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Abstract: Deliverable D4.2 presents the key outcomes of the activities that took place in the
context of Task 4.1 “Cyber Threat Intelligence, Intelligent Resource Management, and Energy
Efficiency” and Task 4.4 “EMPYREAN Aggregator, Autonomous Management and Monitoring”
during the first iteration of the incremental implementation plan (M04-M15). These tasks
focus on the design and development of critical components within the EMPYREAN platform,
including: (i) cyber threat intelligence through advanced mechanisms for detecting, analyzing,
and mitigating cybersecurity threats within the EMPYREAN platform; (ii) intelligent resource
management algorithms for optimizing resource allocation across heterogeneous edge-cloud
environments, improving efficiency, performance, and resilience; (iii) the EMPYREAN
Aggregator, a framework enabling autonomous management, monitoring, and data-driven
decision-making within and across the EMPYREAN Associations; and (iv) the EMPYREAN
Registry, a unified system for registering, cataloging, and managing resources, services, and

Associations within the EMPYREAN ecosystem.

The deliverable details the methodologies, architectural designs, and initial implementation
results achieved in these domains. It lays a solid foundation for further advancements and
refinements in subsequent iterations, driving the evolution of EMPYREAN’s cyber-resilient,
intelligent, and self-adaptive computing infrastructure.

Keywords: Edge Cloud Continuum, EMPYREAN Platform, EMPYREAN Components,
Associations, Cognitive Orchestration, Cyber Threat Intelligence, Resource Orchestration,
Multi-Objective Optimization, Telemetry Service
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Disclaimer: The information, documentation and figures available in this deliverable are written by the
EMPYREAN Consortium partners under EC co-financing (project HORIZON-CL4-2023-DATA-01-04-
101136024) and do not necessarily reflect the view of the European Commission. The information in
this document is provided “as is”, and no guarantee or warranty is given that the information is fit for
any particular purpose. The reader uses the information at his/her sole risk and liability.

Copyright © 2025 the EMPYREAN Consortium. All rights reserved. This document may not be copied,
reproduced or modified in whole or in part for any purpose without written permission from the
EMPYREAN Consortium. In addition to such written permission to copy, reproduce or modify this
document in whole or part, an acknowledgement of the authors of the document and all applicable
portions of the copyright notice must be clearly referenced.
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1 Executive Summary

EMPYREAN seamlessly integrates loT devices, robotic systems, and computational resources
into collaborative, dynamic collectives, the Associations. This Association-based continuum
forms an autonomous and interconnected ecosystem designed to support hyper-distributed
applications. At the core of EMPYREAN's platform lies an Al-enabled control and management
plane, which enables efficient and adaptive operations by optimizing resource utilization,
system performance, and resiliency across Associations.

Deliverable 4.2 documents the progress achieved during the first implementation cycle (M4-
M15), specifically focusing on the work carried out in two of the four tasks within WP4. These
tasks are dedicated to the implementation of intelligent resource management algorithms,
the development of novel cyber threat intelligence mechanisms, along with the design and
development of core orchestration and management services.

The document is organized into nine key chapters, each detailing a major building block of the
EMPYREAN framework. Section 3 outlines the overall architecture and highlights the
components relevant to this deliverable. Section 4 describes how these components
interoperate to support cross-layer orchestration, intelligent management, cyber threat
intelligence, and distributed coordination. Section 5 details the strategies and mechanisms
developed for intelligent resource allocation and dynamic workload balancing across
heterogeneous infrastructures. Section 6 presents the development of the Decision Engine,
which provides decision-making capabilities within the EMPYREAN platform. Section 7
elaborates on the cyber threat intelligence capabilities developed to ensure resilience and
trustworthiness, focusing on intrusion detection, behavioral analysis, and automated
response mechanisms. Section 8 describes the Service Orchestrator, which governs service
lifecycle management, deployment placement, and elastic adaptation in Associations. Section
9 presents the Telemetry Service, responsible for collecting, filtering, and processing
performance and operational data to support both real-time responsiveness and long-term
system optimization. Section 10 and 11 cover the EMPYREAN Aggregator and EMPYREAN
Registry, two critical components of the control and management plane. They manage the
operations of the Association-based continuum, maintain system-wide awareness, and enable
secure, scalable, and transparent service discovery and deployment.

The developments described in this deliverable are key contributors to the initial release of
the EMPYREAN platform. Furthermore, the developed mechanisms play a significant role in
supporting the initial implementations of EMPYREAN'’s use cases, which will be detailed in
D5.1 “Use cases technological developments” (M18). As the project advances, these
foundational developments will be iteratively refined and based on feedback gained through
ongoing integration activities. The final version of these mechanisms will be presented in D4.3
“Final report on decentralized intelligence, application development and deployment” (M26).
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2 Introduction

2.1 Purpose of this document

Deliverable D4.2 presents the outcomes of Task 4.1 “Cyber Threat Intelligence, Intelligent
Resource Management and Energy Efficiency” and Task 4.4 “EMPYREAN Aggregator,
Autonomous Management and Monitoring Fabric”, as part of the first iteration of the
incremental implementation plan (M04-M15). T4.1 relates to the development of novel multi-
agent and multi-objective algorithms for resource allocation and service orchestration,
alongside advanced cyber threat intelligence mechanisms. These solutions aim to enable
collaborative autonomy, cognitive operation, and secure operation within the EMPYREAN
platform. T4.4 focuses on developing mechanisms that support the cognitive, cooperative,
and autonomous management of the Association-based continuum, also promoting self-
driven adaptability.

The objective of D4.2 is to build on the final architecture of the EMPYREAN platform, as
outlined in deliverable D2.3 (M12), towards the provision of the initial release of the
EMPYREAN orchestration and decision-making mechanisms (i.e., Service Orchestrator,
EMPYREAN Controller, Decision Engine), advanced cyber threat intelligence service (i.e., CTI
Engine), resource allocation algorithms, association management mechanisms (i.e.,
EMPYREAN Aggregator, EMPYREAN Registry), and telemetry mechanisms (i.e., Telemetry
Engine, Monitoring Probes, Persistent Monitoring Data Storage).

D4.3 “Final report on decentralized intelligence, application development and deployment” in
M26 will present the final release of the EMPYREAN components and mechanisms that are
developed in the context of T4.1 and T4.4.

2.2 Document Structure

The present deliverable is split into nine major chapters:

e EMPYREAN Architecture Mapping
e EMPYREAN Platform

e Intelligent Resource Management
e Decision Engine

e Cyber Threat Intelligence

e Service Orchestrator

e Telemetry Service

e EMPYREAN Aggregator

e EMPYREAN Registry

empyrean-horizon.eu 14/126
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2.3 Audience

This document is publicly available and intended for anyone interested in the initial
description of the EMPYREAN mechanisms related to cyber threat intelligence, intelligent
workload allocation and resource management, telemetry service, autonomous management
of EMPYREAN Associations, and service orchestration and application deployment
mechanisms within and across Associations. Additionally, it serves as a valuable resource for
the general public, providing insights into the design and implementation of the above core
mechanisms, as well as their role in addressing the requirements of the project’s use cases.

empyrean-horizon.eu 15/126
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3 EMPYREAN Architecture Mapping

The EMPYREAN architecture was first introduced in deliverable D2.2 "Initial Release of
EMPYREAN Architecture" (M07), and later refined in its final version in D2.3 " Final EMPYREAN
architecture, use cases analysis and KPIs" (M12). This refinement incorporated key insights
gained from the initial implementation phase. D2.3 provides a comprehensive overview of the
architecture, detailing the EMPYREAN components, their interfaces, and the supported
operational flows.

In this section, we present a concise description of the architecture (Figure 1) to support the
discussion of the initial developments in WP4, particularly focusing on cyber threat
intelligence, multi-objective resource allocation and service orchestration algorithms, and
distributed and autonomous Association management and telemetry mechanisms within the
EMPYREAN.

EMPYREAN Use Cases

Monitoring & Service Layer Security, Trust,
Observability Layer ; N/ o & Privacy Layer
Workflow Dataflow Action Unikernels EMPYREAN
Manager Programming Packaging | Builder SDK
Telemetry Service p-ABC Library

Association Management Layer

EMPYREAN Aggregator EMPYREAN Registry Verifiable Data

Persistent Monitoring B
R t
Data Storage B

Multi-Cluster Orchestration Layer

: | - : CTi Engine
Analytics Engine Service Orchestrator Decision Engine
Resource Management Layer Data Management &
I N Interconnection Layer Privacy & Security
Telemetry Engine Al-enabled Workload EMPYREAN Manager
Autoscaling Controller Software-Defined 10T Query
N [ Edge Int t Engi
i ) Unikernel ge Interconnec ngine
Enviroment Packaging Depl £
eploymen Decentralized & Distributed Data
Contai L ( i ) Manager Secure & Trusted
Monitoring Probes BN IR | Container Runtime ‘ Execution Environment

Locality Scheduler Edge Storage

Gateway

Edge Storage
Hardware Acceleration Abstractions

]

R - T

- B2 L

o L b S % E =

5 - &2 S=E o

P o 2™ =

2 emd  efim 4 ‘ , ‘
& | 1oT/lioT Devices | ON-PREMISE | DEEP EDGE | FAR EDGE \ cLouD |
= J L L J L J

loT-Edge-Cloud Infrastructure

Figure 1: EMPYREAN high-level architecture.
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The Service layer facilitates the development of Association-native applications, providing
robust support for application-level adaptations, interoperability, elasticity, and scalability
across the loT-edge-cloud continuum. Deliverable D4.1 (M15) provides a detailed description
for the design and development of this layer’s components.

The Association Management layer includes components that intelligently and dynamically
create and manage Associations. Each Association integrates heterogeneous resources across
multiple providers, connectivity types, and segments of the loT-edge-cloud continuum. The
EMPYREAN Registry (Section 11) manages the registration of loT devices, edge, and cloud
resources within Associations while tracking available services and resources. It offers an
abstract and unified view of the Association-based continuum, simplifying application
development and deployment. Moreover, the EMPYREAN Aggregator (Section 10) handles
the formation, coordination, and management of Associations, while it facilitates the
discovery of available resources. Multiple self-managed and interacting Aggregators
constitute the distributed and data-driven management plane for the EMPYREAN platform.

The Multi-Cluster Orchestration layer enables efficient service orchestration and resource
management across the disaggregated and heterogeneous EMPYREAN infrastructure.
Through autonomous, distributed decision-making mechanisms, this layer orchestrates
dynamic, hyper-distributed applications while enabling self-driven adaptations. Multiple
instances of its components provide decentralized operation, optimizing resource utilization
while ensuring scalability, resiliency, energy efficiency, and service quality.

The Service Orchestrator (Section 8) oversees application deployment and coordinates the
necessary resource management actions. Workload distribution and assignment decisions are
delegated to the Decision Engine (Section 6), which enables decentralized, speculative, and
multi-objective resource orchestration. The Decision Engine integrates various distributed
optimization and orchestration algorithms (Section 5) to balance computing tasks and data
both locally within an Association and across federated Associations.

The Resource Management layer unifies loT, edge, and cloud platform management within
the EMPYREAN platform. Operating within Kubernetes (K8s) or lightweight Kubernetes (K3s)
clusters, this layer ensures modularity, facilitating seamless hardware and software
integration.

The EMPYREAN Controller (Section 8) serves as a bridge, integrating individual 10T, edge, and
cloud resources under the control of a specific Service Orchestrator. The Al-enabled Workload
Autoscaling component, detailed in deliverable D3.2 (M15), enhances Kubernetes
orchestration capabilities by incorporating Al/ML techniques for intelligent workload
autoscaling. The Environment Packaging component, deliverable D4.1 (M15), supports multi-
environment and multi-architecture packaging for cloud-native applications, improving the
interoperability and adaptability of workloads. The Unikernel Deployment and Container
Runtime components, presented in D4.1 (M15), enable flexible container runtime integration,
allowing cloud-native applications to deploy across various execution environments. The
Container Layers Locality Scheduler, implemented as a scheduling plugin for the local
orchestrator in each platform, optimizes workload scheduling at the cluster level. Finally, the
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Hardware Acceleration Abstractions component, deliverable D3.2 (M15), enables the
offloading of compute-intensive tasks to hardware accelerators on neighbouring nodes.

The Data Management and Interconnection layer implements dynamic communication and
secure data storage across loT devices and computing resources. Operating at both the cluster
and Association levels, this layer provides flexible and scalable data management while
seamlessly integrating loT, edge, and cloud resources. Deliverables D3.2 (M15) and D4.1 (M15)
provide further details on the developments of its components.

Across the EMPYREAN ecosystem resides the Monitoring and Observability layer that
autonomously collects and analyses telemetry data across the Association-based
infrastructure and deployed hyper-distributed applications. The EMPYREAN Telemetry Service
(Section 9) consists of three key components: the Telemetry Engine, Monitoring Probes, and
Persistent Monitoring Data Storage. These components enable the data collection,
preprocessing, correlation, and management, facilitating orchestration and service assurance
mechanisms to optimize performance and reliability. Complementing this, the Analytics
Engine, detailed in deliverable D3.2 (M15), forms a crucial part of this layer by enabling
advanced data analysis and insights.

The Security, Trust, and Privacy layer ensures secure access, data privacy, and trusted
execution across the EMPYREAN platform, spanning both cluster and Association levels. The
CTI Engine (Section 7) delivers automated cyber threat analysis, providing valuable intelligence
on past global cyber threats. By quantifying system risks, the CTI Engine enables proactive
security adaptations within and across EMPYREAN Associations, significantly strengthening
the platform’s overall security capabilities.
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4 EMPYREAN Platform

The EMPYREAN platform (Figure 2) is designed as a self-optimizing system that continuously
adapts to its environment by executing a cognitive cycle of sensing (detecting system and
environmental changes), discerning (interpreting senses), inferring (understand implications),
deciding (selecting appropriate actions), and acting (executing decisions). This cognitive
intelligence loop is foundational to EMPYREAN’s ability to support robust, autonomous
operations across the loT-edge-cloud continuum.

Key components such as the Cyber Threat Intelligence (CTI) framework, Association
management and coordination mechanisms, and intelligent service and resource
orchestration collectively provide an abstraction layer that automates platform operations
while optimizing the utilization of heterogeneous, distributed resources. These capabilities
underpin the Association-based continuum, enabling the seamless deployment and
coordination of hyper-distributed, cloud-native applications spanning loT, edge, and cloud
infrastructures.
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Figure 2: EMPYREAN Association-based loT-Edge-Cloud continuum.

The EMPYREAN Registry and EMPYREAN Aggregator are key enablers of autonomous
collaboration, facilitating efficient deployment, dynamic management, and coordinated
operation of both Associations and their hosted applications. The architecture includes one
EMPYREAN Registry and multiple Aggregators for the management of the available
Associations. As core components of the control and management plane, they provide
administrators and authorized infrastructure providers with full Association lifecycle
management capabilities, including the ability to create, update, and delete Associations.
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Throughout these operations, the Registry and Aggregators interact with the platform’s
security plane components, such as the Privacy and Security Manager and Distributed Ledger
Technology, as well as the Telemetry Service, ensuring that all changes are trusted and aligned
with the system’s governance policies. The interaction flows corresponding to these
procedures are described in detail in D2.3 (M12) under Operation Flows (OF) 1.1, 1.2, and 1.3.

Following the setup of Associations, which create secure and collaborative execution
environments, the next operational phases include the resource onboarding and application
development. During these stages, the EMPYREAN Registry, along with multiple Aggregator
instances, play a critical role in the registration and integration of resources. These
components interface primarily with the Resource Management and the Security, Trust, and
Privacy layers to onboard heterogeneous resources, register their capabilities and constraints,
and define access control policies and operational processes that govern their participation in
the Associations.

Next, the application deployment is structured into three coordinated phases: (i) high-level
assignment of cloud-native application microservices to relevant EMPYREAN Associations
(OF4.1.1); (ii) cognitive orchestration of assigned microservices within the selected
Associations (OF4.1.2); and (iii) seamless deployment of workloads across the selected
Kubernetes (K8s) or lightweight Kubernetes (K3s) clusters (OF4.1.3).

In this context, the Association Management layer components, comprising the EMPYREAN
Registry and Aggregator, is tightly integrated with the Multi-Cluster Orchestration layer, which
includes the Service Orchestrator and Decision Engine. These components collaborate during
the first two phases to enable intelligent, constraint-aware resource orchestration across the
EMPYREAN continuum. The orchestration mechanisms consider a wide range of key criteria,
including latency requirements, performance objectives, energy efficiency, and security
requirements, ensuring that workloads are optimally distributed to suitable Associations,
clusters, and infrastructure resources.

In the final phase, the Service Orchestrator interfaces with components from the Resource
Management layer, such as the EMPYREAN Controller and the Containers Layer Locality
Scheduler, to execute the actual workload placement and deployment. These components are
responsible for selecting the most suitable worker nodes within the targeted K8s/K3s clusters
and for carrying out the deployment operations based on declarative specifications defined in
the earlier phases.

In addition, to supporting collaborative and distributed operations, the EMPYREAN platform
automates system-level operations to achieve continuous optimizations and self-
management. Central to this capability is the Telemetry Service, which provides a distributed,
real-time monitoring infrastructure that supports the comprehensive observation of system
behavior. It enables continuous data collection and the generation of actionable insights to
optimize both the platform’s performance and that of deployed applications. The service
monitors a wide range of entities, including infrastructure resources, robots, loT devices, and
running workloads. In addition, it captures energy consumption metrics across all resource
types, contributing to sustainability and energy efficiency goals. The collected telemetry data
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serves as a vital input for EMPYREAN’s distributed decision-making and analytics mechanisms,
feeding into intelligent policies for dynamic optimization, anomaly detection, and resource-
aware workload management.

Complementing this, the Cyber Threat Intelligence (CTI) Engine collects and analyses data
from trusted sources such as the Cyber Threat Alliance (CTA) and Malware Information Sharing
Platform (MISP) repositories. By extracting relevant patterns and critical indicators, the CTI
Engine enhances the platform’s situational awareness and proactive defense capabilities. The
CTl framework is integrated with the Telemetry Service, allowing it to ingest real-time
monitoring data from across the entire EMPYREAN platform. It also interfaces with
Association-level orchestration and analysis tools, such as the EMPYREAN Aggregator and
Analytics Engine, to enable localized threat detection, context-aware analysis, and timely
response actions. This integration supports automated threat intelligence workflows, enabling
seamless security analytics and dynamic workload and data migration in response to emerging
risks across Associations.
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5 Intelligent Resource Management

EMPYREAN embraces a distributed, speculative, and intelligent approach to orchestrating
hyper-distributed applications, striking a dynamic balance between centralized and
decentralized paradigms. This approach enables a more adaptable and efficient
computational continuum, ensuring that workload distribution and resource management are
continuously optimized based on real-time conditions, performance constraints, and
sustainability goals.

To achieve this, EMPYREAN is developing a suite of novel algorithms that leverage multi-
objective optimization, game theory, Al/ML techniques, and heuristic methods. These
algorithms are designed to balance trade-offs between optimality and computational
complexity, ensuring that the system remains scalable, responsive, and efficient even as
workloads and environmental conditions evolve.

5.1 Optimization of Cloud-Native Application Execution over
the Edge-Cloud continuum enabled by DVFS

5.1.1 Introduction

The increasing complexity of modern applications is progressively pushing traditional
monolithic designs out of the spotlight. As a result, the cloud native application model [2] is
adopted, leading to a paradigm shift from classic monolithic structures to flexible
microservice-based architectures. This trend is evident in a wide range of new-era, Al-
enhanced applications: industrial control, video analytics, interactive (XR) media, remote
healthcare, autonomous vehicles, smart agriculture, and general smart city services, among
others. In the context of EMPYREAN, both the generic loT applications and the Al-powered
applications of end-users inside associations can be considered microservice-based. The fine-
grained decomposition of monolithic entities into distinct components grants significant
advantages in terms of performance, scalability, and flexibility. Deploying and scaling each
component individually enables the application to span multi-tenancy and multi-technology
environments in search for the most suitable resource type according to its specific
requirements. This is in accordance with the hyper-distributed resource hierarchy of
EMPYREAN, spanning from low-power edge devices to high-end cloud computers within
resource Associations.

However, with the emergence of new applications, their requirements become more
stringent, especially in terms of end-to-end latency, creating challenges for the resource
orchestration mechanisms. For instance, remote surgery operations require immediate
responses, even below 1 millisecond [10]. From the infrastructure operator's perspective,
increased latency can result in revenue loss, with Amazon reporting that every additional 100
ms of experienced user latency incurs a 1% loss during traffic spikes [7].
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To address the limitations of the traditional "all-to-cloud" approach- in terms of delay when
transmitting to remote data-centers- computation resources are deployed at the network
periphery, giving rise to the concept of edge computing. This architecture model complements
cloud computing by alleviating part of the computing burden, while minimizing latency thanks
to the spatial proximity of the edge servers to data-generation points [1]. Unfortunately, the
edge layer inherently possesses a mere fraction of the cloud’s computing capacity, while the
associated hardware is generally less powerful in terms of performance [5].

Microservices, despite being dedicated and loosely coupled, they are not entirely self-
contained in practice. Communication-based dependencies manifest in various forms, such as
data exchange, querying, and result forwarding flows [13], forming complex execution paths.
These paths emerge at runtime and can be accurately represented by Directed Acyclic Graphs
(DAGS) [4], where each node represents a microservice and each arc signifies a downstream
relationship between connected services. The critical path is the path with the longest end-
to-end latency, thus bounding the total execution time of the application.

Accelerating the processing of a service can be achieved through various methods. Code-level
optimizations—such as vectorization, parallelization, and improved data locality—can
significantly boost performance but rely heavily on developer expertise. From the resource
orchestrator perspective, services can be accelerated by deploying them on high-performance
systems, such as a cloud CPUs (e.g., Intel Xeon Gold), GPUs (e.g., NVIDIA RTX 4070) or even
hardware accelerators (e.g., Iceriver KS5L ASIC). On a more fine-grained level, this work also
explores the acceleration of services by increasing the processing unit's frequency. To this end,
we leverage Dynamic Voltage Frequency Scaling (DVFS), a well-established technique that
allows processors to adjust their operating frequency and voltage, exploiting a trade-off
between performance and energy efficiency [16] during the resource allocation process.
Strategically applying DVFS based on the criticality of services within the application's DAG
enables performance gains while minimizing power wastage. The latter is of paramount
importance, not only for its environmental impact but also for the sustainability and longevity
of the infrastructure.

The aim of this work is to optimize microservice-based applications on the Association edge-
cloud continuum by assigning microservices to infrastructure nodes and processing devices.
We only consider the internal hierarchical resource-allocation within one association, with the
high-level decisions guided from the EMPYREAN Decision Engine and subsequently offloaded
to local orchestrators. Leveraging the DAG structure of the applications, we can identify critical
and non-critical execution paths. This allows us to accelerate critical services—by placing them
on high-end processors operating at higher frequencies—to minimize overall execution time,
while conserving power and energy in less congested areas—by deploying services on low-
power, lower-frequency devices. By taking advantage of the highly heterogenous resource
pool of EMPYREAN Associations and by strategically fine-tuning the frequency of the
resources, we show that it is possible to optimize performance without excessive energy
consumption or allow “green” execution without significantly compromising execution time.
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5.1.2 Related Work

Processor frequency scaling has been extensively studied in contemporary research to
manage the performance-energy consumption trade-off. In [23], the authors employ DVFS to
optimize energy consumption in ultra-low-power embedded systems. They propose a
mechanism that dynamically adjusts the processor's frequency, operating at the lowest
frequency during periods of low demand and scaling up during intensive tasks to maximize
efficiency. Similarly, the study in [6] investigates the trade-off between performance and
energy consumption by utilizing DVFS and thread scaling on server processors. The results
highlight that higher frequencies yield performance gains; interestingly, energy efficiency is
not attended at the minimum frequency, as a consequence of the prolonged execution time.

Garcia et al. [8] analyze the impact of various policies implemented by Linux Governors (e.g.,
performance, powersave, ondemand) on performance and energy efficiency. Additionally, in
[16], different voltage and frequency settings combined with various process placement
strategies are explored to assess their effects on performance and energy efficiency.

Application acceleration can be enhanced by targeting specific bottlenecked services instead
of dealing with the entirety of a microservice-based application. CRISP [22] employs critical
path analysis over large traces of microservice call graphs in order to pinpoint and optimize
crucial services. The mechanism was deployed across the entire UBER network and
successfully identified optimization opportunities. The authors of [17] introduce FIRM, a ML-
enabled framework aiming to reduce service level objective (SLO) violations in microservice-
based application workloads. A support vector machine (SVM) mechanism is employed to
initially detect critical paths in application structures and subsequently single out the specific
services responsible for SLO violations. A Deep Deterministic Policy Gradient (DDPG)
reinforcement learning algorithm is developed to efficiently re-provision resources on the
critical services.

Somashekar et al. [18] investigate the problem of fine-tuning individual configuration
parameters for microservices that lie on the critical path of application structures. A
dimensionality reduction technique is utilized to reduce the exploration space by identifying
only a subset that contains the most important configuration parameters for each service.
Then, the fine-tuning is performed at runtime by an iterative process that perturbs the existing
configuration and evaluates the result. Song et al. [19] demonstrate ChainsFormer, a
framework that identifies critical chains and nodes in microservice-based applications based
on a predictor module, and subsequently provision resources leveraging a SARSA
reinforcement learning algorithm.

Previous studies generally focus on specific resources or clusters (e.g., a single data center). In
contrast, our study examines the complexities of serving microservice-based applications over
the edge-cloud continuum, accounting for device heterogeneity and communication delays.
While prior work primarily enhances resources through traditional horizontal (replication) and
vertical (resource augmentation) scaling, we leverage, for the first time, DVFS along with the
application’s dependencies, represented as a DAG, to determine optimal configurations for
microservices. Additionally, related studies often assume a fixed deployment scheme and only
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enhance the pre-established critical path at runtime, which can lead to inefficient resource
use as new critical paths and services emerge. To our knowledge, though this limitation is
recognized in the literature, it has not been directly addressed. Our approach, however,
considers all possible execution paths of the application during runtime and attempts to
identify the optimal configuration based on the resulting critical path.

5.1.3 System Model

5.1.3.1 DVFS, execution time and power consumption model

Dynamic Voltage-Frequency Scaling enables the dynamic adjustment of the frequency at
which a processing unit operates, based on the current workload and desired objectives (e.g.,
minimizing power consumption or maximizing performance). By increasing the CPU
frequency—and consequently the voltage—performance is enhanced during intensive task
execution. Conversely, decreasing the CPU frequency conserves power and reduces thermal
output, albeit at the expense of reduced performance. The underlying hardware must support
multiple power and performance states (often termed P-states), which is common in most
modern processors, ranging from edge devices (microprocessors and typical desktop/laptop
CPUs) to high-end server processors.

DVFS can be realized through a variety of techniques that provide interfaces, policies, and/or
controls to adjust CPU frequencies and voltages at different levels: Linux kernels support
frequency scaling configured directly in the OS through the use of governors, which are a set
of different policies (e.g., Performance, Power-Save, On-Demand) that automate the scaling
process based on the system load and the desired objective. Third party tools such as AMD
Ryzen Master and Intel XTU allow for manually scheduling the desired CPU frequency while
also providing a set of telemetry tools for monitoring real-time power consumption and
component temperature, among others. Moreover, many modern computing systems allow
frequency and voltage adjustments directly via the BIOS/UEFI firmware settings.

