B Ref. Ares(2025)6351084 - 04/08/2025

N
(EIMPYREAN

TRUSTWORTHY, COGNITIVE AND AI-DRIVEN
COLLABORATIVE ASSOCIATIONS OF IOT DEVICES AND
EDGE RESOURCES FOR DATA PROCESSING

Grant Agreement no. 101136024

Deliverable D5.2
Initial release of EMPYREAN integrated platform

Programme: HORIZON-CL4-2023-DATA-01-04
Project number: 101136024

Project acronym: EMPYREAN

Start/End date: 01/02/2024 -31/01/2027
Deliverable type: Report

Related WP: WP5

Responsible Editor: ZSCALE

Due date: 31/07/2025

Actual submission date: 04/08/2025
Dissemination level: Public

Revision: FINAL

This project has received funding from the European Union’s Horizon
Europe research and innovation programme under grant agreement
No 101136024

(EIMPYREAN
D5.2 — Initial release of EMPYREAN integrated platform N7

Revision History

Date Editor Status Version Changes
30.04.2025 | Ivan Paez (ZSCALE) Initial Draft | 0.1 ToC definition, section definitions
30.05.2025 | All partners Draft 0.2 First round of input collection
30.06.2025 | All partners Complete 0.5 First complete deliverable
deliverable
15.07.2025 | Reviewers feedback | Reviewers 0.8 Reviewers provide feedback
feedback
25.07.2025 | Ivan Paez (ZSCALE), | Final review, | 0.9 Addressing the reviewers'
main editor project feedback, comments,and
coordinator corrections
30.07.2025 | Ivan Paez (ZSCALE) Final version | 1.0 Format and camera-ready
deliverable.

Author List

Organization Author
CcC Marton Sipos
ICCS Aristotelis Kretsis, Panagiotis Kokkinos, Fotis Kouzinos, Polizois

Soumplis, Emmanouel Varvarigos

NEC Jaime Fuster, Roberto Gonzalez

NUBIS Anastassios Nanos, Christos Panagiotou, Charalampos Mainas,
Georgios Ntoutsos, Panagiotis Mavrikos, Maria Gkeka, Maria
Gkoutha, llias Lagomatis, Apostolos Giannousas

NVIDIA Dimitris Syrivelis

RYAX Pedro Velho, Yugiang Ma, Michael Mercier, Yiannis Georgiou

umMu Antonio Skarmeta, Eduardo Canovas, Alonso Sanchez, José Luis
Sanchez

ZSCALE Ivan Paez, Mahmoud Mazouz, Phani Gangula

Internal Reviewers
Aristotelis Kretsis, Polizois Soumplis (ICCS)

Anastassios Nanos (NUBIS)

empyrean-horizon.eu 2/118

(EIMPYREAN
D5.2 — Initial release of EMPYREAN integrated platform N

Abstract: This deliverable summarizes the initial software release of the EMPYREAN platform,
which corresponds to the outcomes of T5.1 Integration, Testing, and Refinement from the
WP5 Platform Integration and Use Case Development. This deliverable presents the initial
platform release, along with a breakdown of the platform’s key building blocks and their
interactions.

Keywords: EMPYREAN platform, Association, integrated components, development and
integration environment, software deployment, operation flows

empyrean-horizon.eu 3/118

(EIMPYREAN
D5.2 — Initial release of EMPYREAN integrated platform N

Disclaimer: The information, documentation and figures available in this deliverable are written by the
EMPYREAN Consortium partners under EC co-financing (project HORIZON-CL4-2023-DATA-01-04-
101136024) and do not necessarily reflect the view of the European Commission. The information in
this document is provided “as is”, and no guarantee or warranty is given that the information is fit for
any particular purpose. The reader uses the information at his/her sole risk and liability.

Copyright © 2024 the EMPYREAN Consortium. All rights reserved. This document may not be copied,
reproduced or modified in whole or in part for any purpose without written permission from the
EMPYREAN Consortium. In addition to such written permission to copy, reproduce or modify this
document in whole or part, an acknowledgement of the authors of the document and all applicable
portions of the copyright notice must be clearly referenced.

empyrean-horizon.eu 4/118

(EIMPYREAN
D5.2 — Initial release of EMPYREAN integrated platform N

Table of Contents

1 EXECULIVE SUMMIAIY s 13
DA 1o} o Yo 1V ot 4 (o] VU SURRN 14
2.1 Purpose of this DOCUMENTcccuiiiiiiiiiee ettt e e e saaeee s 14
2.2 DOCUMENT STIUCTUIE ..ttt s 14
2.3 AN E o 1= o ol =SSR 15

3 The EMPYREAN PlatfOrm c....cueiii ittt ettt e e e e e e 16
3.1 EMPYREAN ArChit@CtUIE ccccii ittt e e et re e e e e e e e ae e e 16
3.2 INitial REIEASE STATUS ...eiiiiiiiiee et st e e e nbae e e s 18
3.3 INtegration INFrastrUCTUIeoocuviii i e 19
4 Development and Integration ENVIroNmMeNnt.........coooviiiiiiciie e 21
4.1 Continuous Integration (Cl/CD) and Continuous Deployment Process................... 21
4.1.1 Integration Testing APProaches.......ccocceiiiiieiei i 22
4.1.2 Integration WOrkfloOW..........oooieiiiei et e e 23

4.2 Platform Release PIanoooouiiii ittt 30

5 EMPYREAN Platform COmMPONENTS.....ccccuviieieiiiieeeeitee e cereee e e siree e et e e s rae e e e saveea s e enees 32
5.1 SBIVICE LAYEI i 32
5.1.1 WOIKFIOW IMAN@EI ..cccieeiiiee ittt e e st e e s et e e e e saaeee s 32
5.1.2 Dataflow Programming.....cccccuieeieiiiieeeriieeeceieeeseseee e s svee e s sae e s s saae e e e snaeee s 38
LT G Y 1 Vot f o] o W - [l - V= T PSR 39
5.1.4 UniKernel BUilding......oo oottt e e e e e e e e e 42

5.2 AssSOCIation ManNagEMENT LAYEIuuuiiiiiiiiiriieieree.. 43
5.2.1 EMPYREAN AGEIregator ..ccuuiuiiiieiiiiieiiiiiiiie e seeetetiiiiee s e s e e eeeeasass s s s e e seaaassannsssaaaeaes 43
5.2.2 EMPYREAN REGISTIY ...iiiieeiiiiieie ettt e e e e e e et re e e s e e e e e e aa e e e e e eeens 49

5.3 Multi-cluster Orchestration LAYErcococcvieeeeiee it 55

o 700 A B =T 1Y o o TN =1 ¥ =4[= PR 55
5.3.2 Service OrCheStratorcuuiiii it e e e e e e s e e e e e snaeeeeas 59

54 Resource Management LaYer iiviiiiiieie ettt eeeeereiirss e s e e e eeeavane s s e e e eeeneaanes 66
5.4.1 Al-Enabled Workloads AUtOSCaliNG........cceeeiiiiiiiiiiiiieeee e 66
5.4.2 Unikernel DeploYMENt.......uuiiiiiei e a e 69
5.4.3 Hardware Acceleration AbStraCtions.........ccceeeuvieeieiiieeeesciiee e 71

5.5 Data Management and Interconnection Layer......ccccccvvveeeeiieiieiccinnreeeeee e, 71
5.5.1 Software Defined EAge INtErCONNECT.....ccceiiiiiiiiiireeeeiee e 71
5.5.2 Decentralized & Distributed Data Managerccccceeeeeeeeeieciirrereeeeeeeeeinrreeeeee e 74
5.5.3 EdZE STOrage SEIVICE ..ottt e e et e e e e e e e e nraeeeeeaaeeean 75
554 1oTQUeryENngine ..., 79

5.6 Security, Trust, and Privacy Man@agercooeccciiiieiee et e e eeeccrrre e e e e e e e e 79
5.6.1 PrABC LIBIArY et e e aa e 79
5.6.2 Privacy and SECUTrity MAn@ZEIcooccvurrerieeeeeiiiiireeeeeeeeeeseerrrereeeeeesesnarrreeeeeeeens 80
5.6.3 Cyber Threat INtelligence ENGINEccvveeeeeiiiiiiiieeeeeee ettt 83

5.7 Monitoring and Observability LaYerccccvvveeiiieiieiiireeeeee e 86

empyrean-horizon.eu 5/118

(EIMPYREAN
D5.2 — Initial release of EMPYREAN integrated platform N

5.7.1 TelemMeltry SEIVICE oottt e e e e st e e e e e e s rer e e e e e e eeas 86
5.7.2 The Analytics ENGINE .ccocuviieiiiiee ettt e e st e e e s nnaaee s 90

6 Platform Integration and Operation FIOWSccovcviiiiiiiiieiiiiiiiee e 96
6.1 Entity Enrolment, Security, and Resource Protectionccccccoeeeccviieeeeeeeeecccennnnen. 96
6.1.1 Resource protection and access WOrkflowcoeccveeeeniiiie e, 96
6.1.2 Secure device attestation and lightweight identity management 98
6.1.3 Secure user access via Privacy and Security Manager and RYAX Workflow

LR u=Y <= 1 99

6.2 ASSOCIATION SETUP ..ceiiiiiiiiiiiiiiiiiiiiiii ettt eeee e e et eeeeeeeeeeeeeeeeee 101
6.3 Onboarding Computational and Storage ReSOUIrCeScccccvvvveeeeeeeeeccccrvereeeeeeenn, 106
6.3.1 ONnboarding WOrker NOAESueviiiiuiiiii it e e e 107
6.3.2 ONboarding StOrage rESOUICESccccuvreeeiririeeieiieeeeesireeeessreeeeessreeeeessasaeeeenaseees 109

6.4 Inter-Association Application Deployment......ccccoo oo, 113

/2 ©e 1 [[V o o[- PP PPP S OPPPPRRUPPRPPRRN 117
S 01 =T =T o [T PP 118

empyrean-horizon.eu 6/118

D5.2 — Initial release of EMPYREAN integrated platform

@M PYREAN

List of Figures

Figure 1:
Figure 2:
Figure 3:
Figure 4.
Figure 5:
Figure 6:
Figure 7:
Figure 8:

Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:

Figure 16:

EMPYREAN high-level archit@Cture........ccueiiiiiieiiiiiiiee e 16
ICCS testbed — Computation and storage resources at K8s and K3s clusters. 19
Generic Continuous Development, Continuous Integration (CD/CI) pipeline. 22
EMPYREAN’s components integration Workflow.ccccueeeieiiiieiiiiiee e, 24
[llustration of the Service Orchestrator job in the GitHub repository.........cccc........ 25
Adding secrets to EMPYREAN REPOSItOIY.....cccuuiiiiriiieeiiniiee e ceiieeessieee e esveee e 26
EMPYREAN's platform release roadmap.oooeeoeecciiiieeee e 30
Ryax StUdio - RESTIUI APLLuveieeeeeee ettt e e e e evrree e e e e e e 35
RyaxX RUNNEr = RESTFUI AP ...eeeeeeeeee et e e e e erar e e e e e 37
Dataflow framework core COMpPONENtS.cooccuviieeiiiiiee e 38
Dataflow getting started WOrkflow.........cccceeveciiiiiiccie e 39
Action Packaging — Repository microservice RESTfUl API.........ccceeeeviiiieeiiciieeeenns 42
EMPYREAN Aggregator architeCture.ccccvie v 44
EMPYREAN Aggregator into CI/CD pipeline and deployment in two K8s clusters. 45
EMPYREAN Aggregator — APl Gateway RESTfUl APloccuvieeiiiiiieecee e 46
Log messages from the EMPYREAN AgEregator.....oovvvveeeeeeeeiinvreeeeeeeeeeeiirreeeeeeeeenn 47

Figure 17: Graphical representation of the updated Association information within the
Association Metadata StOre SEIVICE. ...t aae e 48

Figure 18: Graphical representation of the updated Association information within the

Association Metadata Store SErviCe.ccovviirierieriieeeee s 49
Figure 19: EMPYREAN Registry archit@Cture.ooocuiiiiieiee et 50
Figure 20: EMPYREAN Registry into EMPYREAN CI/CD pipeline.ccoveeeveeeceeeecieeeereeeeen. 51
Figure 21: EMPYREAN Registry components successful deployment in ICCS’s K8s cluster....51
Figure 22: EMPYREAN Registry — APl Gateway RESTTUl APL.ccovvveeeiieiieiirreeeee e, 52
Figure 23: Association Metadata Store RESTFUI API.eeeveiiiiiiiiiiieeeeeeee e 53
Figure 24: APl Gateway — Processing request for creating a new Association. 53
Figure 25: Registry Manager — Processing request for creating a new Association. 53
Figure 26: Visual representation of available Associations within Association Metadata Store

service of the EMPYREAN REZISEIYuuviiiieiiiiieiiiiiiee ettt e e e e e e 54

empyrean-horizon.eu 7/118

(EIMPYREAN
D5.2 — Initial release of EMPYREAN integrated platform N

Figure 27: The Decision Engine architecture, main components, and interactions................ 55
Figure 28: Decision Engine into CI/CD pipeline and deployment in ICCS’s K8s cluster........... 56
Figure 29: Decision Engine — Access Interface REST APl.........ooooviiiieieiiiiee e 57
Figure 30: Multi-agent operation across two EMPYREAN Associations for initial placement of

o] o] [ToF: 1 ToT a M o 0] (ol fo 1T oY/ ol TSR 57
Figure 31: Query results in the EMPYREAN regiStry.ccuiveiuieeiriiiieeeeniiieeessiieeessvneeeesnaeeeens 58

Figure 32: Service Orchestrator and EMPYREAN Controller architecture and its main
(ol] g 0] oTe] g 1= o | ST PP PUPUPPPRTN 60

Figure 33: Service Orchestrator and EMPYREAN Controller into EMPYREAN CI/CD pipeline and
their successful deployment in ICCS’s K8S CIUSTEN.cccveiieiiciiiiieieee e, 61

Figure 34: Setup for integration tests of Service Orchestrator and EMPYREAN Controllers. .62
Figure 35: Service Orchestrator REST APL.veeveii ittt e e e 62

Figure 36: Service Orchestrator REST APl — Methods related to inter-component
COMMUNICATION. Leeiiiiiiiiiiiitt et e ettt e e e e e s et e e e e e e e s saab bttt e e e eeeesaabrbeeeeeeeeesaannnsreeeeas 63

Figure 37: Orchestration Manager log messages while processing Decision Engine response
for the application placement. ... 65

Figure 38: Log messages from the EMPYREAN Controller operating on the ICCS Kubernetes

(ol [T PP UPR PP 66
Figure 39: Lifecycle of metrics gathering for an incoming execution.........cccccceevviieeeencinennn. 67
Figure 40: Metrics summary from metrics gathering process.cccceeeeevecvirreeeeeeeeeeeccvneeenn. 68
Figure 41: Overview of software-defined RDMA service operation.ccccovvvvveeeeeeieccnnnnnnn. 72
Figure 42: Available C functions in the RDMA Remote Ring library (librrr).......cccccoveeeeennen.n. 73
Figure 43: Characterization of the Eclipse Zenoh communication middleware. 74
Figure 44: Overview of Edge Storage Service COmpoNeNnts.ccccvvveeeeeeeieiiciirreeeeeeeeeeevneeen. 75

Figure 45: Example CI/CD pipeline run summary for one of the SkyFlok.com backend services.

