and contributions of the 

Telemetry Service in each case, we highlight its role in enhancing system performance, 

ensuring efficiency, and enabling intelligent decision-making across diverse application 

scenarios. 

Anomaly Detection in Robotic Machining Cells (UC1) 

The Telemetry Service plays a central role in the Anomaly Detection in Robotic Machining Cells 
(UC1) use case by providing real-time monitoring of robotic systems in machining 
environments. It collects and processes critical data from sensors embedded in the robotic 
cells, such as tool performance, precision levels, and environmental conditions. The 
Monitoring Probes deployed within the system continuously gather data, which Telemetry 
Engines then filter and pre-process. This data is stored in the Persistent Monitoring Data 
Storage (PMDS) for long-term analysis and historical reference. 

The Telemetry Service enables advanced analytics and anomaly detection through integration 
with the Analytics Engine and Ryax Workflow Engine. When abnormal behaviors are 
detected—such as tool wear or deviations in machining precision—alerts can trigger 
automated corrective actions. The service is designed to support both real-time data 
collection at the deep edge layer and more complex processing at the far edge, ensuring 
seamless communication and data flow between these layers. The distributed architecture, 
powered by EMPYREAN’s multi-clustering capabilities, guarantees that resources are 
optimized, and workloads are efficiently managed across edge devices. The telemetry data 
also supports performance monitoring and helps improve the system’s efficiency by informing 
decision-making and ensuring operational reliability. Moreover, integrating the Telemetry 
Service with EMPYREAN’s security framework ensures data protection throughout the system, 
allowing for secure and privacy-conscious monitoring in critical manufacturing environments. 
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Proximal Sensing in Agriculture Fields (UC2) 

In Proximal Sensing in Agriculture Fields, the Telemetry Service plays a critical role in 

monitoring the real-time performance of UAVs and robots involved in soil analysis. By tracking 

operational parameters such as flight speed, altitude, battery status, and CPU/memory usage, 

the Telemetry Service ensures that these devices operate efficiently throughout the entire 

process, minimizing the risk of operational failures or inefficiencies. This is particularly 

important in dynamic agricultural environments where precision and continuous monitoring 

are vital. 

The Telemetry Service works hand-in-hand with Dataflow Programming to manage the 

complex data flows between edge devices (UAVs and robots), edge servers, and cloud 

infrastructure. This guarantees that raw data collected at the edge is efficiently processed with 

minimal latency and transferred for further analysis or storage. Furthermore, it integrates 

seamlessly with Edge Storage, ensuring that large volumes of sensor data are initially 

processed locally, reducing the strain on cloud resources. The Decentralized Data Manager 

enhances the data exchange, triggering workflows in the Workflow Manager for automated 

processing and analysis. This combination of components helps optimize soil health 

assessments, ensuring that actionable insights are available to farmers in real-time, enabling 

informed, data-driven decisions in agricultural management. 

 Security in Smart Factories - S. Korea International Collaboration (UC4) 

In Security in Smart Factories, the Telemetry Service plays a key role in enhancing the factory’s 

security measures by continuously monitoring various system parameters, such as network 

traffic, device status, and sensor data. This telemetry data feeds into the Cyber Threat 

Intelligence (CTI) component, enabling the identification of potential security threats based 

on abnormal behavior detected through Federated Learning (PPFL). 

The Telemetry Service helps aggregate critical information from edge devices and sends it to 

the central security modules for further analysis. It ensures that the security applications 

deployed within the smart factory’s private 5G network are efficiently orchestrated and 

scaled, enabling real-time responses to threats. Additionally, this service integrates with MISP 

(Malware Information Sharing Platform) to share threat intelligence across nodes, fostering a 

collaborative security environment and enhancing overall system resilience. 
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10 EMPYREAN Aggregator 

10.1 Overview 

The EMPYREAN Aggregator serves as a foundational element of the EMPYREAN ecosystem, 

enabling intelligent orchestration, security, and automation for distributed applications. It 

establishes the management fabric of the EMPYREAN continuum, enabling seamless 

coordination across the IoT-edge-cloud infrastructure. By integrating multiple self-managed 

and interacting Aggregators, the system fosters an autonomous, collaborative, and 

composable environment where resources and services are dynamically managed and 

optimized. 