In this work, we assume the availability of per-core DVFS, allowing the individual and
independent tuning of each core in multi-core systems. This fine-grained control adapts to the
specific needs of each processing core, aligning with the demands of microservice-based
applications. Per-core DVFS is available on most newer-generation processors.

To estimate the execution time of a microservice, which is ultimately a piece of executable
code, we employ the well-known formula:

_ #Instructions X CPI

f

In this equation, the number of instructions (#Instructions) can be determined by analyzing
the code, while CPI (Cycles Per Instruction) refers to the average number of CPU cycles
required to execute one instruction. Different instruction types require varying numbers of
cycles. For instance, a typical register bit-wise addition in Assembly requires between one and
two cycles, whereas a division operation takes up to 20 cycles. Control operations such as
branches (e.g., if statements) and loops heavily depend on the branch prediction mechanism

€y
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and can consume several hundred cycles in case of mispredictions. Finally, f represents the
operating frequency of the processing unit. This work focuses on compute intensive services,
therefore we consider computing frequency to be the determining factor of the execution
time. Nevertheless, we can safely assume timely data-fetching using in-memory computations
with the newest generation of Double-Data-Read (DDR) RAM memories throughout the
infrastructure.

Regarding power consumption (P) and its relationship with frequency, we use the formula:
P=Cx V?x f(2)

Here C is the effective switching capacitance depending on the chip architecture and activity
factor, V is the supply voltage, and f is the operating frequency. At first glance, this formula
suggests that power consumption is linearly correlated with f. However, in practice, utilizing
DVFS involves scaling up the frequency, which often necessitates a corresponding increase in
voltage to maintain stable operation.

The relationship between voltage and frequency is not strictly linear and varies even among
processors of the same family due to manufacturing variations—a phenomenon known as the
"silicon lottery." Therefore, one can estimate the power at a specific frequency based on
surrogate functions such as the one employed in [11], or any data measured or disclosed by
manufacturers or on internal testbeds.

5.1.3.2 Infrastructure description

We consider a hierarchical edge-cloud infrastructure, represented by a graph ¢ = (V,E) .
Each node v € V' represents a geographical location with collocated devices (e.g., a micro-
datacenter) and arcs e € E describe the networking connections between different nodes.
Let D be the total number of distinct types of devices encompassed in the infrastructure,
indexed by d = 1,...,D. A device denotes a specific model of a computing system that can
execute microservices, ranging from general-purpose consumer CPUs to high-end server
processors and GPUs. Each device d possesses a total of C; processing cores. Therefore, each
node v € V is characterized by a tuple ¢, = [ ¢,1, €2 , ... , G p], indicating the cumulative
availability (in terms of the number of available cores) of each type of device at that node
(with ¢, 4 = 0 if device d is not available at node v, or when all the available cores are
currently occupied).

Moreover, each device type d € {1, 2, ..., D} is characterized by its minimum and maximum
operating frequencies fmdl-n and f4,,, depending on its specifications. We consider a
frequency step Af? for each type of device d. Hence, the DVFS controller can fine-tune the
frequency of a core of a processor d at any level f¢ = n‘fl-n +a- Af% a € Nt in the feasible
region F¢ = [f%.,f3,..]. Each individual frequency level f¢ has an associated power
consumption P(f%), based on Equation (2) or any other data disclosed from the
manufacturer. Finally, each node v € V has a "power budget" e,, which is essentially the
maximum power it can sustain at any given time, constrained by the established power
policies and cooling systems.
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5.1.3.3 Application description

A cloud-native application a encompasses a total of I;microservices, which can be
represented by a Directed Acyclic Graph (DAG) G* = (V¢ E%). Nodes v; € V% represent the
microservices of application a, where i = 1,2, ...,1,. Each microservice i of application a is
characterized by the tuple [ 1;, L; ]. Variable r; represents the estimated required processing
cycles for the service's execution, as the product of the instruction set of its underlying code
with the estimated cycles per instruction (Equation (1). Weight L; is the communication delay
limit of the service. Assuming that g, € V denotes the data-source node of application a,
some microservices are responsible for communicating critical results with the end-user or
other entities in a timely manner, and therefore require the delay between the data-source
node and the service node v to not exceed their predefined maximum, thatis l; ,, < L;. We
use ly, ,, to describe the delay, abstracting the underlying physical network connection
between the application and an infrastructure node into a single value, which can be
determined, for instance, by applying shortest path algorithms.

The execution time of microservice i on a core of device d operating at frequency ¢ can be
calculated using

‘r'.
tiard = Opa X f_; A3)

The coefficient §; 4 accounts for the fact that high-end server processors generally perform
better at the same clock speed (frequency) compared to edge-device processors, due to their
faster cache memories, better pipeline structures, support for ECC memory, and advanced
branch prediction mechanisms, among others. However, the performance deviations are
insignificant for typical consumer applications such as gaming, web-browsing, or standard
working online tools. Hence, depending on the type of service and the device, the execution
time may vary beyond the simplified formula on Equation (1).

Furthermore, according to [3], time sharing the same physical core—even across different
hyper-threads—results in significantly lower throughput for compute-intensive applications
due to resource contention (e.g., ALUs, caches, pipelines). Therefore, we adopt a one-to-one
mapping between services and cores to ensure that the theoretically achievable execution
times are efficiently approximated in practice.

We also consider microservices that require multiple processing cores due to their parallel
structure. In our context, such services are modeled as multiple parallel single-core
microservices equal in number to the cores required by the original service. Nonetheless,
microservices are typically designed to complete specific sub-tasks of an application and
usually do not require more than one core.
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Figure 3: Proposed System Model.

Figure 3 presents an example of a smart surveillance application. Sensor data initiates a
sequence of microservice interactions: Smart cameras, smoke and motion detectors are
uploading raw streams to a data processing microservice. The latter undertakes data cleaning
tasks such as de-colorization, quality enhancement and frame selection. The refined data are
forwarded in parallel to three microservices. The first performs anomaly detection, essentially
identifying any operational malfunctions of the end devices. If a malfunction is reported, it is
forwarded to the subsequent service for further inspection, and finally uploaded for in-depth
analysis. The second service performs face extraction on the data, and forwards isolated
bounding-boxes to a face recognition microservice, responsible for identifying the depicted
people by contrasting the images to a database. The alarm signalling microservice is triggered
in case of identification of unauthorized parties, along with the emergency call to the
appropriate authority. The fire detection and extinction path are operating accordingly. This
application aims to showcase the sequential service invocation that creates different runtime
execution paths, as described in Section 5.1.1.

The entire edge-cloud Association is governed by a centralized super-cluster Resource
orchestrator in accordance with the EMPYREAN architecture. Upon receiving the application's
Directed Acyclic Graph (DAG) and the corresponding microservice requirements, the
orchestrator utilizes the proposed mechanisms to determine the optimal configuration for
each microservice, specifying the target device, operating frequency, and node assignment.
Once the assignments are established, the orchestrator communicates these configurations
to the local controllers (local K85/k3s masters), which then perform the final deployment and
frequency tuning, utilizing the per-device DVFS controller agents. The DVFS agents then adjust
the frequency of the designated cores on the selected devices accordingly. As discussed
earlier, DVFS controllers can range from automated changes in the BIOS/UEFI settings of their
assigned devices to OS-level controls and third-party tools that enable frequency scaling.
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Our mechanism aims to provide a collective assignment of microservices to infrastructure
nodes and devices, with the objective of minimizing a weighted combination of the
application's execution time (i.e., the resulting critical path's length) and the total energy
consumption, subject to node capacity and power constraints, the delay limits of the
microservices, and the available frequency levels of the processing units.

5.1.4 Problem Formulation

Upon selecting an assignment tuple [node,device, frequency] = [v,d,f] for the
deployment of each microservice, a set of M paths emerge, each characterized by its
execution time q,,, V m € M. The critical path k € M is the one with the longest execution
time, that is $q, = ¢, Vm € M. Furthermore, let m; = 1if the i™" microservice is a
member of the execution path m € M, and 0 otherwise.

Before we mathematically describe the problem, we introduce some extra notation: Decision

variable x; £l equals to 1 if the $i" microservice is assigned to infrastructure node v and a

ivd
core of a device of type d, operating at frequency f¢, and 0 otherwise. A tightly coupled
variable y; ; ca is equal to 1 if there is any node on which x; , ; . = 1. We use y to describe
the higher-level assignment on device and frequency level, irregardless of the specific
infrastructure node. For ease of reference, the complete set of variables along with the

corresponding interpretations are presented in Table \ref{table1}.

The execution time of service i can be defined as:

tl = Z Z ti,d,fd * yi,d,fd (4‘)

d=1 fdeFd

o]

Therefore, the execution time of pathm € M, q,,, can be calculated as the cumulative
execution time of the services that lie on the path:

Ig

am = ) ti-m; (5).

i=1
The execution time of the application, T, is the execution time of the resulting critical path:

T = g = maxq,, (6).
m
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Table 1: Summary of Notations.

Notation Interpretation
G = (V,E) Directed weighted graph representing the infrastructure
%4 Set of infrastructure nodes
E Set of network links between nodes
D Set of different types of processing devices in the infrastructure
Cy Number of cores of device of type d
Cpd Remaining cumulative capacity of device of type d at node v
e Minimum operating frequency of device d
£ Maximum operating frequency of device d
Af¢ Frequency step for DVFS on device d
F4 Set of feasible frequency levels of device d
P(f%Y Power consumption of a core of device d at frequency f¢
e, Power limit of node v
a A microservice-based application
G Directed acyclic graph representing application a
1, Total number of microservices of application a
T Required processing cycles for the execution of service i
L; Communication delay limit of microservice i
ga €V Data source node of application a
8ia Coefficient to adjust the execution time of service i on device d
g rd Execution time of service i on device d and frequency f¢
Xiv,dfd Equal to 1 if the i-th microservice is assigned to node v and a core of device d at f¢
Yiard Equal to 1 if the i-th microservice is assigned to a core of device d at ¢
M Set of the application’s execution paths
m; Equal to 1 if the i-th microservice is part of the execution pathm € M
Qm Execution time of pathm € M
K EM The application's critical path
t; Execution time of service i
T The application's execution time
& Energy consumption of service i
E The application's overall energy consumption

The energy consumption of service i, &;, can be calculated as the product of the power
consumption with its execution time:

D
& = PUD tigraYiagpa (7.

d=1 fdeFrd

Hence, the total energy consumption E for the application's execution is the sum of all
individual services:

Ig

E = Zgi 8).

i=1
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5.1.4.1 MILP Formulation

The objective function is the minimization of a weighted combination of the execution time
and the total energy consumption for the application's execution. The weight coefficient w is
used to control the relative importance of each objective:

minw-T + (1 —w) - E (9).

Subject to the following constraints:

C.1 Each service i = 1,...,1, must be assigned to exactly one node and one device type
configured at a specific frequency:

D
DD Npapa=1L¥i=1,..,1 (10)

vEV d=1 fdefd

C.2 Decision variables x and y are coupled by the following constraint:

Viasd = in_,,_d_fd,vl' =1,..,1,vd =1,..,D,Vf% € F4(11)

vev

C.3 Node capacity constraint. Each service is assigned to one core on a processing device;
therefore, the total services assigned to a device cannot exceed the available cores in the
node:

Ig
Z Xi'v’d’fd S Cv’d, V‘U E V, vd = 1’ 'D (12)
i=1 fdeFd
C.4 Node power constraints. The cumulative active power of the processors should not exceed

the power limit of the node:

D

iz Z P(f%) X450 < €, Vv €V (13)

i=1d=1 fdepd

C.5 Services' communication limit. Every service must be assigned to a node that respects the
delay limit with the data-generation node g,:

boge  Xipast <LyVi=1,.,IgvveEV,Vvd=1,..,D,Vf? € Fi(14)

v.9a

Formulated as a Mixed Integer Linear Problem (MILP), the considered problem combines
elements from the assignment problem and critical path analysis, inherently positioning it in
the NP class.
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5.1.5 Metaheuristic Mechanism

The formulated problem considers the deployment of one microservice-based application.
Thus, a solution must be acquired for each incoming application in a timely manner, especially
for time-critical workload. This motivates us to develop a meta-heuristic mechanism to tackle
the increased problem's complexity.

5.1.5.1 Problem Decomposition

The primary problem is decomposed into two distinct yet closely linked sub-problems. The
first problem involves mapping services to device types and frequency levels without
accounting for the practical limitations of the existing infrastructure, such as node capacities
and service delay requirements. This is referred to as the Configuration Selection problem. Its
solution comprises the configuration tuple [device, frequency] =[d,f%] for each
microservice, corresponding with the y; ; ca variables.

The second sub-problem focuses on integrating this configuration within the actual
infrastructure. Given the optimal Yiard variables, the task is to determine the corresponding

X;v,d,rd variables. Thus, this second problem is termed the Resource Allocation and

i,vd
Deployment problem, as its solution obtains the final deployment tuple

[device, frequency,node] = [d, f¢, v] for each service.

By segregating the problem into a high-level assignment and a subsequent detailed mapping
phase, the overall complexity is significantly reduced. Yet, this separation necessitates
strategic considerations to ensure seamless interoperability between the two mechanisms.
Instances may arise where solutions obtained from the Configuration problem are infeasible
in the actual deployment due to inherent constraints. To mitigate such conflicts, it is essential
to incorporate relevant high-level constraints within the Configuration problem. A
complementary technique is to add complexity to the mechanism that addresses the Resource
Allocation and Deployment problem so as to identify quality alternatives in case of
misalignments with the exact solution of the Configuration problem.

5.1.5.2 Genetic Algorithm for the Configuration Selection Problem

Genetic algorithms are a great option when dealing with vast solution spaces that are not
highly constrained [12]. For this reason, we choose to employ a genetic algorithm for the
Configuration Selection problem. This way, the genetic can explore diverse solution spaces
without the overhead of managing excessive constraints. Below we introduce the algorithm
and the associated procedures.

In the context of genetic algorithms, chromosomes encode the solution to a problem,
analogous to how real chromosomes encode the features of an individual. In our case, each
chromosome represents a complete assignment of each microservice of an application to a
device type and an operating frequency, that is the tuple [[dy, f 1], [d2, £ 2], ..., [d,a,fdla]],
where d; is the selected device for microservice i and f% represents the chosen operating
frequency.
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Given an encoded chromosome, the fitness function aims to evaluate the "goodness" of its
genetic profile. Following the objective function (Equation (9)), we use the weighted
combination of the execution time and energy consumption of the chromosome's
configuration. Based on the assignment provided by the chromosome
[[dy, f*], [dy, fO2], ..., [d,a,fdla]], we can extract the execution time of each service based
on Equation (4). The energy consumption can be straightforwardly computed using Equations
(5)and (6). For the application's execution time, we need to identify the resulting critical path
in order to apply Equations (7)and (8). The critical path is the longest path from any source
node (with no incoming edges) to any sink node (with no outgoing edges), where the path
length is the sum of the execution times of the nodes (services) along the path.

Algorithm 1: Critical Path Algorithm
Input: An application DAG G (V, E), execution times t[i] for each service i € V
Output: critical path length Tpiticar
1 Initialize l; < —0Vi €V
toporder < —TopologicalSort(G)
foreach node i in toporder do

If in — degree(i) = 0 then

L[i] < —t[i]

else
L[i] < _t[i] + maxjepred(i)l‘(j);
end
end
Teriticar < — ?E%XL[i];

O 00 NOOUV & WN

=
= O

return Tcritical

To this end, we employ a simple algorithm based on Dynamic Programming (Algorithm 1). The
topological sort guarantees that every node is examined only after its predecessors, so that
every node and every edge is visited exactly once in the procedure. For each node, its earliest
completion time (L[i]) is the sum of its own completion time and the maximum of the
completion times of its preceding nodes. After calculating for every node, the critical path is
extracted as the maximum among these values. The algorithmic complexity of the algorithm
is O(V + E), where V is the number of nodes and E is the number of edges in the application's
DAG.

Once the initial population is established, parent chromosomes must be selected to contribute
their genetic material to the creation of offspring. We implemented a stochastic ranking-based
selection method, which increases the likelihood of selecting high-fitness individuals while
maintaining population diversity. Specifically, chromosomes are ranked in ascending order

based on their fitness scores. The probability of selecting a chromosome at rank i is calculated
X—i+1
total ’
higher-fitness chromosomes have a greater chance of being selected as parents without
entirely eliminating less fit individuals, thereby preserving genetic diversity within the

population.

as

where X is the population size and total = @ This approach ensures that
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For the crossover operation, we employed uniform crossover to ensure a thorough mix of the
selected parent's characteristics in the offspring. Every mating operation results in two
offspring: The first inherits each gene (device and frequency configuration for a service) with
a% probability from the first parent and with (1 — a)% from the second parent, while the
exact opposite applies to the second offspring. This aims to maintain the "goodness" of each
parent, while still providing mix-up for enhancements.

Additionally, each offspring undertakes a mutation either in device, frequency, or both
compartments of each gene. First, an initial mutation probability for device ; and frequency
Py is set. However, in order to exploit the evolved generations, this probability decays at a

rate of1 — ﬁ,where c is the current generation and N is the total number of generations.

Algorithm 2: Genetic Algorithm
Input: Initial chromosome population, population size X, number of generations N, elites E
Output: Best resulting chromosome
foreach generationn = 1: N do
Rank chromosomes based on their fitness;
Extract top E elites and copy them to the next gen;
Initialize next generation with E elites
while current population size < X do
Perform rank-based selection;
Perform crossover on selected chromosomes and produce offspring
Add offspring to the next generation pop;

OCOoONOOUAE,WNR

end

10 Perform mutation operation on the offspring in the next generation;
11 end

12 return top-performing chromosome of generation N;

Finally, we utilized the elitism feature to "save" good solutions throughout generations, while
making sure that the best-fitting chromosome at one generation is no worse than that of the
previous one. This means that the highest-performing chromosomes are copied to the next
generations unchanged. The pseudocode for the algorithm is presented in Algorithm 2.

5.1.5.3 Best-fit heuristic algorithm for the Resource Allocation and Deployment
problem

Upon receiving the best configuration for the application’s services (y variables), the heuristic
attempts to map this configuration into the infrastructure. The algorithm performs the
assignment for each service sequentially. After selecting a service i and its configuration
[d;, f%], it first identifies nodes with the required capacity of the selected device. Then, nodes
that do not respect the delay-limit of the service are pruned. The algorithm proceeds to place
the service at the node which has the largest “power-capacity”, i.e., the one which is
percentage-wise the furthest from meeting its power constraint. This ensures a fair load-
balancing across the infrastructure and avoids over-stressing specific nodes. The algorithm
then proceeds with the following microservice, until all are placed.
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However, instances arise wherein the heuristic cannot find a feasible mapping for the
specified device and frequency level. In this case, it searches for an alternative combination of
device and frequency that produces the “closest” objective value compared to the original.
This way, the final deployment of the application might not be identical to the one suggested
by the genetic algorithm, but it will effectively follow its effectiveness in terms of objective
value.

Figure 4 shows the interplay between the developed genetic and heuristic mechanisms.
Initially, the heuristic algorithm, utilizing telemetry agents distributed across the
infrastructure, provides the genetic algorithm with real-time information on the
infrastructure’s status. This includes data on delays relative to the data source node, resource
availability, power constraints, and other relevant parameters.

@ Provide configuration

Map the provided
configuration into the
real infrastructure

Incorporate high-level
constraints based on
the state

<l Genetic algorithm for
application configuration

Inform about the
infrastructure state

Figure 4: Interplay between the developed mechanisms.

In response, the genetic algorithm integrates these constraints by modifying the initial
population and adjusting mutation rates to promote the generation of feasible solutions. For
example, considering a service’s delay limit and the availability of devices within nodes, the
genetic algorithm initializes solutions that incorporate only the available devices for that
service. Moreover, if the orchestrator reports (utilizing the distributed EMPYREAN telemetry
agents) that a resource is depleted (either malfunctioning or fully occupied), the genetic is
informed to exclude that resource in its solutions. Once it identifies the best chromosome,
this configuration is relayed back to the heuristic algorithm. The EMPYREAN orchestrator then
performs the final resource binding, effectively deploying the application within the
Association based on the optimized configuration (by communicating its decisions with the
local orchestrators).

5.1.6 Evaluation

5.1.6.1 Experimental Setup

We conducted a series of experiments to showcase the efficacy of the developed mechanisms
along with the trade-offs in the objectives for different weighting coefficients w. The genetic
algorithm was implemented in Python, utilizing the NetworkX* library for the realization of the

L https://networkx.org
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application's DAG. The heuristic algorithm along with the infrastructure simulation were
developed in MATLAB. The experiments were conducted on a Ryzen-7 32 GB RAM PC.

Table 2: Base and Max Frequency of resources.

Processor Model Base Frequency (Ghz) Max Turbo Freq. (Ghz)
AMD EPYC™ 9965 3.5 5

AMD Ryzen™ Al 9 2 51
AMD Ryzen™ 5 PRO 8500G 35 5

Intel Xeon W-11955M 2.6 5

ARM Cortex-A76 - 3.3

We considered 10 device types ranging from edge microprocessors (e.g., NVIDIA Jetson
Series) and edge computer devices (e.g., Intel Core™ i7 series) to high-performance server
processors (e.g., Intel Xeon, AMD EPYC). For each device, we set the f,fu-n to 50% of the
disclosed base frequency (underclocking), while we allow frequency tuning up to the max
turbo frequency specified by the manufacturer. Moreover, most processors allow for a 100
MHz frequency step between the lowest and highest frequencies. However, we adopt a
coarser approach by creating 10 frequency levels for each device d, normalizing the step 4f¢
accordingly. Some of the real-world processing devices [15][21] from which we drew the
experimental values for the base and max frequencies are presented in Table 2. Regarding
power consumption, we identified measurements on Intel processors [20] and Nvidia edge
devices [15] (Table 3), and used them as a guide to estimate power consumption for the rest
of the considered devices, combined with the formula in [11]. Generally, activating a server
core requires more power than a core of a microprocessor in the edge.

Table 3: Frequency and associated power consumption of resources.

Processor Model Base Frequency Base Power Max Turbo Max Power (W)
(GHz) (W) (GHz)
Core i9-11900K 3.5 125 5.2 251
Core i7-10700 2.9 65 4.9 224
Core i3-10000T 3 35 3.8 55
Jetson Nano 0.9 0.9 5 1.5 10
Jetson AGX Xavier 1.2 10 2.27 30

The infrastructure was modeled as a 3-layered topology. The near-edge layer, the most
proximal to end-users, comprises a total of 30 nodes, each possessing between 1-5 micro-
processing devices. The delay between near-edge nodes and end-users was normalized in the
[0.5,2] delay units (d.u.) range. The far-edge layer, positioned amidst the urban areas and the
remote Data Centers, includes 10 nodes, each of which hosts 5-10 devices of medium
capabilities. The delay for this layer is set to [3,5] d.u. Finally, the cloud layer consists of 2
nodes representing the core Data Centers, equipped with 100 high-end server processors. The
power limit was set to 50% of the maximum achievable power (where all cores work at max
frequency) for near-edge nodes, while for the far-edge and cloud the limit is 70% and 80%
accordingly.
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Microservices were assumed to demand between 0.1 and 10 Giga-Cycles for their processing,
reflecting their heterogeneity based on their scope. Coefficient §; ; was set in the [1,2] range,
with some services exhibiting minimal discrepancies between devices, while others benefit
more from the advanced architecture of the server processors compared to edge.

In all experiments, the values of application delay and energy consumption were normalized
in the [0,1] interval utilizing the max-min method. This approach makes the weight parameter
more intuitive; for example, setting w=0.5 implies that both metrics contribute equally to the
objective.

5.1.6.2 Evaluation Results

First, we evaluated the performance of the genetic algorithm. To this end, we generated an
application comprising 100 microservices. The corresponding DAG produced by the NetworkX
is illustrated in Figure 5. The population size of the genetic algorithm was initialized to 100
chromosomes. Regarding mutation, we set the initial probability for both device and
frequency mutations for each gene to 15%. Moreover, elitism was employed, retaining the
top 5% of the population in each generation.

71 a5 "‘;z—iifs"sgﬁfx; 40 \\\\\
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Figure 5: Example of generated DAG.

Figure 6 presents the genetic algorithm's convergence simulation results across different
weight coefficients w. After several runs, we chose to terminate the genetic algorithm at 2000
generations, as it produced the best balance between performance and execution time. The
resulting optimality gaps were 2.8%, 3.9% and 2.3% for w=0.1, w = 0.5 and w = 0.9,
respectively. For w = 0.5, execution time and total energy consumption are considered
equally, which complicates the problem. The algorithm exhibited monotonic convergence,
facilitated by elitism, ensuring that the best-fit individual in each generation was at least as
effective as in the preceding generation. Notably, we excluded single-objective optimization
(i.e., w = 0,1), as it is not of practical relevance to completely neglect either execution time
or energy consumption in a real-world deployment and renders the solution trivial.
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Figure 6: Convergence of the genetic Algorithm for w=0.1 (left), w=0.5 (middle) and w=0.9 (right).

Regarding the execution time, by parallelizing the chromosome evaluation, the genetic
algorithm clocked in at 4.21 seconds on average, while the optimal solver based on the PULP
library averaged at 513 seconds. An initial deployment configuration lasting a few seconds for
a 100-microservice application is deemed acceptable, as it remains comparable to other
required steps, such as fetching container images, building them, and starting containers.
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Figure 7: Comparison of Energy consumption (left) and Execution time (right) across mechanisms.

Next, we employed two baseline algorithms to contrast their results with our proposed
mechanism: i) The "Performance" policy aims to minimize the application's execution time by
greedily assigning each microservice to the ([device, frequency]) pair that offers the lowest
execution time within the infrastructure and ii) The "Energy efficiency" policy focuses on
minimizing energy consumption, by greedily assigning each service to the
[device, frequency] pair that offers the lowest energy consumption.

Figure 7 presents the execution time, measured in time units (t.u.) along with the total energy
consumption, measured in energy units (e.u.), across the different mechanisms. We tested
three different weight coefficients for our mechanism, w = 0.1,w = 0.5 and w = 0.9, as
indicated above the corresponding bars. The lowest energy consumption was achieved by the
Energy-efficiency policy, outperforming our mechanism when utilizing weight w = 0.1 by
$8.2%S. However, in terms of execution time, the Energy-efficiency policy resulted ina 51.1%
increment.
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Interestingly, our mechanism, when tuned with w = 0.9, outperformed the Performance
policy in terms of execution time by 3.2%. This is because our developed metaheuristic
calculates the resulting critical path and thus optimizes the execution time of the application
as a whole. In contrast, the Performance policy potentially wastes resources due to its greedy
nature. Additionally, the configuration provided by our mechanism managed to cut-down
energy consumption by 31.5% compared to the Performance Policy. By fine-tuning the weight
coefficient, our mechanism can intelligently balance objectives, achieving enhanced
performance without excessive energy consumption (w = 0.9), improved energy efficiency
without significant performance degradation (w = 0.1), or a balanced approach (w = 0.5).