.. 76
Figure 46: Output of BitBucket pipeline report on code coverage.cccceevmvvereeeeerieccnvnnnenn. 77
Figure 47: Privacy and Security Manager — Identity management REST API.ccccuuunneeee. 81
Figure 48: Privacy and Security Manager — Credential issuance REST API........cccccoeevennnnnnenn. 81
Figure 49: Privacy and Security Manager — JSW Signature REST APL.cccccvievieeiericcieeeen, 82

Figure 50: Privacy and Security Manager — Trusted Execution Environment (TEE) REST API. 82

empyrean-horizon.eu 8/118

(EIMPYREAN
D5.2 — Initial release of EMPYREAN integrated platform N

Figure 51: Privacy and Security Manager — Securing resources REST APl........ccccceeevvecnvnennnn. 83
Figure 52: The CTI ENGIiN€ REST APL. oottt e ettt e e et e e e e e e s nnnan e 85
Figure 53: EMPYREAN Telemetry Service deployment.coocccviiiiieiieiieccceieeeee e, 87
Figure 54: Telemetry Service Prometheus APloooiiiiiiiiiiie it 89
Figure 55: Telemetry Service AGENt REST APluiiii ittt 89
Figure 56: Analytics Engine architecture and core components.cccccoeevecvvieeeee e eeccevenneen. 91
Figure 57: Analytics Engine — Access Interface RESTfUl APl........cccveveeeiiiiiecciieee e, 92
Figure 58: Analytics Engine — Data Manager RESTfUl APL........ccoooviiieiciiiie e 92
Figure 59: Analytics Engine — Data Connector plug-ins RESTful northbound interface........... 93

Figure 60: Workflow for protecting and accessing resources in EMPYREAN, starting with the
Controller as the first protected resource. The Aggregator initiates protection, PSM
enforces policies via PEP/PDP, and all access is verified and immutably logged on
o] [o ol el 1 =1 1 o TR UEPRP 97

Figure 61: Secure attestation and decentralized identity integration flow involving
Manufacturer, Device, Attestation Server, and Blockchain.cccooeeeeieiiiiieiiicieeecene 98

Figure 62: Workflow of the EMPYREAN Privacy and Security Manager integrating RYAX and
Keycloak for attribute-based authentication and dynamic access control................... 100

Figure 63: EMPYREAN components and testbed setup for the Association setup operation

L0 . ettt et e b e e e bt e e s bae e s bt e e nareeenans 102
Figure 64: EMPYREAN web-based dashboard.ccveeeeiiiiiiiiiiiiiee e, 103
Figure 65: Association description parameters for initial integration scenarios. 103

Figure 66: EMPYREAN Registry - APl Gateway log messages during the definition of a new
EMPYREAN Association from the dashboard.cccoocuiiiiiiiiiiiin e, 104

Figure 67: Graph-based representation of the first Association within the Association
Metadata STOre SEIVICE. . ittt s e e e e e e e saneeas 105

Figure 68: A log screenshot from the Registry Manager capturing all these interactions is
[T go)Y 1o 1=Te I o<1 o 3.V RSP 106

Figure 69: Availability of two created Associations within the dashboard and their graph-
based representation. ... e e e 106

Figure 70: Mapping of selected worker nodes to Associations during the onboarding process.

Figure 71: Onboarding worker nodes through the EMPYREAN dashboard.cccccuvvneeee.. 108

empyrean-horizon.eu 9/118

(EIMPYREAN
D5.2 — Initial release of EMPYREAN integrated platform N

Figure 72: The two Associations along with the onboarding worker nodes within Association
(VI T Y -] o o TP PPPR PP 109

Figure 73: Edge Support Service Developer Dashboard: two associations retrieved from the

EMPYREAN REEISTIY. ..eeiiiiiiiiiiiiiie ettt ettt st s bt e e e b e e s s e e saneeeas 110
Figure 74: Edge Support Service Developer Dashboard: form for registering a new Edge
)] - T =1V o =TSSP 110
Figure 75: Step 1 - list of Edge Storage devices running in the Association...........c..ccc........ 111
Figure 76: Step 2 - summary of edge-only storage policy.cccceecvieeevciiiee e 111

Figure 77: Step 3 - four Edge Storage devices and the Edge Storage Gateway running locally
Lo 0 J= T =T o3 o o JA PR 112

Figure 78: Steps 5 and 6 - Simple Python script (left) that uses Amazon’s Boto3 library to access
the ESS and the results of running the script (right).cooovveeiiiiiii e, 112

Figure 79: Toy cloud-native application for inter-Association deployment demonstrator. .114

List of Tables

Table 1: Integration status of EMPYREAN components and interfaces.cccccceeevveeeecnnnennn. 18
Table 2: K8s and K3s clusters within the ICCS testbed.ccocveiiiiiiiiiiniiiieecee 20
Table 3: EMPYREAN CI/CD t€mMPIate. ..ccueeiereeeeeee ettt ettt et eree e e e s 27
Table 4: EMPYREAN Platform's Release ROadmap.cccuvveeeeeeeeiicinrieeeeeee e ee e 31
Table 5: Unikernel building - Bunnyfile syntaXccccvvveeeiieiieiiiiiiieeeee e 43
Table 6: NgINX BUNNYTILE .ot e e e e e e e e e e e e e e nraeeeeas 70
Table 7: Build urunc container image and push to a generic container image registry.......... 70
Table 8: K8s manifest to deploy a urunc-compatible imageccoceeeeeeiieiiciiieeeeeee, 70
Table 9: Overview of Association setup operation floW.........ccccvvveveeieeiieicciiiieeeee e, 102

Table 10: Overview of onboarding computational and storage resources operation flows.107

Table 11: Overview of operation flow for inter-association application deployment........... 113

empyrean-horizon.eu 10/118

D5.2 — Initial release of EMPYREAN integrated platform

%@MPYREAN

Abbreviations

ABAC
Al
AMQP
API
Cl/cD
CL
CNCF
CPU
CRI
CRUD
CTA
CTI

D
DAG
DICE
DID
DLT
ESS
FIFO
GDD
GHCR
GPU
1/0
IAM
loC
loT
JWT
K3s
K8s
KPI

M
MIG
MISP
ML
MQTT
NBI
NIC
OF
ORM
OTEL
p-ABC
PDP
PEP
PSM
RDMA

Attribute-Based Access Control
Artificial Intelligence

Advanced Message Queuing Protocol
Application Programming Interface

Continuous Integration and Continuous Deployment

Command Line Interface
Cloud-Native Computing Foundation
Central Processing Unit

Container Runtime Interface

Create, Read, Update, Delete

Cyber Threat Alliance

Cyber Threat Intelligence
Deliverable

Directed Acyclic Graphs

Device Identifier Composition Engine
Decentralized Identifier

Distributed Ledger Technology

Edge Storage Service

Fist-In First-Out

Generalized Data Deduplication
GitHub Container Registry

Graphics Processing Unit

Input / Output

Identity and Access Management
Indicator of Compromise

Internet of Things

JSON Web Tokens

Lightweight Kubernetes

Kubernetes

Key Performance Indicator

Month

Multiple-Instance GPU

Malware Information Sharing Platform
Machine Learning

Message Queue Telemetry Transport
Northbound Interface

Network Interface Card

Operation Flow

Object-Relational Mapping
OpenTelemetry

Privacy-Preserving Attribute-Based Credential

Policy Decision Point

Policy Enforcement Point
Privacy and Security Manager
Remote Direct Memory Access

empyrean-horizon.eu

11/118

D5.2 — Initial release of EMPYREAN integrated platform

%@MPYREAN

REST
RLNC
RNIC
TCP
TEE
TRL
Ul
uuID
\'[e
VP
WP
XACML
ZKP

REpresentational State Transfer
Random Linear Network Coding
RDMA NIC

Transmission Control Protocol
Trusted Execution Environment
Technology Readiness Level
User Interface

Universally Unique Identifier
Verifiable Credential

Verifiable Presentation

Work Package

eXtensible Access Control Markup Language

Zero-Knowledge Proofs

empyrean-horizon.eu

12/118

(EIMPYREAN
D5.2 — Initial release of EMPYREAN integrated platform N

1 Executive Summary

The EMPYREAN project aims to address a broad range of challenges that arise in the hyper-
distributed computing paradigm, which spans heterogeneous loT devices and computing,
storage, and connectivity resources. These resources may belong to different providers and
exist across various segments of the loT-cloud-edge computing continuum.

EMPYREAN introduces a novel approach centred on federations of collaborative resources
and functionalities, referred to as loT-Edge Associations or simply Associations. These
Associations are autonomously created and operated and seamlessly using the EMPYREAN’s
Al-enabled management framework. Within this Association-based continuum, distributed,
cognitive, and dynamic Al-enabled decision-making mechanisms balance computing tasks
and data both locally inside an Association as well as between federated Associations in a
decentralized, multi-agent setup. The ultimate goal is to optimize resources usage while
providing scalability, resiliency, energy efficiency, and quality of service.

EMPYREAN also addresses key challenges including: (i) device volatility and heterogeneity, (ii)
virtualization of continuum infrastructure and diverse network connectivity, (iii) optimized
and scalable service execution and performance, (iv) efficient resource utilization, including
energy usage, (v) trust, security, and privacy guarantees, (vi)reduce integration costs and
mitigate vendor lock-in, (vii) promotion of openness, adaptability, and data sharing, and (viii)
support for future edge services and data market.

This deliverable describes and accompanies the first iteration release of the EMPYREAN
platform. This initial release is based on the work carried out by the consortium initially to
define the system’s requirements and specifications, reported D2.1 (M6)[1], then to
incrementally design the EMPYREAN architecture and targeted operation flows (as described
in deliverables D2.2 (M7) [2] and D2.3 (M12), and finally to implement the relevant
functionalities within WPs 3 and 4 during the first iteration of the implementation phase (M1-
M15). The document outlines the functionalities implemented and integrated so far, targeting
a first subset of project objectives and use cases functionalities.

This alpha release of the EMPYREAN platform represents a preliminary implementation of
core functionalities, many of which are at the proof-of-concept stage. It enables early
integration testing and helps identify gaps along with their respective solutions. It also
outlines the roadmap for the upcoming beta and final releases, detailing the development
workflow, testbed setup, and integration procedures. To support ongoing development and
validation, the project has established a continuous integration and continuous deployment
(CI/CD) environment. Using this setup, the initial EMPYREAN release has been delivered,
demonstrating core platform functionality and serving as a proof-of-concept for most parts
of the architecture.

empyrean-horizon.eu 13/118

D5.2 — Initial release of EMPYREAN integrated platform

%@MPYREAN

2 Introduction

2.1 Purpose of this Document

The purpose of D5.2 is to introduce the Continuous Integration (Cl) and Continuous
Deployment (CD) process carried out in the EMPYREAN project during the preparation of the
initial release of its integrated platform. These DevOps practices aim to automate and
streamline the software development lifecycle. Here's a breakdown of each and how they
work together. The key steps for Cl are:

Code Commit: Developers commit code to a shared version control repository.

Automated Build: A CI tool (e.g., Jenkins, GitHub Actions, GitLab ClI) automatically
builds the code.

Automated Testing: Unit tests and other test suites (e.g., linting, static analysis) are
executed.

Feedback: Developers are notified of any errors or failures.

Continuous Delivery and Continuous Deployment (CD) continues from Cl and includes:

Artifact Packaging: Artifacts (e.g., Docker images, binaries) are packaged.

Staging Environment: Code is deployed to a staging environment for further testing
and validation (e.g., integration and smoke tests).

Deployment Approval (optional): Manual approval may be required for production
deployment, in the case of continuous delivery.

Production Deployment: If all checks pass, the system is deployed to production.

Monitoring & Rollback: Observability tools (e.g., Prometheus, Grafana) monitor the
deployment. Rollbacks happen if issues are detected.

2.2 Document Structure

The structure of D5.2 is as follows:

Section 2 presents the introduction.
Section 3 provides an overview of EMPYREAN platform and initial release status.
Section 4 presents the CI&CD process adopted for the EMPYREAN development.

Section 5 describes the implemented functionalities, testing, and initial integrations
for the EMPYREAN platform components.

Section 6 demonstrates how the components developed and integrated as part of the
initial EMPYREAN release support the key operation flows.

Section 7 concludes the deliverable.

empyrean-horizon.eu 14/118

(EIMPYREAN
D5.2 — Initial release of EMPYREAN integrated platform N7

2.3 Audience

This document is intended for software engineers, developers, analysts, and DevOps
practitioners. Software architects may find the CI/CD patterns and tooling choices insightful,
while end users can gain a better understanding of the complexity and rigor behind deploying
a secure and scalable edge-cloud platform like EMPYREAN.

empyrean-horizon.eu 15/118

(E]MPYREAN
D5.2 — Initial release of EMPYREAN integrated platform N7

3 The EMPYREAN Platform

3.1 EMPYREAN Architecture

The EMPYREAN architecture was initially introduced in Deliverable D2.2 “Initial Release of
EMPYREAN Architecture” (M7) and subsequently refined in its final form in Deliverable D2.3
“Final EMPYREAN architecture, use cases analysis and KPIs” (M12), incorporating feedback
from the first iteration of implementation activities. Deliverable D2.3 offers a comprehensive
overview of the system architecture, detailing the EMPYREAN components, their interfaces,
and the supported operational workflows. In this section, we provide a summary of the
architecture (Figure 1) to support the presentation of the initial release of the integrated

EMPYREAN platform.

EMPYREAN Use Cases

Monitoring & Service Layer Security, Trust,
Observability Layer & Privacy Layer
Workflow Dataflow Action Unikernels EMPYREAN
M Prog P i Builder SDK
Telemetry Service e p-ABC Library
Association Management Layer
- - EMPYREAN Aggregator EMPYREAN Registry Verifiable Data
Persistent Monitoring Registry
Data Storage
Multi-Cluster Orchestration Layer
n ~
Analytics Engine Service Orchestrator Decision Engine CilEngine
Resource Management Layer Data Management &
Interconnection Layer Privacy & Security
Telemetry Engine Al-enabled Workload EMPYREAN Manager
Autoscaling Controller Software-Defined loT Query
)) Unikernel Edge Interconnect Engine
Enviroment Packaging Depl t
Sploymeon Decentralized & Distributed Data
Contai L Manager Secure & Trusted
Monitoring Probes Lo‘:::l;;ngih:z:'l-:r Container Runtime Execution Environment
Edge Storage Edge Stora
Gateway 9 OLage

Hardware Acceleration Abstractions

-
£ e,

3 _‘4{

: - S -] =

P o &K EoE =2 G
2 &= = =

_é: 1oT / lloT Devices ON-PREMISE DEEP EDGE FAR EDGE CLouD

c

loT-Edge-Cloud Infrastructure

Figure 1: EMPYREAN high-level architecture.

The Service Layer encompasses components that facilitate the development of Association-
native applications, offering robust support for application-level adaptations,
interoperability, elasticity, and scalability across the loT-edge-cloud continuum. This layer
focuses on key aspects such as: (a) workflow design and management, simplifying the
creation and orchestration of hyper-distributed applications, (b) cloud-native unikernel
application development, supporting lightweight, secure, and efficient deployment models,

empyrean-horizon.eu 16/118

(E]MPYREAN
D5.2 — Initial release of EMPYREAN integrated platform N

and (c) dataflow description, enabling precise and scalable data management within
applications.

The Association Management Layer dynamically manages Associations within the loT-edge-
cloud continuum. Forming resource federations enables seamless collaboration, resource
sharing, and data distribution across various segments within the continuum. Together with
the Multi-Cluster Orchestration Layer, it is central to EMPYREAN’s distributed and
autonomous management, establishing a resilient Association-based continuum.

The Multi-Cluster Orchestration Layer handles service orchestration and resource
management across EMPYREAN's disaggregated infrastructure. Using autonomous,
distributed decision-making mechanisms, it orchestrates dynamic, hyper-distributed
applications while enabling self-driven adaptations. Multiple instances of this layer’s
components provide decentralized operation, optimize resource utilization, and ensure
scalability, resiliency, energy efficiency, and high service quality.

The Resource Management Layer unifies the management of 10T, edge, and cloud platforms
under the EMPYREAN platform. It integrates software mechanisms for both platform-level
scheduling (e.g., EMPYREAN Controller, Al-enabled Workload Autoscaling) and low-level
mechanisms (e.g., Unikernel Deployment). This layer operates within Kubernetes or K3s
clusters and offers modularity, simplifying the integration of new hardware and software.

The Data Management and Interconnection Layer ensures dynamic communication and
secure data storage between loT devices and computing resources. Operating at both cluster
and Association levels, it provides flexible and scalable data management and seamless
integration of loT, edge, and cloud resources. It also supports distributed operation,
facilitating efficient operation in complex, distributed environments.

The Security, Trust, and Privacy Layer ensures secure access, privacy, and trusted execution
across the EMPYREAN platform. Operating at both the cluster and Association levels, it
delivers distributed trust services, enables secure and trusted execution environments, and
provides controlled data access for guaranteeing data confidentiality and continuous
validation of trust among entities.

Finally, the Monitoring and Observability Layer integrates real-time monitoring,
observability, and service assurance components to provide full visibility and control over the
platform. It uses distributed and automated telemetry mechanisms to dynamically collect
diverse metrics from heterogeneous infrastructures and deployed applications. These
mechanisms continuously track the health, performance, and availability of IoT devices,
edge/cloud infrastructures, platform services, and applications, facilitating data-driven
decision-making and enabling advanced automation capabilities.

empyrean-horizon.eu 17/118

(EIMPYREAN
D5.2 — Initial release of EMPYREAN integrated platform N7

3.2 Initial Release Status

The initial release of the EMPYREAN platform comprises the components developed during
the project’s first implementation iteration (M1-M18). This version represents a partial yet
functional integration of the platform’s architecture, with each component delivering a
subset of the targeted features along with the primary interfaces required seamless for inter-
component communication.

The primary objective of this release is to deliver a working prototype that demonstrates the
core functionalities of the EMPYREAN platform, validating the design choices and enabling
early-state testing and feedback collection.

Table 1 provides a high-level overview of the platform components included in this release,
along with those scheduled for integration in the second release milestone (M30). A detailed
description of the components delivered in this first release is provided in Section 5.

Table 1: Integration status of EMPYREAN components and interfaces.