The Aggregator employs a hierarchical two-level structure to oversee resource allocation, 

workload execution, and interconnection across its Associations. Aggregators communicate 

among themselves but also with edge computing infrastructures and multi-cloud providers, 

ensuring a cohesive and adaptive management approach. This design enhances operational 

resilience, allowing Associations to function independently even when connectivity to remote 

cloud resources is limited or unavailable.  

10.2 Relation to EMPYREAN Objectives and KPIs 

The EMPYREAN Aggregator is designed to enable collaborative autonomy in the IoT-edge-

cloud continuum. Its implementation aligns with the specified project objectives and technical 

KPIs as follows: 

• T1.1 - Reduce cloud and increase edge utilization via workload balancing optimization: 

The EMPYREAN Aggregator prioritizes edge-first computing by leveraging AI-driven 

workload balancing algorithms. By dynamically offloading tasks to nearby edge nodes, 

the system minimizes dependency on cloud resources, reducing latency, and data 

transmission costs. 

• T1.2 - Increase reliability in the edge: To enhance edge reliability, the Aggregator employs 

distributed fault-tolerance mechanisms and proactive failure detection via its Analytics 

and Telemetry Engine. If an edge node experiences performance degradation or failure, 

it coordinates the workloads’ redistribution to alternative nodes within the Association, 

ensuring service continuity. 

• T1.3 - Increase statistical multiplexing gains through associations: The Aggregator enables 

dynamic resource sharing across multiple Associations, allowing workloads to be flexibly 

assigned based on available capacity, workload type, and priority levels. This multi-agent 

cooperation enhances statistical multiplexing gains, as computing resources are 

efficiently pooled and allocated across distributed infrastructures, preventing resource 

underutilization. 
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• T1.4 - Provide low and predictable latency for hyper-distributed applications: By deploying 

latency-sensitive applications closer to data sources, the Aggregator ensures that data 

processing and execution occur within the edge environment whenever feasible. 

• T2.2 - Reduce energy consumption on Associations compared to standard execution: The 

EMPYREAN Aggregator facilitates adaptive workload placement that prioritizes execution 

on energy-efficient edge nodes along with workload consolidation to minimize 

underutilized resources, reducing overall energy demand. 

 

10.3 Architecture 

The Aggregator is designed to consolidate multiple EMPYREAN services and components, 

delivering essential intelligence and orchestration logic for managing an Association. It 

operates as an abstraction point between the components of the Service and Multi-Cluster 

Orchestration layers, ensuring composability and interoperability across the continuum. The 

Aggregator integrates various functionalities essential for deploying applications, ensuring 

workload security, managing distributed data storage, and facilitating decentralized 

interconnection.  

The architecture of the EMPYREAN Aggregator (Figure 40) is modular and platform-agnostic, 

enabling seamless integration with heterogeneous computing environments across the 

continuum. An Aggregator orchestrates its Associations that include separate or shared 

computational and storage resources and communications with others to enable the 

collaborative management of the IoT-edge-cloud continuum. 

The EMPYREAN Aggregator is composed of multiple key components, each responsible for a 

critical function in managing distributed resources and ensuring service reliability. These 

components include: 

• Service Orchestrator: Responsible for orchestrating workloads across diverse 

computing environments, including cloud, edge, and fog layers. It ensures optimized 

placement of services based on resource availability and policy constraints (Section 8). 

• Decision Engine: Employs AI-driven mechanisms to enable intelligent decision-making 

for dynamic resource allocation, fault tolerance, and adaptive workload management 

(Section 6). 

• Ryax Runner: Functions as the execution engine for user workflows within an 

Association. It bridges the Workflow Manager with the resources of individual 

platforms, enabling seamless execution of actions and workflows. Deliverable D4.1 

(M15) provides more details. 

• Edge Storage Gateway: Provides a distributed and hybrid storage architecture, 

supporting encrypted and secure data management across edge and cloud layers. It 

integrates with existing storage systems to facilitate seamless data accessibility. This 

component is described in deliverable D3.1 (M15). 
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• Distributed Data Manager: Manages decentralized interconnection by ensuring 

efficient and secure data exchange between distributed components. It incorporates 

advanced data routing and streaming mechanisms to enhance low-latency 

performance. Deliverable D4.1 (M15) describes this component. 

• Privacy and Security Manager: Ensures trust and identity management within the 

EMPYREAN ecosystem by employing blockchain-based decentralized authentication, 

secure enclaves, and privacy-preserving cryptographic techniques. This component is 

described in deliverable D3.1 (M15). 