Finally, Figure 8 presents the distribution of services across the infrastructure layers for each
examined mechanism. The Energy Efficiency policy opted for the near-edge layer, exploiting
the inherent lower-power and lower-frequency devices to minimize energy consumption. Our
mechanism, configured with w = 0.1, also predominately utilized the near-edge, but still
deployed some critical services on the upper tiers to enhance performance. The Performance
policy favors the high-end systems of the far-edge and the cloud-layer to reduce execution
time. Our mechanism, when tuned with w = 0.9, utilized more of the cloud layer compared
to Performance. However, it also employed part of the near-edge to enhance energy efficiency
on non-critical parts of the application.

I Near-Edge
1201 @ Far-Edge
3 Cloud

w=0.1 w=0.5 w=0.9 Performance Energy-eff

Percentage of Microservices (%)

Figure 8: Service distribution across infrastructure layers.

5.1.7 Conclusion

This work introduced a DVFS-enabled, critical-path-aware mechanism for deploying
microservice-based applications over the edge-cloud continuum. We modeled the problem as
a MILP, targeting to optimize a weighted combination of the application's execution time and
the total energy consumption. A novel two-phase heuristic approach was developed to tackle
the problem's inherent complexity, comprising a genetic algorithm for the configuration
problem, followed by a best-fit heuristic for the resource allocation and placement problem.

empyrean-horizon.eu 39/126



D4.2 — Intelligent Resource Management, Cyber Threat Intelligence and EMPYREAN Aggregator E\@MPYREAN

Our experiments highlighted the efficiency of our proposed method: By properly fine-tuning
the weight coefficient, our mechanism can intelligently configure and deploy applications,
leveraging the heterogeneous devices across the infrastructure to meet performance and
energy objectives. As a future direction, we plan to incorporate the delays between
infrastructure nodes into the problem formulation and develop real-world testbeds for
evaluation.

5.2 Risk-Aware Resource Allocation in Edge Computing Using
Stochastic Forecasting

5.2.1 Abstract

Edge computing brings processing closer to data sources, reducing latency and bandwidth
usage for modern applications. However, the limited capacity of edge resources and volatile
nature of workload demands create significant challenges for efficient resource management,
often leading to resource underutilization. In this work, we propose a speculative resource
allocation framework supported by stochastic workload forecasting, inspired by the Black-
Scholes financial model. This framework dynamically assesses the risk associated with
fluctuating demands over different time windows and proactively aligns resource allocation
based on the performed risk assessments. The outcomes of this model drive a multi-objective
resource allocation mechanism that dynamically manages resources, speculatively aligning
differing workload demands when placing them within a node, optimizing key performance
metrics such as latency, infrastructure utilization, cost-effectiveness, and potential application
disruptions during execution. Our approach does not require training, making it more
adaptable to fluctuating demands compared to machine learning-based methods. Through
simulations we demonstrate that our framework improves performance and resource
utilization, providing a scalable, responsive, and cost-effective solution that benefits both end-
users and operators.

5.2.2 Introduction

Edge computing has emerged as a critical paradigm to meet the increasing demands for low-
latency and bandwidth-efficient processing, especially in modern applications driven by loT,
AR/VR, autonomous systems, and real-time analytics. It brings processing and storage
capabilities closer to the data source and helps overcome the limitations of cumbersome
centralized cloud computing [24]. However, despite its advantages, edge environments face
significant constraints, primarily due to limited resource capacity. Coupled with the volatile
and unpredictable nature of workload demands, efficient resource management becomes a
challenging problem. Existing resource orchestration mechanisms often struggle to optimize
resource usage, resulting in poor system performance and increased operational costs [25].
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A key issue in edge resource management arises from the overprovisioning and
underutilization of resources, primarily caused by reactive resource allocation schemes that
fail to anticipate dynamic workload patterns. Traditional methods often allocate resources
based on worst-case assumptions [26] or rely on user-provided estimates [27], approaches
that are either too conservative or unresponsive to real-time changes in application demands.
Consequently, this results in wastage of resources; studies have shown that in many data
centers, up to 76% of CPU resources and 26% of memory resources remain idle for extended
periods [28],[29].

Additionally, proactive solutions, many of whom rely on machine learning (ML) and data-
driven models, face their own limitations. These approaches require extensive training on
historical data, making them rigid and slow to adapt to dynamic and previously unseen
workloads without time-consuming retraining processes that undermine their real-time
applicability [30]. This creates a fundamental trade-off between adaptability and efficiency,
where resource orchestrators must choose between fast, reactive models with limited
foresight or proactive models with significant retraining overheads.

Hence, there is a gap in edge resource management: the need for an adaptable, risk-aware
resource allocation mechanism that can anticipate demand volatility without relying on static
assumptions or time-consuming retraining. This mechanism must dynamically allocate
resources based on real-time workload behavior, while minimizing the risks of both under-
and over-provisioning, and doing so without significant computational overhead [31]. In this
work, we draw inspiration from the financial sector, specifically, the Black-Scholes model [32],
widely used in options pricing and risk management. The analogy between financial markets
and edge resource management is compelling: in both cases, there is a need to account for
uncertainty and volatility in dynamic environments. As the Black-Scholes model helps traders
assess the risk of price fluctuations, a similar approach can assess the risk of workload
fluctuations.

Our mechanism emphasizes risk quantification and mitigation, employing a stochastic
framework to estimate the likelihood that resource demand will exceed available capacity
within a given time window. This enables speculative resource allocation while managing the
inherent trade-offs between the risk of resource saturation and the cost associated with the
underutilization of resources. The proactive risk management approach enables (i) better
foresight than reactive models and (ii) avoids the retraining process of ML, making it a suitable
choice in the volatile and resource constrained edge computing environments.

5.2.3 Related Work

Research efforts in the field of edge-cloud resource orchestration have mainly focused on
forecasting workload demands and optimizing resource allocation, providing solutions to
address the complexities of dynamic, interconnected, and distributed computing
environments.
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Various methods have been proposed for forecasting workload demands. Statistical models
such as ARIMA (Auto Regressive Integrated Moving Average) have been the traditional
approach [33]. These models are widely used for time-series processing and perform well
under stable data conditions and consistent patterns. However, their main drawback is their
inability to handle non-linear and volatile workloads commonly found in edge computing
environments resulting in inaccurate predictions and suboptimal allocation. For this reason,
ML methods have been employed to enhance the accuracy of workload forecasting and
provide the needed adaptability through data driven approaches either alone or combined
with statistical models. The authors in [34] proposed a hybrid model that combines statistical
forecasting with neural networks in one framework that utilizes a statistical model to generate
initial predictions, which are then refined by a neural network for enhanced accuracy.

Time series workloads are particularly well-suited for Recurrent Neural Networks (RNNs) and
Long Short-Term Memory Networks (LSTMs) [35]. Recently, Transformers have taken over
many tasks in which RNNs were used traditionally with the authors in [36] proposing an
Adversarial Transformer model for cloud workload forecasting, which outperformed previous
LSTM methods in inference time and prediction accuracy. To address the variability of
applications and the microservices comprising them across different devices, the authors in
[37] proposed a Transformer model that groups them based on various criteria. Nevertheless,
this approach necessitates multiple resource intensive models, and similar to all ML models,
they require frequent fine-tuning with updated data to maintain their high performance [30].

Another distinction in forecasting approaches lies between the previously mentioned
proactive methods and reactive ones. The latter, such as Kubernetes' horizontal pod
autoscaler, adapt to changes in workload demand by adjusting the number of instances based
on current traffic or CPU usage [38]. Efficient modifications have been proposed [39] but while
they provide a real-time response to shifts in demand, they are inherently reactive, meaning
they scale resources after performance has degraded also incurring extra delays.

The second focus of edge cloud resource orchestration, i.e., resource allocation, is a field in
which there have been many optimization efforts, with the most advanced of these also
leveraging forecasting insights to facilitate informed decision-making [40]. Some techniques
emphasize execution speed and simplicity employing greedy heuristic methods in its offline
version [41]. In online scenarios where user requests arrive constantly, the continuous horizon
nature of the task scheduling problem makes it an ideal case for Reinforcement Learning [42],
a subcategory of ML, where reactive agents dynamically interact with the infrastructure to
maximize service profitability and Quality-of-Service (QoS), that is however subject to the
same drawbacks as ML. In [43] the authors propose a multi-layer hierarchical system for joint
online task scheduling, resource allocation and caching. A Double Deep Q-Network (DDQN)
approach, proposed in [44], dynamically adjusts the resource allocation decisions to changing
resource statuses and workloads, ensuring optimal decision-making in real-time. Multi-Agent
methods have also been introduced to decentralize orchestration, federating allocation
decisions and creating a flexible framework that efficiently utilizes the distributed
infrastructure [42].
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The works described underline the complexity of managing distributed infrastructures, with
dynamic resource allocations mechanisms adaptively responding to the varying application
requirements. While effective, ML mechanisms often rely on data-driven forecasting methods
to guide their operations. Their effectiveness and applicability in real-world cases is thus
constrained by the ever-changing data patterns requiring periodic recalibration with scarce
datain a time consuming and resource intensive process. Moreover, the volatile needs of such
environments demand intelligent solutions that efficiently handle dynamicity in real-time
scenarios but operate under strict time constraints in distributed settings without
compromising performance, thus necessitating a mix of both reactive and proactive policies.
Hence, our approach is explicitly designed to handle dynamicity by employing stochastic
forecasting inspired by financial models, enabling accurate allocation with little overhead,
using current usage data, and also reacting to real-time events by rearranging resources in an
efficient manner.

5.2.4 System Model

We model the edge-cloud infrastructure as a distributed computing environment that spans
across multiple nodes, ranging from near edge devices to centralized cloud resources (Figure
9). This infrastructure is represented as an undirected weighted graph G = (V, E), where the
set of vertices V' represents the locations where computing resources are placed, and the
edges e € E represent the network connections between these locations. The weight of each
edge d, corresponds to the network latency delay between these nodes, a parameter that
needs to be considered during the allocation of the workload demands to resources. Each
node v €V represents a physical computing node, ranging from personal devices
(Raspberries, Home Servers etc.) to small- and large-scale data centers. These nodes are
characterized by a tuple 7, = [c,, 0,,, b, ]; (i) the CPU capacity ¢, of the node, measured in the
number of cores available for processing, (ii) the operating cost per CPU core used o,,, and (iii)
the bandwidth cost of v b,, per bandwidth unit (b.u.) transferred.

The workload is modelled as a set of application demands A, each consisting of multiple
microservices. Applications a € A, are represented as directed acyclic graphs G, = (V¢, E%),
where each node v% € V2 corresponds to a microservice and the edges E? represent the
dependencies between those microservices. The weight of an edge wl-f‘j represents the
maximum acceptable communication delay among microservices i and j of application a.
Each microservice requires m,a b.u. to be transferred to a node prior to execution, prone to
bandwidth utilization billings.

Time in our system model is divided into discrete fixed duration periods. Applications arrive
dynamically, with each application a € A having a start time and a duration, defining the
number of periods it will run for. Each microservice has specific computational requirements
for each distinct period expressed as S,;, which represents the CPU demand for the
microservice during time period t . This demand fluctuates over time, and we represent it as
a time series over the different periods to capture its dynamic nature.

empyrean-horizon.eu 43/126



"
D4.2 — Intelligent Resource Management, Cyber Threat Intelligence and EMPYREAN Aggregator @MPYREAN

Speculative Resource Allocation ) Microservice [ Multi-Layer Computing Infrastructure
Central Orchestrator | .. L X to Node Near Edge Far Edge Cloud
= Responsible for Candidate node = Heuristic execution Assignment .
S . —and microservice— for ff.llcms‘*‘"{}ce L/"‘\ 9 g
assigning microservice , assignmen { t
execution to nodes kit g reassignment | ' ‘
A A 4 L‘\ . Ty

Next timeslot
microservice
resource

Anomalous node 1 |
microservice [ |

polatiibes Stochastic Forecasting and Risk Assessment
: Continyops node over- Node Monitoring Agents
Event detection '— usage risk assessment REEroTE e e @’\A

Microservice requirement n“d% fEa e ﬂl“d individual
forecasting microservice demand

demand
predictions

Figure 9: The allocation of resources across the distributed edge-cloud infrastructures.

5.2.5 Speculative Application Resource Allocation through Stochastic
Risk Assessment

In this section, we introduce the speculative resource allocation mechanism enabled by
stochastic risk assessment, presented in Figure 9. Designed to manage the uncertainty of
workload demands in edge-cloud environments, it addresses these challenges by proactively
adjusting resources based on workloads’ risk to surpass a pre-defined threshold. This can be
set by system administrators or service-level agreements to ensure QoS and avoid resource
saturation. The mechanism directly utilizes the workload’s volatility, allowing dynamic
resource reallocation before demand spikes to nodes that minimize the risk of over-
provisioning. When placing the workload demands to nodes the assignment is done in a
manner that minimizes the cumulative risk of resource exhaust within the node. This
combination ensures efficient, real-time allocation, while accounting for risk, increasing
utilization and minimizing service disruptions.

The process operates in two alternating stages. The first stage involves the forecasting
mechanism, which calculates both the expected growth rate i, ; and the volatility parameter
0,4, for each microservice i in application a over a past window T. While volatility g, ;¢
quantifies the uncertainty in the microservice’s CPU demand &, ; , over time, u, ; + captures
the anticipated trend in CPU usage. Using these parameters, the system estimates the future
CPU requirements within the next time window, incorporating a given risk threshold R to
balance resource allocation with potential demand fluctuations. This forecasting step repeats
every T periods to ensure the system continuously adapts to changing workloads. By
modifying the forecasting horizon T and changing the frequency of execution for the resource
allocation algorithm we can define the granularity of our predictions, managing a trade-off
between forecasting accuracy and computational intensity. Performing the risk assessment
and workload forecasting locally, the system minimizes real-time telemetry data transfers,
only sending critical estimates and risk levels to the orchestrator enhancing reaction speed
and reducing communication overhead. The combination of joint risk assessment and
volatility-based workload assignment ensures a steady temporal resource allocation,
increasing infrastructure utilization and reducing potential QoS degradations.
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In the second stage, between forecasting windows, the Speculative Resource Allocation (SRA)
mechanism monitors node utilization and assesses the risk of overuse based on the current
volatility g, ;.. If the risk of exceeding the available resources surpasses the defined QoS
threshold R, the system notifies the central orchestrator to reallocate resources
preemptively. This enables proactive, multi-objective optimization that accounts for
overprovisioning risks as well as other criteria like end-to-end latency and cost efficiency.

5.2.5.1 Stochastic forecast and risk assessment mechanism

We introduce the stochastic forecasting and risk assessment mechanism designed to monitor
individual microservices and nodes with minimal computational overhead. This mechanism
provides a QoS, represented by the probability that actual CPU demand will not exceed the
allocated resources. To achieve this, we model the CPU demand of microservices S, ; ; using
Geometric Brownian Motion (GBM), a widely used method for representing fluctuating
variables. The GBM model for the CPU demand is defined by the equation:

dSa,i,t = .ua,i,tsa,i,tdt + Ga,i,tsa,i,tdWa,i,t (1)

where u, ; ; the drift rate (expected growth rate of CPU demand), o, ; ; the volatility (standard
deviation of CPU demand), W, ;  a Wiener process for a microservice i of an application a as
calculated attime t .

This modelling choice is justified by the similarities between distributed computational
systems and financial markets: both operate continuously, experience uncertainties from
external factors such as hardware malfunctions and fluctuating user demand [8] and generate
data that can be leveraged by data-driven approaches for resource orchestration. Just as stock
prices fluctuate based on trading activity, CPU demand for applications and their
microservices is driven by user behaviour. Thus, we can predict CPU demand over a prediction
horizon H and allocate resources, accordingly, minimizing the risk of under-provisioning. In
this analogy, the CPU demand of a microservice reflects the volatility g, ;, while the allocated
resources act as a threshold K, ; ;5 ensuring adequate provisioning. Following properties of
GBM, the logarithmic ratio of future CPU demands K ; .,y to current demands K, ; ; follows
a normal distribution.

K . 0'2.
In <M> ~N <,ua,l-,t - a—”) H,o%, . H (2)
Ka,i,t 2

Therefore, the required resources K, ; ; that need to be allocated at time t and a prediction
horizon H to meet the QoS threshold R as given in [45] is presented below:
-1 C’é,i,t
Kait = Sa,it e_N (R).aa'i'tm+<ﬂa'i't_T>IH 3
where N™1(R)) is the inverse cumulative distribution function of the standard normal
distribution at probability R . Eg. (3) allows us to determine the resource level that must be
allocated for microservice i of application a to ensure that, with probability R, the CPU

demand will not exceed the allocation over the prediction horizon H . In an analogy to the

empyrean-horizon.eu 45/126



D4.2 — Intelligent Resource Management, Cyber Threat Intelligence and EMPYREAN Aggregator i@:MPYREAN

Black-Scholes model, the QoS threshold R mirrors the probability that an option will expire
in-the-money, and the model’s prediction horizon H is akin to the time-to-expiry.

To assess the risk R, ; at time t that the CPU resources of a node u may be insufficient until
timet + H, it is essential to define the aggregated expected growth rate u,, , and aggregated
volatility o, ; of CPU demand on node u attime t . Let node u host a set of applications M, ;
a and a set of microservices M,, ;. Each microservice M,, . in application a assigned to node u
has an expected CPU demand growth rate u, ;. and volatility g, ; ;. Assuming that the CPU
demands of microservices across different applications are independent, while microservices
within the same application may exhibit dependencies, the aggregated parameters for node
u are derived as follows:

Hue = Z Z Hait (4)

aEAu,t iEMu,t(a)

oh = z Z 0510+ 2 Z Z Cov (SaitrSajt) (5)

Ayt IEMy ¢(a) Ayt Lj€EMy t(a)
Note that the volatility calculated by Eq. (5) considers the covariance for each pair of
dependent microservices, i.e., the microservices of the same application to account for their
joint variability. Using the aforementioned parameters, the risk R,, ; that node’s u capacity will

be exceeded is quantified as:
Ku O-u,tz . \
(o{82)-(-25) 0

R,,=1—-N|
u,t \ O'u,t\/ﬁ /

5.2.5.2 Speculative Cloud native application Resource Allocation mechanism

(6)

The proposed SRA mechanism leverages the output of the forecasting mechanism for task
assignment across the distributed infrastructure. At the start of each period, the SRA
mechanism executes a sequence of operations: (i) Resource Deallocation: The expired
resources allocated to applications are released, updating the respective nodes’ resource
availability; (ii) Resource Allocation: a greedy best-fit heuristic is employed, to allocate
resources for new applications requests using the predictions provided. The greedy best-fit
heuristic processes application demands sequentially with two modes of operation. In the
case of node overutilization, the mechanism evaluates the individual resource requirements
only for microservices affected by the event, while it assesses all the applications’
microservices when updating the total allocation using new predictions. For each
microservice, it identifies candidate nodes that possess the necessary CPU capacity and
computes an evaluation metric that encapsulates the node’s suitability. The value of this
metric is the weighted sum of (i) the expected communication latency from hosting the
microservice; (ii) the cost of utilizing the node; and (iii) the risk associated with potential
resource saturation. The nodes are then sorted in descending order based on their heuristic
scores.
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Depending on the mode of operation the mechanism then attempts to assign the affected
microservices or all microservices to a node in the ranked list, moving on to the next if a node's
resources fall short or the application’s latency constraints are not satisfied. The allocation
process continues until it has either successfully assigned all microservices or until the
exhaustion of the candidates list, in which case there is no viable assignment scheme with the
current allocation and a backtracking procedure is initiated, systematically freeing up
resources for all microservices related to the applications in question. Resource allocation is
then reattempted with a greater number of candidate nodes, allowing for greater flexibility
while giving priority to the node a microservice is initially hosted at to minimize the number
of re-locations of microservices. In this way, the allocation decision takes the forecasted
resource utilization patterns into consideration for the already served applications. A high-
level overview of the SRA mechanism is provided in the pseudocode in Figure 10.

Speculative Resource Allocation Mechanism
Input: Nodes, Applications, Risk Threshold
Output: AllocationStatus, NodeStates

1 for each timeslot t do:

2 for each node vin Vdo:

3 for each application a in allocated with end time < t do:
4 Free allocated resources

5 Remove application a from allocated

6 end for

7 end for

8 for each application a starting at time slot t do:

9 for each microservice jin a do:

10 candidates = [for vin V with enough resources]
11 Calculate heuristic score

12 Order nodes based on objective function

13 if candidate_node do:

14 Allocate resources of candidate node

15 Append microservice to served

16 else (no candidate node):

17 for the previous allocated microservice do:
18 Free Resources (prev_micro)

19 Try to allocate resources to freed microservices
20 end if

21 end for

22 end for

23 for each node v in V where Ry« > Risk Threshold do:
24 for microservice i in allocated in v do:

25 Reallocate Microservice i

26 end for

27 end for

28 end for

Figure 10: The pseudocode of the speculative resource allocation mechanism.
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5.2.6 Simulation Experiments

5.2.6.1 Simulation Setup Description

For our simulation experiments, we considered a fully connected network topology consisting
of 47 nodes to comprehensively evaluate the performance of the SRA mechanism across a
distributed edge-cloud infrastructure. This setup allowed us to mimic a realistic and scalable
edge cloud continuum infrastructure. The specific characteristics of each node type, including
the number of nodes, CPU units, latency metrics in latency units (l.u.), operating and
bandwidth costs in cost units (c.u.), are detailed in Table 4. When a reallocation is performed,
we assume an increased cost of execution equal to 10 times the operating node’s cost to
penalize urgent service disruptions.

Table 4: Infrastructure characteristics.

Node Type # of nodes # of CPU units Latel(\l(-:l\:.;Jmts 2:5?::5 B/W cost (c.u)
Near Edge 40 [4,8] [3-10] [4-6] [5-10]
Far Edge 6 [80-120] [20-50] [2-3] [2-5]
Cloud 500 100 1 2

For the user workloads, we employed the Alibaba Cluster Trace [46], which captures data from
a production cluster over a 12-hour period, to test our framework’s predictions’ applicability
on realistic data. Average resource demands in 5-minute intervals were extracted to
accurately model fluctuations. The microservices specifications were randomly generated
based on a uniform distribution to create a versatile framework for various applications. Each
application comprised 1 to 6 microservices, with their computational intensities—Ilow,
medium, or high—assigned probabilities of 0.45, 0.30, and 0.25, respectively. This setup
captures the heterogeneity of possible workloads while simultaneously utilizing real demand
from the Alibaba trace. Dependencies among microservices were established randomly with
a probability of 0.5 to simulate necessary interactions within the applications. Latency
communication constraints ranged from 5 to 50 |.u. among interdependent microservices. The
proposed mechanisms were developed in Python and simulations were conducted on a Ryzen
7-32GB RAM PC.

5.2.6.2 Performance Analysis

Initially, we examined the SRA mechanism’s efficacy. We gradually increased the model’s risk
limits R from 1% to 5% and compared their outcomes with those of a baseline model that
operates based on a static worst-case resource allocation. The metrics of focus were the
Utilization Ratio, reflecting the ratio of actively utilized to total allocated resources, and the
number of relocations, indicating the frequency of microservice migrations due to resource
unavailability. Our findings, depicted in Figure 11, reveal that the SRA mechanism significantly
enhances resource utilization under all forecasting scenarios improving utilization upon the
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baseline model by up to 1.59 times, underscoring the effectiveness of our forecasting
mechanism. Moreover, it achieves this efficiency while concurrently reducing the number of
relocations by up to 78%. Notably, as the risk limit increases, the following trade-off emerges:
a higher risk limit leads to greater resource allocation upfront, and less efficient utilization. On
the other hand, it diminishes the need for subsequent relocations. This adaptability is crucial
when applications with varying requirements and constraints are served, allowing for a
flexible framework that can achieve high QoS while maintaining efficiency.
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Figure 11: The effect of shifting forecasting risk limit R in the utilization of allocated resources and
the number of reallocations of services.
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Figure 12: The effect of shifting the prediction time horizon H in the operational cost and the end-
to-end application latency.

Next, we examined the impact of the forecasting horizon H on the total cost and latency of
the proposed method (Figure 12). Our simulations present a fixed allocation model that
considers the worst-case requirements for the demands of the microservices (H=0), and the
SRA mechanism with a risk threshold R=5% and a gradually increasing prediction time horizon
H that ranges from 4 to 16 periods. When the forecasting mechanism is not utilized, services
are allocated statically based on worst case assumptions. This results in increased cost due to
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overallocation of edge resources and a greater number of reallocations. Also, as the capacity
of both the near and far edge resources is limited, this results in the extinction of available
edge resources, guiding the remaining applications to the cloud which results in increased
latency and thus a deterioration in the offered QoS. When the SRA makes use of the
forecasting output it decreases the total cost and the experienced end-to-end latency of the
applications assignment by up to 55% and 23% respectively. We also notice that as the time
horizon H increases, the SRA mechanism achieves a slightly improved performance.

Finally, we examined the robustness of the proposed SRA mechanism with respect to
workload volatility. Particularly, we adjusted the CPU volatility of the microservices’
requirements within a fixed topology by adding Gaussian White Noise with a gradually
increasing variance to observe how the model responds. As shown in Figure 13, we compare
a forecasting model set with risk threshold R=1% against a worst-case estimate model, which
allocates a static provision of 2 CPU cores per microservice. The findings reveal that the
forecasting model's utilization ratio declines as volatility intensifies, which hints at a decrease
in predictive accuracy, consequently leading to more conservative estimates but maintaining
the same level of under provisioning events. Contrastingly, the fixed model’s performance is
less affected by the volatility, maintaining a consistently lower utilization rate. The proposed
SRA mechanism demonstrates resilience, surpassing the worst-case model’s efficiency and
maintaining stable performance even under extreme volatility scenarios. This underscores the
SRA model's potential in managing resources in dynamic, uncertain environments.
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Figure 13: The number of anomalous events and the utilization of allocated resources for different
degrees of workload volatility.

5.2.6.3 Conclusion

In this work, we presented a Speculative Resource Allocation (SRA) mechanism, that leverages
a stochastic forecasting model drawn on the principles of the Black-Scholes financial model.
Designed to address the inherent inefficiencies within edge computing orchestration,
characterized by rigid forecasting and disruptive resource scaling, our mechanism performs a
speculative risk aware approach. It proactively adjusts to the variable demands of
applications, reducing latency and operational costs. The SRA mechanism considers the risk of
overprovision events among its objectives, handling the unpredictability of workload
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demands. Through this risk-aware approach, it not only anticipates potential demand spikes
but also selects the allocation of resources in a way that minimizes the impact of such events.
Extensive simulation experiments, based on real-world data, have shown that the proposed
mechanism optimizes resource utilization and minimizes service disruption. The results affirm
the mechanism's compatibility within the landscape of distributed computing, suggesting a
scalable and adaptive solution for the resource orchestration that can competently handle
diverse and dynamic, fluctuating workloads with a minimal computational overhead.