Layer Component Status at Second
First Release planned
(M18) Release
(M30)
Workflow Manager
DataFlow Programming
Service Layer | Action Packaging
Unikernel Building
EMPYREAN SDK
Association EMPYREAN Aggregator
Management EMPYREAN Registry
Layer
Multi-cluster Decision Engine
Orchestration Service Orchestrator
Layer
Al-Enabled Workloads Autoscaling
EMPYREAN Controller
Resource Environment Packaging
Management Unikernel Deployment
Layer Container Layers Locality Scheduler
Container Runtime
Hardware Acceleration Abstractions
Data ISo_lftware DEeflr.1ed Edge Interconnect
Management and N Query' ngine L
. Decentralized & Distributed Data Manager
Interconnection
Edge Storage & Edge Storage Gateway
Layer

empyrean-horizon.eu 18/118

.
©MPYREAN
D5.2 — Initial release of EMPYREAN integrated platform 7

p-ABC Library (UMU)

) Verifiable Data Registry
Security, Trust CTI Engine

and Privacy Layer | priyacy & Security Manager

Secure & Trusted Execution Environment

888N

Telemetry Service/Engine
Persistent Monitoring Data Storage
Analytics Engine

Monitoring Probes

Monitoring and
Observability
Layer

(<<

3.3 Integration Infrastructure

EMPYREAN leverages multiple distributed infrastructures, provided by its partners, to deliver
the necessary resources supporting integration, qualification, and release processes.

The infrastructure at ICCS offers a versatile testbed located at the HSCNL premises, designed
to accommodate a wide range of computing and networking requirements, including
virtualization, container orchestration, and secure remote access. It is built around a Proxmox
[3] cluster deployed over two dedicated physical servers (DELL PowerEdge R530 and DELL
PowerEdge R6515). Within this environment, two distinct clusters have been configured
Figure 2 to serve different operational needs: a Kubernetes (K8s) cluster and a Lightweight
Kubernetes (K3s) cluster, interconnected via a reconfigurable network setup. This dual-cluster
setup enables seamless orchestration of complex services and flexible resource allocation
across diverse environments, closely mimicking real-world deployment scenarios.

— - - - -

/

g U R S

B . \

% . |

' . V7 |

i . Q%’ o % = econs 1

1 . > .o

| .+ Jetson Orin Nano Tetson Orin Nano Raspberry Pi |
K3s Cluster

Figure 2: ICCS testbed — Computation and storage resources at K8s and K3s clusters.

empyrean-horizon.eu 19/118

(EIMPYREAN
D5.2 — Initial release of EMPYREAN integrated platform N

Table 2 summarizes the key characteristics of these clusters. They are utilized for deploying
the EMPYREAN control and management plane components, creating Associations, as well as
running containerized workloads.

Table 2: K8s and K3s clusters within the ICCS testbed.

Name Overview Worker Node Characteristics
K8s 1 x master node 3 x worker nodes on VMs, each one:
4 x worker nodes architecture: amd64
8 CPU cores
16 GB RAM
160 GB DISK

1 x Jetson Orin Nano, each one:
architecture: armé4
6 CPU cores
8 GB RAM
64 GB DISK
hardware acceleration (GPU)

K3s 1 x master node 2 x Jetson Orin Nano, each one:
3 x worker nodes architecture: armé4

6 CPU cores

8 GB RAM

64 GB DISK

hardware acceleration (GPU)
1 x Raspberry Pi 4, each one

architecture: armé4

4 CPU cores

8 GB RAM

32 GB DISK

empyrean-horizon.eu 20/118

(E]MPYREAN
D5.2 — Initial release of EMPYREAN integrated platform N

4 Development and Integration Environment

4.1 Continuous Integration (CI/CD) and Continuous
Deployment Process

EMPYREAN embraces Continuous Integration and Continuous Deployment (CI/CD) practices
to establish a standardized, automated workflow for developing, testing, and releasing its
software components. This approach serves two primary goals: (i) to support developers in
evaluating and optimizing the performance of their services, and (ii) to address the concerns
of service operators when integrating third-party services into their infrastructure. This
section highlights the pivotal role of CI/CD in EMPYREAN’s development pipeline.
Acknowledging their importance, our strategy is carefully designed to improve efficiency,
enhance reliability, and accelerate delivery of software components across the platform.

Continuous Deployment (CD) ensures that every validated code change pass through all
pipeline and is then deployed into production. Validated features are first tested in a staging
environment and then seamlessly promoted to production environment without manual
intervention. This process aims to reduce time-to-market, lower deployment risks, and
improve operational efficiency by delivering small, incremental updates to end users in a
reliable and cost-effective manner.

In a Continuous Integration (Cl) environment, developers frequently merge new or modified
code into a shared codebase. The CI/CD pipeline embodies a set of practices and tools that
enable teams to deliver high-quality code more frequently and reliably. It achieves this by
automating the build and testing processes, validating code both locally and at the integration
level before it is merged into the mainline. This continuous feedback loop significantly
accelerates release cycles, enhances debugging efficiency, and streamlines overall
development efforts.

Figure 3 illustrates these pipeline steps that the EMPYREAN platform implements.

1. The first step of the pipeline is when the developers commit their code source to the
code source repository®. The Cl triggers the building process.

2. The CI triggers the run of the internal testing process. If the testing is successful
pipeline continues to the next step.

Packages are deployed to staging in a Kubernetes environment
Packages are also deployed in the Docker registry

Deploy to production. this step can be set up automatically or manually.

S A o

Monitor the application testing/usage by the application developer, alert if there are
issues

LEMPYREAN - Source code repository in GitHub. https://github.com/empyrean-eu

empyrean-horizon.eu 21/118

https://github.com/empyrean-eu

N
(EMPYREAN
D5.2 — Initial release of EMPYREAN integrated platform 7

JONONS

Microservice -02

DOCKER CLUSTER

OF . YOS g

KUBERNETES DOCKER
REGISTRY

DOCKER HOST - 02

Figure 3: Generic Continuous Development, Continuous Integration (CD/CI) pipeline.

4.1.1 Integration Testing Approaches

For the integration test for the different EMPYREAN components, three different approaches
were considered:

e Top-Down Approach (incremental): The top-down approach begins integration from
the top-level modules and progresses downward. Stubs are used to simulate lower-
level modules during early testing. While this approach validates high-level
functionality early and can identify major design flaws, it delays testing of lower-level
modules and requires the time-consuming development of stubs. Consequently,
integration issues in lower-level modules might only surface late in the process.

e Bottom-Up Approach (incremental): Conversely, the bottom-up approach starts from
the lowest-level modules and moves upward, using drivers to simulate higher-level
modules. This method allows for early validation of lower-level functionality, making
it easier to identify and fix defects in these modules. However, high-level functionality
is tested late, and the development of drivers can also be time-consuming, leading to
potential delays in discovering integration issues in higher-level modules.

e Big-Bang Approach (non-incremental): The Big-Bang approach involves integrating all
modules simultaneously and testing the complete system. This approach offers
comprehensive testing of the entire system, faster integration, and immediate
identification of interaction issues. It simplifies management by eliminating the need
for stubs and drivers. However, debugging can be challenging due to the simultaneous

empyrean-horizon.eu 22/118

D5.2 — Initial release of EMPYREAN integrated platform

%@MPYREAN

integration of many components, and identifying the source of defects can be
complex. This method requires all modules to be ready for integration simultaneously.

The Big-Bang integration approach has been selected for the EMPYREAN project due to the

following key advantages:

Holistic Validation: EMPYREAN integrates multiple complex components that must
function together seamlessly from the beginning.

Faster Integration: Enables quicker development cycles, essential for meeting project
deadlines.

Immediate Feedback: Allows for rapid identification and resolution of integration
issues across components.

Resource Efficiency: Eliminates the need for stubs and drivers, optimizing resource
use.

Simplified Management: Centralizes integration into a single, manageable phase.
Best Fit for Tested Modules: Components in EMPYREAN will undergo thorough unit
testing, making them suitable for Big-Bang integration.

4.1.2 Integration Workflow

The integration process follows a similar workflow to the generic CI/CD pipeline. EMPYREAN’s

components integration is automated through GitHub Actions, using the Big-Bang approach

to test all modules as a unified system.

Figure 4 illustrates the component’s integration pipeline Steps:

1. Code source commit: an EMPYREAN developer pushes code to the project GitHub
repository (RYAX), triggering the pipeline.

2. Workflow Trigger: a GitHub Actions workflow is automatically triggered by the
commit.

3. Build: the goal is to build an image in the GitHub Runner.

4.1 Code Quality Analysis: the code is analysed using SonarQube to ensure it meets
quality standards.

4.2 Unit Testing: individual components are tested in isolation to verify their
correctness.

5. Integration Testing: components such as for example the Privacy and Security
Manager (PSM) and RYAX Workflow Engine are tested together to validate their
interactions within the system.

6a. Publish: if all checks the quality, unit-test, and integration tests pass, a Docker
image is built and published to the GitHub Container Registry (GHCR).

empyrean-horizon.eu 23/118

(EIMPYREAN
D5.2 — Initial release of EMPYREAN integrated platform N7

6b. Fail Build: if any check fails, the workflow stops and the image is not published.

7. Test Reporting: generates a detailed test report, providing visibility into the status
and results of the executed tests.

Github Runner

2. Workflow Tri
Github ‘ arkilow Trigger - e Github Actions @ [
; I .
Repository (RYAX) ‘ 7 o Workflow = 4.1 Code quality analysis
c —
: b2 sonarqQube |
A
6b. Fall build 4.2 Unit Testing
1. Commit Y “
Github Container 5. Integration testing
Registry (GHCR)

Github Action: » é
TestReporter |
AN 4

Empyrean Developer

Figure 4: EMPYREAN’s components integration workflow.

Integration Requirements for EMPYREAN
Afterwards, to ensure effective integration, the following requirements must be met:

1. Unit Testing: each component must include comprehensive unit tests.

Load and Performance Testing: scripts and guidelines for performance validation
must be in place.

3. Dependency Mapping: all dependencies (e.g., libraries, tools, frameworks) must be
documented per module.

4. Integration Testing: designed to verify component interactions, including API calls and
service relationships.

5. Dockerfiles: each component must have a Docker file for consistent containerization.
Docker-Compose File: defines multi-container orchestration and service
relationships.

7. Environment Configuration: clear setup instructions, environment variables, and
config files.

8. API Documentation: complete and accessible API specs, including endpoints, data
formats, and authentication.

empyrean-horizon.eu 24/118

(EIMPYREAN
D5.2 — Initial release of EMPYREAN integrated platform N7

Key Components of GitHub Actions Workflow

In the official EMPYREAN GitHub repository [4] there are workflow definitions that describe
what actions should be taken when a specific event occurs. Workflows are defined in YAML
files stored in the “.github/workflows” directory of the project repository.

The main elements of these workflows are:

e Jobs: Ajobis a collection of steps that are executed together on the same runner. Jobs
are the main building blocks of a workflow, defining what tasks need to be done. A
workflow can have one or more jobs that run either in parallel or sequentially,
depending on the established conditions (Figure 5).

e Steps: These are individual steps within a job. Each step can execute a bash command
or a specific GitHub Action. Steps are executed in order within the context of the job.

e Actions: These are reusable commands that can be used in steps to perform specific
tasks (e.g., checking out code, running tests, setting up environments). GitHub
provides a large number of predefined actions, and users can also create custom
actions tailored to their needs.

= O empyrean-eu / service-orchestrator & Q TyDc—B:o search 8 - + -) n
<» Code () Issues Il Pullrequests () Actions [Projects [0 Wiki () Security |~ Insights 81 Settings

4 Service Orchestrator

@ FotisKouzinos is building the Service Orchestrator #1 Re-run all jc

I (] Summary

Triggered via push 2 weeks ago Status Tatal duration Artifacts
Jobss FotisKouzinos pushed - 9c1d39b main Success 1m 54s -
° Service-Orchestrator

service-orchestrator.yaml
on: push

Run details
) Usage
AN workflow file

@ Service-Orchestrator ~ 1m 40s

Figure 5: lllustration of the Service Orchestrator job in the GitHub repository.

Secrets in GitHub

Secrets in GitHub are sensitive values, such as APl keys or access tokens, that are securely
stored and used in GitHub Actions workflows. Secrets are encrypted and only accessible by
the repository's workflows. Adding secrets to EMPYREAN Repository is as simple as executing
the following steps in the GitHub repository, see Figure 6:

empyrean-horizon.eu 25/118

N
(EMPYREAN
D5.2 — Initial release of EMPYREAN integrated platform 7

In the Settings tab of the repository.
In the left menu, select Secrets and variables and then Actions.
Click on New organization/repository secret.

P wnRE

Enter the name and value of the secret and click on Add secret.

Go to your organization profile

@ EMPYREAN - Horizon Europe Project

Organization & Switch settings context ~

€ General Actions secrets and variables
a5 Policies w
Secrets and variables allow you to manage reusable configuration data. Secrets are encrypted and are used for
Access sensitive data. Learn more about encrypted secrets. Variables are shown as plain text and are used for non-sensitive
data. Learn more about variables.
= Billing and licensing b
Anyone with collaborator access to the repositories with access to a secret or variable can use it for Actions. They are
(D Organization roles ¥ not passed to workflows that are triggered by a pull request from a fork.

[] Repository roles

Ax Member privileges Secrefts Variables
& Import/Export
) Organization secrets New organization secrat
[Moderation v
Hame =t Visibility Last updated
Code, planning, and automation
m] Repository . ﬁ HARBOR_PASSWD All repositories 4 months ago & G
&\ Codespaces v -
a HARBOR_USER All repositories 4 months ago & u
3 Planning v
&3 Copilot W
(‘) Actions b

& Webhooks
L) Discussions
) Packages
[Pages

8} Hosted compute networking

Security

() Authentication security

(&) Advanced Security v
p Deploy keys

[l Compliance

\?} \ferified and approved domains

[*] Secrets and variables g

Actions

Codespaces

Dependabot

Figure 6: Adding secrets to EMPYREAN Repository.

Using Secrets in a Workflow

To reference a secret in a GitHub Actions workflow, we can use following the syntax
${{secrets.NAME OF SECRET}}.

This allows developers to securely inject sensitive information into workflow steops without
exposing them in plain text.

empyrean-horizon.eu 26/118

(EIMPYREAN
D5.2 — Initial release of EMPYREAN integrated platform N

Necessary Secrets for the Build Job of the Workflow

To ensure proper execution of the build job within the EMPYREAN CI/CD pipeline, a series of
secrets must be configured in the GitHub repository.

Table 3 presents a detailed overview of the EMPYREAN CI/CD template.

Table 3: EMPYREAN CI/CD template.

EMPYREAN'’s ci-template.yml

1 name: CD/CI Pipeline

2 on: push

3

4 jobs:

5 build:

6 runs-on: [base-dind-2204-arm64]

5

8 steps:

9 - name: Checkout the repository

10 uses: actions/checkout@v3

11

12 - name: SonarQube Analysis

13 uses: SonarSource/sonarqube-scan-action@v2
14 env:

15 SONAR TOKEN: S{{ secrets. SONAR TOKEN 1} }
16 SONAR_HOST URL: https://sonarqube.k8s-ants.inf.um.es
17

18 - name: Set up Python

19 uses: actions/setup-python@v3

20 with:

21 python-version: 3.9

22

23 - name: Install dependencies

24 run: |

25 python -m pip install --upgrade pip

26 pip install -r requirements.txt

27

28 - name: Run unit tests inside runner system
29 run: |

30 export PYTHONPATH="S$PYTHONPATH:S (pwd)"
31 pytest tests/

32

33 - name: Build Docker image

34 run: docker build -t empyrean-eu/template-image:latest
35

36 - name: Run tests inside Docker container
37 run: |

38 docker run --rm empyrean-eu/template-image:latest pytest tests/
39

40 - name: Set up Docker Buildx

41 uses: docker/setup-buildx-action@v3

42

43 - name: Login to GitHub Container Registry
44 uses: docker/login-action@v3

empyrean-horizon.eu 27/118

(EIMPYREAN
D5.2 — Initial release of EMPYREAN integrated platform N

45 with:

46 registry: ghcr.io

47 username: ${{ github.actor }}

48 password: ${{ secrets.GITHUB TOKEN }}
49

50 # Push Docker image to Docker Hub

51 - name: Push Docker image

run: docker push ghcr.io/empyrean-eu/template-image:latest

Workflow name
name: CD/CI Pipeline

Workflow Triggers
The workflow is configured to automatically run whenever any changes are made and pushed

to the repository.
on: push

Jobs

The workflow defines a single job named build, which contains a series of steps to build and
test and push the Docker image based on the repository code. The build job runs on a self-
hosted runner that we select using the following tags:

jobs:
build:
runs-on: [base-dind-2204-arm64]
Repository Checkout

This step uses the action actions/checkout@v3 to check out the repository's source code
into the workspace. This allows subsequent steps to access the source code needed to build,
test and push the Docker image.

steps:

- name: Checkout the repository

uses: actions/checkout@v3

Code quality analysis
In this step, the action sonarqube-scan-action@v2 is used in order to launch a code
quality analysis in the server https://sonarqube.k8s-ants.inf.um.es that will
provide information about test coverage, code smells, hotspots, maintainability, reliability,
duplications, and security.
- name: SonarQube Analysis
uses: SonarSource/sonarqube-scan-action@v2
env:
SONAR TOKEN: ${{ secrets.SONAR TOKEN }}
SONAR HOST URL: https://sonarqube.k8s-ants.inf.um.es

empyrean-horizon.eu 28/118

(EIMPYREAN
D5.2 — Initial release of EMPYREAN integrated platform N

Python Setup
This step uses the action actions/setup-python@v3 to set up the python version that is

needed by the repository code. In this workflow the python version used is the 3.9.
- name: Set up Python
uses: actions/setup-python@v3
with:
python-version: 3.9

Dependencies Installation
In this step, the command pip install is used to install the dependencies needed by the
repository code that are defined in the requirements.txt file. Before doing so, it is

recommended to upgrade pip.
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install -r requirements.txt

Unit Tests before Build

This step is meant to run the unit tests inside the runner system before building the image.
This shows the test results without having to build the image, which saves the building time
in case an output with errors in the pushed code is found. This guarantees a less time-

consuming workflow.
- name: Run unit tests inside runner system
run: |
export PYTHONPATH="$PYTHONPATH:$ (pwd) "
pytest tests/

Build Docker Image
This step builds the Docker image using the docker build command. The image is tagged

as template-image:latest, which specifies the image name and tag.
- name: Build Docker image
run:| docker build -t empyrean-eu/template-image:latest

Docker Container Unit Tests
In this step the tests run in the previous step are now run inside the docker container which

makes sure the building process worked properly and the image is built as expected.