• Telemetry Engine: Monitors heterogeneous resources and applications across the 

distributed infrastructure. It provides real-time observability and generates 

performance insights to ensure system resilience (Section 9). 

• Analytics Engine: Implements service assurance mechanisms by continuously 

analyzing telemetry data, detecting anomalies, and recommending proactive 

optimizations to maintain system efficiency and reliability. Deliverable D3.2 (M15) 

details this component. 

 

 

Figure 40: EMPYREAN Aggregator architecture. 
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The successful integration of EMPYREAN Aggregators and their associated services relies on 

leveraging the well-defined interfaces within the EMPYREAN platform to ensure seamless 

communication. To achieve this, the design incorporates the API Gateway, which plays a 

crucial role in enabling secure, scalable, and efficient intra- and inter-Association 

communication. By providing standardized data models and utilizing the exposed APIs of other 

services, the API Gateway facilitates service discovery, routing, and management while 

enforcing stringent policies on access control and authentication. 

Furthermore, the API Gateway introduces several key features to enhance system 

interoperability and performance: (i) API composition, which streamlines interactions by 

aggregating multiple API calls into a single, optimized request flow, (ii) protocol abstraction, 

supporting a variety of communication protocols such as RESTful APIs, gRPC, and AMQP (for 

asynchronous messaging), and (iii) logging and monitoring, achieved through integration with 

the Telemetry Engine, providing real-time insights into API usage, request latencies, and 

overall system performance. 

 

10.4 Implementation 

The EMPYREAN Aggregator is built using a microservice-based approach, allowing each 

component to operate independently while being loosely coupled to ensure flexibility and 

scalability. The Aggregator is implemented as a cloud-native application in Python, where 

individual components interact through their well-defined APIs. The core services of the 

Aggregator are containerized and orchestrated via Kubernetes, allowing for easy deployment, 

dynamic scaling, and fault tolerance. 

The API Gateway provides two NBIs, namely a REST interface exposed to core EMPYREAN 

orchestration and management services, such as EMPYREAN Registry and Workflow Manager, 

that enable them to seamlessly interact with the Associations and resources managed by an 

Aggregator, and a gRPC interface exposed to the rest of the EMPYREAN Aggregators. Both 

interfaces rely on the Dispatcher, who handles the incoming requests and interacts with the 

State Management component. The State Management enables a stateful implementation of 

the API Gateway to support the operational requirements within the EMPYREAN platform. To 

enhance performance and responsiveness, the State Management component integrates 

Redis15 as a high-speed caching layer and lightweight storage solution for stateful data. 

Figure 41 summarizes the available methods in the REST interfaces of the API Gateway 

component. 

                                                      

15 https://redis.io 
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Figure 41: EMPYREAN Aggregator – API Gateway RESTful API. 
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The API Gateway component also incorporates publish-subscribe mechanisms over gRPC to 

exchange information, commands, and events among the EMPYREAN Aggregators. This 

interface will provide methods to enable collaboration among Aggregators to get/set/delete 

information from/into their databases, as well as to receive asynchronous events reporting on 

changes within an Association. The RPC methods currently exposed by the initial version of 

this interface are presented in Table 8. As the implementation progresses towards the initial 

release of the EMPYREAN platform, this interface will be extended appropriately.  

 Table 8: EMPYREAN Aggregator – RPC methods. 

Method Name Description 

AssociationUpdates 
Bidirectional streaming method for real-time updates for available 
Associations managed from an Aggregator. 

ArtifcactsUpdates 
Bidirectional streaming method for real-time updates for available artifacts 
within an Aggregator. 

ResourcesUpdates 
Bidirectional streaming method for real-time updates for available resources 
within an Association. 

CreateAssociationDeployment Assign an application deployment to a specific Aggregator.  

AssociationDeploymentUpdates 
Bidirectional streaming method for real-time updates regarding the progress 
of an assigned application deployment request. 

MigrateDeployment Request an application deployment migration to some other Aggregator. 

MigrateData Request data migration to an Association to some other Aggregator. 

MigrateDeploymentEvents 
Bidirectional streaming method for real-time updates regarding the progress 
of an application deployment migration request. 

MigrateDataEvents 
Bidirectional streaming method for real-time updates regarding the progress 
of data migration request. 