5.3 Distributed Knowledge Graphs for the Allocation of
Federated Edge-Cloud Resources

5.3.1 Introduction

As the landscape of loT systems expands, modern applications demand increasingly
sophisticated infrastructures that can process large volumes of data in real-time. Traditionally,
this processing has relied on centralized cloud resources or simple edge nodes, forming what
is commonly referred to as the loT-edge-cloud continuum. However, the complexity of
emerging Al-driven and hyper-distributed applications often exposes the limitations of these
monolithic systems, particularly in terms of scalability, privacy, and resource management. To
overcome these limitations, we introduce a novel approach based on federations of
collaborative, heterogeneous loT devices and resources, to be referred to as loT-Edge
Associations or simply Associations (Figure 14). These Associations function as federated
entities that leverage distributed, Al-driven decision-making to balance computing tasks and
optimize resource usage across various providers, networks, and locations.
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Figure 14: Associations-based continuum.
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This work explores an advanced resource allocation framework within such a federated loT-
edge-cloud environment, namely Associations based-continuum, where the interplay
between distributed IoT devices, edge nodes and cloud resources are key. Our framework
utilizes Distributed Knowledge Graphs (DKGs), a structured approach to formally represent
and manage relationships between heterogeneous computational resources, workload tasks,
and user entities. Each Knowledge Graph (KG) represents data in a graph-based model, where
nodes represent entities (such as resources or jobs), and edges represent relationships
between them, in a particular Association. In the context of our framework, DKGs enable each
Association to make informed decisions locally, based on aggregated knowledge, while also
overcoming the privacy and scalability challenges typically associated with distributed
resources by controlling the granularity of information exchanged.

The goal of this work is to address the challenges of optimizing resource allocation in dynamic
environments, specifically within federations of Associations, by balancing the trade-offs
between execution time, precision, and scalability. Our proposed mechanisms aim to improve
collaboration among distributed entities without compromising individual job and resource
privacy.

Figure 15 illustrates the overall system architecture, integrating Distributed Knowledge
Graphs (DKG) into the Association-based continuum consisting of l1oT devices, edge, and cloud
resources, user, and provider entities. We assume that a central entity, namely Registry, is
responsible for maintaining the DKG. The Registry also hosts the resource allocation strategies
proposed in this work that are tailored to federated loT-edge-cloud environments.
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Figure 15: System Architecture: Federated loT-Edge-Cloud Continuum with DKG for Resource
Allocation.

Key research objectives and contributions of this work include:

e A privacy-preserving Distributed Knowledge Graph (DKG) based architecture to
manage resource allocation efficiently while maintaining data privacy. This allows
resource providers to share only aggregated data without compromising the system’s
ability to make informed decisions.

e A novel clustering algorithm with a fixed centroids approach for resource allocation.
This method is compared with a Mixed Integer Programming (MIP) baseline, offering
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insights into the trade-offs between computational efficiency, adaptability, and
precision. Our approach is designed to optimize load balancing and right-sizing under
different levels of information granularity.

e A comparative evaluation of our method on different information granularity levels.
Our study investigates how varying levels of information granularity—ranging from
high granularity with detailed job and resource data to reduced granularity with
aggregated information—impact resource allocation efficiency and decision speed.

5.3.2 Related Work

The efficient allocation of workload to edge-cloud resources has been addressed using various
techniques across different computing paradigms. Integer Linear Programming (ILP) models,
multi-objective optimization and metaheuristics techniques have been employed to optimize
multiple objectives, such as minimizing server usage while maximizing resource utilization or
balancing energy consumption with service level agreements.

Relative recently, Machine learning (ML) techniques have emerged as powerful tools for
optimizing resource allocation. ML models predict resource demand, enabling systems to
adjust resource distribution dynamically [47][48]. Xiong et al. [49][50] and Qadeer et al. [54]
apply deep reinforcement learning (DRL) to resource allocation in mobile edge computing,
improving job completion time and resource usage. Recent works have also integrated
knowledge graphs with machine learning for advanced resource management, network
optimization and event detection Mitropoulou et al. [51][52].

Federated knowledge graphs are promising for managing resources in distributed
environments by enabling data integration and sharing across different nodes, facilitating
efficient resource allocation and optimization. Federated learning (FL) and federated
knowledge graphs (FKG) address challenges of data integration and privacy in distributed
systems [53][54]. These approaches allow devices to collaboratively learn a shared model
without sharing raw data, preserving privacy while benefiting from collective learning.

Zhu et al. [55][56] discuss the use of federated knowledge graphs for optimizing resource
allocation in edge computing environments, highlighting the benefits of data integration and
collaboration. Chen and Liu [56] propose a federated deep reinforcement learning-based task
offloading and resource allocation method for smart cities, demonstrating the potential of
collaborative resource management in complex environments.

In federated computing environments, balancing efficiency with privacy is critical in resource
allocation. Techniques such as differential privacy and secure multiparty computation protect
data integrity but can introduce computational overhead [57]. Adaptive algorithms that
consider both resource constraints and privacy policies enhance system resilience and
efficiency, as seen in loT environments with heterogeneous devices and data sensitivity [58].
Dandoush et al. [59] highlight the importance of decentralized data training without direct
data sharing in federated systems, addressing privacy concerns in next-generation networks.
Zhan et al. [60] discuss the challenges posed by the diversity of devices in federated networks,
which pose significant challenges in resource allocation due to heterogeneity. Sarikaya [61]
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explores adaptive strategies that tailor resource allocation based on the specific
characteristics of each client, enhancing system efficiency and fairness. Yang et al. [62] address
challenges of non-id data distributions in federated environments, impacting model
performance in resource allocation. Yu et al. [63] discuss the integration of deep
reinforcement learning with federated learning as a promising direction for future research in
resource allocation, offering significant potential for improving resource utilization.

Our approach leverages both MIP and custom clustering algorithms to optimize resource
allocation within a federated distributed system. By using distributed knowledge graphs, we
enhance our ability to integrate and share data across different associations while preserving
privacy. Compared to traditional methods, our approach offers enhanced privacy ensuring
sensitive data remains decentralized, improved efficiency by balancing trade-offs between
objectives, and scalability with the growing number of loT devices and edge resources.

5.3.3 Problem Formulation

5.3.3.1 Model

The primary objective of our study is to optimize resource allocation in a federated loT-edge-
cloud environment. This consists of collaborative computing ecosystems of heterogeneous loT
devices and resources, from different resource owners (providers), operating in various
regions and using various connectivity types. Each such ecosystem, is what we call an
Association that realizes an autonomous, secure, and trusted collective. Each Association can
adjust the level of information provided to other Associations or third-party entities, regarding
its dynamic or static status, in terms of: storage and processing capacities, of resources’
specific characteristics (e.g., resource-constrained devices, RISC-V architecture etc), utilization
and other parameters of interest.

The envisaged Association-based continuum serves as a bridge between infrastructure and
service providers (the supply side) and application developers and end users (the demand
side) who require high-performing, low-latency, hyper-distributed applications.

In particular, the key stakeholders considered are the following:

e Providers: There are various types of providers: loT providers, Edge providers and
Cloud providers. loT providers make available loT infrastructures (e.g., sensors, robots)
that generate data. Edge providers offer edge computing and storage resources. Cloud
providers provide centralized resources. Service providers also share domain-specific
and generic platforms (e.g., for analytics) as a service.

e Regions: Regions reflect the distribution of the resources in various locations. For
instance: Provider A can have resources in different regions such as 'factory A’
'factory-B', while Provider's B resources can be in 'factor-B' and 'factory-C' etc.

e Groups: We further group Resources within each region into groups (e.g., factory-A-1,
factory-A-2), indicating particular resource pools. Groups operating in different regions
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can be controlled by different resource owners (providers) and used in shared manner
by various Users/Customers.

e Application Developers: Create hyper-distributed continuum-native applications that
are deployed in the continuum and utilize the providers' resources.

e Users/Consumers: The end-users are those who interact with and use the hyper-
distributed applications.

In practice, these stakeholders can take on multiple roles. For example, an organization can
act as both an infrastructure provider and a user. In this dual role, it can contribute a portion
of its infrastructure resources to the continuum via an Association, making them available to
other users. At the same time, as an application developer and user, the organization can
utilize the platform's decentralized intelligence and its application development and
deployment solutions to enhance its applications' performance.

Also, this hierarchical resource distribution model consisting of multiple providers, in different
regions and groups provides a portrayal of the complexities involved in managing distributed
resources across a wide array of locations and administrative domains. Associations
collaborate making decentralized decisions to balance the workload intelligently across the
decentralized computing environments: inside an Association, between Associations,
between Associations and other edge resources or central cloud computing centers.

Our work aims to achieve optimal allocation of computational workloads (jobs) to the
resources of each Association, in a way that minimizes allocation inefficiencies while adhering
to resource constraints and considering the granularity of available information.

5.3.3.2 Approach

Our pipeline is structured into distinct phases, each crucial for exploring and enhancing
resource management strategies within complex federated environments.

e Data Acquisition from Associations: In the initial phase, data from multiple associations
are collected to construct the Distributed Knowledge Graph (DKG). This data
encompasses information about providers, regions, resources, and users within each
Association. The granularity of information shared varies across different scenarios
impacts the optimality of any resource allocation algorithm.

e Modelling with Distributed Knowledge Graphs (DKG): This, post data generation, phase
involves structuring the synthetic data into a Distributed Knowledge Graph. The DKG
encapsulates various entities (e.g., providers, regions, resources, and consumers) and
their interrelationships within multiple Associations. Each Association operates
autonomously yet collaboratively within the continuum.

e Resource Allocation Optimization: Building on the structured insights provided by the
DKG, this phase employs two optimization techniques, developed in this work: Mixed
Integer Programming (MIP) and a Custom Clustering (CC) approach. These techniques
are assessed for their effectiveness in efficiently allocating resources, based on the
granularity of information provided by the DKG.
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e Assignment of Resources to Associations: The final stage of the pipeline focuses on the
practical application of optimized allocation strategies, where resources are assigned
to specific associations. This stage tests the effectiveness of allocation strategies under
varying informational scenarios.

5.3.3.3 Modelling with Distributed Knowledge Graphs

Distributed Knowledge Graphs (DKGs) serve as the architectural backbone for modelling the
interactions and relationships within the Associations-based continuum. This is a federated
system constructed around multiple Associations, each represented as an individual
Knowledge Graph (KG).

Each Association's KG encapsulates a subset of the system's resources, users, and operational
metadata that vary in type, capacity, and function. As depicted in the metagraph of Figure 16,
these resources range from high-performance computing units to simpler storage solutions,
all linked via a network that mimics real-world distributed computing environments. The
various entities (Providers, Regions, Groups, Resources, Users/Consumers and Jobs) are
represented as nodes while their interconnections are represented as edges. The granularity
of the data captured within each Association's knowledge graph includes specific attributes,
namely CPU cores, GPU cores, memory capacity, and network bandwidth that are represented
as node properties. As shown, the KG is a disconnected graph since there are no edges
between the resources and the demands. These edges will be created after the allocation
process is complete, as a result of our resource allocation algorithms.

Provider * Region —*  Group - + Resource
[:Has Region] [:Has Group] [:Has Resource]
1] 1] IC CPU (cores)
Narme Narne Name GPU {Cifes)
Memory (GB)
Bandwidth (Gbps]
CPU {cores)
GRU enres) Edge
Mermery (GE] i
Bandwidth (Gbps] Lo
CPU {cores )
i GPU foores)
Container Memory (GE]
Bandwidth (Gbos)
[:Belongs)
[:Belongs]
oM (cores)
Virtual GPU (cnres)
Consumer T
[:Belongs] Machine Memory GB)

Bandwidth (Gbos]

Figure 16: Metagraph of Association Knowledge Graph.
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Central to our model is the Registry, a meta-layer that oversees and interacts with the
individual Associations. The Registry's role is to compile and synthesize information across
different Associations, forming a comprehensive view of the network's resources and
demands. The consolidated view offered by this knowledge graph facilitates strategic
decision-making processes, particularly in the optimization of resource allocation across the
federated system. The Registry can access varying levels of detail from each Association,
depending on the granularity of information provided.

5.3.3.4 Scenarios of Information Granularity

The efficacy of resource allocation strategies is significantly influenced by the level of detail
available within the Registry's KG. To explore this, we consider two distinct scenarios:

e High Granularity Scenario: In this scenario, each Association provides the Registry with
detailed information about individual resources and consumer demands. This includes
precise specifications of resource capacities and the specific requirements of each job
or process. By sharing this level of detail, the Registry can make highly informed and
accurate resource matching and allocation decisions, potentially optimizing utilization
and improving efficiency across the network.

e Reduced Granularity Scenario: This scenario restricts the information to aggregated
data at the group level within each region managed by the providers. Associations
offer summarized details about the resources, such as total CPU and GPU capacities
per group, without revealing information about individual units. Similarly, consumer
demands are aggregated, reflecting the overall demand per consumer rather than
specific job requirements. This scenario evaluates the efficiency of resource allocation
under data limitations, simulating conditions where privacy concerns or restricted data
availability hinder the flow of detailed operational data.

These scenarios enable the assessment of how varying levels of transparency within a
federated system, such as the Association-based continuum, influence the performance and
outcomes of resource allocation strategies.

5.3.4 Resource Allocation optimization approaches

5.3.4.1 Resource Allocation Optimization using Mixed Integer Programming
(MIP)

Mixed Integer Programming (MIP) is a robust mathematical optimization technique widely
employed to solve problems involving both continuous and discrete variables. To address the
resource allocation problem within the federated distributed system, we formulated the
following MIP model.

The primary objective is to optimize the allocation of heterogeneous resources to jobs and at
the same time foster fairness for all involved parties, providers, and consumers.
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To this end, we formulate the optimization problem to achieve two main goals:

1. Right Sizing: Ensuring that the resources allocated to each job closely match their
requirements to minimize wastage and redundant charging.

2. Load Balancing: Distributing the load evenly across available resources to avoid
overloading any single resource and improve overall system performance.

Binary Decision Variables

As mentioned, the resource allocation problem is translated to an edge creation problem for
the disconnected DKG. An edge that connects the job j to the resource j can be modelled as a
binary variable that indicates whether this edge exists. Therefore, the decision variables x; of
the above problem, are defined as follows:

1, if resource j is allocated to job ¢,
Tij . C ey . .3
4 0, if resource j isn’t allocated to job i

Viec{l,...,Njobs}, Vi € {1,..., Nyes}.
Objective Function

The objective function of the MIP model is a combination of two parts, reflecting the goals of
right sizing and load balancing. The purpose is to define penalizing metrics for each one of
them and proceed by minimizing the overall penalty:

Right Sizing (RZ): This part of the objective function penalizes the oversupply of resources j
with regard to the requirements of each job i. The oversupply of each requirement (CPU, GPU,
Memory and Bandwidth) is calculated as a squared percentage relative to the job’s demand.
By design, there is no prioritization among requirements. Hence, the total oversupply per job
is calculated as the sum of the individual oversupplies. GPU requirement has the particularity
that it may be equal to zero. We utilize the max operator to prevent division by zero resulting
in infinite terms. The following equation depicts the calculation for the entire Association:

_rnfm Nyes
) CPU; — CPU;
Rz 2 JZI i ( CPU, )

max( (;PU 1)
Memory; — Memory; ) 2 }

Memory;

Nm‘ Band.;

Enmx JPU;, nmﬂ*PUhU)zl
(

Net.Band.; — Net.Band.; ) )
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Load Balancing (LB): This part ensures that the workload is balanced across the resources,
aiming for an even percentage utilization relative to an overall system balance parameter for
each requirement. The system balance is defined as the total demand by the total supply
within the Association. In order to achieve overall balance, we need to ensure that the
resource utilization follows a uniform distribution that has a mean value equal to the system
balance. For each resource we calculate and penalize the squared difference between its
percentage utilization and the system balance. Similarly to the above part, there is no
prioritization among requirements, hence, the total difference is calculated as the sum of the
individual differences. Additionally, we utilize the max operator to prevent division by zero in
GPU related terms.

The following equations depict these calculations:

Jﬂf{m res ('WP'{I 2
LB Z Z ( (: PUt- System CPU Balamcc) |
U

i=1 j

max(GPU;, 1) 2
Sys. GPU Bal: {
(md.x GPU;, 1) ““CC)
Mrt’morm 2
Sys. Memory Balance |
Memory; Y;
2
Net. Band.; Sys. Net. Band. Balance
Net. B;md

,where:

Z?TJI"-" C' PU;
Z?’J;b% J'I\'/j_rcﬁlo??j'ﬁ
D j"rei Memory;

JNT"HJ.‘-S

37" Net.Band.;
Nr'e-ts

>.;1 Net.Band.;

System CPU Balance

System GPU Balance

System Memory Balance

System Net. Band. Balance

Constraints

The model incorporates several constraints to ensure that the resource allocation is feasible
and respects the capacity limits of the resources: Resource Capacity Constraints, ensure that
the total jobs served by each resource do not exceed its available capacities:
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Njobe
Y ;- CPU; < CPU;, Y5 € {1,..., Nyes}
i=1

Njobs
Y ;- GPU; <GPU;, V5 €{l,..., Nyes}
i=1

N_i obsa
Z zij - Memory; < Memory;, Vj € {1,..., Npes}
i=1

erJb:—s
Z z;; - Net.Band.; < Net.Band.;, Vj€ {1,..., Ny}
i=1

Allocation Constraints, ensure that each resource is allocated to exactly one job:

hr_]oh.*-

Z g = 1, vlf € {1‘-‘ Tt 'N””"}

=1
Serving Constraints, ensure that each job is served by at least one resource:

I!‘ﬁrl'l":.'i
Z.’I:-;‘,j > l._.. Wi & {.114-‘1Nje’?ll}-‘|'.}

i=1
Optimization Model
The Mixed Integer Programming (MIP) model:
e Minimize Right Sizing and Load Balancing
e subject to:
o Resource Capacity Constraints
o Allocation Constraints
o Serving Constraints
MIP Algorithm

The following algorithm provides a detailed outline of the implementation of the MIP model
for resource allocation:
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Algorithm 1 Resource Allocation Optimization - MIP Algo-
rithm
Reﬂuim: -"\'Irl_'s-. -'!V_-jah.l-;
CPU;, GPU;, Memory;, Nel_Band;
CPU;, GPU;, Memory;, Nel_Band;
Ensure: Optimal allocation of jobs to resources
1: Define MIP model
2: model initialize

: /[ Define binary decision variables

: for j 1 to Npppy i+ 1 to Ny, do
maodel.variables +— Add x;; € {0, 1}
: end for

= B S

=]

: I/ Define objective function
& model.objeclive I Right Sizing (Eq. 2) +
Load Balancing (Eq. 3)

9: // Define Constraints
10: for j « 1 to N do

11: maodel.conslrainls <
Add Resource Capacity Constraints (Eq. 5-8)

12: maodel .conslrainls L
Add Allocation Constraints (Eq. 9)

13: end for

14: for i < 1 to N, do

15: maodel.conslrainls <
Add Serving Constraints (Eq. 10)

16: end for

17: Solve MIP model
18: model.oplimize

5.3.4.2 Custom Clustering Approach with Fixed Centroids

As an alternative to the Mixed Integer Programming (MIP) approach, we developed a Custom
Clustering method to optimize resource allocation. This approach aims to combat the
convergence time of MIP by materializing a clustering model with fixed centroids and a custom
distance metric. The primary goal is to efficiently assign jobs to resource pools while
respecting the resource constraints and ensuring a balanced load distribution.

Similarly to the MIP approach, we aim at optimizing two elements, namely the Right Sizing
and the Load Balancing. The goal is to minimize the overall discrepancy of the federated
system, which is equivalent to the cumulative discrepancies produced by each allocation. In
the scope of a clustering task, where the purpose is to minimize the distance between the
points to their assigned centroids, this is translated to minimize the distance from the optimal
allocation, which ultimately results in minimizing the cumulative distance within the set of
points.

Consequently, the distance in our custom clustering approach is equivalent to the objective
function from MIP, but without the summation over all allocations. Instead, we calculate a
custom metric that comprises the discrepancy as the sum of the two penalties (Right Sizing
and Load Balancing), between the points (jobs) and the centroids (resource types) and aim at
minimizing it. To incorporate the existing constraints into our custom distance metric, we add
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an additional penalty term of a greater order of magnitude as described in the Penalty
equation. This ensures that infeasible allocations are heavily penalized, thereby preventing
them from occurring.

The summation occurs iteratively during the clustering process, where in each iteration, jobs
(points) are assigned to the nearest resource pools (centroids), and the discrepancies are
computed and minimized iteratively. This iterative process continues until the assignments
are stable and the total discrepancy is minimized.

Another concept we introduce in our custom clustering approach is the cluster size. This
means that every cluster can comprise up to a specific number of points. Since every centroid
corresponds to a resource type available in the federated system, and each resource type has
a fixed number of instances, each cluster has an upper limit on the number of points it can
include. In other words, this means there is a maximum number of jobs that each resource
type can handle.

The core idea of our custom clustering algorithm involves the following steps, depicted in
more detail in Algorithm 2:

1) Data Preparation: Jobs are represented in space by their resource requirements (CPU,
GPU, memory, bandwidth). Resource pools are represented by their capacities and
number of occurrences within the federated system, which serve as fixed centroids
and cluster sizes respectively.

2) System Balance Calculation: We compute the total demand and capacity for each
resource type (CPU, GPU, memory, bandwidth) across all jobs and resource pools. The
system balance is calculated by dividing the total demand by the total capacity for each
resource type.

3) Clustering Algorithm:

o Initialization: The algorithm starts with fixed centroids that represent the
capacities of the resource pools. Each centroid is defined by its resource
capacities, including CPU, GPU, memory, and bandwidth. The system balance
was calculated as the ratio of total demand to total capacity for each resource

type.

o Assignment: Each job is assigned to the nearest resource pool (centroid) based
on the custom distance metric we describe above that incorporates the penalty
term for the constraint handling. The distance metric used for this assignment
is:
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Distance = (108, CPU,>CPU; or
(( PU; — CPU; ) n GPU; = GPU; or
CPU; Penalty(i, j) = Memory; > Memaory; or
(m ax(GPU;, 1) — max(GPU;, l]) " Net.Band.; > Nel.Band.
max(GPU;, 1) 0, olherwise
( Memory; — Memory; ) 2 4
Memory; Wi € {L,..., Njons }.¥5 € {L,..., Neew}
Nel.Band.; — Nel.Band.; z N
N(.‘ Band.;
CPU; z Nyote
— 20 CPU;
(( 'PU; Sys. CPU Balanl,c) + System CPU Balance = bD
= ]
ax(GPU;, 1) 2
max( — Sys. GPU Balance ) + 2 ’f GPU;
max(GPU;, 1) System GPU Balance = ‘,\_7
2 Ve Py,
(M( OTY: _ Sys. Memory Bal:mcc) + "
- i 2 Me i
M emory; System Memory Balance = %‘5 cmory

( Nel . Band.;

2
—————— — Sys. Net. Band. Balance ) +
Nel.Band. ;

N.

System Net. Band. Balance = = —————
21 Nel.Band.;

Penalty (i, ),

viefl,..., Njows 1 V5 € {1, 0, Neew }

o Iterative Adjustment: Unlike traditional K-Means, where centroids are updated
iteratively, our centroids remain fixed. Instead, the assignment of jobs to
centroids is iteratively adjusted to minimize the total discrepancy with regard
to the two goals explained in Problem Formulation. The algorithm re-evaluates
assignments in each iteration, reassigning jobs from over-allocated pools to
those with available capacity. The process continued until the loss function
converged to a predefined tolerance level or a maximum number of iterations
was reached.

o Handling of Constraints: Constraints are managed through the penalty within
the custom distance metric. Distance imposes significant penalties for
assignments exceeding resource capacities. This ensures that resource
allocations remain within feasible limits.

4) Cluster Size Handling: The algorithm ensures that the number of points assigned to
each centroid does not exceed the predefined cluster size. If a resource pool is over-
allocated, the algorithm reassigns jobs to other pools, balancing the load while
respecting the threshold of each cluster.

5) Output: The final output is the assignment of jobs to resource pools, ensuring that each
job is allocated to a resource pool that can meet its requirements without exceeding
the pool's capacities.

The following algorithm provides a detailed outline of the implementation of the Custom
Clustering based mechanism for resource allocation:
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Algorithm 2 Resource Allocation Optimization: Custom Clus-
tering Algorithm
Require: Nyes, Njobs. Centroidsres, ClusterSizes es
CPU GPU;. Memeary;. Net_Band;
CPU; GPU;, Memory;, Net_Band;
maxr_iter
Ensure: Optimal allocation of jobs to resources
1: Define Custom Clustering model
2. Class ClustomClustering{

3 ff Set parameters: Resource pools, jobs, cluster size
4: def initialize( N, ,. .\r_r-_..u,,. Centroids, ., ClusterSizes,.,

CPU;, GPU;, Memory;, Net_Band;,
CPU;, GPU; Memory;, Net_Band;)

th

/f Set distance metric: as defined in Eq. 12

i def distance(C PU;, GPU;, Memory;, Net_Band,,
CPU; , GPU;, Memaory;, Net_Band;,
Penalty = 10%)

7 i Set loss: Sum of distances
i: def evaluate_loss{distance)
I: M Assign jobs to centroids based on distance
minimization
while respecting cluster size
b def assign_jobs_to_rentroids(Centroids, ...

3 ClusterSizes, . distance)

i ff Fit iteratively until maximum iteration is reached
def fit{assign_jobs_to_centroids, evaluate_loss,

wh

6: mar_iter)

7}

% Execute Optimization

9. ff Create object of class CustomClustering

10: model + CostomClustering( N, Njau.., Centroids,...
ClusterSizes,.,. O PU,, GPU;, Memory;, Net_Bam
CPU; GPU;, Memory;, Net_Band;)

1/ Fit Costom Clustering model
12: maodel. fit

5.3.4.3 Comparison of Mixed Integer Programming with Custom Clustering
with Fixed Centroids

Both the Mixed Integer Programming (MIP) and Custom Clustering approaches aim to solve
the resource allocation optimization problem efficiently, but they do so from different
perspectives.

The MIP approach formulates the resource allocation problem as a mathematical optimization
problem involving both continuous and discrete variables. This method systematically
evaluates each possible allocation, ensuring that resource utilization is maximized and the
load is evenly distributed across available resources. However, the computational complexity
and convergence time of MIP can be significant, especially for large-scale problems.
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In contrast, the Custom Clustering approach simplifies the problem by using fixed centroids,
representing resource pools with predefined capacities. This method clusters jobs based on
their resource requirements, assigning them to the most suitable resource pools. The fixed
centroids guide the assignment process, while the iterative process reduces the complexity
and improves the scalability of the solution. While this approach may not guarantee an
optimal solution like MIP, it provides a more efficient method for resource allocation,
particularly suitable for scenarios with stable resource characteristics.

The objective functions in both approaches aim to achieve right sizing and load balancing but
are tailored to their respective methodologies. In the MIP approach, the objective function is
defined with a comprehensive exploration of all possibilities, ensuring the best possible
resource utilization and load balancing. The Custom Clustering approach adapts the objective
function to define the distance metric used to fit the clustering model, focusing on minimizing
the discrepancy between job requirements and resource capacities while ensuring balanced
load distribution.

5.3.5 Performance Evaluation

This section presents the performance evaluation of the two optimization algorithms
developed: Mixed Integer Programming (MIP) and Custom Clustering. Our simulation includes
multiple associations, resource types, and consumer job profiles, designed to mirror real-
world distributed computing environments (Table 5). These variations in size allow us to
explore how each method scales and adapts under increasing complexity and load. The
experiments examine key performance metrics: consumers served, load balancing, right
sizing, and execution time. We consider both high granularity and reduced granularity
scenarios to understand how each algorithm performs under varying levels of information
availability.

Table 5: Simulation Sizes.