- name: Run tests inside Docker container

run:docker run --rm empyrean-eu/template-image:latest pytest
tests/

Docker Buildx Setup

This step sets up Docker Buildx, a tool that enables the building of multi-platform Docker
images. The action docker/setup-buildx-action@v3 is used to prepare the build
environment.

empyrean-horizon.eu 29/118

A
(E]MPYREAN
D5.2 — Initial release of EMPYREAN integrated platform N7

- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3

Login to GitHub Container Registry
In this step, the login to GitHub Container Registry is performed using credentials stored in

repository secrets. The secret GHCR_TOKEN provides the authentication token.
- name: Login to GitHub Container Registry
uses: docker/login-action@v3
with:
registry: ghcr.io
username: S${{ github.actor }}
password: ${{ secrets.GITHUB TOKEN }}

Push Docker Image

Publishing the Docker image to the GitHub Container Registry using the following command.
- name: Push Docker image
run: docker push ghcr.io/empyrean-eu/template-image:latest

4.2 Platform Release Plan

The implementation, integration, validation, and delivery of EMPYREAN developments follow
a structured, phased approach (Figure 7) designed to ensure a systematic and iterative
progression towards the project’s objectives and the release of the final platform. Each phase
builds upon the outcomes of the previous one, enabling smooth transitions from
requirements analysis and development, to integration and the deployment of a fully
functional platform. This approach incorporates continuous feedback and incremental
improvements through the development lifecycle.

D53

D3.1.D032 MS10
D23 D4.1.D42 D5.1,D52 D33.D43 P D6.1 D54, 062
MS4 MSS5, MS7 MS9 MS6, MS8 | MS12 MS11
[[[T [[
Feb Jan April Jul March May Jul Jan
24 25 25 25 26 26 26 27
(m1) (M12) (Mm15) (m18) (M26) (m28) (M30) (M36)

Initial Platform Release

Final
requirements &
architecture

Platform Initial

WP3-4 initial EMPYREAN
requirements orchitecture devels

de s Initial Rel

Full Platform Release

WP3-4 finol UCs final EMPYREAN
devel s devel s Full Rels

M26 M28 M30
Final Platform

KPis &
N EMPYREAN

hodok Final Rels
g

M30 M36

Figure 7: EMPYREAN's platform release roadmap.

empyrean-horizon.eu 30/118

(EIMPYREAN
D5.2 — Initial release of EMPYREAN integrated platform N

In line with this strategy, the EMPYREAN platform is planned to be delivered through three
major milestones, presented in Table 4.

Table 4: EMPYREAN Platform's Release Roadmap.

Milestone Deadline (date)
Initial platform release M18 (July 2025)
Full platform release M30 (July 2026)
Final platform release M36 (Jan 2027)

It is important to emphasize that each phase utilizes an agile approach to Continuous
Integration and Continuous Deployment (CI/CD), as discussed in the previous subsections.
This method enables us to respond effectively to advancements in the field and emerging
technological trends while allowing for continuous improvement based on real-world
experimentation.

D5.2 marks the successful release of the initial version of the EMPYREAN platform, developed
during the first iteration of the project’s implementation (M4—M15). In this version, each
component delivers a subset of its intended functionality, along with the core interfaces
required for inter-component communication. The initial release serves as a foundational
prototype that effectively demonstrates the core capabilities of the EMPYREAN platform
while also offering valuable insights and feedback to guide the second development iteration
(M18-M36).

Building upon this foundation, the full platform release will extend the prototype by
incorporating the remaining functionalities not included in the initial version. As the
development activities within the technical work packages (WP3 and WP4) conclude by M26,
the full release is scheduled for M30. Its objective is to deliver a fully integrated and feature-
complete platform, ready to support pilot deployments and experimentation. The final
release, to be delivered at the end of the project (M36), will focus on refining the platform
based on insights gathered from the final evaluation and the demonstration of the project’s
use cases.

By following this structured and iterative development approach, the EMPYREAN consortium
ensures a smooth and effective transition from concept to a fully operational and exploitable
platform, in alignment with the project’s technical goals and stakeholder needs.

empyrean-horizon.eu 31/118

(E]MPYREAN
D5.2 — Initial release of EMPYREAN integrated platform N

5 EMPYREAN Platform Components

This section describes in detail the platform components, each of which delivers a subset of
the targeted features along with the primary interfaces required for inter-component
communication.

5.1 Service Layer

5.1.1 Workflow Manager

The Ryax platform is architected as a collection of modular, containerized microservices
orchestrated by Kubernetes to enable flexible, scalable, and fault-tolerant deployment of
data processing workflows. Based on the initial analysis provided in D4.1 (M15), two critical
microservices in this architecture are Studio and Runner. While the Studio microservice
enables users to define and configure workflows in a low-code, declarative manner, the
Runner microservice is responsible for executing those workflows and managing their
runtime behavior. The following sections detail these services from two perspectives: their
design and purpose within the platform, and their technical interfaces and integration points
within the Ryax system, preparing the way to integrate with other EMPYREAN components.

This section presents the functional roles and architectural responsibilities of the Studio and
Runner microservices in the broader context of the Ryax platform. While both services
operate independently, they are closely integrated: Studio acts as the control layer that
defines workflows, and Runner is the data execution layer that brings them to life. Together,
they support Ryax’s core objective, enabling users to design and deploy end-to-end data
automation pipelines on cloud, edge, and hybrid infrastructures with minimal operational
overhead.

Studio

The Studio microservice is the central component responsible for managing the lifecycle and
configuration of workflows in the Ryax platform. It empowers users, through both graphical
and programmatic interfaces, to create, edit, and deploy complete data processing
applications composed of modular building blocks called actions (triggers, processors,
publishers). It offers a low-code, declarative workflow design environment, allowing users to
define workflows as Directed Acyclic Graphs (DAGs) using an intuitive Ul or YAML-based
configurations. Each node (action) in the workflow can process data, produce outputs, and
pass results downstream in a well-defined data stream model.

Internally, it is implemented as a stateless HTTP REST API using Python. It uses a PostgreSQL
database to persist workflow definitions, metadata, and configurations, and applies an ORM
(Object-Relational Mapping) layer for maintainable and structured data management. Studio
abstracts the complexity of defining data analytics pipelines and container-based
deployments. It is tightly integrated with Ryax’s internal services such as the Repository,

empyrean-horizon.eu 32/118

(EIMPYREAN
D5.2 — Initial release of EMPYREAN integrated platform N

Action Builder, and Runner, acting as the control plane for pipeline definition and
deployment.

Runner

The Runner microservice is the execution engine of the Ryax platform. It is responsible for
managing the runtime behavior of workflows defined via the Studio service. Once a workflow
is deployed, Runner orchestrates the execution of each action, handles task scheduling and
data flow, collects logs, and manages execution metadata.

Runner supports containerized, distributed execution over Kubernetes-managed
infrastructures and communicates with deployed actions using gRPC. It integrates with Ryax’s
MinlO-based Filestore to handle execution inputs and outputs, and uses RabbitMQ as its
internal messaging broker for service coordination.

Designed to handle execution at scale, Runner ensures that workflows are executed
efficiently, that tasks are retried upon failure, and that results are stored and made available
via structured APIs. It also exposes real-time monitoring capabilities to allow users and
administrators to track the progress of executions across distributed resources.

Integration and Interfaces
Studio

The Studio microservice exposes a comprehensive RESTful API (Figure 8) that is consumed by
both the Ryax WebUI (Angular-based frontend) and the Ryax CLI (Python-based tool). These
interfaces allow users to interact with the platform visually or programmatically.

The API, defined in an OpenAPI (Swagger) specification, includes endpoints for:

e Workflow lifecycle management: Create, update, delete, and retrieve workflows.

e Action and workflow structure management: Define and link triggers, processors,
and publishers as part of a DAG.

¢ Input/output configuration: Specify and manage action parameters and data flow.

e Deployment and monitoring metadata: Track deployment state, trigger executions,
and view errors.

e Project-level variables: Inject reusable parameters and configurations across
workflows.

empyrean-horizon.eu 33/118

D5.2 — Initial release of EMPYREAN integrated platform

=
'@MPYREAN

Monitoring ~
|m /healthz check serice sioi v|
Workflows ~
|m JworkFlows it an worknows .
| JWworkFlows Create aworknows -8
|m /workTlows/schema/get et sson weksan schems - 8
|m /workflows,/ {workFlow_id} set e ucrinon vy
|m Jworkflows/ {workflow_id} upsse oo -8
’ Jworkflows/{workflow_id} oeiese warkiow v e
|) /workflows,/import impont worknow v a
| fworkflows/{workflow_id} /deploy Depioywarkniow ~
| /workflows/{workTLow_id}/stop Sicpwerknow sepioymers o
I G /workflows/{workflow_id}/export Exmortaworkdon “ B
|m fworkflows/{workflow_id} /export emoraworndiow ~ B
| /worklows /schema/validate chesk ira guen werknow schema iz vaii o
|m /42/workfLows /{workTLow_id} setone werkson s actois - @
|m /v2/workfLows /{workflow_id}/Links updese woriow irss - 8
[/v2/workflows /{workflow_id}/results cetwondow resuns ~ B
|m Jv2/workflows/{workflow_id}/results cetwardiow e v @
|m /2/workTLows /{Workflow_id}/results cuereie werkson resuts o
’ fv2/workflows /{workflow_id}/run-results setwantiow resuis contiguation ~ B
|m /v2/workflows /{workflow_id}/run-results cetwarkiow results cantiguation v B
l /2 /workflows /{workflow_id}/endpoint et waridiow endpant ~
|m /v2/workflows/{workflow_id}/endpoint et woridiow endpant ~ B
|m Jv2/workflows/{workflow_id}/endpoint upseic wonnow enapain v @
Actions ~
|m J/modules vistan acsons ~ |
|m /modules/list_categories vLstalaction categories v~ |
|m /modules/{module_id} Ge:one scuon 2 “ |
l /modules/{module_id} Deicte aaction v e]
’ /modules/{module_id}/logo Getone loge ~]
|m /modules/{module_id}/loge cetone ioge ~ @ |
l /static/logo/{module id} Getoneioao v @]
|m /static/logo/{module_id} Getoneioao v B |
’ /modules/{module_id}/list_versions cetactionversins ~]
|m /modules/{module_id}/list versions setacion versions ~ |

empyrean-horizon.eu 34/118

AN
EMPYREAN
D5.2 — Initial release of EMPYREAN integrated platform "

Workflow Actions ~
| Jworktlows/{workflow_id}/modules At scoon towarktow v @ |
|m fworkflows/{workflow_id} /modules/{workflow_module_id} upsat= workiow acton v a |
’ /workflows/{workflow_id}/modules/{workflow_module_id} eicte actin from werktiow v @]
| Jworkflows/{workflow_id} /modules/{workflow_module_id}/change version update workdow acticn version ~ B |
| /v2/workflows /{workflow_id}/modules add acson io workion wit nk o |
|m /v2/workflows/{workflow_id}/modules/{workflow_action_id}/objectives updateworknow action cojectves v B |
|m /v2/workflows/{workflow_id}/modules/{workflow_action_id}/constraints uUpdate worksow acticn constramts Rt |

Workflow Actions Links ~
| Jworkflows/{workflow_id}/modules-1inks ad scon ikt ok “ @ |
’ Jworkflows/{workflow_id} /modules-links/{workflow_module Llink_id} Deiet= action ink from workdaw ~]

Workflow Action Outputs ~
|m J/workflows/{workflow_id}/modules-outputs Searchinalaction cutputs avallabie In warkfiow LY |

Workflow Actions Inputs ~
|ﬂ J/workflows/{workflow_id} /modules/{workflow _module id}/inputs Listanworkfiows acson inputs ~ @ |
|m Jworkflows/{workflow_id}/modules/{workflow_module id}/inputs/{workflow_input id}/value updniewarkiow action input ~ @ |
[Jworkflows/{workflow_id} /modules/{workflow_module_id}/inputs/{workflow_input_id}/file oDete worknow acson nput e v]

Workflow Actions Outputs ~
|m /workflows/{workflow_id} /modules/{workflow_module_id}/outputs Listaiworknons scoon utpuiz v @ |
| Jworkflows/{workflow_id} /modules/{workflow_module id}/outputs Asd cutputts workaow action Ly |
|m /portals/{workflow_id}/modules/{workflow module_id}/outputs Listanwerknons acton sutputs - @ |
|m Jworkflows/{workflow_id} /modules/{workflow_module id}/outputs/{workflow_dynamic_output_id} updsic cutput n worksow action v B |
[J/workflows/{workflow_id}/modules/{workflow_module_id}/outputs/{workflow_dynamic_output_id} oeiet= cutput inwarktiow action v B]

Workflow Actions Static File Input ~
| Jworkflows/{workflow_id}/modules/{module_id}/inputs/{workflow_input_id}/file Updateworiow action input v static e v B |

v2 ~
|m Jv2/workfLows /{workfLow_id} set ons worksw win esais -8 |

Workflow Actions 10 ~
|m /w2 /workflows/{workflow_id}/modules/{workflow module_id} Upcate 10 ot weeksw actian v 8 |

Project Variables ~
[Jv2/user-objects Lista propct variaies o]
|m Jv2/user-objects Listal project variabies o O |
| /v2/user-objects Aodrrojec variabie Ly |
[/v2juser-objects/{project_variable id} etane project vasiaie abect ~ @]
|m /v2/user-objects/{project_variable id} etane project vasintie abect v @ |
|m /v2/user-objects/{project_variable id} update aFrojectvariabe v a |
I /v2/user-objects/{project_variable id} Deweteone project variasie v B]
| /w2/user-objects/file Upioas e as project variasie value = o |
|m /v2/user-objects/{project_variable id}/file update fieproject vorabie valse v B |

Figure 8: Ryax Studio - RESTful API.

empyrean-horizon.eu 35/118

(EIMPYREAN
D5.2 — Initial release of EMPYREAN integrated platform N7

Studio interacts with other internal services such as: (i) Repository to import or discover
actions from Git, (ii) Action Builder to package and prepare actions for deployment, and (iii)
Runner to trigger executions and manage runtime coordination.

All service-to-service communication occurs over HTTP or asynchronous message passing via
RabbitMQ. Authentication and authorization are enforced through integrated user
management services.

Runner

The Runner APl exposes the interfaces (Figure 9) required to manage workflow execution,
track their status, and access runtime results and logs. It complements the Studio API by
operationalizing workflow definitions into executable tasks. The API is organized into the
following key functional areas:

e Execution lifecycle management: Interfaces to start, cancel, and monitor workflow
runs, as well as manage run history and execution metadata.

¢ Live monitoring and observability: Endpoints to access execution logs (both batch and
streaming), deployment events, and system health checks.

e Portal access: Workflow triggering mechanisms designed for end-user or third-party
access via portals.

e Data handling: APIs to retrieve results, download execution outputs, and access
intermediate files stored during execution.

e Security and access control: Functionality for APl key management and user
authentication for protected operations.

e Infrastructure awareness: Interfaces for querying available execution sites and
collecting accounting data on resource usage.