 

10.5 Relation to Use Cases 

The EMPYREAN Aggregator serves as the intelligent orchestration and resource management 

backbone for the project’s use cases (UCs), ensuring efficient workload distribution, low-

latency execution, and secure data handling across diverse IoT-edge-cloud environments. By 

leveraging its integration with other key components of the EMPYREAN architecture, the 

Aggregator abstracts the Association-based continuum to the end users, automates 

infrastructure-specific operations, and optimizes performance and resilience for each UC. 

For anomaly detection in robotic machining (UC1), real-time data collection, processing, and 

analytics are crucial. The Aggregator facilitates low-latency execution of AI models at the edge, 

ensuring that machine learning-based anomaly detection runs locally for faster responses. In 

agricultural field monitoring, large volumes of sensor data must be processed efficiently to 

enable precision farming (UC2). The Aggregator ensures seamless integration of proximal 

sensing devices, processing data locally via edge computing nodes to reduce cloud 

dependence and optimize real-time analytics. For smart factory security (UC4), the EMPYREAN 

Aggregator enhances cybersecurity and access control by integrating decentralized trust 

management mechanisms. This ensures resilient and secure factory operations, even in highly 

interconnected industrial environments. 
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11 EMPYREAN Registry 

11.1 Overview 

The Association-based continuum represents a dynamic framework where entities—ranging 

from research institutions and enterprises to edge-cloud platforms—interact seamlessly to 

enable intelligent, decentralized, and scalable service deployment. The EMPYREAN Registry is 

essential to support this complex and interconnected environment and address key challenges 

in the EMPYREAN platform's coordination, management, and governance. 

The EMPYREAN Registry serves as a unified entry point for both core platform services and 

third-party entities, enabling the discovery, cataloguing, and advertising of Associations and 

services across the Association-based continuum. The Registry facilitates the registration and 

management of IoT devices, edge, and cloud resources within Associations. Moreover, it 

keeps track of the available Associations and services, the mapping of infrastructure resources 

to Associations, and the relationships between users and Associations. 

11.2 Relation to EMPYREAN Objectives and KPIs 

The initial design and implementation of the EMPYREAN Registry contribute significantly to 

realizing the EMPYREAN vision of an autonomous, distributed, and collaborative IoT-edge-

cloud continuum. As a core component of the AI-driven control and management plane, it 

supports key EMPYREAN objectives and enables the fulfillment of the following technical KPIs:  

• T1.1 - Reduce cloud and increase edge utilization via workload balancing optimization: 

The Registry facilitates intelligent workload placement decisions by supporting the 

multi-agent operation of multiple Decision Engines across the Associations. 

• T1.2 - Increase reliability in the edge: Enabling decentralized services and maintaining 

resource metadata supports adaptive service discovery and redundancy mechanisms 

at the edge. 

• T1.3 - Increase statistical multiplexing gains through associations: It supports efficient 

grouping and reuse of distributed resources, enabling higher utilization and reduced 

idle capacity across edge and cloud environments. 
  

11.3 Architecture 

The EMPYREAN Registry is designed as a scalable, cloud-native system that integrates various 

functionalities essential for ensuring seamless discovery, cataloguing, and advertisement of 

Associations and services across the EMPYREAN platform. It is dynamically updated with new 

information as infrastructure resources are registered or new applications and services are 

published. The Registry follows a modular architecture (Figure 42) with seven core services. 
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The API Gateway is the central access point for all interactions with the EMPYREAN Registry, 

ensuring secure, scalable, and controlled access to its functionalities. It handles external and 

internal service requests, manages authentication and authorization, and facilitates event-

driven communication between EMPYREAN services and the core Registry components. The 

API Gateway’s architecture aligns with the respective component in the EMPYREAN 

Aggregator (Section 10.3), ensuring consistency and interoperability across the platform. The 

API Gateway exposes both REST and gRPC interfaces, enabling flexible communication models 

suited for different integration needs within the EMPYREAN ecosystem. 

 

 

Figure 42: EMPYREAN Registry architecture. 

 

The Registry Manager is the core orchestration component of the EMPYREAN Registry, 

responsible for overseeing its operation and managing its interactions with other services to 

ensure seamless integration with the broader EMPYREAN platform. It provides lifecycle 

management, handling the registration, modification, and removal of Associations and 

services. It also cooperates with the Privacy and Security Service to enable predefined 

governance policies for access control, data sharing, and compliance across Associations. 