Simulation Load | Consumers | Jobs | Groups | Resources
| 125 375 125 600
2 137 412 137 660
3 150 450 150 720
4 162 487 162 780
5 175 525 175 840
6 187 562 187 900
7 200 600 200 960
8 212 637 212 1020
9 225 675 225 1080
10 237 712 237 1140
11 250 750 250 1200
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Figure 17 displays the percentage of consumers served using MIP and Custom Clustering. In
the high granularity scenario, MIP consistently manages to serve all consumers across all
tested simulation sizes. The availability of detailed job-specific data allows MIP to allocate
resources optimally, fully matching job demands to the available resource capacities. Like
MIP, Custom Clustering achieves 100% consumer coverage in the high granularity scenario
across all simulation sizes as it offers a feasible solution, leveraging the availability of detailed
information.

Consumers Served
120%

100% r—r—r——r 0
80% 1 ~o

60%

Percentage

40%
20%
0%
Simulation Load
—8— MIP - Scenario High Granularity —e— MIP - Scenario Reduced Granularity

—&— Custom Clustering - Scenario High Granularity

Custom Clustering - Scenario Reduced Granularity

Figure 17: Comparison of consumers served between different scenarios under the MIP and the
Custom Clustering algorithms.

In contrast to the high granularity use case, the reduced granularity scenario presents
significant challenges. Here, Custom Clustering is unable to serve all consumers, as aggregated
information limits the algorithm’s visibility into individual job requirements. As expected, this
leads to inefficiencies in resource allocation. The reduction in served consumers is not affected
by larger simulation sizes, fluctuating between 80% and 90% respectively. On the other hand,
the MIP approach shows greater resilience than Custom Clustering in reduced granularity
settings. While it also experiences a decrease in the number of consumers served, the drop is
less pronounced compared to Custom Clustering. This robustness stems from its inherent
flexibility in grouping jobs and resources, even with partial information, allowing it to maintain
relatively high levels of job fulfilment and consumer satisfaction.

MIP achieves more precise right-sizing by closely matching resource allocations to the specific
needs of individual jobs than Custom Clustering (Figure 18). This is evident in the lower right-
sizing penalties observed in the experiments, in both high and low granularity scenarios.
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Right Sizing

0.5

Simulation Load
—&— MIP - Scenario High Granularity —@— MIP - Scenario Reduced Granularity

—@— Custom Clustering - Scenario High Granularity

Custom Clustering - Scenario Reduced Granularity

Figure 18: Comparison of Right Sizing penalty between different scenarios under the MIP and the
Custom Clustering algorithms.

On the other hand, Custom Clustering shows a remarkable ability to achieve better load
balancing under the same high granularity conditions (Figure 19). Despite not being designed
to find the absolute optimal allocation, it manages to distribute workloads across resources
with efficiency, as reflected in the consistently lower load balancing penalties compared to
MIP. This flexibility and adaptability give Custom Clustering an edge in scenarios where
minimizing computational overhead and execution time are more critical than achieving the

absolute minimum in allocation penalties.

Load Balancing
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—&— Custom Clustering - Scenario High Granularity

— Custom Clustering - Scenario Reduced Granularity

Figure 19: Comparison of Load Balancing penalty between different scenarios under the MIP and
the Custom Clustering algorithms.
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Figure 20 reveals that MIP’s execution time is significantly longer, especially as the simulation
size increases. While Custom Clustering is, by definition, less optimal in terms of resource
allocation, its much faster execution times make it a more practical option for real-time or
time-sensitive applications where decision-making speed is essential.

Execution Time
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Seconds
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Figure 20: Comparison of execution time between different granularity scenarios, under the MIP
and the Custom Clustering algorithms.
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6 Decision Engine

6.1 Overview

The management of infrastructures across the loT-edge-cloud continuum and deployment of
cloud-native applications usually rely on hierarchical orchestration models. In these systems,
a high-level orchestrator assigns application microservices and workloads to local
orchestrators, which, in turn, control subsets of infrastructure resources. Although this
approach has been effective, it follows a monolithic paradigm inadequate for the next
generation of hyper-distributed and Al/ML-based applications. These applications demand
real-time adaptability, low latency, and stringent performance guarantees.

Instead of relying on a rigid, centralized hierarchy, EMPYREAN’s Decision Engine leverages an
Association-based model that promotes local decision-making and collaborative intelligence.
This approach provides cognitive, Al-driven optimizations and autonomous multi-agent
coordination towards a self-adaptive and federated continuum. As presented in D2.3 (M12),
the deployment of cloud-native applications within the EMPYREAN platform is structured into
three distinct phases. The first phase involves decentralized and speculative resource
orchestration, where application workloads are strategically distributed to specific
Associations according to deployment objectives. The second phase encompasses hierarchical
cognitive resource orchestration within the selected Associations, further refining the
deployment plan based on platform-specific deployment objectives. The third phase involves
the selection of specific worker nodes across the utilized clusters and the actual deployment.

The Decision Engine plays a crucial role in the first two key phases, acting as the intelligence
layer that enables EMPYREAN to seamlessly orchestrate hyper-distributed applications,
ensuring scalability, efficiency, and sustainability across the edge-cloud continuum. According
to the EMPYREAN architecture, the Decision Engine supports the EMPYREAN Aggregator and
Service Orchestrator to (i) orchestrate the hyper-distributed applications and distribute their
workloads considering the local resource state and characteristics while trying to fulfil their
objectives, (ii) coordinate the efficient load-balancing of data and workload within and across
the available Associations, and (iii) support the efficient operation of Associations.

6.2 Relation to EMPYREAN Objectives and KPIs

The Decision Engine is one of EMPYREAN'’s enabling technologies that, in cooperation with the
EMPYREAN Aggregator and Service Orchestrator, support efficient and cognitive
orchestration and workload placement across the Association-based continuum. To this end,
the Decision Engine contributes to the achievement of the following key objectives and
technical KPIs?:

2 Technical KPI identifiers introduced in D2.3 (M12).
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e T1.1- Reduce cloud and increase edge utilization via workload balancing optimization:
Decision Engine enables decentralized and multi-agent orchestration, dynamically
guiding the distribution of application workloads across edge and cloud resources,
reducing reliance on centralized cloud computing. Its speculative resource allocation
and Al-driven heuristics will optimize workload placement closer to data sources,
minimizing latency and unnecessary cloud usage.

e T2.1-Improve overall performance compared to SotA: The Decision Engine leverages
Al-enhanced heuristics, game theory, and reinforcement learning to optimize
execution strategies beyond traditional orchestration solutions.

e T2.2 - Reduce energy consumption on Associations compared to standard execution:
The Decision Engine incorporates energy constraints into its optimization models,
prioritizing workload execution on low-power and renewable-powered devices. It will
provide energy-aware scheduling and load redistribution for energy efficiency,
favouring green resources to minimize overall carbon footprint.

e T2.4 - Boost Al-driven decision-making accuracy: The Decision Engine supports
cooperative and competitive Al agents, allowing for dynamic, context-aware decision-
making. It also leverages historical data and reinforcement learning to enhance
decision accuracy over time, surpassing rule-based orchestration systems.

6.3 Architecture

The Decision Engine is desighed to function seamlessly across diverse computing
environments, ranging from edge devices to central cloud infrastructures. By integrating Al-
driven, decentralized orchestration, EMPYREAN ensures system-wide welfare optimality,
enabling a more efficient, resilient, and scalable computing paradigm for next-generation loT,
Al, and hyper-distributed applications.

Within the EMPYREAN project, efforts focus on extending the open-source Resource
Optimization Toolkit (ROT), initially developed in the H2020 SERRANO? EU project by the ICCS,
into the cloud-native Decision Engine component. As a cloud-native and scalable service, the
Decision Engine is specifically designed and built to support the EMPYREAN Multi-Cluster
Orchestration layer’s cognitive and distributed orchestration requirements. It also integrates
a wide range of decision-making algorithms.

As illustrated in Figure 21, the Decision Engine architecture includes a Decision Engine
Controller and multiple Execution Engines, which function as the actual workers. Each worker
consists of the Execution Engine and the library of decision algorithms, ensuring both flexibility
and scalability. This modular design enables the Decision Engine to efficiently process a high
volume of execution requests from the Service Orchestrator, even in highly complex
infrastructures.

3 https://ict-serrano.eu
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The Decision Engine interacts directly with the Service Orchestrator, processing service
requests while leveraging real-time telemetry data from the EMPYREAN Telemetry Service to
make informed, adaptive decisions. Additionally, it utilizes the Distributed Data Broker service,
which leveraging Eclipse Zenoh’s* capabilities, providing a scalable and dynamic
communication environment to support multi-agent operations. This environment supports
efficient information sharing, helping agents to coordinate, exchange insights, and
collaboratively make decisions as they work towards a common optimization goal.

Decision Engine Controller

Service Orchestrator < > Access Interface

v 1

Distributed » Dispatcher «
Data Broker
A

EMPYREAN
Telemetry Service

r 3

~

Y A J w L 4
Execution Engine Interface Execution Engine Interface
Execution |—»| Execution Execution —» Execution
Manager [€— Helper Manager |€—] Helper
i i
Decision Algorithms Decision Algorithms
Execution Engine Execution Engine

Figure 21: Decision Engine architecture.

The Decision Engine Controller provides bidirectional communication interfaces, enabling the
exchange of requests, responses, information, and notifications. To ensure loose coupling
between the Decision Engine and other EMPYREAN services, the Access Interface exposes
RESTful and asynchronous APIs that provide flexible and scalable integration. A detailed
description of the provided methods is available in the next section.

At the core of the Decision Engine Controller lies the Dispatcher, which provides intelligent
task coordination for managing execution requests and facilitating interactions with multiple
instances of the Execution Engine. Key functionalities of the Dispatcher include (i) processing
and adapting incoming service requests, ensuring alignment with the Decision Engine’s
execution model, (ii) retrieving real-time telemetry data, including resource characteristics,
system status, and application deployments, (iii) creating and managing the communication
channels for the multi-agent operation, and (iv) preparing execution parameters and
efficiently distributing requests to available Execution Engines for processing.

4 https://zenoh.io
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The Execution Engine processes service requests dispatched by the Decision Engine Controller.
Each request is handled as a discrete task that can involve either starting a new execution,
including all required input parameters, or terminating an ongoing execution.

The Execution Engine Interface first validates incoming service requests from the Dispatcher
before forwarding them to the Execution Manager, which handles the actual execution
lifecycle. The Execution Manager determines whether to terminate an execution or initialize
a new one with the assistance of the Execution Helper. The Execution Helper focuses on task
execution and monitoring by: (i) setting up the execution environment, ensuring all
dependencies and configurations are in place, (ii) tracking execution progress and reporting
real-time updates to the Execution Manager, and (iii) handling execution results and managing
potential failures.

The Decision Algorithms is the library of multi-objective optimization and orchestration
algorithms. These algorithms drive intelligent decision-making by dynamically balancing trade-
offs between performance, resource utilization, energy efficiency, and latency constraints. By
leveraging advanced Al-driven heuristics, game theory, and real-time analytics, the Decision
Engine continuously refines execution strategies to enhance efficiency, scalability, and
adaptability within the EMPYREAN platform.

The updated Decision Engine design introduces capabilities, enabling its evolution into a multi-
agent system that significantly improves flexibility, scalability, and decision-making efficiency
within the distributed, Association-based continuum of the EMPYREAN platform. By adopting
a multi-agent architecture (Figure 22), the Decision Engine supports both cooperative and
competitive operations, enabling decentralized and speculative resource orchestration across
Associations. This advancement allows multiple autonomous agents, each representing an
independent Decision Engine instance orchestrating specific clusters within an Association, to
collaborate dynamically for optimizing decision-making.
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Figure 22: Multi-agent system architecture utilizing multiples instances of Decision Engines across
EMPYREAN Associations.
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Agents collaborate to optimize workload placement and resource allocation, ensuring efficient
use of heterogeneous computing resources across the edge-cloud continuum. By sharing
telemetry insights and resource status information, agents collectively negotiate the best
possible execution strategies while minimizing bottlenecks and balancing loads across
federated Associations. When necessary, agents compete for limited resources, dynamically
adjusting their strategies based on game-theoretic principles to ensure fair and efficient
resource utilization. Agents use reinforcement learning and adaptive heuristics to
continuously improve decision-making based on past performance, real-time demand, and
system constraints.

One of the significant aspects of multi-agent decision-making is the ability of agents to convey
information and synchronize their actions through communication. Adequate communication
is a prerequisite for group work, synchronization, and conflict resolution of agents. To this
end, the updated design of the Decision Engine incorporates a lightweight and scalable
communication layer based on the Eclipse Zenoh. This middleware provides the necessary
mechanisms for inter-agent communication, facilitating the exchange of state information,
coordination signals, and messages between Decision Engine instances.

6.4 Implementation

The Decision Engine components are implemented in Python language and packaged in
container images, ensuring a smooth and efficient development workflow. There are separate
container images for the Decision Engine Controller and Execution Engine.

The Access Interface component provides two Northbound Interfaces (NBIs): one based on
REST APIs and the other on an asynchronous messaging interface using the Advanced Message
Queuing Protocol (AMQP). The first interface (Figure 23) offers control operations for
managing and inspecting the execution of deployment algorithms, retrieving information
about the available Execution Engines, and administering end users. The second interface
enables asynchronous communication between the Decision Engine Controller and end users,
facilitating the exchange of notification messages and results.

The asynchronous interface uses a predefined set of topics for exchanging messages that
correspond to various notifications related to the operation of the Decision Engine. These
messages are described in JavaScript Object Notation (JSON) format using the following
predefined syntax: (a) event (string): event unique identifier and (b) data (element): a set of
event-related parameters that provide the required information.
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Execution Engines ~
" /api/vl/decision_engine/engines Get the available execution engines. v ‘
" /api/vl/decision_engine/engines Launch a new Execution Engine instance. % ‘
" /api/vl/decision_engine/engines/{uuid} Get details abouta specific execution engine. v ‘
{ /api/vl/decision_engine/engines/{uuid} Terminate an Execution Engine instance. ~ \

User Management ~
" /api/vl/decision_engine/users Get details about the registered users. % ‘
" /api/vl/decision_engine/users Register a new user. v ‘
" /api/vl/decision_engine/users/{uuid} Get details abota specific user. ~ ‘
{ /api/vl/decision_engine/users/{uuid} Delete a specific user. v \
Single Instance Execution ~

" /api/vl/decision_engine/executions Getthe list of all active executions. v ‘
" /api/vl/decision_engine/execution Start the execution of some specific algorithm with the requested input parameters. v ‘
{ /api/vl/decision_engine/execution/{uuid} Terminate a specific algorithm execution. v ]
" /api/vl/decision_engine/execution/{uuid} Get the details of a specific algorithm execution. v ‘
" /api/vl/decision_engine/execution/statistics Get statistics for the completed executions. v ‘
" /api/vi/decision_engine/execution/logs/{uuid} Get detailed logging information for a specific algorithm execution. v ‘
Multi-agent Execution ~

" /api/vl/decision_engine/multi_agent/executions Get the list of all active multi-agent executions. v ‘
" /api/vl/decision_engine/multi_agent/execution Launch the multi-agent execution process. v ‘
" fapi/vl/decision_engine/multi_agent/start Start the execution of some specific algorithm with the requested input parameters. Y ‘
[ /api/vl/decision_engine/multi_agent/execution/{uuid} Terminate a specific multi-agent execution. v ]
" /api/vl/decision_engine/multi_agent/execution/{uuid} Get the details of a specific multi-agent execution. Y4 ‘

‘ /api/vi/decision_engine/multi_agent/execution/logs/{uuid} Get detailed logging information for a specific multi-agent execution. v ‘

‘ POST /api/vl/decision_engine/multi_agent/configuration Setup a new muiti-agent execution configuration. v ‘
‘ /api/vil/decision_engine/multi_agent/configuration/{uuid} Get details about a specific multi-agent execution configuration. v ‘
{ BISNS S /api/vl/decision_engine/multi_agent/configuration/{uuid} Delete a specific multi-agent execution configuration. v ]

Figure 23: Decision Engine — Access Interface REST API.
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Moreover, the workload assignment algorithms are accessible from the Execution Engine
internal components through a custom plug-in mechanism. This mechanism exposes a
common interface, independent of the implementation technology and algorithm internal
logic, that, among others, will determine the explicit syntax of the input parameters and the
results for all algorithms. In addition, the common interface uses the JSON as a data-
interchange format for providing the input and output parameters.

Next, we provide a detailed workflow description (Figure 24) outlining the multi-agent
operation across EMPYREAN Associations, highlighting the roles of the Decision Engine
components and their interactions with other services.

1.

10.

11.

When the Service Orchestrator needs to determine the initial placement of an
application’s microservices within the EMPYREAN platform, it sends a service request
to its associated Decision Engine (DE) via the Access Interface. This request (POST
/api/vl/decision_engine/multi_agent/execution) initiates the multi-agent decision-
making process. Additionally, the Decision Engine in the originating Association acts as
the supervisor during the multi-agent operation.

Through the Dispatcher component, the supervisor Decision Engine queries the
EMPYREAN Registry to identify Associations that meet the required deployment
criteria, utilizing the Registry’s exposed RESTful API (Section 11.4).

The Decision Engine dynamically creates exchange topics within the Distributed Data
Broker to facilitate bidirectional communication among the participating Decision
Engines.

The supervisor Decision Engine notifies the selected Decision Engines for the created
topics (POST /api/vl/decision_engine/multi_agent/configuration).

The selected Decision Engines register to the created topics and send through them
acknowledge messages to the supervisor Decision Engine.

Once the supervisor Decision Engine receives all expected acknowledgments, it
initiates the multi-agent execution by sending a request via each Decision Engine’s
Access Interface (POST /api/vl/decision_engine/multi_agent/start).

Each Decision Engine retrieves updated information on available resources from the
Telemetry Service within its respective Association. Using speculative and auction-
based algorithms, the Decision Engines provide their offered allocations.

The supervisor Decision Engine collects responses from the collaborating Decision
Engines via the Distributed Data Broker’s exchange topics.

Based on the received responses, the supervisor Decision Engine determines the
distribution of application’s microservices across the Associations to meet user
requirements while optimizing resource utilization.

The supervisor Decision Engine notifies the other Decision Engines of the multi-agent
process completion by sending a termination request via their exposed RESTful API
(DELETE /api/v1/decision_engine/multi_agent/configuration/UUID).

The exchange topics created within the Distributed Data Broker are then removed.
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12. The Decision Engine forwards placement decisions to the Service Orchestrator, which
proceeds with the next phase of the orchestration and deployment process.

13. Finally, the default EMPYREAN Aggregator is informed of these decisions and, if
necessary, coordinates with other Aggregators.
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Figure 24: Decision Engine — Multi-agent operation.

6.5 Relation to Use Cases

As an integral part of the EMPYREAN orchestration and deployment mechanisms, the Decision
Engine is critical in supporting all project use cases. In most scenarios, its functionalities will
be accessed indirectly through the Service Orchestrator, which acts as an intermediary for
handling service requests and optimizing resource utilization. Integrating decentralized Al-
driven orchestration, multi-agent coordination, real-time telemetry, and energy-aware
optimization, the EMPYREAN Decision Engine effectively meets the use cases requirements,
contributing directly to their targeted technical KPls.

To achieve this, the Decision Engine will integrate novel workload assignment and resource
allocation algorithms to execute the following key functions: (a) application workload
placement across and within Associations, (b) dynamic load balancing of processing and data
across Associations, (c) adjusting available computing, networking, and storage resources to
meet application-specific demands and QoS requirements, and (d) autonomous Association
management. These functions are critical to the control and management plane of the
EMPYREAN platform, ensuring efficient resource utilization, enhanced performance, reduced
energy consumption, and highly accurate Al-based decision-making.
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7 Cyber Threat Intelligence

Cyber Threat Intelligence (CTI) refers to collecting, analysing, and disseminating data regarding
potential or existing cyber threats. The EMPYREAN CTI Platform has been designed to
streamline and enhance cyber threat intelligence management. It automates routine and
time-consuming tasks, allowing security experts to concentrate on critical data and high-
priority analysis, while providing real-time, actionable insights through relevant reporting
mechanisms. The following section discusses state-of-the-art CTI data analysis and presents
the ongoing development of the EMPYREAN CTI Platform.

7.1 State of the art

The analysis of CTl and Indicators of Compromise (loC) makes clear the use of legitimate
services such as CDN, Cloud Services, Instant Messaging, File Sharing Systems for the
propagation of malicious files or malicious links related to C2C architecture (Command and
Control) or malware infection. Among these services, we find AWS, Dropbox, Google Docs,
and Discord. This poses a difficulty in countering the problem with traditional blocking
methods. In this scenario, different works have attempted to characterize the main problem,
the quality of the Security Information and Event Management (SIEM) dataset, the
methodology for analyzing and detecting URLs, malware infrastructure organization, and
trends. In this section, we list previous efforts to define methodologies and propose an active
solution for all challenges related to this topic using Machine Learning.

Network entities and organizations have implemented countermeasures to prevent attacks
by blocking content previously identified as malicious or suspicious by other entities that have
suffered such attacks. However, the lack of standardization in how they should report their
incidents limits the ability of other entities to take advantage of such previous experiences. To
resolve this limitation, different organizations have standardized how to share CTl information
in recent years with the Structured Threat Information Expression (STIX) format. The STIX
format represents incidents in entity-relationship graphs connecting different significant
attack components for a specific threat. Initiatives such as QRadar> or OpenTaxi® make this
type of forensic information public in STIX format. However, only some private initiatives, such
as the Cyber Threat Alliance, use this information to improve cybersecurity solutions.

STIX datasets have already been leveraged in different ways. A notable trend among CTl is to
group different sources provided in the form of textual reports or lists of indicators of
compromise into a Semantic Entity Database. For example, [64] proposes a Unified
Cybersecurity Ontology (UCO). Then, several works are based on similar concepts (i.e.,
ontologies) to retrieve knowledge graphs from external CTI sources (including STIX providers)
and apply semantic queries. STIX knowledge graphs are often used as search engines from

5 https://www.ibm.com/docs/en/qsip/7.5
5 https://opentaxii.readthedocs.io/en/stable/
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which assumptions can be derived that help and enhance the work of a human expert. In [65],
an external STIX dataset is used to derive a new database schema and extract well-defined
security rules in standardized formats such as YARA and Snort. Therefore, STIX-based graphs
are used prominently as databases to perform user-defined queries.

However, these works depend on constructing ontologies from a structured database and
integrating them with an external knowledge source. This implies an additional phase of
ontology construction and entity retrieval, often obtained through the analysis of plain text
sources. This is the case of the work in [66], which proposes using a heterogeneous
information network instead of a canonical extraction of Resource Description Framework
(RDF) triples to build the base graph. This configuration is then used to perform a downstream
task, such as predicting the maliciousness of a domain that interacted with network entities
in the graph. Therefore, given the increasing use of the standard and the well-defined entity-
relationship model, it is possible to avoid the semantic web architecture and build the graph
by applying the standard rules, enriching it, when necessary, with custom external fields, and
adding redundant information.

The study in [70] examines the value of commercial threat intelligence, revealing minimal
overlap between different providers and open feeds. Paid services often have delayed and
limited coverage, raising concerns about their timeliness. Interviews with clients indicate that
they prioritize workflow optimization over threat detection, assessing threat intelligence
informally rather than using quantitative metrics. [71] investigates the COVID-19 Cyber Threat
Coalition (CTC), a voluntary security information sharing community with over 4,000
members. It examines if large-scale collaboration improves coverage and if free threat data
enhances defenders' abilities. The CTC largely aggregates existing industry sources but
demonstrated unique value by including COVID-19-related domains unknown to current
abuse detection systems. The findings offer three lessons for future threat data sharing
initiatives.

[82] focuses on classifying attacks in Infrastructure as a Service (laaS) cloud environment,
particularly those involving Virtual Machines (VMs), using Virtual Machine Introspection (VMI)
techniques. The classification method considers the source, target, and direction of attacks,
helping cloud actors deploy suitable monitoring architectures. The paper includes statistical
analysis on reported vulnerabilities and their financial impact on business processes,
emphasizing the significance of these attacks in laaS clouds. The authors of [69] uncover
security risks posed by obsolete NS records in active domains, particularly those within the
domain's zone. They demonstrate practical exploitation of these records, leading to stealthy
domain hijacking. Analysis of high-profile domains, DNS hosting providers, and public resolver
operators identifies numerous vulnerable entities, including government bodies, payment
services, Amazon Route 53, and CloudFlare. The paper also discusses mitigation techniques
for affected parties, offering a comprehensive understanding of this new security risk.

[80] presents a system that learns regular expressions to extract Autonomous System
Numbers (ASN) from router interface hostnames, incorporating topological constraints and
PeeringDB data. By altering an existing method, the accuracy of ASN extraction improves,
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increasing agreement levels with inferred ASNs from 87.4% to 97.1% and reducing errors. This
research broadens possibilities for inferring router ownership based on evidential data.

The study in [89] investigates malware’s abuse of web applications for attacker-controlled
servers. Delays in incident responder and web application provider collaborations facilitate
malware proliferation. The authors develop Marsea, an automated malware analysis pipeline,
identifying 893 malware instances across 97 families and showing a 226% increase since 2020.
They note a 13.7% decrease in malware relying on attacker-controlled servers and successfully
collaborate to dismantle 50% of malicious web application content.

[74] provides a longitudinal measurement of the malicious file delivery ecosystem on the web,
analyzing network infrastructures and files downloaded over various periods (one day, one
month, one vyear). It identifies two distinct ecosystems: one for delivering potentially
unwanted programs (PUP) and another separate network for malware. Despite mostly
disjointed ecosystems, there is a crossover between the two. The study reveals biased
proportions of PUP to malware, periodic malicious network activity, and offers insights for
improving takedown techniques.

[83] presents a detailed analysis of malicious URLs hosted on Twitter, highlighting challenges
in blocking resources when legitimate file-sharing platforms are used. It underscores Twitter's
poor countermeasures regarding timeliness and coverage. [68] analyzes a dataset of URLs
from SIEM Threat Intelligence platforms, proposing grouping them into attack campaigns with
shared characteristics. A significant finding is the persistence of numerous malicious URLs
remaining active even after being marked as malicious. The study in [81] addresses the
proactive identification of malicious URLs, emphasizing ML techniques for efficient in-memory
detection. Authors evaluate detection rates and false positives by analyzing a 6,000,000 URL
dataset over 48 weeks, providing insights into the evolving malware landscape and internet
attack vectors.

[91] assesses VirusTotal file labeling challenges by reviewing 115 academic papers,
categorizing common methods used by researchers, and evaluating the dynamics of anti-
malware engine labels. Daily snapshots of VirusTotal labels for files from 65 engines show the
benefits of threshold-based label aggregation. The study reveals underperforming 'trusted'
engines, correlated engine clusters, and false positives and suggests improved data
annotation practices.

In analyzing Private Information shared with third-party domains by mobile applications, the
study in [86] provides metrics on domain popularity, geographic distribution, categorization,
etc. Focusing on Potentially Harmful Applications (PHA) on Android, it offers related works on
malware distribution analysis and domain characterization that are useful for future
investigations. Building on previous work, [75] examines malware delivery operations'
responses to takedown attempts. Findings highlight the prevalence of distributed delivery
architectures, the significance of identifying 'super-binaries,' and behaviors post-takedown.
The study emphasizes improving security strategies, service provider coordination, and threat
monitoring techniques. [79] focuses on the attacked side of the malware delivery ecosystem
by setting up isolated virtual machines infected by various droppers. The work examines the
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temporal behavior of droppers and downloaded malware, trying to correlate victim
characteristics with malicious software choices left by droppers.