Monitoring ~
Jrunner/healthz check service status v

Workflows ~
/runner/portals/{workflow_definition_id} cetaponal v

Portals ~
Jrunner/portals/{workflow_definition id} ceta porial v
Jrunner/portals/{workflow_definition_id} Trigger a new workilow run v

Executions ~
/runner/portals/{workflow_definition_id} migger a newworkiow run ~

Runs ~
Jrunner/workflow_runs Listworkflow runs o7
Jrunner/workflow_runs/{workflow_run_id} cetaworkfiow run v

‘ m Jrunner/workflow_runs/{workflow_run_id} oelet= aworkiow run A

Jrunner/workflow_runs/{workflow_run_id}/cancel cancelaworkfiow run v

empyrean-horizon.eu 36/118

s
i®MPYREAN
D5.2 — Initial release of EMPYREAN integrated platform "

Execution Logs ~
|m Jrunner/workflow_runs/{execution_result_id}/logs cetanexecuiionlog v B |
l Jrunner/ws/runs/{execution_result_id} et exscution login stream v B I
|m Jrunner/ws/runs/{execution_result_id} cetexecution og in sueam v B |

Sites ~
l Jrunner/sites Listof available Sites v B I
|m /runner/sites Listof available Sites o |
Filestore ~
/runner/filestore/{stored_file id}/{filename} Dounioad fe v a]

‘ﬂ /runner/filestore/{stored_file id}/{filename} Dounioad e v a |
Workflow Results ~
/runner/results/{workflow_run_id} cetthe results for a workflow with user auth v]
‘ Jrunner/results/{workflow_run_id} et the results for a worklow with user auth v B |
[Jrunner/run-results/{workflow_run_id} Get the results for a workfiow v B l
‘E /runner/run-results/{workflow_run_id} Getthe results for a woridfiow v B3 |
User Api Keys ~
‘m Jrunner/user-auth/api-key Aoduser apikey v B |
[/runner/user-auth/api-key/{user_api_key_id} Delete user apikey o l
‘m /runner/user-auth/api-key/{user_api_key_id}/revoke Revke userpikey v @ |
PUT /runner/user-auth/api-key/toggle Enable or disable user agi key v
User Auth ~
Jrunner/user-auth Get project user auth auth v B]
‘E Jrunner/user-auth cGetproject user auth auth v a |
Logs ~
[/runner/ws/workflows/{workflow definition_id} GetService or Trigger deployment log in stream v e]
‘ﬂ Jrunner/ws/workflows/{workflow definition id} GetService or Trigger deployment log in stream v B |
Trigger ~
[/runner/ws/workflows/{workflow_definition_id} GetService or Trigger deployment log in stream o l
‘ /runner/ws/workflows/{workflow_definition_id} GetService or Trigger deployment log in stream v B |
Service ~
[/runner/ws/workflows/{workflow definition_id} et Service or Trigger deployment log in sream v B]
‘ﬂ Jrunner/ws/workflows/{workflow definition id} et Service or Trigger deployment kg in stream v B |
Accounting ~
Jrunner/accounting Getaccounting v &]

‘E /runner/accounting Getaccountng v a8 |

Figure 9: Ryax Runner - RESTful API.

These APls enable seamless integration of Runner with Ryax’s internal monitoring tools, such
as Prometheus, Grafana, and Loki, as well as with orchestration systems like Kubernetes and
resource-aware scaling mechanisms. Runner also exposes WebSocket endpoints to enable
real-time streaming of logs and deployment events, ensuring robust operational visibility.

empyrean-horizon.eu 37/118

(EIMPYREAN
D5.2 — Initial release of EMPYREAN integrated platform N

All communication with Runner is authenticated and scoped to user projects, supporting
multi-tenant deployments and secure access control. Internally, it uses gRPC to communicate
with action containers and Protobuf-encoded messaging via RabbitMQ for event dispatching
across services.

5.1.2 Dataflow Programming

The dataflow programming component is implemented on top of the Eclipse Zenoh network
protocol [5]. In the following paragraphs, we provide a high-level understanding of the
component’s structure, main components, and how they work together to enable distributed
computations spanning from cloud to edge devices.

Zenoh-Flow [6] is a Zenoh-based data flow programming framework designed for
computations that span from the cloud to the device. The system enables users to define,
deploy, and manage distributed dataflows using a declarative approach with dynamic node
loading and runtime management capabilities. The system architecture is depicted in Figure
10, it maps directly to the specific Rust crates and modules, providing a clear separation of
concerns across the distributed dataflow processing pipeline.

enoh_flow_runtime

Runtime Engine

Tt Dynamic Loader zfctl binary
Instance Management Node Library Loading Command Line Interface

zenoh/ flow_commons

Nodeld Portid Runtimeld Instanceld

HashMap, Re> Arc Arc Zenohid Arc

LinkMessage Input/Output
Data Container Typed Channels

Figure 10: Dataflow framework core components.

The Dataflow component is organized as a Rust workspace containing multiple
interconnected crates, each serving specific functionality within the distributed dataflow
system.

Integration and interfaces

The command-line interface for Zenoh-Flow is called zfctl, which is used to deploy and
manage the dataflow instances. It supports the commands to cover the essential workflow
from starting daemons to deploying and controlling dataflow instances.

Before starting a new dataflow implementation, the application engineer needs to have the
following pre-requisites:

e A working Zenoh network (zfctl connects as a peer with multicast scouting by default)
e Compiled node libraries available for the dataflows
e Access to dataflow descriptor files in YAML format

empyrean-horizon.eu 38/118

(EIMPYREAN
D5.2 — Initial release of EMPYREAN integrated platform N

Start Here

Check Zenoh Network

Alternative: | ocal Testing

Local Flow Start Daemon
(zfctl run-local) (zfctl daemon start)

Create Instance
(zfctl instance create)

Start Instance
(zfctl instance start)

Monitor Status
(zfctl instance status/list)

Control Instance
(start/abort/delete)

Stop/Delete Instance

Figure 11: Dataflow getting started workflow.

The typical workflow involves three main phases: daemon management, dataflow
deployment, and instance control, see Figure 11. Detailed information can be found in the
Online Zenohflow tutorial [5].

5.1.3 Action Packaging

The Action Packaging component of EMPYREAN is realized through two distinct services
within the Ryax architecture: the Repository and the Action Builder. These microservices form
the backbone of Ryax's action development pipeline, enabling the seamless integration of
user-defined logic into workflows. They allow custom actions to be scanned, built, and made
available within the Ryax ecosystem.

The Repository service handles source control integration and action registration, while the
Action Builder compiles those actions into runnable components using a deterministic build
process. This section describes their responsibilities and integration pathways.

empyrean-horizon.eu 39/118

(EIMPYREAN
D5.2 — Initial release of EMPYREAN integrated platform N

This section highlights the functional roles of the Repository and Action Builder microservices.
These components enable extensibility in Ryax by providing users with tools to onboard
custom logic, manage versioning, and ensure reliable and reproducible builds. This
extensibility is central to Ryax’s low-code, empowering users to easily incorporate domain-
specific code without manual packaging or orchestration.

Repository

The Repository microservice is responsible for integrating external Git repositories into Ryax.
Users can register repositories (e.g., on GitHub or GitLab), scan their contents for Ryax-
compliant action definitions, and trigger builds of those actions. It serves as the source
management and synchronization layer in the Ryax architecture. Internally, Repository stores
metadata about imported repositories, actions, and their build status using a PostgreSQL
database, abstracted via an ORM. It exposes a RESTful HTTP API and is accessible via both the
WebUl and CLI.

Once an action is scanned and a build is triggered, the Repository forwards the build request
to the Action Builder service. Upon successful build completion, it registers the built action
with the Studio's action store, making it immediately available for use in workflow
construction. This microservice ensures a clean separation between source integration, build
execution, and workflow design, enabling a robust, scalable, and CI/CD-friendly approach to
managing custom actions.

Action Builder

The Action Builder microservice is responsible for compiling and packaging user-defined Ryax
actions received from the Repository service. It enforces build isolation, dependency
resolution, and reproducibility using the Nix package manager, a purely functional system
designed to create deterministic builds. Build requests are processed sequentially and
synchronously, with each build occupying the entire builder service until completion. This
design simplifies resource usage and debugging, although it limits concurrency to one build
at a time per builder instance.

The Action Builder performs the following steps for each build:
1. Validates the action's structure and metadata.
2. Resolves and installs required dependencies using Nix.
3. Packages the action into a Docker-compatible runtime unit.
4. Notifies the Repository service upon completion or failure.

As a purely backend component, Action Builder does not interact directly with the user-facing
WebUl or CLI but acts as a worker that listens for instructions from Repository. It
communicates results via API callbacks and logging channels.

empyrean-horizon.eu 40/118

(E]MPYREAN
D5.2 — Initial release of EMPYREAN integrated platform N

Integration and Interfaces

This section explains how the Repository and Action Builder services integrate with broader
Ryax system. Exposed via REST APIs and documented with OpenAPI, they support seamless
integration with automation tools, CI/CD systems, and Ryax's internal services. They are
accessible through both CLI and WebUI for streamlined development workflows.

Repository

The Repository API (Figure 12) provides endpoints that allow users to:

e Manage Git repositories: Add, update, delete, and retrieve source repositories
(/sources, /v2/sources)

e Scan repositories: Detect Ryax-compatible action definitions from Git-based sources
(/v2/sources/{id}/scan)

e Trigger action builds: Initiate builds for all or individual actions in a repository
(/v2/sources/{id}/build, /modules/{id}/build)

e Manage repository actions: List or delete imported actions (/modules, /modules/{id})

e Handle build operations: Cancel ongoing builds either per action or per repository
(/v2/actions/{id}/cancel_build, /v2/sources/{id}/cancel_all_builds)

e Monitor health: Check service status (/healthz)

The WebUI uses the API to enable developers to link external code and build Ryax actions
directly from the browser. Similarly, CLI-based users can automate action imports and
updates within CI/CD pipelines. The Studio service is notified upon successful builds, allowing
actions to be added to the platform’s shared action catalog.

Internally, the Repository communicates with the Action Builder through REST-based build
request calls and uses PostgreSQL to track repository state, action metadata, and build
history.

Action Builder

Although it does not expose user-facing endpoints directly, the Action Builder operates via a
dedicated internal interface used exclusively by the Repository service. It performs one build
job at a time, processing incoming tasks in FIFO order.

Key integration characteristics include:
e Tightly coupled build queue: Build jobs are dispatched directly from Repository as
synchronous API calls.

e Nix-based reproducibility: Ensures that all dependencies for custom actions are
resolved in a clean, sandboxed environment.

e Result reporting: Status updates (success or failure) are relayed back to the
Repository, which then triggers any required downstream actions, such as Studio
registration or error notification.

empyrean-horizon.eu 41/118

(E]MPYREAN
D5.2 — Initial release of EMPYREAN integrated platform N7

Because of its dependency on Nix and synchronous job model, Action Builder is typically
deployed with constrained concurrency, but it can be horizontally scaled with job distribution
logic in the Repository for high-volume environments.

Monitoring ~
/healthz check service stats ~
Repositories ~
/sources List all repositories v1 AV
/sources Addgit repo v
/V2/S0Urces Listall git repos v
/sources/{source_id} cetone git repo(v1) ~
/sources/{source_id} updsie gii repo ~
|m /sources/{source_id} oelete gii_repo ~
/v2/sources/{source_id} cetone git repo ~
/v2/sources/{source_id}/scan scan giirepo s
/v2/sources/{source_id}/build suid all actions from last scan in this git repo ~
Repository Actions ~
/modules List all actions o
|m /modules/{module _id} oDelete repasitory action “
/modules/{module_id}/build euid repository action L3

/v2/actions/{action_id}/cancel_build cancelan action build ~

/v2/sources/{source_id}/cancel_all builds cancelall action builds ~

Figure 12: Action Packaging — Repository microservice RESTful API.

5.1.4 Unikernel Building

Traditional cloud-native deployments use POSIX-like containers, which can be inefficient for
lightweight tasks such as network services or serverless functions. The Unikernels Builder
(Bunny) enables deployment of unikernel images, single-purpose, bootable VMs without
extra dependencies, fulfilling EMPYREAN’s need for secure, scalable, lightweight applications
across loT-edge-cloud environments.

Bunny automates building, packaging (OCl-compatible), publishing, and deploying unikernel
apps, and integrates with container registries and Kubernetes via urunc, allowing unikernels
to runin standard cloud-native deployment workflows.

With Bunny, EMPYREAN achieves flexible deployments that minimize memory footprint, boot
time, and attack surface, crucial for edge and embedded systems in sensitive contexts.

Integration and interfaces

To align with current cloud-native standards, Bunny supports OCl-compliant image packaging,
ensuring compatibility with popular container registries and orchestration platforms.

empyrean-horizon.eu 42/118

(EIMPYREAN
D5.2 — Initial release of EMPYREAN integrated platform N

Applications intended for unikernel deployment can now leverage a familiar interface akin to
Dockerfile, allowing developers to define build steps, dependencies, and runtime
configuration in a declarative manner. This streamlined workflow lowers the barrier for
onboarding and integration, as existing containerization knowledge translates directly to the
unikernel packaging process.

Bunnyfiles offer a Dockerfile-like experience tailored specifically for unikernel builds. Table 5
shows the currently supported options for a bunnyfile. Building such an OCl image is done via
the generic Docker interface (docker build -f Bunnyfile -t TAG ./context).

Table 5: Unikernel building - Bunnyfile syntax

#syntax=harbor.nbfc.io/nubificus/bunny:latest # [1] Set bunnyfile syntax for automatic recognition from buildkit.
version: vo.1 [2] Bunnyfile version.

+*

platforms:
framework: unikraft
version: v0.15.0
monitor: gemu
architecture: x86

[3] The target platform for building/packaging.

[3a] The unikernel framework.

[3b] The version of the unikernel framework.

[3c] The hypervisor/VMM or any other kind of monitor.
[3d] The target architecture.

HoHHHH

rootfs: # [4] (Optional) Specifies the rootfs of the unikernel.
from: local # [4a] (Optional) The source or base of the rootfs.
path: initrd # [4b] (Required if from is not scratch) The path in the source,
where the prebuilt rootfs file resides.
type: initrd # [4c] (optional) The type of rootfs (e.g. initrd, raw, block)
include: # [4d] (Optional) A list of local files to include in the rootfs
- src:dst
kernel: # [5] Specify a prebuilt kernel to use
from: local # [5a] Specify the source of a prebuilt kernel.
path: local # [Sb] The path where the kernel image resides.
cmdline: hello # [6] The cmdline of the app.

5.2 Association Management Layer

5.2.1 EMPYREAN Aggregator

The EMPYREAN Aggregator forms the management fabric of the Association-based
continuum, enabling seamless coordination and control of distributed resources and services.
The Aggregator oversees resource provisioning, workload scheduling, and interconnection
across Associations. Aggregators interact not only with each other but also with underlying
edge infrastructures and multi-cloud environments, ensuring cohesive, scalable, and adaptive
management. This structure enables localized decision-making while maintaining global
coordination, promoting efficiency and autonomy.

empyrean-horizon.eu 43/118

A
(E]MPYREAN
D5.2 — Initial release of EMPYREAN integrated platform N7

N [T T EMPYREAN
Aggregator

1
|
I
I
: EMPYREAN
| Aggregator
= Dispatcher !
I
I
I
I
- I
I
State [}
Management

\
b
2
1]
L]
g
<
¥

A 4

'
EMPYREAN
Services

Privacy & Security Manager Service Orchestrator

Edge Storage Gateway ‘ Decisision Engine

Distributed Data Manager Ryax Runner

Telemetry Engine

Analytics Engine

EMPYREAN Aggregator

Figure 13: EMPYREAN Aggregator architecture.

The Aggregator consolidates multiple EMPYREAN services and components (Figure 13). It
serves as an abstraction point between Service and Multi-Cluster Orchestration layers,
ensuring composability and interoperability across the continuum. Further details on the
design and initial design of this component can be found in D4.2 (M15) [7].

Integration and interfaces

The EMPYREAN Aggregator is a cloud-native application developed in Python. Its core services
are containerized and managed using Kubernetes for orchestration. To enable efficient
development and integration, the Aggregator is fully integrated into the EMPYREAN CI/CD
pipeline. After the testing phase, container images of the related services are automatically
built and made available in the official EMPYREAN image repository. Additionally, all
necessary Kubernetes deployment descriptors, such as ConfigMaps, Deployments, and
Services, are provided to facilitate automated deployment and lifecycle management within
the EMPYREAN integration infrastructure, see Figure 14.

empyrean-horizon.eu 44/118

s
i®MPYREAN
D5.2 — Initial release of EMPYREAN integrated platform g

Empyrean-Aggregator Qu Sesrch logé o ®
succeeded 2 days ago in Tm 42s
> @ Setupjob 0s
> @ Check out code 15
> @ Create configuration folders os
> @ Create aggregator_apijson o0s
> @ Create aggregator_state_manager,json os
> @ Build Aggregator Rest AP| Docker Image 48s
> @ Build Service Aggregator State Manager Docker Image
> @ Run Aggregator Rest API container in detached mode 1s
> @ Run Service Orchestrator Manager container in detached mode 15
> @ Create unittest_confjson os
> @ RunTests 25
> @ Login to Docker Hub 0s
> @ Push Docker Image to Docker Hub Aggregator API
> @ Push Docker Image to Docker Hub Aggregator State Manager 15
> @ Create Empyrean Namespace
> @ Setup K8s Secret os
> @ Create ConfigMap from aggregator_apijson 3
> @ Create ConfigMap from aggregator_state_manager.json 15
v @ apply manifests 2s

1 »Run echo “Applying Kubernetes manifests”

a9 Applying Kubernetes manifests

10 deployment.apps/aggregator-api unchanged

11 service/aggegator-api-service unchanged

12 deployment.apps/aggregator-state-manager unchanged

13 Kubernetes manifests applied successfully
> @ Post Check out code os
> @ Complete job 0s

Figure 14: EMPYREAN Aggregator into CI/CD pipeline and deployment in two K8s clusters.