Moreover, the Registry Manager ensures real-time consistency of Registry data across 

distributed Associations using event-driven updates. 

The Container Image Repository stores and manages OCI-compatible images of hyper-

distributed applications. These images are built and packaged using EMPYREAN’s dedicated 

mechanisms, ensuring compatibility and efficient deployment across the Association-based 

continuum. This service distributes container images that support all EMPYREAN container 

runtime types, providing a single source of truth for containerized applications within the 

continuum. By integrating with EMPYREAN’s development mechanisms, as detailed in 

Deliverable D4.1 (M15), the Container Image Repository enables fast and secure deployments 

across heterogeneous execution environments. 
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The Service Catalogue provides a centralized repository for managing application blueprints, 

deployment configurations, and metadata related to services and datasets. By integrating with 

the Container Image Repository, the Service Catalogue streamlines application development 

and deployment across the continuum. It provides a comprehensive service management that 

stores metadata about software packages, container images, service descriptors, and hyper-

distributed application models. It also allows EMPYREAN services and users to search, filter, 

and retrieve available services in a structured way. The Service Catalogue enables automated 

service composition and deployment based on predefined metadata attributes and provides 

inputs for EMPYREAN’s orchestration and deployment mechanisms, improving service 

interoperability and adaptability. 

The Association Metadata Store contains metadata about available Associations, providing a 

high-level description of participating resources, their ownership, and sharing policies, along 

with descriptions of available EMPYREAN services and deployed applications. This component 

aggregates metadata and capabilities from individual Associations and platforms, making 

them accessible across multiple Associations in accordance with the selected privacy settings. 

The orchestration and deployment mechanisms leverage this data to manage Associations 

and deploy applications within and across them. 

The Data Connectors component enables integration with external data sources, facilitating 

the collection and exchange of data across heterogeneous environments. It is designed with 

a modular and extensible framework, allowing easy addition of new connectors. This 

component supports the integration with data stores, external catalogues, data pipelines, and 

real-time data streams. By providing structured metadata ingestion and aggregation, Data 

Connectors enhance the context-awareness and adaptability of the EMPYREAN Registry. 

Moreover, the integration of Security and Trust Management services establishes a trust 

anchor to support trust, identity, and credential management operations across the 

distributed Associations. This ensures secure interactions, enhances reliability, and promotes 

seamless collaboration within the EMPYREAN ecosystem. A detailed presentation of this 

service’s design and initial implementation within the EMPYREAN platform is available in 

deliverable D3.1 (M15). 

 

11.4 Implementation 

The EMPYREAN Registry is implemented as a cloud-native application in Python, where 

individual components interact through their well-defined APIs. All components of the 

Registry are containerized and orchestrated via Kubernetes, allowing for easy deployment, 

dynamic scaling, and fault tolerance. The work during the initial phase covers the initial design 

and implementation of the API Gateway, Association Metadata Store, and Container Image 

Repository components. 
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The API Gateway exposes a REST interface to facilitate stateless communication and provide 

external access to Registry services and low-complexity interactions. There is also a gRPC 

interface to support low-latency and bidirectional streaming event-driven interactions and 

real-time updates, which is well-suited for service-to-service communication among the core 

components of the EMPYREAN control and management plane. Both interfaces rely on the 

Registry Manager, who handles the requests and interacts with the other internal 

components. Figure 43 shows the available methods in the REST interfaces of the API Gateway 

component. 
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Figure 43: EMPYREAN Registry – API Gateway RESTful API. 

 

Table 9 presents the RPC methods exposed by the initial version of Registry’s gRPC interface, 

covering the communication between Registry and Aggregator for the Associations 

management.  

 Table 9: EMPYREAN Registry – RPC methods. 

Method Name Description 

AssociationUpdates 
Provide real-time updates to the EMPYREAN Registry for available 
Associations in the overall platform. 

ServicesUpdates 
Provide real-time updates to the EMPYREAN Registry for available services 
in the overall platform. 

DeploymentUpdates 
Provide real-time updates to the EMPYREAN Registry for available 
application deployments in the platform. 

 

The Container Image Repository is based on the CNCF Distribution Registry16, an open-source 

stateless and highly scalable storage and content delivery system that holds named container 

images and other content, available in different tagged versions. One key feature is that it 

adheres to OCI specifications for storing and retrieving container images, Helm charts, WASM 

artifacts, and other OCI-based artifacts, enabling seamless integration with the EMPYREAN 

build and package mechanisms. Moreover, it is a decentralized and extensible solution that 

integrates well with Kubernetes and other cloud-native tools while can be deployed across 

various cloud and edge environments. 