Using a large dataset from a mobile security product, [85] applies graph representation
learning to predict future installations of Potentially Harmful Applications (PHA) on Android
devices. It highlights the extensive collection and transmission of sensitive data to third parties
by mobile applications, and reveals regional variations in data collection, raising concerns
about regulation and accountability.

[73] provides a comprehensive analysis of malware distribution networks and adversary
strategies. Analyzing a dataset of 99,312 binary malware samples from 38,659 distribution
sites over 287 days, it reveals current trends in malware distribution, clustering based on file
similarity, and distribution site details. Conclusions offer insights into adversary strategies and
future directions for combating malware distribution. [78] introduces a downloader graph
abstraction to differentiate between benign and malicious downloader trojans. By analyzing
19 million downloader graphs from 5 million hosts, researchers identify indicators of malicious
activity. A machine learning system achieves a true positive rate of 96.0%, false positive rate
of 1.0%, and detects malware earlier than existing antivirus products.

The study in [87] analyzes 328 million reports for 235 million samples collected over a year,
characterizing VirusTotal’s (VT) file feed and clustering methods. Feature value grouping (FVG)
clustering scales well and produces high-precision clusters, aiding in detecting potentially
malicious samples. [77] presents a risk analysis method for malware distribution networks
(MDN), examining their structural characteristics and network centrality. By identifying central
malware sites and assessing global dynamic risk, the model predicts potential cyberattacks
with high accuracy based on initial MDN risk levels and connectivity changes. Addressing
malware distribution and installation challenges, [76] presents Nazca, a system detecting
infections by analyzing collective network traffic. Nazca focuses on malicious network
infrastructures and achieves low false-positive rates, bypassing coverage gaps in reputation
databases while being resilient to code obfuscation. [88] focuses on identifying landing pages
tied to drive-by download attacks in Malware Distribution Networks (MDN). It proposes a
feature selection approach to detect malicious landing page content, expanding
understanding of MDNs. The system achieves a confirmation rate of 57% for predicted landing
pages, extending MDN footprint by 17%.

Leveraging the dataset from [74], this study in [84] proposes a prediction algorithm based on
word embedding techniques for security events. It analyzes CVE numerically, tracking
evolution over time, and explores dynamic temporal embedding analysis. This method offers
a new way to examine CVEs without feature engineering, potentially applicable to other STIX
model nodes. Introducing a Bayesian label propagation model for malware detection in
malicious distribution graphs, [67] combines file download relationships and network
topology. The evaluation shows efficient and accurate detection without source code
inspection, confirming effectiveness on real-world download events. [72] develops a machine
learning approach to detect URLs hosted by exploit kits, based on analyzing workflows of 40
kits. WEBWINNOW uses attack-centered and self-defense behavior features for detection,
demonstrating high effectiveness with minimal false positives in real-world data.
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7.2 Cyber Threat Alliance Platform

We obtain data from the Cyber Threat Alliance (CTA) exchange, where CTA members send
threat intelligence to share it and where they download threat intelligence shared by others.
All CTA members have access to the data in the CTA exchange, including data sent before they
joined the CTA. To maintain access to the exchange, CTA members need to keep a minimum
average weekly contribution.

7.2.1STIX

The data in the CTA exchange is encoded using the Structured Threat Information Expression
(STIX) standard, version 2.0, which is machine-readable. Although STIX 2.1 was officially
approved in June 2021, it has not yet been adopted by the CTA. There are other competing
standards for threat intelligence sharing, such as Malware Information Sharing Platform
(MISP) and Incident Object Description Exchange Format (IODEF). The use of STIX in the CTA
exchange indicates that STIX has considerable industry support as the leading standard for
threat intelligence sharing.

The STIX 2.0 data model revolves around JSON-formatted objects. Each STIX object has a
universally unique identifier (UUID), an object type, and a set of properties (name, value) (i.e.,
fields). The STIX 2.0 standard defines 14 object types. It also allows creating custom object
types, but the CTA exchange only supports the 14 standard object types. STIX defines a set of
standard object properties, but it also allows defining custom properties that must begin with
the prefix "x_". The standard defines common properties that apply to all object types, such
as the creator’s identity (“created_by ref"), creation timestamp ("created”), and last
modification timestamp ("modified"). It also defines specific properties for each object type
and which common and specific properties of each object are required (i.e., mandatory) or
optional. For example, the "malware" object must contain a "name" property that identifies
a malware (e.g., Win.Trojan.Agent-1).

7.2.2 The STIX graph model

STIX uses a graph model with two main types of objects: STIX Domain Objects (SDOs), which
correspond to the graph nodes, and STIX Relationship Objects (SROs), which explicitly define
the edges. Of the 14 standard object types, 12 are SDOs and 2 are SROs. There are two ways
to create edges between objects: (1) embedded relationships and (2) explicit relationships
defined by SROs.

Embedded relationships are object properties that contain the UUID of a target object, which
may be part of the same package or part of a previously sent package. Embedded relationships
implicitly define the source object for an edge, which is the object containing the embedded
reference. For example, the “created by ref" property, required in each object, contains the
UUID of an "identity" object that captures the entity that created the object. That "identity"
object may be included in the sent package or may have been sent in a previous package.
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The STIX standard defines two SROs to capture explicit relationships: "relationship” and
"sighting". The "relationship" object contains references to a source SDO and a destination
SDO, as well as the type of relationship between both objects. For example, the "indicator
indicates malware" relationship captures that the observation of a source "indicator" object
indicates a specific type of malware. The other SRO is the "sighting" object, which asserts that
an object was observed. It captures which SDO was sighted (e.g., "indicator", "malware",
"campaign"), who sighted it (i.e., an "identity" object), and what was actually observed
represented as an array of "observed-data" objects.
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Figure 25: Example of a graph of a bundle in STIX.

Figure 25 shows a graph with four objects: a "sighting" of an "indicator" (a file captured by its
MDS5, SHA1, and SHA256 hashes) linked to a "malware" family (ircbot) through a "relationship"
object (indicates). The edges are annotated with their corresponding property. Solid edges
correspond to embedded properties of SDOs (i.e., "sighting_of ref") or properties of SROs
(e.g., "src_ref", "dst_ref"). Dotted edges represent properties that contain object values. We
omitted the edges due to the "created by" property, which would link each object to the
"identity" of its creator.

7.2.3 10Cs

In STIX terminology, indicators of compromise (loC) such as URLs, domains, IP addresses, and
file hashes are called "cyber observables". Confusingly, the "indicator" object does not directly
contain loCs. Instead, it contains a detection pattern that may include multiple loCs. Due to
licensing restrictions on popular pattern languages like those used by YARA and Snort, STIX
opted to define its own pattern language. The STIX pattern language supports detection rules
for both host-based and network-based tools, allowing complex patterns that combine
expressions of comparing loC values with operators (e.g., AND, OR, FOLLOWED-BY) and
guantifiers (e.g., REPEATS x TIMES, WITHIN x SECONDS). For example, the pattern "network-
traffic:protocols = 'UDP' AND ipv4-addr:value ='112.184.32.238' AND network-traffic:dst_port
='7724"" captures traffic sent to the IP address 112.184.32.238 on destination port 7724/udp.
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7.2.4 Data exchange process

The CTA has developed and maintains its own exchange software called "Magellan", which
provides a repository of STIX objects and a REST API that allows, among other things, sending
STIX objects for sharing, obtaining statistics on sent objects, and querying specific objects. In
the past, a Trusted Automated Exchange of Intelligence Information (TAXII) server was also
provided, but currently, the data is only accessible through the Magellan platform.

CTA members send batches of STIX objects called "bundles". The STIX standard states that
objects in the same bundle do not need to be semantically related, although CTA members
may create separate bundles for distinct events.

Each bundle sent is validated, scored, and stored. The validation step requires each bundle
sent to contain a "sighting" object, an "indicator" object, and any of the following objects:
"attack-pattern”, "campaign", "intrusion-set", "malware", "threat-actor", or "tool". Validation
also requires "indicator" objects to have the optional "kill_chain_phases" property and all

"sighting" objects to have the optional "first_seen" and "last_seen" dates.

The CTA scores each bundle sent, assigning a predetermined number of points to required
and important optional properties, while other optional properties do not provide points. The
sum of the scores of all bundles sent by a member during a week determines whether the
member is contributing the expected minimum volume of threat intelligence.

During the submission process, the CTA adds a series of custom properties to the objects, such
as a unique submission identifier for the bundle ("x_cta_submission_id") and the identity of
the CTA member submitting the bundle ("x_cta_submitted by"). The sender may differ from
the creator ("created_by_ref") if the CTA member is simply forwarding an object created by
someone else. The bundle score ("x_cta_score") is added to the mandatory "sighting" object.

7.3 CTA Data Analysis

7.3.1 Contribution by member

This section compares each member’s contribution (anonymized) to the CTA exchange. Each
object specifies its creator using the standard property created by ref and its sender using
the custom property x_cta_submitted_by, introduced in January 2021. Throughout the
period, we observed 54 creators and 38 submitters. All 38 submitters are among the 54
creators. We used the CTA API to verify the 16 UUIDs of creators who do not appear as
submitters. Of these, 4 are CTA members and the other 12 are unknown entities that create
objects forwarded to the CTA exchange by a member. Overall, we observed 42 entities related
to the CTA: 41 CTA members and the CTA administrators. Table 6 summarizes the creators,
submitters, and members by year.
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Table 6: Contribution by year.

Entities All 2020 2021 2022 2023
Creators 54 31 39 46 38
Submitters 38 - 31 36 35
Members 41 24 27 32 34

To obtain a single submitter per object, from now on, we define the submitter of an object as
the UUID in the property x_cta_submitted_by if it exists (i.e., after January 2021), otherwise
we use the UUID of the creator in the property created_by_ref if it belongs to the 42 CTA
entities, otherwise we set it to null, which only occurs for 0.001% of the objects.

For each member, we calculate their activity by obtaining the first and last day the member
submits an object, the lifespan in days obtained by subtracting both dates, the number of days
the member contributes objects, the total number of bundles sent, and the total number of
objects in those bundles. We also calculate the daily average of bundles and objects by
dividing those totals by the lifespan in days.

On average, a CTA member contributes 3,694.6 daily bundles containing 22,186.2 objects. The
median number of objects in a bundle is 6.0, a low value indicating that most members use
separate bundles for objects that belong to the same incident. However, the average number
of objects per bundle is 198.2 because submissions by 5 members contain hundreds or
thousands of objects, indicating that their bundles contain unrelated objects from different
incidents.
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Figure 26: Member contribution: average daily CTA score (above) and average daily contributed
objects (below). Members can contribute as much as they want above the minimum required
score.

empyrean-horizon.eu 84/126



D4.2 — Intelligent Resource Management, Cyber Threat Intelligence and EMPYREAN Aggregator E\@MPYREAN

Figure 26 shows, for each member, the average daily CTA score (in red above zero) and the
average daily volume of objects (in blue below zero). Daily values are obtained by dividing the
total number of objects the member contributes and the sum of the CTA scores in all
contributed sighting objects, by the number of days they are a member.

The plot shows significant differences among members. While the top contributor clearly
dominates the CTA score, the contribution of objects is more balanced, with 9.6% of objects
for the top contributor compared to 8.6% for the second. The four most active members
contribute more than a third (34.4%) of the objects and the top 10 members two-thirds
(66.3%). Some members have a higher rank for the CTA score compared to their contributed
objects, indicating that they may focus on maximizing the score of their submissions.

CTA membership has been increasing over the years, from 24 members in 2020 to 34 in 2023.
Only 7 members have left the alliance. Of these, two seem to leave due to being acquired. The
other three are the members with the lowest daily average of contributed objects and the
lowest fraction of active days, possibly indicating that they could not maintain the minimum
required contribution. On average, a member submits objects 86% of the days. Therefore,
submissions arrive daily (with some gaps due to downtime or maintenance windows).

The long membership periods and low dropout rate indicate that shared data is considered
valuable, although being seen as a member of a select club of leading security providers may
also play a role in membership.

On average, a CTA member contributes more than 22K objects daily. Some members
contribute well above the minimum required, with 4 members contributing a third (33.4%) of
the objects and 10 members contributing two-thirds (66.3%). Most members use small
bundles with a median of 5.4 objects that likely capture an event. But 5 members send large
bundles of probably unrelated objects.

7.4 EMPYREAN CTI Platform Design

The platform is conceived as an integral tool that supports process automation and report
customization, ensuring that security experts can access contextualized and relevant
information in real-time. Below, the technical features, operational benefits, and expected
impacts of this tool in the field of digital security are detailed.

7.4.1 Periodic data download

The platform for report generation is designed to handle and process large volumes of data
efficiently and systematically. Data collection is performed daily, capturing vital information
from multiple entry points to ensure all relevant data is considered in cybersecurity analyses.
Data is automatically collected each day and sent to a dedicated machine hosting a MongoDB
database. This NoSQL database system is chosen for its ability to handle large amounts of
unstructured data and its flexibility in managing it, essential characteristics to adapt to the
varied forms of data in cybersecurity.
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Once stored, the data is accessible through an advanced platform that runs the necessary
algorithms for analysis and report generation. This platform is equipped with data analysis
tools that enable the execution of complex queries and trend analyses, as well as real-time
detection of attack patterns and anomalies. The integration of MongoDB with this platform
facilitates a smooth and efficient workflow, where data is processed and visualized in ways
that directly support decision-making and incident response.

This infrastructure not only optimizes speed and accuracy in report generation but also
enhances the capability of security experts to act based on operational and strategic insights
derived from continuous data analysis.
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Figure 27: Data analysis platform architecture.
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Figure 27 illustrates the operational infrastructure of the cybersecurity report generation
platform. Data is collected from the CTA cloud and sent in JSON format to a MongoDB
database, where it is stored and managed. Through the Autoreport module, this data is
processed and transformed into reports accessible via the CTA Web platform interface,
allowing users to visualize and analyze security information in real-time.

Figure 28 shows the platform’s operation mode. In it, we employ a series of automated scripts
that play a crucial role in data collection and analysis from the Cyber Threat Alliance (CTA).
These scripts are programmed to run daily, ensuring that the latest and most relevant data is
systematically downloaded without manual intervention. This automation process is
fundamental to maintaining the continuity and currency of the information we handle, which
is essential in the dynamic field of cybersecurity.

Each day, the automated scripts activate to connect with the CTA, using secure APIs and data
transfer protocols to download the latest updates. These data include detailed threat reports,
indicators of compromise (loCs), and other essential metrics critical for real-time security
analysis. Once the data is downloaded, its integrity and format are verified to ensure it is fit
for subsequent analysis and storage.
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Figure 28: Data analysis platform architecture.

Once collected, the data is immediately subjected to thorough analysis using a set of
algorithms designed to detect patterns, trends, and anomalies. This analysis is performed both
daily and weekly, allowing our analysts and end-users to gain a comprehensive view of the
threat landscape on different time scales. The analysis scripts not only evaluate the frequency
and severity of threats but also categorize the data according to various criteria, such as type
of threat, origin, and potential impacts.

Once processed, the analysis results are stored in a MongoDB database. This database has
been selected for its efficiency in handling large volumes of unstructured data and its
capability for high-speed operations. MongoDB facilitates quick and efficient access to data,
which is crucial for agile responses to emerging cyber threats. The database structure is
optimized for fast queries and data retrieval, enabling efficient management of the vast
volume of information we handle.

The data stored in MongoDB directly feeds our web platform, CTA Web, where users can
search and access detailed reports. The web interface is designed to be intuitive and easy to
use, allowing users to filter and search specifically for the information they need without
delays. In addition to searches, users can set up personalized alerts and view data
visualizations that help interpret threat trends more effectively.

7.4.2 Data analysis

We have dedicated considerable effort to developing and implementing advanced analysis
algorithms that allow us not only to capture and report the most common indicators of
compromise (loCs) but also to discover and understand underlying trends in cybersecurity
data. These algorithms are at the heart of our ability to provide contextualized and accurate
threat analysis, which is essential for proactive cybersecurity management.

We are currently actively working on perfecting our algorithms. This continuous improvement
process ensures that our analysis methods remain at the forefront of threat detection and
assessment. Our developers and data analysts collaborate closely to integrate the latest
research and data analysis techniques into our processes.
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One of the most innovative aspects of our algorithm suite is its ability to identify trends in 1oC
usage. Beyond simply listing the most frequent loCs, our algorithms are designed to detect
significant changes in the frequency of use of these indicators over time. For example, we can
identify an loC that has been relatively uncommon in the past but has seen an increase in use
in the last week. This ability to track the dynamics of loCs allows users to anticipate and react
more effectively to emerging threats.

In addition to 10Cs, our algorithms are also equipped to calculate and report the most used
vulnerabilities and types of malware. By analyzing large datasets, we can identify which
vulnerabilities are being exploited most frequently and which malware are on the rise. This
information is not only crucial for immediate incident response but also for strategic long-
term defense planning.

Another important facet of our analytical technology is the ability to summarize content.
These algorithms are designed to process and condense obtained information, transforming
large volumes of data into concise and understandable summaries. This process allows users
to quickly gain a clear view of the situation without manually examining vast amounts of data.
This capability facilitates the quick identification of key points and significant trends in security
data.

7.4.3 Data presentation

This section presents the early mockups of the web interface designed to allow users to
visualize the data.
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Figure 29: Web mock-up to explore information.
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Figure 30: Web mock-up to observe trends in Attack-patterns.
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Figure 31: Web mock-up to observe trends in vulnerabilities.
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8 Service Orchestrator

8.1 Overview

Managing and deploying services across distributed computing infrastructures is inherently
complex due to their heterogeneity. Moreover, the seamless integration of computing and
storage resources across the disaggregated loT-edge-cloud continuum requires automated
and intelligent orchestration mechanisms. To address these challenges, the EMPYREAN
control plane introduces advanced services for cognitive and efficient orchestration, providing
optimized resource management for cloud-native applications.

The Service Orchestrator operates within an EMPYREAN Association, coordinating multiple
platform-specific container orchestration systems such as Kubernetes (K8s) and Lightweight
Kubernetes (K3s). These systems manage distinct segments of the infrastructure, while the
Service Orchestrator ensures abstracted and unified service deployment through hierarchical
and distributed orchestration mechanisms at the Association-level.

At its core, the Service Orchestrator leverages the Decision Engine (Section 6) to optimize
workload distribution across available platforms within an Association, aligning deployments
with application-specific requirements. Once the high-level placement is determined, the
Service Orchestrator delegates the final deployment decisions, such as selecting Worker
Nodes, to Local Orchestrators on the target platforms. This process follows a declarative
approach, where workload requirements are specified to Local Orchestrators rather than
issuing direct imperative commands.

In addition, EMPYREAN Controllers, also known as Orchestration Drivers, are deployed on
each platform to handle low-level interactions with the platform-level mechanisms and their
Local Orchestrators. This layered approach abstracts infrastructure heterogeneity, providing
efficient management across distributed environments while ensuring seamless
interoperability between edge and cloud platforms.

8.2 Relation to EMPYREAN Objectives and KPIs

The Service Orchestrator and EMPYREAN Controllers are key components of EMPYREAN’s
cognitive and distributed service orchestration and deployment framework, providing
seamless service deployment and efficient operation within EMPYREAN Associations. To
address the platform’s key objectives and technical KPIs, these services leverage a
combination of hierarchical orchestration, cognitive workload placement, and adaptive
resource management.
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Below is a breakdown of how their design and implementation contribute to each related KPI:

T1.1 - Reduce cloud and increase edge utilization via workload balancing optimization:
The Service Orchestrator, through its integration with the Decision Engine, assesses
workload placement based on real-time resource availability and application
requirements. It ensures optimal distribution of workloads, reducing reliance on
centralized cloud resources. The EMPYREAN Controllers enforce these decisions
locally, dynamically adjusting deployments to maximize edge utilization while
preventing resource saturation.

T1.3 - Increase statistical multiplexing gains through associations: The Associations
Deployment model allows multiple EMPYREAN Associations to share resources
dynamically, increasing statistical multiplexing across edge and cloud infrastructures.

T1.4 - Provide low and predictable latency for hyper-distributed applications: The
EMPYREAN Controllers enable near-real-time application deployment at the edge,
ensuring low-latency responses. The Declarative approach in workload placement at
the platform-level ensures that service provisioning adapts dynamically to latency
constraints without manual intervention.

T2.1 - Improve overall performance compared to SotA: The Service Orchestrator’s
hierarchical architecture improves scalability and efficiency compared to traditional
monolithic orchestrators. Moreover, the distributed orchestration approach increases
computational throughput, enabling better performance compared to state-of-the-art
orchestration solutions.

T2.3 - React fast to rapid changes in computational and data demands so as to
maximize the number of demands served: The EMPYREAN Controllers support event-
driven orchestration, allowing rapid redeployment and scaling based on real-time
telemetry data. The Datastore’s event-based notifications mechanism ensures that
changes in computational demand trigger immediate corrective actions.

8.3 Architecture

The Service Orchestrator and EMPYREAN Controller are built upon the Resource Orchestrator
service, originally developed by ICCS within the H2020 SERRANO’ EU project. The Resource
Orchestrator is a high-level orchestration framework designed to operate seamlessly across
diverse cloud and HPC platforms. In EMPYREAN, its design and implementation are being
extended to support the requirements of an Association-based and collaborative loT-edge-
cloud continuum. Additionally, a new EMPYREAN Controller tailored for K3s platforms is
introduced, along with a high-level Python API to abstract the deployment and management
of cloud-native applications.

7 https://ict-serrano.eu
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The Service Orchestrator (Figure 32) is a cloud-native application implemented in Python,
comprising two core services: the Orchestration API Server and Orchestration Manager. The
EMPYREAN Controllers (Orchestration Drivers) and the Datastore complete the architecture.
The Datastore is a critical component for the overall operation and coordination among the
Service Orchestrator services and EMPYREAN Controllers.
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Figure 32: Service Orchestrator and EMPYREAN Controller architecture and its main components.

The Orchestration APl Server includes the Access Interface component, which implements the
necessary mechanisms for bidirectional communication, enabling the exchange of commands,
information, and notifications. Before forwarding requests to the Dispatcher, the Access
Interface validates them. The exposed RESTful API (Section 8.4) supports deployment and
management of cloud-native applications and facilitates autonomous interactions between
the Orchestration Manager, EMPYREAN Controllers, and the Datastore. The Dispatcher
exclusively manages interactions with the Datastore, enabling the creation, management, and
qguery of Orchestration APl objects along with the subscription of external services to watch
specific topics in the Datastore.

The Orchestration Manager is responsible for coordinating the workload placement and
initiating application deployment and service provisioning. It operates based on Orchestration
APl objects (Section 8.4) created by the Orchestration API Server. The Orchestration Manager
incorporates four specialized controllers that monitor specific topics and Orchestration API
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objects within the Datastore. These controllers execute the required operations to serve
requests, interact with other EMPYREAN control plane services, such as the Decision Engine,
the EMPYREAN Aggregator, and the Telemetry Service, and communicate with the EMPYREAN
Controllers managing the underlying platforms.

The Cluster Controller attaches K8s and K3s clusters to the Service Orchestrator and oversees
their operational state. The Scheduling Controller interacts with the Decision Engine to
retrieve the instructions for the cognitive application deployment. The interaction is based on
the REST API exposed by the Decision Engine Controller (Section 6.4). The Network Controller
enables dynamic network service provisioning by interacting with dedicated network
management services. Finally, the Execution Controller prepares the required application
deployment instructions (declarative approach) with the assistance of the Scheduling and
Network controllers, coordinates the required data movement by interacting with the storage
services within the EMPYREAN platform, and finally triggers the actual deployment by
interacting with the EMPYREAN Controllers at the selected edge and cloud platforms.

The Datastore is based on etcd?, an open-source distributed key-value store, and maintains
configuration and state data for the Orchestrator APl objects. A key feature of etcd is its
“watch” function, accessed through the Watch API, which provides an event-driven interface
for asynchronously monitoring changes to stored keys. This functionality is utilized in the
design of the Service Orchestrator to facilitate communication between the Orchestration API
Server, Orchestration Manager, and EMPYREAN Controllers (Orchestration Drivers). By
leveraging this event-driven approach, the Service Orchestrator can continuously track both
the actual and desired state of deployed applications and across the unified infrastructure.

There are two types of EMPYREAN Controllers, both following a common design (Figure 32).
The Orchestration Interface component provides an infrastructure-agnostic layer between the
Service Orchestrator (i.e., Orchestration Manager) and local orchestration mechanisms. It
enables a generic representation of application description, deployment preferences and
constraints. The Orchestration Plug-in translates the infrastructure-aware deployment
objectives from the Service Orchestrator into platform-specific requests for the local
orchestration mechanisms. This component varies for each EMPYREAN Controller type and is
designed to interact with the APIs exposed by each local orchestration platform.

8.4 Implementation

The Service Orchestrator and EMPYREAN Controller components are implemented in Python
and packaged as container images, ensuring an efficient and modular development and
deployment workflow. The Orchestration APl Server, Orchestration Manager, and the
available EMPYREAN Controllers are each deployed as separate container images to enhance
scalability and maintainability.

8 https://etcd.io
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The REST APl exposed by the Orchestration API Server is organized into two main categories.
The first set of methods (Figure 33) supports the deployment and management of cloud-native
applications and facilitates the provision of services. The second set (Figure 34) abstracts the
interaction of the Orchestration Manager and EMPYREAN Controller services with the
Datastore by enabling them to create, update, and query relevant information along with their
subscription for watching specific topics in the Datastore.

In the Orchestration APl server, the functionality of the Access Interface and Dispatcher
components has been enhanced to support provisioning and management of cloud-native
applications within the EMPYREAN Association-based continuum. Specifically, the northbound
interface of the Service Orchestrator has been extended with new methods that enable the
definition and management of deployment requests across multiple Associations (methods at
endpoint /api/vl/service_orchestrator/associations/deployments). Additionally, the REST API
responsible for inter-component communication has been expanded to support newly
introduced Orchestration APl Objects (i.e., Associations, and Application) for EMPYREAN to
ensure seamless integration.

Associations Deployments ~
E /api/vl/service_orchestrator/associations/deployments Get the listofall current cloud-native application deployments across multiple Associations. v
/api/vl/service_orchestrator/associations/deployments Request the deployment of a new cloud-native application across multiple Associations N
/api/vi/service_orchestrator/associations/deployments Request the re-optimization of a specific cloud-native application deployment across multiple Associations. A
‘ /api/vl/service_orchestrator/associations/deployments/{uuid} Temminate a specific cloud-native application deployment across multiple Associations v
GE1 /api/vl/service_orchestrator/associations/deployments/{uuid} Getinformation for specific cloud-native application deployment across multiple Associations. A4

/api/vl/service_orchestrator/assosiactions/deployments/logs/{uuid} Get logging information for the specific deployment progress across multiple Associations v

E /api/vl/service_orchestrator/associations/deployments/watch Register for changes regarding Associations Deployment Orchestration objects in Datastore. v
Deployments ~

GET /api/vl/service_orchestrator/deployments Get the list of all current application deployments within an Association A4

/api/vl/service_orchestrator/deployments Requestthe deployment of a new cloud-native application within an Association v

/api/vl/service_orchestrator/deployments Request the re-optimization of a specific cloud-native application deployment within an Association. v

‘ m /api/vl/service_orchestrator/deployments/{uuid} Teminate a specific cloud-native application deployment within an Association v

GET /api/vl/service_orchestrator/deployments/{uuid} Getinformation for specific cloud-native application deployment within an Association ~

GET /api/vl/service_orchestrator/deployments/logs/{uuid} Getlogging information for the specific deployment progress v

E /api/vl/service_orchestrator/deployments/watch Register for changes regarding the Deployment Orchestration APl objects in Datastore. AV

empyrean-horizon.eu 94/126



\
D4.2 — Intelligent Resource Management, Cyber Threat Intelligence and EMPYREAN Aggregator '@MPYREAN

Storage Policies ~
[ GET /api/vl/service_orchestrator/storage_policies Getthelistof all current storage policies. A ]
[ /api/vl/service_orchestrator/storage_policies Requestthe deployment of a new storage policy. v ]
‘ m /api/vl/service_orchestrator/storage_policies Request the re-optimization of a specific storage policy deployment. v ‘
/apifvl/service_orchestrator/storage_policies/{uuid} Delete a specific storage policy deployment. N ]
l GET /api/vi/service_orchestrator/storage_policies/{uuid} Getinformation for specific storage policy deployment v ]

Figure 33: Service Orchestrator REST API.