The API Gateway provides two northbound interfaces (NBIs): (i) a REST interface (Figure 15)
exposed to core EMPYREAN orchestration and management services, such as EMPYREAN
Registry and Workflow Manager, and (ii) a gRPC interface exposed to the rest of the
EMPYREAN Aggregators.

Aggregator Services A~

fapi/vlfaggregator/services Gelavailable EMPYREAN services integrated within the Aggregator, v

fapi/vifaggregator/services Registera new EMPYREAN service within the Aggregalor s

fapi/vifaggregator/services Update an EMPYREAN service within the Aggregator. N

m fapi/vi/aggregator/services/{service_id} Getdetails for a specific EMPYREAN service within the Aggregator %

| @ /apifvi/aggregator/services/{service_id} Delete a specific EMPYREAN service within the Aggregator. '
Associations ~

fapifvifaggregator/associations Gelavalable Associations managed by the Aggegalor. v

fapifvl/aggregator/associations Registera new Asscoation s

PUT fapi/vi/aggregator/associations Update anAssociation configuration ~

m J/api/fvl/aggregator/associations/{association_id} Getdetails for a speific Association A

| @ fapi/vifaggregator/associations/{association_id} Delete aregistred Associabion from the Aggregator L

fapi/vifaggregator /associations/analysis Assess the effects of an Association configuration change in the operation of deployed applications. A

empyrean-horizon.eu 45/118

S
®MPYREAN
D5.2 — Initial release of EMPYREAN integrated platform 7

Deployments ~

GET fapi/vi/aggregator/{association_id}/deployments Gelappiication deployments within the specified Association '

fapi/vl/aggregator/{association_id}/deployments Requesta new application deployment within the specified Association “
fapi/vl/aggregator/{association_id}/deployments Update a specific application deployment request v
/api/vl/aggregator/{association_id}/deployments/analytics_engine Registera new apphcation deployment for service assurance analytics ~
| GET ' /api/v1/aggregator/{association_id}/deployments/{deployment_id} Getdetailsfor a speific application deployment within the Association v
m fapi/vl/aggregator/{association_id}/deployments/{deployment_id} Delete an application deployment from the Association ~
Resources ~
| fapi/vl/aggregator/{association_id}/resources GethighJevel overview of avalable computational and sorage resources within the Association ~
fapi/vl/aggregator/{association_id}/resources Update avaiable resources high-level description within the Association (v
fapi/vl/aggregator/{association_id}/resources Remove resources from the Association s
GET] fapi/vl/aggregator/{association_id}/resources/{resource_id} Geldescrption of specific resource within the Association v
Artifacts ~

/api/vl/aggregator/{association_id}/artifacts

= Get overview of available arfifacts (e.g., OCl images, deployment descriptors, etc) within the Association. N
Jfapi/vifaggregator/{association_id}/artifacts Updale available arifacts (e.g, OCl images, deployment descriplors, etc) within the Association ~

m fapi/vl/aggregator/{association_id}/artifacts Delete artifacts (e.9., OCIimages, deployment descriplors, elc) from the Association A
SET Jfapifvl/aggregator/{asscciation_id}/artifacts/{id} v

Get informabion for a specific artifact (e.g., OCI images, deployment descriplors, elc) within the Association

Figure 15: EMPYREAN Aggregator — APl Gateway RESTful API.

We provide representative interactions among the EMPYREAN Aggregator and other
EMPYREAN platform components to facilitate core operational flows. These examples
highlight both REST and gRPC-based communications, covering actions such as onboarding
resources, retrieving information, and supporting cross-Aggregator coordination.

Association with the Aggregator assighment for management

When a new Association is defined, the APl Gateway of the EMPYREAN Registry notifies the
corresponding Aggregator to take control for managing and coordinating the Association. This
is achieved by invoking the following POST method exposed by the Aggregator’s RESTful API.

POST /api/vl/aggregator/associations

{"uuid": "ebel2f54-a9cb-476a-b930-4befb0236fce", "name": "ICCS Default Association"”,
"labels": ["platform-arch:amdé64", "platform-arch:armé64"], "aggregator_uuid":
"a2b66fa3-3f13-416b-8644-56328e0dedba", "owner_uuid":"71c1642b-69c9-4e25-abcc-
ddall6e8becd", "policy uuid":"5c@eedl6-31a8-467d-83db-ef1010466755", "description":""}

Figure 16 presents the log messages from the EMPYREAN Aggregator.

empyrean-horizon.eu 46/118

A
(E]MPYREAN
D5.2 — Initial release of EMPYREAN integrated platform N7

ebel2f54-a9¢b-476

tion 'ICCS D ion' with UUID ‘ebel2f54-ad9cb-476a-b930-4befbo236fce’

Figure 16: Log messages from the EMPYREAN Aggregator.

Onboarding computational resources

During the onboarding process, the resource owner provides the EMPYREAN Aggregator,
responsible for managing the targeted Association, with a description of the resource's
characteristics and applicable policies. The Aggregator then performs the overall process,
orchestrating the necessary interactions with various EMPYREAN services, including the
EMPYREAN Registry. This is achieved by invoking a PUT request to the Aggregator, where the
request body specifies the resource type (via the resource_type field) and resources identity
parameters (via the resources field). Below is an example illustrating the onboarding of three
worker nodes belonging to two different clusters

PUT /api/vl/aggregator/ebel2f54-a9cb-476a-b930-4befb0236fce/resources

{ "resource_type": "computing_resources","resources": [{"kind":
"worker_node","cluster_uuid":"7628b895-3a91-4f0c-bob7-

033eab309891", "machine_id":"02e257de949c4486b85bad36ec983663", "name": "wnl-
paros","policy uuid":"dd9ceff4-667e-4704-bb06-88e3272cbb27","owner_uuid":"8a99c456-
ff60-44aa-8a79-ca58feofeb2d"}, {"kind" : "worker_node", "cluster_uuid":"7628b895-3291-
4f0c-bob7-033eab309891", "machine_id":"dc156c5469db44cObe8121e8b94e31f6", "name": "wn2-
serifos”,"policy_uuid":"dd9ceff4-667e-4704-bb06-88e3272cbb27","owner_uuid":"8a99c456-
ff60-44aa-8a79-ca58feofeb2d"}, {"kind" : "worker_node", "cluster_uuid": "2b@5cfdf-679f-
45f1-95f8-a334ec87faaf", "machine_id": "f51aa228c77741e797f8d8febac29efe", "name": "wnl-
ios","policy_uuid": "dd9ceff4-667e-4704-bb06-88e3272cbb27","owner_uuid":"8a99c456-
ff60-44aa-8a79-ca58fe9f6b2d"}]}}

Association with UUID: ‘ebel2f54-a9cb-476a-b930-4be

ry for the
(1): 147.1

oard HTTP/1.1" 201 2

Log messages from the EMPYREAN Registry and graphical representation of the updated
Association information within the Association Metadata Store service.

INFO:EMPYREAN Registry - API Gateway:Incoming request to onboard resources at Association with UUID 'ebel2f54-a9cb-476a-b930-4befbo236fce’
INFO:EMPYREAN Registry - ray:0nboard computing resources
INFO:EMPYREAN Registry - API Gateway:Update Association object

INFO:EMPYREAN Registry - API Gateway:Inform Association Metadata Store service for the newly onboarded resources
DEBUG:urllib3.connectionpool:Starting new HTTP connection (1): 147.102.16.114:30086
DEBUG:urllib3.connectionpool:http://147.102.16.114:30086 "PUT /api/vl/association metadata store/associations HTTP/1.1" 200 2

empyrean-horizon.eu 47/118

A
(E]MPYREAN
D5.2 — Initial release of EMPYREAN integrated platform N7

Overview
/ \ jocs et
e pasos. focs.ed
\ 3 Node labels
abet 2), é&:::gg}
Romes EdgeStorage (2) Cluster (2) | WorkerNode (3)
(") Relationship types
>
\ \)
wrizsen | N/ LA .
\ { \
\\ /)
~ Displaying 12 nodes, 0 relationships,
v \
2005ctar (amatd
O ‘\\7 /
wnt s

Figure 17: Graphical representation of the updated Association information within the Association Metadata
Store service.

Onboarding edge storage resources

Edge storage devices are onboarded in a similar manner to Associations. The Storage Service
makes a PUT request to the corresponding Aggregator, supplying the required configuration
details. Upon receiving this request, the Aggregator updates its internal state accordingly and
notifies the EMPYREAN Registry to reflect the updated capabilities of the Association. The
following request onboards two edge storage devices within Association with UUID
“ebel2f54-a9cb-476a-b930-4befb0236fce”.

PUT /api/vl/aggregator/ebel2f54-a9cb-476a-b930-4befb0236fce/resources

{"resource_type": "storage_resources", "resources": [{"edge_storage uuid":"7381fd0a-
ce7e-401e-86b0-c163c1fB6c93", "name": "ICCS-edge-storage-1", "lat":37.983810,
"lng":23.727539}, {"edge_storage uuid":"263020f1-5f19-4420-a358-2edb905798aa", "name":
"ICCS-edge-storage-2", "lat":37.983810, "lng":23.727539}]}

Log messages from the EMPYREAN Aggregator.

INFO:EMPYREAN Aggregator API Gatey 7. 2.141:54774 "PUT /ap
INFO: EMPY N Aggregator API Gate D ailable resources resou r h 2154-2 - b936-4befbo236fce
EMPYREAN Aggregator - A t , t storage resources 5 ‘edg ge uuid '7381fd0a-ce7e-401e-86b0-c163c1fH6¢93"
1 ': 23.727539}, {'edge storage uuid': '263020f1-5f19-44a0-a358-2edb905798aa’', 'name’': 'ICCS-edge-storage-2

s olatts
INFO:EMP
INFO: EMPY s nboard storage resources

'2' new storage resources for onboarding
storage uuid': '7381fdéa-c 0le-86b6-c f06c93" ICCS-edge-stor: ', 'lat': 37.98381, 'l
5f19-44a0-a358-2edb905798aa ‘ICCS- a 98381, 'l 539}]
ssociation wit : 'ebel2f54-a9¢cb-476a-b930-

nboarded resources
rm EMPYREAN R
sw HTTP connecti
7.102.16.114:30150 "PU

Log messages from the EMPYREAN Registry and graphical representation of the updated
Association information within the Association Metadata Store service.

AN Registry Al C ng nl d resources at Association with UUID 'ebel2f54-a9cb-476a-b930-4befbo236fce
AN Reg r
EMPYREAN - A We 4 t ‘7381fd6a-ce7e-401e-86b0-c163¢c1fO6c93", : 'ICCS-edge-storage-1', ‘lat': 37.98381, 'lng': 2
9 b965798aa', 'name’': 'ICCS-edge-storage- ‘lat': 37.98381, 'lng’: 23.727539})

INFO: (REAN Registry - A a . St ce for the newly onboarded resources
DEBUG:urllib3 :Sta B g): 147. .16.11 0086
DEBUG:urllib3.c tionp :http://147.102.16.114:30086 "PUT /api/vl/association metadata store/associations HTTP/1.1" 260 2

empyrean-horizon.eu 48/118

S
EMPYREAN
D5.2 — Initial release of EMPYREAN integrated platform 7

Overview
.
fo) @ Node labels
'_\ / .
EdgeStorage (2)

- 2 3 @ Relationship types
y- o e .

Displaying 7 nodes, 6 relationships.

o) CED

Figure 18: Graphical representation of the updated Association information within the Association Metadata
Store service.

Association details

The Aggregator exposes a RESTful endpoint that allows the retrieval of detailed information
about a managed Association. The following GET method returns details for the Association
with UUID “ebel2f54-a9cb-476a-b930-4befb0236fce”, including information on the
onboarded computing and storage resources under its management.

GET /api/vl/aggregator/associations/ebel2f54-a9cb-476a-b930-4befb0236fce

"uuid":"ebel2f54-a9cb-476a-b930-4befb0236fce", "name":"ICCS Default Association",
"labels":["platform-arch:amdé64","platform-arch:arm64"], "aggregator_uuid":"a2b66fa3-
3f13-416b-8644-56328e0dedba", "owner_uuid":"71c1642b-69c9-4e25-abcc-
ddall6e8becd", "policy uuid":"5c@eedl6-31a8-467d-83db-
ef1010466755", "description”:"", "status":"READY", "clusters":["7628b895-3a91-4f0c-bob7-
033eab309891"], "storage_resources":[{"edge_storage_uuid":"7381fd0@a-ce7e-401e-86b0-
cl63c1fe6c93", "name" : "ICCS-edge-storage-1", "lat": 37.98381,"lng":
23.727539},{"edge_storage_uuid": "263020f1-5f19-4420-a358-2edb905798aa", "name": "ICCS-
edge-storage-2","lat": 37.98381,"1lng":

23.727539}], "computing resources":[{"cluster_uuid": "7628b895-3a91-4f0c-bob7-
033eab309891", "machine_id":"02e257de949c4486b85ba436ec983663", "name" : "wnl-
paros"},{"cluster_uuid": "7628b895-3a91-4f0c-bob7-

033eab309891", "machine_id":"dc156c5469db44cObe8121e8b94e31f6", "name" : "wn2 -
serifos"}],"schedulable": true, "created at": 1750087208, "updated_at": 1750087217}

5.2.2 EMPYREAN Registry

The EMPYREAN Registry plays a central role in enabling coordination, management, and
governance across the EMPYREAN platform’s complex, distributed environment. Acting as a
unified entry point, it supports both core platform services and third-party entities by
enabling the discovery, cataloguing, and advertising of Associations, services, and
infrastructure components within the Association-based continuum.

empyrean-horizon.eu 49/118

(E]MPYREAN
D5.2 — Initial release of EMPYREAN integrated platform N7

Key responsibilities of the Registry include:

e Facilitating the registration and lifecycle of loT devices, edge, and cloud resources
within Associations.
e Maintaining up-to-date information on available Associations, their associated
services, and the mapping of resources to each Association.
Capturing and managing the relationships between users and Associations, ensuring
consistent and policy-compliant platform behaviour.

(77

REST | gRPC t o Data
: . a z
| © FastAPlr JLU | e : Registry Manager Connectors Psrlvacyt;‘
ecuri

\& API Gateway Manager
() . Verifiable

Container = m& ® ‘ M @ Data Data Registry

iae End Manager Manager

Repository Association :

Q DISTRIBUTION Metadata Store Service Catalogue

Figure 19: EMPYREAN Registry architecture.

Its architecture, see Figure 19, consists of seven core services, each exposing well-defined
interfaces to support interoperability, extensibility, and robust communication across
platform components. Further details on the design and initial design of this component can
be found in Deliverable D4.2 (M15) [7].

Integration and interfaces

The work during the initial phase covers the implementation of the APl Gateway, Association
Metadata Store, Service Catalogue, and Container Image Repository components. The
Container Image Repository is based on the CNCF Distribution Registry?, an open-source
stateless and highly scalable storage and content delivery system that holds named container
images and other content, available in different tagged versions. The other components are
implemented in Python and are containerized to ensure portability and isolation. The modular
architecture allows individual services to evolve independently while interacting through
internal REST APIs, ensuring loose coupling and ease of maintenance.

To streamline development, testing, and deployment workflows, the Registry is integrated
into the EMPYREAN CI/CD pipeline (Figure 20).

2 https://distribution.github.io/distribution/

empyrean-horizon.eu 50/118

(E]MPYREAN
D5.2 — Initial release of EMPYREAN integrated platform

1) Summary

K8s-Push

| @ K8s-Push

Run details
¥ Usage

&) Workflow file

O 0 0 000000 0 0 0 0 0 0 0 0 0 00

Figure 20: EMPYREAN Registry into EMPYREAN CI/CD pipeline.

Container images for the developed Registry components are automatically built and pushed
to the EMPYREAN image repository. Corresponding Kubernetes YAML descriptors are
maintained to support automated deployment in test, staging, and production environments
(Figure 21).