                                                      

16 https://distribution.github.io/distribution/ 
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The Association Metadata Store constitutes a fundamental element of the EMPYREAN 

ecosystem, consolidating metadata from multiple distributed Associations. Its primary role is 

to maintain structured information about each Association’s participating resources, 

workload, sharing and other policies, enabling coordination, trust, and intelligent 

orchestration across the Association-based continuum. 

Each Association operates independently, orchestrating tasks and managing the computing 

infrastructure. Static and dynamic information is collected — including the current state of 

nodes, Kubernetes pods, deployments, and workflow executions. This metadata will be used 

to construct a local Knowledge Graph (KG) for each Association, using a graph database such 

as Neo4j17. The resulting graph will reflect the relationships between computational entities 

and infrastructure components, capturing how services are deployed, which nodes they run 

on, and how they are managed. Moreover, these graphs will be periodically merged to create 

an aggregated Knowledge Graph, maintained in the Association Metadata Store. This merged 

graph will offer a unified semantic representation of the distributed state of the continuum. 

One of the key benefits of this approach is the ability to run cross-Association queries over the 

summarized graph. These queries enable rich, relationship-based reasoning — such as 

identifying trends across multiple workloads, detecting anomalies in pods or resource usage, 

or coordinating deployments to avoid infrastructure hotspots. The graph-based 

representation is especially powerful in scenarios where relationships between resources, 

services, and infrastructure need to be continuously monitored and optimized. 

11.5 Relation to Use Cases 

The EMPYREAN Registry plays a central role in enabling dynamic, secure, and efficient 

resource and service management across all project use cases (UCs). By serving as a unified 

point for discovering, registering, and managing Associations, services, and infrastructure 

resources, it facilitates the deployment and orchestration of applications tailored to the 

specific requirements of each domain. Its core functionalities—including metadata 

aggregation, service cataloguing, and container image distribution—directly support the 

underlying Association-based continuum of each use case. 

The Registry enables the registration and discovery of IoT devices, robotic systems, edge, and 

cloud resources deployed across diverse industrial and agricultural environments. The Service 

Catalogue and Association Metadata Store facilitate context-aware workload placement by 

tracking the ownership and sharing policies of connected resources, enabling privacy-

preserving computation and intelligent orchestration. These capabilities ensure resilient 

service deployment in resource-constrained, highly distributed environments. By integrating 

with the Security and Trust Management services, the Registry ensures secure service 

registration, identity verification, and access control, providing a secured and trustworthy 

execution environment across collaborated geographically distributed resources. 

                                                      

17 https://neo4j.com 
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12 Conclusions 

In this deliverable, we present the work of all tasks in WP4, with a particular focus on Task 4.1 

“Cyber Threat Intelligence, Intelligent Resource Management and Energy Efficiency” and Task 

4.4 “EMPYREAN Aggregator, Autonomous Management and Monitoring Fabric”. Specifically, 

we elaborate on the design and developments for: (i) intelligent and multi-objective resource 

management algorithms, (ii) Decision Engine, (iii) cyber threat intelligent platform, (iv) Service 

Orchestrator and EMPYREAN Controller, (v) Telemetry Service, (vi) EMPYREAN Aggregator, 

and (viii) EMPYREAN Registry. Together, these components form a cohesive platform designed 

to meet the demands of next-generation applications, providing resilience, intelligence, 

adaptability, and trustworthiness in highly dynamic, resource-constrained, and distributed 

operating environments. They also enable collaborative autonomy and support the 

cooperative and autonomous management of the Association-based continuum, also 

promoting self-driven adaptability.  

The provided developments are integral parts of the autonomous and cognitive control and 

management plane of the EMPYREAN platform. The presented research and development 

activities build upon the final architecture of the EMPYREAN, reported in D2.3 (M12), to 

provide the core functionality, implement the initial version of interfaces for inter-component 

communication, and support the implementation of the basic operation flows. The above 

developments will be further enhanced as we move towards the second iteration of the 

implementation plan (M16-M26) to fully support the envisioned functionalities within the 

complete release of the EMPYREAN integrated platform. 
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