Associations ~
[ GET /api/vl/service_orchestrator/associations Getthe listof all available associations v ]
[ /api/vl/service_orchestrator/associations Storeinformation for an association. v ]
‘ /api/vl/service_orchestrator/associations Update the information for a specific association. A ‘
/api/vl/service_orchestrator/associations/{uuid} Delete information for an association A ]
[ GET /api/vl/service_orchestrator/associations/{uuid} Getinformation for specific association. v ]
[ /api/vl/service_orchestrator/associations/watch Register for changes regarding Association objects in Datastore. v ]
Applications ~
[ /api/vl/service_orchestrator/applications Getthe list of all application objects. v ]
[ /api/vl/service_orchestrator/applications Create anew application object ' ]
‘ /api/vl/service_orchestrator/applications Update a specific application object description. A4 ‘
[ /api/vl/service_orchestrator/applications/{uuid} Delete a specific application description object v ]
[ GET /api/vl/service_orchestrator/applications/{uuid} Getinformation for a specific application description object v ]
[ J/api/vl/service_orchestrator/applications/watch/{uuid} Register for changes regarding application objects in Datastore 4 ]
Clusters ~

[ GET /api/vl/service_orchestrator/clusters Getthe listofallregistered clusters. v }
[ m /api/vl/service_orchestrator/clusters Register a new cluster v }

‘ /api/vl/service_orchestrator/clusters Update the information for a specific cluster A% ‘
[ /api/vl/service_orchestrator/clusters/{uuid} Delete a previously registered cluster. £

/api/vl/service_orchestrator/clusters/{uuid} Getinformation for specific cluster. v

/api/vl/service_orchestrator/clusters/watch Register for changes regarding cluster objects in Datastore A

=1 |
[ /api/vl/service_orchestrator/clusters/health/{uuid} Getdetails about the health of the sepcific cluster. A }
== |
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Assignments ~
/api/vl/service_orchestrator/assignments Getthe list of available deployement assignments. v
/apifvl/service_orchestrator/assignments Create anew deployment assignment. v
/api/vl/service_orchestrator/assignments Update a specific deployment assignment v

‘ /api/vl/service_orchestrator/assignments/{uuid} Delete a specific deployment assignment v
/api/vl/service_orchestrator/assignments/{uuid} Getinformation for specific deployment assignment. v
/api/vl/service_orchestrator/assignments/watch/{uuid} Register for changes regarding Assignment objects for a specific cluster in Datastore v

Bundles e
/api/vl/service_orchestrator/bundles Getthelistof all bundles N
/api/vl/service_orchestrator/bundles Create a new bundle for some specific deployment assignment. v
/api/vl/service_orchestrator/bundles Update a specific bundle description A4

‘ m /apif/vl/service_orchestrator/bundles/{uuid} Delete a specific bundie description. Y
/api/vl/service_orchestrator/bundles/{uuid} Getinformation for specific bundle description v
/api/vl/service_orchestrator/bundles/watch/{uuid} Register for changes regarding bundle objects for a specific deployment assignment in Datastore v

Figure 34: Service Orchestrator REST APl — Methods related to inter-component communication.

Service requests are expressed as Orchestration APl objects (Figure 35) that serve as the
primary communication mechanism between different system components. These objects
encapsulate all necessary information for serving, managing, and monitoring service requests.
Specific pairs of Service Orchestrator services are responsible for creating, updating, deleting,
and watching these Orchestration APl objects to facilitate the interaction between the
orchestrator services. This distributed responsibility model optimizes request handling and
enables seamless system operation.

The main Orchestration APl objects are the following:

Associations Deployment: |t represents the high-level description required for
deploying a cloud-native application across multiple EMPYREAN Associations. This
object includes the application description along with the user-defined deployment
objectives. Itis created and deleted by the Orchestration APl server, while it is watched
and used by Orchestration Manager.

Deployment: It defines the deployment description of cloud-native application within
a specific EMPYREAN Association. It is created and deleted by the Orchestration API
server, while it is watched and used by Orchestration Manager. These entities are
immutable during the final orchestration and deployment phases (OF4.1.2 and
OF4.1.3) since application’s microservice distribution into available clusters and
infrastructure-specific instructions are expressed through the Assignment and Bundle
objects.
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e Storage Policy: It specifies the high-level description for creating and managing a
storage policy. It is created and deleted by the Orchestration API server and watched
and used by the Scheduling and Execution Controllers within the Orchestration
Manager that execute all the required operations.

e Application: 1t corresponds to the complete application description, including its
microservices, their characteristics, dependencies, and interconnections. This object is
created in case of multi-Association deployment and is used by the Orchestration
Manager.

e Association: It provides an overview of the active Associations that are managed by
the specific Service Orchestrator. These objects are created and updated based on the
information from the EMPYREAN Aggregator and used by the Orchestration Manager.

e (Cluster: It provides an overview of the available platforms (edge, cloud). These objects
are created and updated based on the information from the EMPYREAN Controllers
while watched and used by the Orchestration Manager.

e Assignment: It is an internal object that captures the assignment of application
microservices to a specific edge/cloud cluster. They are created, updated, and deleted
by the Orchestration Manager according to the decisions from the Decision Engine
while they are watched and used by the EMPYREAN Controllers (Orchestration
Drivers).

e Bundle: It includes the microservices description along with parameters and platform-
specific deployment objectives based on Decision Engine suggestions that will guide
the low-level orchestration mechanisms at the selected platforms (declarative
approach). These entities are created, updated, and deleted by the Orchestration
Manager and they are watched and used by the EMPYREAN Controllers.
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Figure 35: Orchestration APl objects and their relationship.
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Figure 35 presents the relationships and interactions between the Orchestration APl objects,
illustrating how these components are interconnected within the system. Complementing this
visual description, Table 7 lists the relevant topics for each Orchestration API object stored
and managed within the Datastore. These topics ensure proper coordination, management,
and functionality of the orchestration mechanisms within an Association and across
Associations, contributing to the overall efficiency and reliability of the EMPYREAN platform.

Table 7: Datastore topics (keys) for the main Orchestration API objects.

API Object Topic

Associations

Deployment /service/orchestrator/associations_deployments/deployment/DEPLOYMENT_UUID

Deployment | /service/orchestrator/deployments/deployment/DEPLOYMENT_UUID

Storage Policy | /service/orchestrator/storage_policies/policy/POLICY_UUID

Application | /service/orchestrator/applications/application/APPLICATION_UUID

Association /service/orchestrator/associations/association/ASSOCIATION_UUID

Cluster /service/orchestrator/clusters/cluster/CLUSTER_UUID

Assignment | /service/orchestrator/assignments/CLUSTER _UUID/assignment/ASSIGNMENT_UUID

Bundle /service/orchestrator/bundles/bundle/BUNDLE_UUID

The EMPYREAN Controllers are available in two distinct types (i.e., K8 and K3s) both
implemented in Python as plug-ins. They share a common Orchestration Interface
implementation, while their Orchestration Plug-in component differs based on the controller
type. This distinction is necessary because the Orchestration Plug-in translates infrastructure-
specific deployment objectives from the Service Orchestrator into platform-specific
instructions for the local orchestration mechanisms. Each plug-in interacts with the respective
local orchestration platform through its exposed API.

For example, the K8s Orchestration Plug-in communicates with the Kubernetes API Server
(kube-apiserver) to manage platform-level services, requesting the deployment and
management of container-based workloads based on the objectives defined by the Service
Orchestrator and Decision Engine. Similarly, the K3s Orchestration Plug-in interacts with the
K3s APl Server, managing platform resources such as Deployments, Pods, ConfigMaps, and
Services.

The workflow in Figure 36 outlines the operation of an EMPYREAN Controller. During its
initialization phase, it registers with the Orchestration API Server, subscribing to watch for any
changes related to assignments in its dedicated topic in the Datastore. It also reports a
summary of available resources on its managed platform, allowing the Orchestration API
Server to update the corresponding Datastore entries. The controller periodically sends
heartbeat messages to the Orchestration API Server to confirm availability. These steps are
common across all EMPYREAN Controller types and are handled by the Orchestration
Interface using a set of methods that all Orchestration Plug-ins must implement.
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When a change occurs in its subscribed topic, the EMPYREAN Controller is notified. Based on
the event type, it triggers the appropriate actions to serve the request from the Orchestration
Manager. To this end, it formats the appropriate instructions to the underlying control plane
and forwards them using the corresponding exposed API. The EMPYREAN Controller
continuously tracks the deployed requests and notifies the Orchestration Manager whenever
the actual state differs from the desired state.

heartbeat
FE EE o mESESESEE s EE S S S S - i
| | i -
» 3
EMPYREAN Controller .
(Orchestration Driver) 6 slelominih o 3
2 7
4 4
K8s | K3s API Orchestration
Manager

Figure 36: EMPYREAN Controller operation workflow.

8.5 Relation to Use Cases

The Service Orchestrator and EMPYREAN Controllers enable a cognitive, distributed, and
adaptive orchestration framework that optimizes resource utilization, enhances performance,
and ensures resilience in heterogeneous loT-edge-cloud environments. Across all use cases,
the Service Orchestrator and EMPYREAN Controllers provide efficient, collaborative, and
adaptive application deployment that meets the specific needs of each domain, from
industrial manufacturing to agricultural sensing and smart factory security.

UC1 - Anomaly Detection in Robotic Machining Cells: The Service Orchestrator ensures that
computational tasks related to anomaly detection models are placed close to robotic cells at
the edge, minimizing latency and enabling real-time decision-making. The EMPYREAN
Controllers dynamically allocate resources to support adaptive Al inference pipelines,
balancing execution between on-site edge devices and cloud resources when higher
computational power is required. The orchestration framework supports event-driven data
processing, enabling fast response times to detected anomalies, ensuring system reliability in
high-precision manufacturing environments.

UC2 - Proximal Sensing in Agriculture Fields: The Service Orchestrator facilitates the
deployment of proximal sensing applications across dispersed edge nodes within agricultural
fields, ensuring efficient data collection from various sensors. The EMPYREAN Controllers
manage workload distribution based on real-time environmental data, optimizing sensor-
driven computations at the edge while leveraging cloud resources for historical trend analysis
and Al model training. The orchestration mechanisms enable fault tolerance, ensuring
continuous operation even in environments with intermittent network connectivity by
dynamically reconfiguring workloads across available compute nodes.
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UC4 - Security in_Smart Factories (S. Korea International Collaboration): The Service
Orchestrator plays a key role in deploying cybersecurity services across distributed factory
infrastructures, ensuring real-time threat detection and response at both edge and cloud
layers. The EMPYREAN Controllers support automated scaling of security monitoring
applications based on anomalous behavior patterns, adapting to real-time variations in
network activity. The platform's ability to provide low-latency orchestration ensures that
security policies and protective measures are enforced dynamically across global industrial
deployments, maintaining data integrity and operational continuity.
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9 Telemetry Service

9.1 Overview

The EMPYREAN Telemetry Service is a core enabler of intelligent and adaptive management
within the hyper-distributed and federated environment of the EMPYREAN platform. It is
designed to provide seamless, real-time monitoring and observability across the full loT-edge-
cloud continuum, ensuring that critical infrastructure components, devices, and workloads are
continuously supervised and optimized. The telemetry infrastructure is not conceived as a
standalone module but as an integrated, dynamic ecosystem that interacts with orchestration,
analytics, decision-making, and security components, providing them with high-quality,
actionable data to drive autonomous and informed operations across Associations.

The EMPYREAN Telemetry Service delivers comprehensive and adaptive monitoring across the
loT-edge-cloud continuum. It supports continuous discovery of heterogeneous resources,
such as loT devices, robotic systems, edge nodes, and cloud services, enabling dynamic
adaptation to infrastructure changes. The service collects real-time performance metrics
(CPU, memory, network, and energy usage), providing an up-to-date view of system health.
Distributed Telemetry Engines handle pre-processing and filtering to manage high data
volumes, ensuring only relevant information is propagated. Data is stored in the Persistent
Monitoring Data Storage (PMDS) for historical analysis and informed decision-making. The
service also adapts its configurations in response to lifecycle events like deployments,
migrations, and failures through integration with orchestration components. By extending
established observability tools like Prometheus, Grafana, and InfluxDB to support
EMPYREAN’s federated architecture, it ensures seamless interoperability in distributed
environments. Standardized interfaces expose telemetry streams to components such as the
Decision Engine, Analytics Engine, and CTI Engine, enabling advanced analytics, security, and
autonomous operations.

The EMPYREAN Telemetry Service goes beyond traditional monitoring solutions by offering a
federated observability framework for the loT-edge-cloud continuum. It maintains global
visibility over highly heterogeneous and mobile resources, supporting dynamic and distributed
infrastructures. Native energy consumption monitoring enables energy-aware optimization
strategies that support sustainability objectives. The service autonomously reconfigures its
monitoring processes in real-time, adapting to events like migrations, deployments, and
failures without manual intervention. High-fidelity telemetry streams power advanced multi-
agent algorithms in the Decision Engine, which coordinate to optimize performance,
resilience, and resource usage across Associations. With its scalable, lightweight, and
distributed architecture, the Telemetry Service addresses the complexity of hyper-distributed
environments beyond the capabilities of existing solutions.
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9.2 Relation to EMPYREAN Objectives and KPlIs

The EMPYREAN Telemetry Service is fundamental in supporting several of the project's key
objectives and technical KPls. Specifically, the Telemetry Service directly contributes to the
achievement of the following KPIs:

e T1.1: Supplying comprehensive operational metrics, the Telemetry Service enables
workload balancing strategies that reduce reliance on the core cloud and increase edge
utilization.

e T1.2: Through its continuous observability mechanisms, the Telemetry Service
enhances system reliability by detecting failures and performance degradations at the
edge.

e T1.4: Real-time monitoring and Decision Engine integration enable quick adjustments
to maintain low and stable latency in hyper-distributed applications.

® T2.2: Collecting detailed energy consumption metrics across all platform resources
supports energy optimization, contributing to reduced consumption across
Associations.

® T2.3: Real-time telemetry streams allow the system to promptly detect and react to
sudden changes in workload and resource demands, maximizing the number of
successfully served requests.

e T2.4: By delivering accurate and high-fidelity telemetry data, the service improves the
effectiveness of Al-driven decision-making algorithms, directly boosting their accuracy.

e T2.5:The robust monitoring capabilities facilitate the early detection of anomalies and
noisy conditions, increasing the overall robustness of algorithmic operations.

Overall, the Telemetry Service is a key enabler of EMPYREAN's mission to deliver an intelligent,
adaptive, and resilient continuum platform, ensuring optimal performance, resource
efficiency, and reliability across federated environments.

9.3 Architecture

The EMPYREAN Telemetry Service is designed as a distributed architecture composed of three
main components that provide comprehensive monitoring, analysis, and storage of telemetry
data across the loT-edge-cloud continuum.

e Telemetry Engines: These components manage and orchestrate the Telemetry Service
as wells as process telemetry data from different infrastructure segments. Operating
in a distributed manner, they ensure a unified and consistent view of system health,
pre-process raw telemetry data, and provide relevant insights to other platform
components such as the Decision Engine and the Analytics Engine.
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® Monitoring Probes: Lightweight components deployed across the platform to
continuously collect real-time performance metrics, logs, and events from specific
resources, including hardware, applications, and services.

® Persistent Monitoring Data Storage (PMDS): Serves as a centralized repository for

storing telemetry data over time. It enables historical analysis, trend detection, and
long-term resource optimization, supporting the platform’s decision-making processes
with accurate and timestamped data that can also be used for advanced analytics and
reporting.

P-ABC Decision Engine Analytics Engine
(Task 3.1) (Task 4.1) (Task 3.4)
Telemetry Service
Telemetry Engines Persistent Monitoring
Data Storage

Monitoring Probes

CTlI Engine
(Task 4.1)

Service Orchestrator
(Task 4.4)

Autoscaling & Local
Orchestration (Task 3.4)

Figure 37: EMPYREAN Telemetry Service components and dependencies.

9.4 Implementation

The EMPYREAN Telemetry Service follows a modular and scalable approach, relying on widely

adopted open-source technologies to ensure reliable telemetry collection, processing, and

visualization across the continuum. Although the design is still in its early stages, the following

components and flow are envisioned:

Telemetry Collection: Metrics will be gathered from multiple sources, including both
Kubernetes-based infrastructures and distributed loT devices. For the cloud-native
stack, components such as kube-state-metrics® (which collects the state of Kubernetes
resources) and Node Exporter'® (which exposes hardware/system metrics) will be
used. For loT environments, lightweight telemetry clients or gateway nodes will collect
metrics and forward them to the monitoring infrastructure using messaging protocols
such as MQTT and AMQP. These protocols ensure low-overhead, reliable
communication from resource-constrained or intermittently connected devices.

9 https://github.com/kubernetes/kube-state-metrics
10 https://prometheus.io/docs/guides/node-exporter/
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Specialized adapters or receivers within the OpenTelemetry (OTEL) Collector!! will
subscribe to these data streams and ingest telemetry in a structured format, allowing
seamless integration with the rest of the monitoring pipeline.

e Data Processing and Storage: The OTEL Collector will apply necessary transformations
and filtering to incoming telemetry, ensuring only relevant and clean data is
forwarded. This process includes metrics from cloud-native workloads, infrastructure
nodes, and loT devices. The processed data will then be sent to Prometheus??, the core
time-series database, responsible for storing, indexing, and exposing telemetry data.

e Data Consumption: Once stored in Prometheus, telemetry data becomes accessible to
various components and users across the platform. A REST APl exposes metric
endpoints, enabling EMPYREAN modules—such as the Decision Engine, Analytics
Engine, and Orchestration Engine—to retrieve both real-time and historical data for
intelligent decision-making, anomaly detection, and workload optimization.
Additionally, AlertManager continuously evaluates telemetry against predefined rules
and thresholds, triggering alerts in response to abnormal behaviors, performance
degradation, or failures. This approach enables proactive incident response and
system self-healing mechanisms. Moreover, for human operators and developers,
Grafana'?® will offer rich, dynamic dashboards to visualize telemetry data. These
dashboards support custom queries, temporal comparisons, and multi-source
overlays, providing deep insights into distributed components’ health, performance,
and trends across the loT-edge-cloud landscape.
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Figure 38: EMPYREAN Telemetry Service implementation.

11 https://opentelemetry.io/docs/collector/
12 https://prometheus.io
13 https://grafana.com
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This telemetry pipeline ensures continuous monitoring and analysis of system performance,
enabling other EMPYREAN components—such as orchestration, resource management, and
security modules—to leverage this information for optimizing operations and responding to
potential incidents. Figure 38 summarizes the implementation process described above,
illustrating the flow of telemetry data from collection to consumption across the platform.

9.5 Public APIs

The Telemetry Service exposes a public API—agent AP/—that allows external systems to
dynamically manage telemetry pipelines within the monitoring infrastructure. Built with
FastAPI, this APl enables the creation, modification, and deletion of pipelines without manual
intervention, making it easy to adapt observability workflows in Kubernetes environments.

Key features include:

e Dynamic pipeline management: Supports registering and updating pipelines by
adjusting the configuration of components like the OpenTelemetry Collector, adding
new receivers, processors, and exporters as needed.

e Lifecycle operations: Provides endpoints to safely create, modify, and remove
pipelines in a controlled way.

e Integration with Kubernetes resources: Works within specific namespaces and
manages resources like ConfigMaps to apply changes, whether running inside or
outside the cluster.

e Support for observability tasks: Includes operations to inspect component status, list
active pods, search by labels, and trigger configuration reloads.

The APl is designed to be modular and extensible, with future improvements planned such as
automated pipeline adaptation and integration with advanced orchestration systems.

The infrastructure also exposes the Prometheus public API, allowing external systems and
users to query telemetry data in real-time. This interface supports a wide range of use cases,
including resource utilization analysis, anomaly detection, and the creation of custom
dashboards. Through the APl—using PromQL (Prometheus Query Language)—clients can
retrieve metrics such as CPU usage, memory consumption, network traffic, and other key
indicators at both system and application levels. These queries can be filtered by time ranges,
labels, or resource types, supporting both automated and manual data consumption. The API
is also compatible with tools like Grafana, enabling dynamic and interactive data visualization.
This makes the Prometheus APl a core enabler of observability within EMPYREAN, offering
standardized and secure access to performance data across the platform.

Moreover, the EMPYREAN Telemetry Service incorporates the Persistent Monitoring Data
Storage (PMDS) component, which enables the long-term retention of collected, timestamped
telemetry data. PMDS provides a central repository, retaining the state of heterogeneous
resources and deployed applications. This historical telemetry data is critical for feeding the
various Al/ML-driven decision-making and analytics mechanisms within the EMPYREAN platform.
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The PMDS is implemented using InfluxDB'#, an open-source, high-performance time-series
database. To ensure interoperability and facilitate integration with other platform components
and external services, PMDS exposes a RESTful API. This APl abstracts direct database interactions
and offers advanced query capabilities, including time-range filtering, conditional retrieval based
on resource or application attributes, and aggregation operations. Through this interface, both
internal modules and authorized users can efficiently access and analyze historical telemetry
datasets, supporting informed, data-driven operations and enabling continuous system
adaptation within the edge-cloud continuum.

9.6 Integration with EMPYREAN Platform Services

The EMPYREAN Telemetry Service is designed to seamlessly integrate with the platform’s core
services (Figure 39), ensuring efficient data exchange and adaptive observability across the
entire system. A key integration point is the Decision Engine, which relies on continuous, high-
fidelity telemetry streams to execute complex multi-agent decision algorithms. The Telemetry
Service exposes real-time and historical metrics covering resource utilization, performance
trends, and energy consumption through standardized public APls. These APls allow the
Decision Engine to retrieve the necessary data to support workload placement, scaling
decisions, and failure recovery, ensuring that management strategies are informed by up-to-
date insights from both local and federated environments.
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Figure 39: EMPYREAN Telemetry Service integration.

In addition, the Analytics Engine interacts with the Telemetry Service to feed advanced
monitoring data into machine learning pipelines and anomaly detection frameworks. By
accessing aggregated and pre-processed telemetry through public RESTful APls, the Analytics
Engine can perform deep analysis on system behaviour, identify performance degradations,
and trigger predictive actions. This collaboration enhances the platform's ability to adapt

1 https://github.com/influxdata/influxdb
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proactively to evolving workloads and infrastructure conditions, leveraging telemetry as a
foundational element for intelligent operations across Associations.

Moreover, the Telemetry Service maintains tight coordination with the EMPYREAN Aggregator
and Service Orchestrator, ensuring that monitoring configurations dynamically adapt to
lifecycle events such as workload migrations, deployments, and scaling actions. By consuming
event notifications from the orchestration mechanisms and exposing APls to update
monitoring policies, the Telemetry Service guarantees that observability remains consistent
as the system evolves. This bidirectional interaction not only ensures robust monitoring under
dynamic conditions but also provides valuable feedback to the orchestrator, supporting
informed resource allocation and scheduling decisions.

9.7 Relation to Use Cases

Next, we provide an overview of how the Telemetry Service integrates with and supports the
specific use cases within the EMPYREAN platform. Each use case presents unique challenges
that benefit from continuous monitoring, real-time data collection, and advanced analytics
provided by the Telemetry Service. By detailing the interactions and contributions of the
Telemetry Service in each case, we highlight its role in enhancing system performance,
ensuring efficiency, and enabling intelligent decision-making across diverse application
scenarios.

Anomaly Detection in Robotic Machining Cells (UC1)

The Telemetry Service plays a central role in the Anomaly Detection in Robotic Machining Cells
(UC1) use case by providing real-time monitoring of robotic systems in machining
environments. It collects and processes critical data from sensors embedded in the robotic
cells, such as tool performance, precision levels, and environmental conditions. The
Monitoring Probes deployed within the system continuously gather data, which Telemetry
Engines then filter and pre-process. This data is stored in the Persistent Monitoring Data
Storage (PMDS) for long-term analysis and historical reference.

The Telemetry Service enables advanced analytics and anomaly detection through integration
with the Analytics Engine and Ryax Workflow Engine. When abnormal behaviors are
detected—such as tool wear or deviations in machining precision—alerts can trigger
automated corrective actions. The service is designed to support both real-time data
collection at the deep edge layer and more complex processing at the far edge, ensuring
seamless communication and data flow between these layers. The distributed architecture,
powered by EMPYREAN’s multi-clustering capabilities, guarantees that resources are
optimized, and workloads are efficiently managed across edge devices. The telemetry data
also supports performance monitoring and helps improve the system’s efficiency by informing
decision-making and ensuring operational reliability. Moreover, integrating the Telemetry
Service with EMPYREAN’s security framework ensures data protection throughout the system,
allowing for secure and privacy-conscious monitoring in critical manufacturing environments.
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Proximal Sensing in Agriculture Fields (UC2)

In Proximal Sensing in Agriculture Fields, the Telemetry Service plays a critical role in
monitoring the real-time performance of UAVs and robots involved in soil analysis. By tracking
operational parameters such as flight speed, altitude, battery status, and CPU/memory usage,
the Telemetry Service ensures that these devices operate efficiently throughout the entire
process, minimizing the risk of operational failures or inefficiencies. This is particularly
important in dynamic agricultural environments where precision and continuous monitoring
are vital.

The Telemetry Service works hand-in-hand with Dataflow Programming to manage the
complex data flows between edge devices (UAVs and robots), edge servers, and cloud
infrastructure. This guarantees that raw data collected at the edge is efficiently processed with
minimal latency and transferred for further analysis or storage. Furthermore, it integrates
seamlessly with Edge Storage, ensuring that large volumes of sensor data are initially
processed locally, reducing the strain on cloud resources. The Decentralized Data Manager
enhances the data exchange, triggering workflows in the Workflow Manager for automated
processing and analysis. This combination of components helps optimize soil health
assessments, ensuring that actionable insights are available to farmers in real-time, enabling
informed, data-driven decisions in agricultural management.

Security in Smart Factories - S. Korea International Collaboration (UC4)

In Security in Smart Factories, the Telemetry Service plays a key role in enhancing the factory’s
security measures by continuously monitoring various system parameters, such as network
traffic, device status, and sensor data. This telemetry data feeds into the Cyber Threat
Intelligence (CTI) component, enabling the identification of potential security threats based
on abnormal behavior detected through Federated Learning (PPFL).