(venv) - $ kubectl -n empyrean get pods
NAME READY STATUS RESTARTS
registry-api-6489f77554-v6q8d 1/1 Running

registry-association-metadata-6455988999-q2lwd 1/1 Running
registry-manager-66677cd67-zpxjp 1/1 Running
g o []

Figure 21: EMPYREAN Registry components successful deployment in ICCS’s K8s cluster.

The APl Gateway exposes a RESTful interface to enable stateless communication and provide
external access to Registry’s services. This interface is designed to support low-complexity
interactions, such as registering new resources, querying available Associations, and
retrieving service metadata. Incoming requests to the APl Gateway are forwarded to the
Registry Manager, which serves as the internal coordination point. The Registry Manager
processes requests and interacts with other core components, including the Association
Metadata Store, to fetch or update information related to Associations and their registered
services.

empyrean-horizon.eu 51/118

s
i®MPYREAN
D5.2 — Initial release of EMPYREAN integrated platform g

Figure 22 shows the available REST methods, covering key operations for external entities to
interact with the Registry securely and consistently. All endpoints are documented using the
OpenAPI specification.

Registry Services ~
/api/vi/registry/services Gelavaiable EMPYREAN services integrated within the Registry v

/api/vi/registry/services Addanew EMPYREAN service within the Regstry v

iE

/api/vi/registry/services Update an EMPYREAN service within the Regslry 3
GET /api/vi/registry/services/{service_id} Getdsatails for a specific EMPYREAN service within the Registry v

/api/vl/registry/services/{service_id} Delete a specific EMPYREAN service within the Registry v

/api/vi/registry/images Getoverview of available OCl-compliant mages within the Contaner Image Repository. v

L2 I8 /api/vi/registry/images Addanew OCl.compkant image to the Container Image Repository v

- Il = 3
(1]
. w
>

/api/vl/registry/images Updale avalable OCI-compiant image wihin the Container Image Repository v

/api/vi/registry/images/{image_id}
Get information for a spectfic OCl.compatible image from the Contanes Image Reposiory

/api/vi/registry/images/{image_id} Delete an OCl.comphiant mage from the Container image Repository v

/api/vi/registry/images/fetch/{image_id} Fetcha specific OCl.compatible image from the Container Image Repository v

Association Metadata ~

BN /api/vi/registry/associations Getavaiable Assocabons in the Association Metadata Siore v

/api/vi/registry/associations AddanewAssocation m the Association Metadata Store v

/api/vl/registry/associations Update anAssocation m the Associaton Metadata Store v

Japi/vl/registry/associations/{association_id} Gel detais for a speciic Assocaton v

BEES SN /api/vi/registry/associations/{association_id} Delsle aregstred Association from the Association Metadata Store A%

T

GET Japi/vi/registry/associations/query Query the Assocaton Metadata Stoce to find Associaions with Cortain charactenstcs v

Figure 22: EMPYREAN Registry — APl Gateway RESTful API.

The Association Metadata Store aggregates metadata from multiple distributed Associations.
Its primary function is to maintain structured information about each Association’s
participating resources, workload, sharing policies, and other governance rules. This enables
effective coordination, trust, and intelligent orchestration across the Association-based
continuum. The service provides a RESTful API (Figure 23) to support integration with other
EMPYREAN Registry services and EMPYREAN Aggregators.

empyrean-horizon.eu 52/118

A
(E]MPYREAN
D5.2 — Initial release of EMPYREAN integrated platform N7

Association Metadata Store Service ~
Japi/vifassociation_metadata_store/associations Get available Associabons inthe Assodation Metadata Store ~
[lapifvifassociation_metadata_store/associations Add anew Assocation in the Association Metadata Store ~
fapi/vifassociation_metadata_store/associations Update an Association in the Association Metadata Store ~
Japifvi/association_metadata_store/associations/{association_id} Getdetails for a specific Association e

@ [apifvi/association_metadata_store/associations/{association_id} Delete a registred Association from the Association Metadata Store v
Japi/vil/association_metadata_store/associations/query Query the Association Metadata Store to find Associations with certain characteristics.

Figure 23: Association Metadata Store RESTful API.

Next, we present key interactions among the components of the EMPYREAN Registry that
highlight the stateless REST APl exposed by the APl Gateway, the role of the Registry Manager,
and the internal coordination with services like the Association Metadata Store. In Section 6,
we provide a detailed walkthrough of critical operation flows, such as the creation of an
EMPYREAN Association, device onboarding, and cross-platform service deployment, which
rely on these fundamental Registry operations.

Create a new Association

The definition of a new Association is initiated via a POST request, which is first handled by
the APl Gateway. The API Gateway (Figure 24) performs initial parameter validation and then
forwards the request to the Registry Manager (Figure 25), which orchestrates the creation
process by interacting with the Association Metadata Store to persist the new Association
record.

POST /api/vl/registry/associations

"name": "ICCS Default Association”, "labels": ["platform-arch:amd64", "platform-
arch:arm64"], "aggregator_uuid": "a2b66fa3-3f13-416b-8644-56328e0dedba", "owner_uuid":
"71c1642b-69c9-4e25-abcc-ddallee8becd”, "policy uuid":"5cPeed16-31a8-467d-83db-
ef1010466755"}

tions HTTP/1.1
ation with I0

Figure 25: Registry Manager — Processing request for creating a new Association.

empyrean-horizon.eu 53/118

A
(E]MPYREAN
D5.2 — Initial release of EMPYREAN integrated platform N7

2
ko)

(486(

<
<

Has

OWNED_BY

Figure 26: Visual representation of available Associations within Association Metadata Store service of the
EMPYREAN Registry

Retrieve all available Associations

When a client issues a request to retrieve information about available Associations, the API
Gateway queries the Association Metadata Store through its internal APIl. The Association
Metadata Store handles the retrieval of Association records and returns them to APl Gateway.

GET /api/vl/registry/associations

[{"name":"ICCS Default Association","uuid":"f0a55297-d68f-411f-b7fa-
9c1526¢c0db16", "aggregator_uuid":"a2b66fa3-3f13-416b-8644-56328e0dedba", "schedulable":
false}]

DEBUG:urllib3.connectionpool:http://147.102.16.114:30150 "GET /api/vl/registry/associations HTTP/1.1" 200 150
INFO: EMPYREAN Registry - API Gateway:Query Association Metadata Store service to get all available Associations ...
DEBUG:urllib3.connectionpool:Starting new HTTP connection (1): 147.102.16.114:30086

DEBUG:urllib3.connectionpool:http://147.102.16.114:30086 "GET /api/v1l/association_metadata_store/associations HTTP/1.1" 200 160
DEBUG:EMPYREAN Registry - API Gateway:[{'schedulable': False, 'name': 'ICCS Default Association', 'uuid': 'f0aS5297-d68f-411f-b7fa-9c1526c0dbi6’,
'aggregator_uuid': 'a2b66fa3-3f13-416b-8644-56328e0dedba’}]

Advertise a new service

When a new service is advertised, the APl Gateway receives the request and forwards it to
the Registry Manager, which validates the service metadata and stores it in the Service
Catalogue. This process ensures that the service becomes discoverable across the EMPYREAN
platform and is correctly linked to the relevant Association. The following GET method lists
the available Aggregator services within the EMPYREAN platform.

GET /api/vl/registry/services?category=aggregator

[{"uuid":"a2b66fa3-3f13-416b-8644-

56328e0dedba", "category":"Aggregator","service_endpoint":
"http://147.102.16.114:30800"}, {"uuid":"4790ale3-2a38-4461-8b81-8f771c60dbb5",
"category": "Aggregator", "service_endpoint": "http://147.102.16.115:30800"}]

empyrean-horizon.eu 54/118

(EIMPYREAN
D5.2 — Initial release of EMPYREAN integrated platform N7

5.3 Multi-cluster Orchestration Layer

5.3.1 Decision Engine

The Decision Engine Controller coordinates multiple Execution Engines, lightweight, modular
workers responsible for executing decision-making logic Figure 27. The Decision Engine
interfaces directly with the Service Orchestrator (Section 5.3.2), processing incoming service
deployment and management requests. It operates on real-time insights from the EMPYREAN
Telemetry Service (Section 5.7.1), allowing it to make data-driven decisions that adapt to
changing infrastructure and application conditions. To support distributed, multi-agent
orchestration, the Decision Engine leverages the Distributed Data Manager (Section 5.5.2),
which is based on Eclipse Zenoh [5]. This integration ensures high-performance, dynamic, and
scalable data exchange between orchestration components, even across geographically
dispersed clusters.

Further details on the design and implementation of the Decision Engine, including a
comprehensive analysis of the initial algorithms developed, are provided in D4.2 (M15) [7].

Decision Engine Controller

Service Orchestrator [> Access Interface

== i EMPYREAN
Distributed 2‘[Dispatcher “— .
DataBroker < Telemetry Service
A l
A
| |
Y ¥ 12
Execution Engine Interface |Executinn Engine Interface
Execution —»| Execution Execution —»| Execution
Manager [€— Helper Manager |[€— Helper
){){
‘ Decision Algorithms ‘ | Decision Algorithms |
Execution Engine Execution Engine

Figure 27: The Decision Engine architecture, main components, and interactions.

Integration and interfaces

The Decision Engine components are implemented in Python and packaged as containerized
microservices to ensure streamlined and efficient development, deployment, and testing
workflow. Separate container images are provided for the Decision Engine Controller and the
Execution Engine, and these are maintained in the official EMPYREAN image repository.
Moreover, the corresponding Kubernetes YAML description files are available to facilitate its
deployment on Kubernetes platforms. These definitions enable the automatic deployment
and scaling of the Decision Engine components. They are also integrated into EMPYREAN’s
CI/CD pipeline, supporting continuous integration and delivery processes, see Figure 28.

empyrean-horizon.eu 55/118

(E]MPYREAN
D5.2 — Initial release of EMPYREAN integrated platform N7

o
°
°
©
o
°
o
°
°
o
°
o
o
o
°
°
O

Figure 28: Decision Engine into CI/CD pipeline and deployment in ICCS’s K8s cluster.

The Decision Engine exposes two distinct Northbound Interfaces (NBIs) to support interaction
with external components and users: a RESTful APl and an asynchronous messaging interface
based on the Advanced Message Queuing Protocol (AMQP). The REST API interface, see
Figure 29, provides a set of control operations that allow external entities to manage and
inspect the execution of deployment algorithms, query the status and capabilities of available
Execution Engines, and perform administrative tasks related to user management. This
interface is fully documented using the OpenAPI specification, ensuring clarity, consistency,
and ease of integration for developers and third-party services. Complementing this, the
second interface enables asynchronous communication between the Decision Engine
Controller and end users, facilitating the exchange of notification messages and results.

Single Instance Execution N
/api/v1/decision_engine/executions Getthe istof al active executions. v
/api/v1/decision_engine/execution Startthe execution of some specfic aigonthm with the requested Input parameters. v

/apifvl/decision_engine/execution/{uuid} Terminate a specific algorithm execution v
/api/v1/decision_engine/execution/{uuid} Getthe detalls of a spacific aigorithm execution v
/apifv1/decision_engine/execution/statistics Getsiaistis for the completed executions. v
/api/vi/decision_engine/execution/logs/{uuid} Getdetaled logging information for a specific agorthm execution. v

Multi-agent Execution A
/api/v1/decision_engine/multi_agent/executions Getthe ist v
/api/v1/decision_engine/multi_agent/execution Launch the muti-agent execution process v
/apifvi/decision_engine/multi_agent/start Sta cution of some specific aig v

@ /api/v1/decision_engine/multi_agent/execution/{uuid} Terminate a specific muli-agent execution v
/api/fvl/decision_engine/multi_agent/execution/{uuid} Getihe detailsof a specific multi-agent execution. v

/api/v1/decision_engine/multi_agent/execution/logs/{uuid} Getdetaled logging information for a specific mul-agent executon,

/apifv1/decision_engine/multi_agent/configuration Setupanew mutk-agent exection configuration v
/api/v1/decision_engine/multi_agent/configuration/{uuid} Getdetals about a specfic mult-agent execution configuration %
m /api/v1/decision_engine/multi_agent/configuration/{uuid} Delete aspecilc muli-agent execution configuration. v

empyrean-horizon.eu 56/118

.
©MPYREAN
D5.2 — Initial release of EMPYREAN integrated platform 7

Execution Engines ~
/api/v1/decision_engine/engines Getthe available execution engines. v
/api/vl/decision_engine/engines Launchanew Execution Engine instance. v
/api/vl/decision_engine/engines/{uuid} Getdetails about a specific execution engine. v

m fapifvi/decision_engine/engines/{uuid} Temminate an Execution Engine instance. v

User Management ~
fapi/vi/decision_engine/users Get details about the registered users. v
/apifv1/decision_engine/users Register a new user v
/apifvl/decision_engine/users/{uuid} Get detalls abot a specific user A3

m /api/vl/decision_engine/users/{uuid} Delete a specific user. v

Figure 29: Decision Engine — Access Interface REST API.

Next, we detail the interaction among the Decision Engine components, the Service
Orchestrator, and the Telemetry Service for supporting multi-agent operations across
EMPYREAN Associations. Specifically, we focus on the initial placement of an application’s
microservices, considering a scenario involving three available Associations (Figure 30).

This operation corresponds to the operation flow OF 4.1.1, initially defined in D2.3 (M12) and
fully specified in D4.2 (M15). It exemplifies how the Decision Engine leverages multi-agent
coordination to evaluate resource availability and policy constraints to make an optimal initial
placement decision across distributed infrastructure domains abstracted by Associations.

/ v \ / v \
; SUBSCRIBE @ SUBSCRIBE @

= . "
Zenoh lacision_engi Iti_agent/OP_ID/supervisor Zenoh decision_eng _agent/OP_ID D2

Router Router ‘

: Decision Engine
(Agent 2)

-

" Decision Engine
(Supervisor)

PUBLISH @

PUBLISH @ . " . .
\ ision_engh 1ti_agent/OP_ID/agent™* _/ \ X Iti_agent'OP_IDisupervisor /

Association 3

4 \
. e .

/, = SUBSCRIBE @
Zenoh _engi i_agent/OP_ID/agentiD
Router

Decision Engine
(Agent 1)

Association 1

PUBLISH @
\ fecision_engil i_agent/OP_ID: i /

Association 2

Figure 30: Multi-agent operation across two EMPYREAN Associations for initial placement of application’s
microservices.

empyrean-horizon.eu 57/118

.
(EIMPYREAN
D5.2 — Initial release of EMPYREAN integrated platform N7

Service Orchestrator to Decision Engine

The Service Orchestrator initiates the multi-agent decision-making process across the
Associations by issuing the following POST request to its designated Decision Engine. This
request triggers the evaluation of candidate deployment options across multiple
infrastructure domains. During this process, the Decision Engine located in the originating
Association acts as the supervisor, coordinating the distributed decision-making activity
among participating Execution Engines

POST /api/vl/decision_engine/multi_agent/execution

{"execution_plugin": "AssociationMatch", "parameters":

{ "application_description":[{"kind":"Deployment","name":"frontend","replicas":1},{"ki
nd":"Deployment", "name": "data-producer","replicas": 1}, {"kind":"Deployment", "name":
"classifier", "replicas": 1}, {"kind": "Deployment", "name": "model-manager",
"replicas": 1}, {"kind": "Deployment", "name": "state-manager", "replicas":

1}],"deployment_objectives": [{"colocation": ["frontend", "state-manager"], "data-
producer": {"latency": 5}, "classifier": {"latency": 5, "energy": 3}, "model-manager":
{"availability": 4}}]1}}

Decision Engine to EMPYREAN Registry

The supervisor Decision Engine queries the EMPYREAN Registry to identify Associations that
meet the required deployment criteria, utilizing the Registry’s exposed RESTful API.

Figure 31: Query results in the EMPYREAN registry.

Initial coordination among Decision Engines

The Decision Engine dynamically creates exchange topics within the Distributed Data Broker
to enable bidirectional communication among participating Decision Engines. It then notifies
the selected Decision Engines about the newly created topics by executing the following POST
request. The following request corresponds to the configuration of the Decision Engine at the
“Association 2”.

POST /api/vl/decision_engine/multi_agent/configuration

{
"multi_agent_operation_id ": "984b9759-5a7f-4eb6-8020-0a4e37150893",
"agent_uuid": "7ee@0459-9635-40f9-81fe-ab92belf3a8c",
"supervisor_uuid": "299cf3e8-be6c-4ff0-b5c7-7c8eb60be7b6"

}

empyrean-horizon.eu 58/118

(E]MPYREAN
D5.2 — Initial release of EMPYREAN integrated platform N7

Each selected Decision Engine registers to the assigned topics and sends an acknowledgment
message to the supervisor Decision Engine.

INFO:DecisionEngine.Engine.EngineInterface:EngineInterface is running ...
INFO:DecisionEngine.Engine.RequestInterface:RequestInterface is running ...