The Telemetry Service helps aggregate critical information from edge devices and sends it to
the central security modules for further analysis. It ensures that the security applications
deployed within the smart factory’s private 5G network are efficiently orchestrated and
scaled, enabling real-time responses to threats. Additionally, this service integrates with MISP
(Malware Information Sharing Platform) to share threat intelligence across nodes, fostering a
collaborative security environment and enhancing overall system resilience.
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10 EMPYREAN Aggregator

10.1 Overview

The EMPYREAN Aggregator serves as a foundational element of the EMPYREAN ecosystem,
enabling intelligent orchestration, security, and automation for distributed applications. It
establishes the management fabric of the EMPYREAN continuum, enabling seamless
coordination across the loT-edge-cloud infrastructure. By integrating multiple self-managed
and interacting Aggregators, the system fosters an autonomous, collaborative, and
composable environment where resources and services are dynamically managed and
optimized.

The Aggregator employs a hierarchical two-level structure to oversee resource allocation,
workload execution, and interconnection across its Associations. Aggregators communicate
among themselves but also with edge computing infrastructures and multi-cloud providers,
ensuring a cohesive and adaptive management approach. This design enhances operational
resilience, allowing Associations to function independently even when connectivity to remote
cloud resources is limited or unavailable.

10.2 Relation to EMPYREAN Objectives and KPIs

The EMPYREAN Aggregator is designed to enable collaborative autonomy in the loT-edge-
cloud continuum. Its implementation aligns with the specified project objectives and technical
KPls as follows:

e T1.1 - Reduce cloud and increase edge utilization via workload balancing optimization:
The EMPYREAN Aggregator prioritizes edge-first computing by leveraging Al-driven
workload balancing algorithms. By dynamically offloading tasks to nearby edge nodes,
the system minimizes dependency on cloud resources, reducing latency, and data
transmission costs.

e T1.2-Increase reliability in the edge: To enhance edge reliability, the Aggregator employs
distributed fault-tolerance mechanisms and proactive failure detection via its Analytics
and Telemetry Engine. If an edge node experiences performance degradation or failure,
it coordinates the workloads’ redistribution to alternative nodes within the Association,
ensuring service continuity.

e T1.3-Increase statistical multiplexing gains through associations: The Aggregator enables
dynamic resource sharing across multiple Associations, allowing workloads to be flexibly
assigned based on available capacity, workload type, and priority levels. This multi-agent
cooperation enhances statistical multiplexing gains, as computing resources are
efficiently pooled and allocated across distributed infrastructures, preventing resource
underutilization.
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e T1.4- Provide low and predictable latency for hyper-distributed applications: By deploying
latency-sensitive applications closer to data sources, the Aggregator ensures that data
processing and execution occur within the edge environment whenever feasible.

e T2.2 - Reduce energy consumption on Associations compared to standard execution: The
EMPYREAN Aggregator facilitates adaptive workload placement that prioritizes execution
on energy-efficient edge nodes along with workload consolidation to minimize
underutilized resources, reducing overall energy demand.

10.3 Architecture

The Aggregator is designed to consolidate multiple EMPYREAN services and components,
delivering essential intelligence and orchestration logic for managing an Association. It
operates as an abstraction point between the components of the Service and Multi-Cluster
Orchestration layers, ensuring composability and interoperability across the continuum. The
Aggregator integrates various functionalities essential for deploying applications, ensuring
workload security, managing distributed data storage, and facilitating decentralized
interconnection.

The architecture of the EMPYREAN Aggregator (Figure 40) is modular and platform-agnostic,
enabling seamless integration with heterogeneous computing environments across the
continuum. An Aggregator orchestrates its Associations that include separate or shared
computational and storage resources and communications with others to enable the
collaborative management of the loT-edge-cloud continuum.

The EMPYREAN Aggregator is composed of multiple key components, each responsible for a
critical function in managing distributed resources and ensuring service reliability. These
components include:

e Service Orchestrator: Responsible for orchestrating workloads across diverse
computing environments, including cloud, edge, and fog layers. It ensures optimized
placement of services based on resource availability and policy constraints (Section 8).

e Decision Engine: Employs Al-driven mechanisms to enable intelligent decision-making
for dynamic resource allocation, fault tolerance, and adaptive workload management
(Section 6).

e Ryax Runner: Functions as the execution engine for user workflows within an
Association. It bridges the Workflow Manager with the resources of individual
platforms, enabling seamless execution of actions and workflows. Deliverable D4.1
(M15) provides more details.

e FEdge Storage Gateway: Provides a distributed and hybrid storage architecture,
supporting encrypted and secure data management across edge and cloud layers. It
integrates with existing storage systems to facilitate seamless data accessibility. This
component is described in deliverable D3.1 (M15).

empyrean-horizon.eu 110/126



"
D4.2 — Intelligent Resource Management, Cyber Threat Intelligence and EMPYREAN Aggregator @MPYREAN

Distributed Data Manager: Manages decentralized interconnection by ensuring
efficient and secure data exchange between distributed components. It incorporates
advanced data routing and streaming mechanisms to enhance low-latency
performance. Deliverable D4.1 (M15) describes this component.

Privacy and Security Manager: Ensures trust and identity management within the
EMPYREAN ecosystem by employing blockchain-based decentralized authentication,
secure enclaves, and privacy-preserving cryptographic techniques. This component is
described in deliverable D3.1 (M15).

Telemetry Engine: Monitors heterogeneous resources and applications across the
distributed infrastructure. It provides real-time observability and generates
performance insights to ensure system resilience (Section 9).

Analytics Engine: Implements service assurance mechanisms by continuously
analyzing telemetry data, detecting anomalies, and recommending proactive
optimizations to maintain system efficiency and reliability. Deliverable D3.2 (M15)
details this component.
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Figure 40: EMPYREAN Aggregator architecture.
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The successful integration of EMPYREAN Aggregators and their associated services relies on
leveraging the well-defined interfaces within the EMPYREAN platform to ensure seamless
communication. To achieve this, the design incorporates the APl Gateway, which plays a
crucial role in enabling secure, scalable, and efficient intra- and inter-Association
communication. By providing standardized data models and utilizing the exposed APIs of other
services, the APl Gateway facilitates service discovery, routing, and management while
enforcing stringent policies on access control and authentication.

Furthermore, the APl Gateway introduces several key features to enhance system
interoperability and performance: (i) APl composition, which streamlines interactions by
aggregating multiple API calls into a single, optimized request flow, (ii) protocol abstraction,
supporting a variety of communication protocols such as RESTful APIs, gRPC, and AMQP (for
asynchronous messaging), and (iii) logging and monitoring, achieved through integration with
the Telemetry Engine, providing real-time insights into APl usage, request latencies, and
overall system performance.

10.4 Implementation

The EMPYREAN Aggregator is built using a microservice-based approach, allowing each
component to operate independently while being loosely coupled to ensure flexibility and
scalability. The Aggregator is implemented as a cloud-native application in Python, where
individual components interact through their well-defined APIs. The core services of the
Aggregator are containerized and orchestrated via Kubernetes, allowing for easy deployment,
dynamic scaling, and fault tolerance.

The API Gateway provides two NBIs, namely a REST interface exposed to core EMPYREAN
orchestration and management services, such as EMPYREAN Registry and Workflow Manager,
that enable them to seamlessly interact with the Associations and resources managed by an
Aggregator, and a gRPC interface exposed to the rest of the EMPYREAN Aggregators. Both
interfaces rely on the Dispatcher, who handles the incoming requests and interacts with the
State Management component. The State Management enables a stateful implementation of
the APl Gateway to support the operational requirements within the EMPYREAN platform. To
enhance performance and responsiveness, the State Management component integrates
Redis'® as a high-speed caching layer and lightweight storage solution for stateful data.

Figure 41 summarizes the available methods in the REST interfaces of the APl Gateway
component.

15 https://redis.io
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Aggregator Services ~
[- /api/vl/aggregator/services Getavailable EMPYREAN services integrated within the Aggregator. A4 l
[m /api/vl/aggregator/services Register a new EMPYREAN service within the Aggregator. v l
‘ /api/vl/aggregator/services Update an EMPYREAN service within the Aggregator. N ‘
[- /api/vl/aggregator/services/{service_id} Getdetails fora specific EMPYREAN service within the Aggregator. N l
[ /api/vl/aggregator/services/{service_id} Delele a specific EMPYREAN service within the Aggregator. v l

Associations ~
[ /api/vl/aggregator/associations Get available Associations managed by the Aggegator. v l
[ /api/vl/aggregator/associations Register a new Association A4 l
‘ /api/vl/aggregator/associations Update anAssociation configuration A4 ‘
[- /api/vl/aggregator/associations/{association_id} Get details for a speific Association. v l

/api/vl/aggregator/associations/{association_id} Delete a registred Association from the Aggregator. s l
[m /api/vl/aggregator/associations/analysis Assess the effects of an Association configuration change in the operation of deployed applications. v l

Deployments ~
[ J/api/vl/aggregator/{association_id}/deployments Getapplication deployments within the specified Association. A4 }
[ /api/vl/aggregator/{association_id}/deployments Requesta new application deployment within the specified Association v }
‘ m /api/vl/aggregator/{association_id}/deployments Update a specific application deployment request v ‘
[ /api/vl/aggregator/{association_id}/deployments/analytics_engine Register a new application deployment for service assurance analytics. v }
[ /api/vl/aggregator/{association_id}/deployments/{deployment_id} Getdetails for a speific application deployment within the Association v ]
[ /api/vl/aggregator/{association_id}/deployments/{deployment_id} Delete an application deployment from the Association. v }

Resources ~
[ /api/vl/aggregator/{association_id}/resources Gethigh-level overview of available computational and storage resources within the Association. v }
‘ m /api/vl/aggregator/{association_id}/resources Update available resources high-level description within the Association AV ‘
[ /api/vl/aggregator/{association_id}/resources Remove resources from the Association v }
[ /api/vl/aggregator/{association_id}/resources/{resource_id} Getdescription of specific resource within the Association v }

Artifacts ~

/api/vl/aggregator/{association_id}/artifacts N
Get overview of available artifacts (e.g., OCl images, deployment descriptors, etc) within the Association.
‘ /api/vl/aggregator/{association_id}/artifacts Update available artifacts (e.g., OCl images, deployment descriptors, etc) within the Association. v ‘
P2E1S /api/vl/aggregator/{association_id}/artifacts Delete arfifacts (e.g, OCl images, deployment descriptors, etc) from the Association W ]
- fapi/vl/aggregator/{association_id}/artifacts/{id} N
Get information for a specific artifact (e.g., OCI images, deployment descriptors, etc) within the Association.

Figure 41: EMPYREAN Aggregator — APl Gateway RESTful API.
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The APl Gateway component also incorporates publish-subscribe mechanisms over gRPC to
exchange information, commands, and events among the EMPYREAN Aggregators. This
interface will provide methods to enable collaboration among Aggregators to get/set/delete
information from/into their databases, as well as to receive asynchronous events reporting on
changes within an Association. The RPC methods currently exposed by the initial version of
this interface are presented in Table 8. As the implementation progresses towards the initial
release of the EMPYREAN platform, this interface will be extended appropriately.

Table 8: EMPYREAN Aggregator — RPC methods.

Method Name Description

Bidirectional streaming method for real-time updates for available

AssociationUpdates .
P Associations managed from an Aggregator.

Bidirectional streaming method for real-time updates for available artifacts

ArtifcactsUpdates o
within an Aggregator.
Bidirectional streaming method for real-time updates for available resources
ResourcesUpdates s -
within an Association.
CreateAssociationDeployment Assign an application deployment to a specific Aggregator.

Bidirectional streaming method for real-time updates regarding the progress

A iationDepl tUpdat . s
ssoclationteploymenttipaates of an assigned application deployment request.

MigrateDeployment Request an application deployment migration to some other Aggregator.

MigrateData Request data migration to an Association to some other Aggregator.

Bidirectional streaming method for real-time updates regarding the progress

MigrateDeploymentEvents .. . .
of an application deployment migration request.

Bidirectional streaming method for real-time updates regarding the progress

MigrateDataEvents . .
of data migration request.

10.5 Relation to Use Cases

The EMPYREAN Aggregator serves as the intelligent orchestration and resource management
backbone for the project’s use cases (UCs), ensuring efficient workload distribution, low-
latency execution, and secure data handling across diverse loT-edge-cloud environments. By
leveraging its integration with other key components of the EMPYREAN architecture, the
Aggregator abstracts the Association-based continuum to the end users, automates
infrastructure-specific operations, and optimizes performance and resilience for each UC.

For anomaly detection in robotic machining (UC1), real-time data collection, processing, and
analytics are crucial. The Aggregator facilitates low-latency execution of Al models at the edge,
ensuring that machine learning-based anomaly detection runs locally for faster responses. In
agricultural field monitoring, large volumes of sensor data must be processed efficiently to
enable precision farming (UC2). The Aggregator ensures seamless integration of proximal
sensing devices, processing data locally via edge computing nodes to reduce cloud
dependence and optimize real-time analytics. For smart factory security (UC4), the EMPYREAN
Aggregator enhances cybersecurity and access control by integrating decentralized trust
management mechanisms. This ensures resilient and secure factory operations, even in highly
interconnected industrial environments.
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11 EMPYREAN Registry

11.1 Overview

The Association-based continuum represents a dynamic framework where entities—ranging
from research institutions and enterprises to edge-cloud platforms—interact seamlessly to
enable intelligent, decentralized, and scalable service deployment. The EMPYREAN Registry is
essential to support this complex and interconnected environment and address key challenges
in the EMPYREAN platform's coordination, management, and governance.

The EMPYREAN Registry serves as a unified entry point for both core platform services and
third-party entities, enabling the discovery, cataloguing, and advertising of Associations and
services across the Association-based continuum. The Registry facilitates the registration and
management of loT devices, edge, and cloud resources within Associations. Moreover, it
keeps track of the available Associations and services, the mapping of infrastructure resources
to Associations, and the relationships between users and Associations.

11.2 Relation to EMPYREAN Objectives and KPlIs

The initial design and implementation of the EMPYREAN Registry contribute significantly to
realizing the EMPYREAN vision of an autonomous, distributed, and collaborative loT-edge-
cloud continuum. As a core component of the Al-driven control and management plane, it
supports key EMPYREAN objectives and enables the fulfillment of the following technical KPls:

e T1.1- Reduce cloud and increase edge utilization via workload balancing optimization:
The Registry facilitates intelligent workload placement decisions by supporting the
multi-agent operation of multiple Decision Engines across the Associations.

e T1.2 - Increase reliability in the edge: Enabling decentralized services and maintaining
resource metadata supports adaptive service discovery and redundancy mechanisms
at the edge.

e T1.3- Increase statistical multiplexing gains through associations: It supports efficient
grouping and reuse of distributed resources, enabling higher utilization and reduced
idle capacity across edge and cloud environments.

11.3 Architecture

The EMPYREAN Registry is designed as a scalable, cloud-native system that integrates various
functionalities essential for ensuring seamless discovery, cataloguing, and advertisement of
Associations and services across the EMPYREAN platform. It is dynamically updated with new
information as infrastructure resources are registered or new applications and services are
published. The Registry follows a modular architecture (Figure 42) with seven core services.
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The API Gateway is the central access point for all interactions with the EMPYREAN Registry,
ensuring secure, scalable, and controlled access to its functionalities. It handles external and
internal service requests, manages authentication and authorization, and facilitates event-
driven communication between EMPYREAN services and the core Registry components. The
APl Gateway’s architecture aligns with the respective component in the EMPYREAN
Aggregator (Section 10.3), ensuring consistency and interoperability across the platform. The
AP| Gateway exposes both REST and gRPC interfaces, enabling flexible communication models
suited for different integration needs within the EMPYREAN ecosystem.

Workflow Manager Lightweight EMPYREAN SDK
(Task 4.2) Packaging (Task 4.3) (Task 5.1)

I I I

EMPYREAN Registry

API Registry
Gateway Manager

Data Service
Connectors Catalogue

Container Image Association Security & Trust
Repository Metadata Store Manager (Task 3.1)

I I

Data Sources, Data EMPYREAN
Catalogue, Data Stores Aggregator (Task 4.4)

Figure 42: EMPYREAN Registry architecture.

The Registry Manager is the core orchestration component of the EMPYREAN Registry,
responsible for overseeing its operation and managing its interactions with other services to
ensure seamless integration with the broader EMPYREAN platform. It provides lifecycle
management, handling the registration, modification, and removal of Associations and
services. It also cooperates with the Privacy and Security Service to enable predefined
governance policies for access control, data sharing, and compliance across Associations.
Moreover, the Registry Manager ensures real-time consistency of Registry data across
distributed Associations using event-driven updates.

The Container Image Repository stores and manages OCl-compatible images of hyper-
distributed applications. These images are built and packaged using EMPYREAN’s dedicated
mechanisms, ensuring compatibility and efficient deployment across the Association-based
continuum. This service distributes container images that support all EMPYREAN container
runtime types, providing a single source of truth for containerized applications within the
continuum. By integrating with EMPYREAN’s development mechanisms, as detailed in
Deliverable D4.1 (M15), the Container Image Repository enables fast and secure deployments
across heterogeneous execution environments.

empyrean-horizon.eu 116/126



D4.2 — Intelligent Resource Management, Cyber Threat Intelligence and EMPYREAN Aggregator i@:MPYREAN

The Service Catalogue provides a centralized repository for managing application blueprints,
deployment configurations, and metadata related to services and datasets. By integrating with
the Container Image Repository, the Service Catalogue streamlines application development
and deployment across the continuum. It provides a comprehensive service management that
stores metadata about software packages, container images, service descriptors, and hyper-
distributed application models. It also allows EMPYREAN services and users to search, filter,
and retrieve available services in a structured way. The Service Catalogue enables automated
service composition and deployment based on predefined metadata attributes and provides
inputs for EMPYREAN’s orchestration and deployment mechanisms, improving service
interoperability and adaptability.

The Association Metadata Store contains metadata about available Associations, providing a
high-level description of participating resources, their ownership, and sharing policies, along
with descriptions of available EMPYREAN services and deployed applications. This component
aggregates metadata and capabilities from individual Associations and platforms, making
them accessible across multiple Associations in accordance with the selected privacy settings.
The orchestration and deployment mechanisms leverage this data to manage Associations
and deploy applications within and across them.

The Data Connectors component enables integration with external data sources, facilitating
the collection and exchange of data across heterogeneous environments. It is designed with
a modular and extensible framework, allowing easy addition of new connectors. This
component supports the integration with data stores, external catalogues, data pipelines, and
real-time data streams. By providing structured metadata ingestion and aggregation, Data
Connectors enhance the context-awareness and adaptability of the EMPYREAN Registry.

Moreover, the integration of Security and Trust Management services establishes a trust
anchor to support trust, identity, and credential management operations across the
distributed Associations. This ensures secure interactions, enhances reliability, and promotes
seamless collaboration within the EMPYREAN ecosystem. A detailed presentation of this
service’s design and initial implementation within the EMPYREAN platform is available in
deliverable D3.1 (M15).

11.4 Implementation

The EMPYREAN Registry is implemented as a cloud-native application in Python, where
individual components interact through their well-defined APIs. All components of the
Registry are containerized and orchestrated via Kubernetes, allowing for easy deployment,
dynamic scaling, and fault tolerance. The work during the initial phase covers the initial design
and implementation of the APl Gateway, Association Metadata Store, and Container Image
Repository components.
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The APl Gateway exposes a REST interface to facilitate stateless communication and provide
external access to Registry services and low-complexity interactions. There is also a gRPC
interface to support low-latency and bidirectional streaming event-driven interactions and
real-time updates, which is well-suited for service-to-service communication among the core
components of the EMPYREAN control and management plane. Both interfaces rely on the
Registry Manager, who handles the requests and interacts with the other internal
components. Figure 43 shows the available methods in the REST interfaces of the APl Gateway
component.

Registry Services ~
‘ fapi/vl/registry/services Getavailable EMPYREAN services integrated within the Registry. N ‘
‘ fapi/vl/registry/services Addanew EMPYREAN service within the Regisiry. N ‘
PUT fapi/vl/registry/services Update an EMPYREAN service within the Registry. N
‘ /api/vl/registry/services/{service_id} Getdetails for a specific EMPYREAN service within the Registry. N ‘
[m /ap:i./v1jregistryjservices/{ service_id} Delete a specific EMPYREAN service within the Registry. A4 ]
Images ~
‘ fapi/vl/registry/images Getoverview of available OCl-compliant images within the Container Image Repository. N ‘
‘ /api/vl/registry/images Addanew OCl-compliantimage to the Container Image Repository. A% ‘
PUT fapi/vl/registry/images Update available OCl-compliant image within the Container Image Repository. N
‘ /api/vl/registry/images/{image_id} 2 ‘
Get information for a specific OCl-compatible image from the Container Image Repository
[@ fapi/vl/registry/images/{image_id} Delete an OCl-compliant image from the Container Image Repository. N ]

‘ /api/vl/registry/images/fetch/{image_id} Feich a specific OCl-compatible image from the Container Image Repository. ' ‘

Association Metadata ~
‘ /api/vl/registry/associations Get available Associations in the Association Metadata Store. N ‘
‘ /api/vl/registry/associations Add a new Association in the Association Metadata Store. AV ‘
PUT /api/vl/registry/associations Update an Association in the Association Metadata Store N
‘ /api/vl/registry/associations/{association_id} Get details for a specific Association. A4 ‘
[@ /api/vl/registry/associations/{association_id} Delete aregistred Association from the Association Metadata Store. ~ l
‘ /api/vl/registry/associations/query Query the Association Metadata Store to find Associations with certain charactenstics. N ‘
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Deployments ~
GET /api/vl/registry/deployments Listofactive application deployments within the EMPYREAN platform. A\
/api/vl/registry/deployments Register high-level information for application deployment within the EMPYREAN platform hvg
/api/vl/registry/deployments Update high-level information for a specific application deployment within the EMPYREAN platform Y

GE /api/vl/register/deployments/{deployment_id} High-level information for an application deployment within the EMPYREAN platform. AV

‘ m /api/vl/register/deployments/{deployment_id} Delete highllevel information for an application deployment from the Registry. A4
Data Spaces ~

GET fapi/vl/registry/data_spaces Getlistof available data spaces within the EMPYREAN platform. AV

/api/vl/registry/data_spaces Defineanew data space. v

/api/vl/registry/data_spaces Update the description of a specific data space v

GE /api/vl/registry/data_spaces/{id} Getdescription of a specific data space v

‘ m /api/vl/registry/data_spaces/{id} Delete a data spacs. v

Figure 43: EMPYREAN Registry — APl Gateway RESTful API.

Table 9 presents the RPC methods exposed by the initial version of Registry’s gRPC interface,
covering the communication between Registry and Aggregator for the Associations
management.

Table 9: EMPYREAN Registry — RPC methods.

Method Name Description

Provide real-time updates to the EMPYREAN Registry for available

AssociationUpdates . .
P Associations in the overall platform.

Provide real-time updates to the EMPYREAN Registry for available services

servicesUpdates in the overall platform.

Provide real-time updates to the EMPYREAN Registry for available

DeploymentUpdates application deployments in the platform.

The Container Image Repository is based on the CNCF Distribution Registry'®, an open-source
stateless and highly scalable storage and content delivery system that holds named container
images and other content, available in different tagged versions. One key feature is that it
adheres to OCl specifications for storing and retrieving container images, Helm charts, WASM
artifacts, and other OCl-based artifacts, enabling seamless integration with the EMPYREAN
build and package mechanisms. Moreover, it is a decentralized and extensible solution that
integrates well with Kubernetes and other cloud-native tools while can be deployed across
various cloud and edge environments.

16 https://distribution.github.io/distribution/
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The Association Metadata Store constitutes a fundamental element of the EMPYREAN
ecosystem, consolidating metadata from multiple distributed Associations. Its primary role is
to maintain structured information about each Association’s participating resources,
workload, sharing and other policies, enabling coordination, trust, and intelligent
orchestration across the Association-based continuum.

Each Association operates independently, orchestrating tasks and managing the computing
infrastructure. Static and dynamic information is collected — including the current state of
nodes, Kubernetes pods, deployments, and workflow executions. This metadata will be used
to construct a local Knowledge Graph (KG) for each Association, using a graph database such
as Neo4j'’. The resulting graph will reflect the relationships between computational entities
and infrastructure components, capturing how services are deployed, which nodes they run
on, and how they are managed. Moreover, these graphs will be periodically merged to create
an aggregated Knowledge Graph, maintained in the Association Metadata Store. This merged
graph will offer a unified semantic representation of the distributed state of the continuum.
One of the key benefits of this approach is the ability to run cross-Association queries over the
summarized graph. These queries enable rich, relationship-based reasoning — such as
identifying trends across multiple workloads, detecting anomalies in pods or resource usage,
or coordinating deployments to avoid infrastructure hotspots. The graph-based
representation is especially powerful in scenarios where relationships between resources,
services, and infrastructure need to be continuously monitored and optimized.

11.5 Relation to Use Cases

The EMPYREAN Registry plays a central role in enabling dynamic, secure, and efficient
resource and service management across all project use cases (UCs). By serving as a unified
point for discovering, registering, and managing Associations, services, and infrastructure
resources, it facilitates the deployment and orchestration of applications tailored to the
specific requirements of each domain. Its core functionalities—including metadata
aggregation, service cataloguing, and container image distribution—directly support the
underlying Association-based continuum of each use case.

The Registry enables the registration and discovery of loT devices, robotic systems, edge, and
cloud resources deployed across diverse industrial and agricultural environments. The Service
Catalogue and Association Metadata Store facilitate context-aware workload placement by
tracking the ownership and sharing policies of connected resources, enabling privacy-
preserving computation and intelligent orchestration. These capabilities ensure resilient
service deployment in resource-constrained, highly distributed environments. By integrating
with the Security and Trust Management services, the Registry ensures secure service
registration, identity verification, and access control, providing a secured and trustworthy
execution environment across collaborated geographically distributed resources.

17 https://neodj.com
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12 Conclusions

In this deliverable, we present the work of all tasks in WP4, with a particular focus on Task 4.1
“Cyber Threat Intelligence, Intelligent Resource Management and Energy Efficiency” and Task
4.4 “EMPYREAN Aggregator, Autonomous Management and Monitoring Fabric”. Specifically,
we elaborate on the design and developments for: (i) intelligent and multi-objective resource
management algorithms, (ii) Decision Engine, (iii) cyber threat intelligent platform, (iv) Service
Orchestrator and EMPYREAN Controller, (v) Telemetry Service, (vi) EMPYREAN Aggregator,
and (viii) EMPYREAN Registry. Together, these components form a cohesive platform designed
to meet the demands of next-generation applications, providing resilience, intelligence,
adaptability, and trustworthiness in highly dynamic, resource-constrained, and distributed
operating environments. They also enable collaborative autonomy and support the
cooperative and autonomous management of the Association-based continuum, also
promoting self-driven adaptability.

The provided developments are integral parts of the autonomous and cognitive control and
management plane of the EMPYREAN platform. The presented research and development
activities build upon the final architecture of the EMPYREAN, reported in D2.3 (M12), to
provide the core functionality, implement the initial version of interfaces for inter-component
communication, and support the implementation of the basic operation flows. The above
developments will be further enhanced as we move towards the second iteration of the
implementation plan (M16-M26) to fully support the envisioned functionalities within the
complete release of the EMPYREAN integrated platform.
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