INFO:DecisionEngine.Engine.EngineInstance:Decision Engine "POST /api/vl/decision engine/multi agent/configuration HTTP/1.1" 260 -
DEBUG:urllib3.connectionpool:Starting new HTTP connection (1): 47.102.16.114:36020

DEBUG: urllib3.connectionpool:http://147.102.16.114:30020 "POST /api/vl/decision engine/multi agent/configuration HTTP/1.1" 266 32

INFO:DecisionEngine.Engine.EngineHelper:Subscribe to Zenoh topic 'decision engine/multi agent/984b9759-5a7f-4eb6-8020-0a4e37150893/agen
ts/7ee80459-9635-4019-81fe-ab92belf3a8c

INFO:DecisionEngine.Engine.EngineHelper:Acknowledgment multi-agent supervisor over Zenoh topic 'decision engine/multi agent/984b9759-5a
7f-4eb6-8020-0a4e37150893/supervisor/ack

Multi-agent execution

Once all expected acknowledgments are received, the supervisor proceeds to initiate the
multi-agent execution by issuing requests through each participating Decision Engine’s Access
Interface.

POST /api/vl/decision_engine/multi_agent/start

The supervisor Decision Engine collects responses from the collaborating Decision Engines
through the exchange topics provided by the Distributed Data Broker

INFO:DecisionEngine.Engine.EngineInstance:Decision Engine "POST /api/vl/decision engine/multi agent/start HTTP/1.1" 260 -
DEBUG:urllib3.connectionpool:Starting new HTTP connection (1): 147.102.16.114:30020
DEBUG:urllib3.connectionpool:http://147.102.16.114:30020 "POST /api/vl/decision engine/multi agent/start HTTP/1.1" 200 32

INFO:DecisionEngine.Engine.EngineHelper:Start selected algorithm
INFO:DecisionEngine.Engine.EngineHelper:Forward results to multi-agent supervisor over Zenoh topic 'decision engine/multi agent/984b975
9-5a7f-4eb6-8020-0a4e37150893/supervisor/results’

Using the received data, it determines the optimal distribution of the application's
microservices across the available Associations, aiming to meet user requirements while
maximizing resource efficiency.

Multi-agent termination

At the end of the process, the supervisor Decision Engine notifies the participating Decision
Engines of the multi-agent session completion by sending a termination request through their
exposed RESTful API. For example, to notify the Decision Engine in Association 3, the following
DELETE request is executed.

INFO:DecisionEngine.Engine.EngineInstance:Decision Engine “"DELETE /api/vl/decision engine/multi agent/configuration/984b9759-5a7f-4eb6-

8020-0a4e37150893 HTTP/1.1" 200 -
DEBUG:urllib3.connectionpool:Starting new HTTP connection (1): 147.102.16.114:30020

DEBUG:urllib3.connectionpool:http://147.102.16.114:30020 "DELETE /api/vl/decision engine/multi agent/configuration/984b9759-5a7f-4eb6-8
020-034e37150893 HTTP/1.1" 200 32

INFO:DecisionEngine.Engine.EngineHelper:Receive termination request

INFO:DecisionEngine.Engine.EngineHelper:Helper Instance ID '2' finished.

5.3.2 Service Orchestrator

The Service Orchestrator operates within an EMPYREAN Association, coordinating multiple
platform-specific container orchestration systems such as Kubernetes (K8s) and Lightweight
Kubernetes (K3s). These platform-level orchestrators manage distinct infrastructure
segments within the Association. To enable abstracted and unified service deployment and
management, the Service Orchestrator employs hierarchical and distributed orchestration
mechanisms, which operate at the Association level. This approach ensures consistent and
policy-compliant service management across diverse platforms.

empyrean-horizon.eu 59/118

A
(E]MPYREAN
D5.2 — Initial release of EMPYREAN integrated platform N7

The Service Orchestrator consists of two primary services: the Orchestration API Server and
the Orchestration Manager. Together, these services form the core of the orchestration logic
and expose the interfaces necessary for service deployment and management within an
EMPYREAN Association. The architecture is complemented by a centralized Datastore that
ensures consistent operation and coordination among the various Service Orchestrator
components.

Supporting this architecture, EMPYREAN Controllers, also referred to as Orchestration
Drivers, are deployed on each managed platform. These components are responsible for
interfacing with the Local Orchestrators and underlying platform-specific APIs, handling low-
level orchestration operations such as container scheduling, resource provisioning, and
telemetry collection. Figure 32 depicts the architecture and the main components of the
Service Orchestrator and EMPYREAN Controller.

REST API
\ 4
S
.é Access Interface <€—> Dispatcher | Datastore
7] A) =
g Orchestration API Server
f
o \ 4
2 '
S <_i_’—> Decision Engine
% Cluster Execution Scheduling Network +
v Controller Controller Controller Controller H
€5 EMPYREAN Aggregator
<
Orchestration Manager '
_______________________________ i,______,_,“_,_.,,___,,________._. Telemetry Service
- | — 1
22 v > é v
3= < < | | Orchestration Interface
£2 £2
o E a o
2z Orchestration Plug-in 2 £ | | Orchestration Plug-in
o
¢ ¥ . V
""""" NN : §
BE . 7 Se0
Edge / Cloud Lite Edge

Figure 32: Service Orchestrator and EMPYREAN Controller architecture and its main components.

Integration and interfaces

The Resource Orchestrator services, and associated Orchestration Drivers have been
developed in Python. These components, along with their configuration files, are packaged as
modular Python applications and seamlessly integrated into the EMPYREAN CI/CD pipeline.
The Orchestration API and Orchestration Manager services are bundled into a dedicated
container image, while both Orchestration Drivers are distributed via a shared image.

empyrean-horizon.eu 60/118

(E]MPYREAN
D5.2 — Initial release of EMPYREAN integrated platform N7

To support Kubernetes-based deployment, all necessary Kubernetes YAML manifests,
including ConfigMap, Deployment, Service, and Ingress definitions, have been created. These
descriptions facilitate consistent, reproducible deployment of the orchestration components
across test and production environments. Furthermore, the entire orchestration stack has
been integrated into EMPYREAN'’s CI/CD pipeline, enabling automated deployment into the
EMPYREAN testbed infrastructure (Figure 33).

Service-Orchestrator Q search log:

L]
L
L
L]
o
L]
L]
L]
L]
L]
L]
o
o
> @ Create unit™ confjson
©
L]
o
L]
L]
o
L]
L]
o
L]
L]
L]

apply manifests 2s

Figure 33: Service Orchestrator and EMPYREAN Controller into EMPYREAN CI/CD pipeline and their
successful deployment in ICCS’s K8s cluster.

A comprehensive overview of the setup used for initial integration testing of the Service
Orchestrator is presented in Figure 34, showcasing the robustness, modularity, and
integration readiness of the developed solution.

empyrean-horizon.eu 61/118

s
i®MPYREAN
D5.2 — Initial release of EMPYREAN integrated platform "

Servi » Decisi | Service Decision
’ Orchu::tor Engll'loon i Oychasinaion H Enuine

T

EMPYREAN

EMPYREAN EMPYREAN
Controller Controller Controller

K3s Cluster K%s Cluster K%s kind - For debug

Figure 34: Setup for integration tests of Service Orchestrator and EMPYREAN Controllers.

The initial version of the exposed REST API includes several methods organized into two main
categories. The first set of methods, see Figure 35, enables the deployment and management
of cloud-native applications within and across Associations and the cognitive creation of

secure storage policies.

Associations Deployments A~
/api/vi/service_c r/: ti Gat the kst of al current cloud-native application deployments across multiple Associabons. v
m /api/vl/service_orchestrator/associations/deployments Requesthe deployment of a new cloud-native applcation across multiple Associations. v
_ /api/vl/service_orchestrator/associations/depl Request the of a specific cloud-native application deployment across multiple Associations. v
/api/vi/service_orchestrator/associations/deployments/{uuid} Terminate a specific cloud-native appication deployment across multiple Associations v
/api/vi/service_orchestrator/associations/deployments/{uuid} Getinformabon for specific cloud-native appication deployment across multple Associations v

/api/vi/service_orchestrator/assosiactions/deployments/logs/{uuid} Getlogging informabon for the specific deployment progress across multiple Associations. v

/api/vi/service_orchestrator/associations/deployments/watch Register for ch gard Deployment O ation objects in Datastore v

Deployments ~
m fapi/vi/service_orchestrator/deploynents Geline istof il curent application depioyments witin an Associaton v
m Japi/vifservice_orchestrator/deployments Roquest the depioyment of a new cloud-natve applicaion wilhin an Associabon v
;EJ Japi/vi/service_orchestrator/deployments Raquest the re-optimzabon of a specific cloud-native apphcabion deployment within an Association ~
| fapi/vifservice_orchestrator/deployments/{uuid) Termmnate a specific cloud.natve appication deployment within an Association v
fapi/vi/service_orchestrator/deployments/{uuid} Gelintormation for speciic cioud native application doployment within an Association. ~
Japi/vi/service_orchestrator/deployments/logs/{uuid} Getlogamg information for the specific deployment progress ~
/api/vl/service_orchestrator/deployments/watch Regsler for changes regarding the Deployment Orchestrabion AP objects in Datastore. ~
Storage Policies A
/api/vi/service_orchestrator/storage_policies Getine list of all current storage polcies v
m /api/v1/service_orchestrator/storage_policies Request the deployment of a new siorage policy v
[/api/vi/service_orchestrator/storage_policies Requestthe re-optimization of a spacific storage pokcy deployment v
| /api/vi/service_orchestrator/storage_policies/{uuid} Delele a spocfic storage poicy deployment v
/api/vi/service_orchestrator/storage_policies/{uuid} Getinformation for specific storage policy deployment v

Figure 35: Service Orchestrator REST API.

empyrean-horizon.eu 62/118

s
i®MPYREAN
D5.2 — Initial release of EMPYREAN integrated platform g

The second set, see Figure 36, abstracts the interaction of the Orchestration Manager and
EMPYREAN Controllers services.

Associations ~

prppm— P ———— v
Japi/vi/service_orchestrator/associations Store mformabion for an associabon v

/api/v1/service_orchestrator/associations Updats the informaton for 8 Speciic associabon v

@ /api/vi/service_orchestrator/asseciations/{uuid} Delela miormation for an assocabon v

/api/vi/service_orchestrator }{uuid) Get spaciic assocaton ~

Japi/vi/service_orchestrator/associations/watch Register for changes regarding Associahon objects in Datastore. v
Applications ~

/apifvi/service_orchestrator/applications Gel o lstol a appication cbjects v

/apifvl/service_orchestrator/applications Creatoanow ~

I Japi/vi/service_orchestrator/applications Updalea specific applicabon obect description V3

=0
=D
/api/vl/service_or {uuid} D¢ v
B2
(=

Japifvi/service_orchestrator/applications/{uuid) Getinformaton for a specific appbcaton description object v
fapifvi/service_orchestrator/spplications/watch/{uuid} Regsterfor changes regarding application otyects in Datastore v
Clusters ~

Japi/vi/service_orchestrator/clusters Gelins fistof 8l repsiored Csters ~
m fapi/vi/service_orchestrator/clusters Regiiora new cluster v
I Py Japi/vi/service_orchestrator/clusters Update the mformaton for a speciic chuster v
ﬁ fapi/vi/service_orchestrator/clusters/{uuid} Dot proviously regstored cluster ~
m fapi/vi/service_orchestrator/clusters/{uuid} Gatinformation for specific chister v
m fapi/vi/service_orchestrator/clusters/health/{uuid} Gel setsis sbout the haaith of te sepcic ciuster v
BEEI /opi/vt/service orchestrator/clusters watch Rogsion for changes regardiog clostorodocts Dastors v
Assignments ~
/api/vi/service_orchestrator/assignments Gotihe st of avalabla daployement assignmants e
m fapi/ulfservice_orchestrator/assignments Create anewdepioyment assignment w
BT /ap1/va/service_orchestrator/assignnents Updsls aspectc depioyment sssgnment v
m fapifvifservice_orchestrator/assignments/{uuid) Deletea speciic aapioyment sssignment ~
IS foptivasservice_orchestrator /assignnents/ (uutd) G mlomaton o specic depioymant ssgnment v
m fapi/vi/service_orchestrator/assignments/watch/{uuid) Regster for changes regardng Assgnment objects for a speciic ciuster in Datastors v
Bundles ~

Japi/vi/service_orchestrator/bundles Getine s of all bundies ~
m fapifvi/service c /bundles Crest ‘some specihc deployment assignment ~
| E fapi/vi/service_orchestrator/bundles Updale s speciic bundle descripbon ~
Japi/vi/service_orchestrator/bundles/{uuid} Deleto a speciic bundia descnpton v
m /api/vi/service_orchestrator/bundles/{uuid} Gol informabion for speciic bundia descrption v
m fapifvi/service_orchestrator/bundles/watch/{uuid)} Registerfor changes regarding bundie obsects fof a specific deployment assgnment in Datastore ~

Figure 36: Service Orchestrator REST APl — Methods related to inter-component communication.

Service Orchestrator and EMPYREAN Controllers

During initialization, each EMPYREAN Controller registers with its associated Service
Orchestrator by using a REST endpoint provided by the Orchestration APl Server. As part of
this process, it also sends a summary of the resources available on the cluster it manages.

empyrean-horizon.eu 63/118

.
©MPYREAN
D5.2 — Initial release of EMPYREAN integrated platform 7

PUT /api/vl/service_orchestrator/clusters

{"cluster_uuid": "2b@5cfdf-679f-45f1-95f8-a334ec87faaf", "type": "k8s", "info":
{"nodes": [{"node_name": "master-amorgos", "labels": {"beta.kubernetes.io/arch":
"amd64", "kubernetes.io/hostname": "master-amorgos"}, "capacity": {"cpu": "2",
"ephemeral-storage": "60575596Ki", "hugepages-2Mi": "©", "memory": "8132592Ki",

"pods": "110"}, {"node_name": "wnl-ios", "labels": {"beta.kubernetes.io/arch":

"arm64", "jetson": "true", "kubernetes.io/hostname": "wnl-ios"}, "capacity": {"cpu":
"6", "ephemeral-storage": "30538800Ki", "hugepages-1Gi": "@", "hugepages-2Mi": "@",
"hugepages-32Mi": "@", "hugepages-64Ki": "@", "memory": "7800596Ki", "pods":

“110"}}1}}

The Orchestration API Server uses this data to update the corresponding entries in the
Datastore. Below is an example showing the K8s and K3s clusters managed by the first Service
Orchestrator in the testbed setup illustrated above. This information can be retrieved using
the following GET request.

GET /api/vl/service_orchestrator/clusters

{"clusters":[{"cluster_uuid":"2b@5cfdf-679f-45f1-95f8-
a334ec87faaf", "type":"k3s","last_seen":"1750059454"}, {"cluster_uuid":"7628b895-3a91-
4f0c-bob7-033eab309891", "type":"k8s","last_seen":"1750059501"}]}

Cross-Association application deployment

Next, we examine the integration among the Service Orchestrator services during the
deployment of a cloud-native application. Specifically, we consider a demo application
composed of five microservices: “frontend”, “state-manager”, “model-manager”, “classifier”,
and “data-producer”. The deployment process begins when the Orchestration API Server
receives a request through its POST endpoint (/api/v1/service_orchestrator/deployments).
Upon receiving the request, the APl Server validates the payload and creates the

corresponding Deployment object in the Datastore, initializing the orchestration workflow

{"kind": "Deployment", "name": "demo-deployment ", "deployment_uuid": "585fdf45-4959-
f4el-4d43-be89830bd890", "deployment_description™: "YAML DESCRIPTION", "assignments":
[], "assignments_status": [], logs":[{"timestamp":1750060830, "event":"Deployment

description received."}], "status":1, "updated _by": "Orchestration.API","created_at":
1750060830, "updated_at": 1750060830 }

The Orchestration Manager is subsequently notified of the new deployment request and,
through its Scheduler Controller, invokes the Decision Engine to produce a high-level
orchestration decision, defining how the application's microservices should be distributed
across the available platforms (Section 5.3.1). Next, we present the output generated by the
Decision Engine, which guides the subsequent execution phase of the deployment process.

{"kind":"Deployment", "assignments":[{"cluster_uuid": "2b@5cfdf-679f-45f1-95f8-
a334ec87faaf", "deployments":["data-manager","classifier","model-manager"]},
{"cluster_uuid":"7628b895-32a91-4f0c-boOb7-033eab309891", "deployments":["state-

manager","frontend"]}]}

empyrean-horizon.eu 64/118

(E]MPYREAN
D5.2 — Initial release of EMPYREAN integrated platform N7

Based on the orchestration decision provided by the Decision Engine, the Execution Controller
of the Orchestration Manager proceeds to create the corresponding Assignment and Bundle
objects in the Datastore. Two Assignment objects (UUIDs “d99b982d-d558-4c06-bdcf-
6279d037d5ff’ and “03b61ed2-91b4-478c-8842-9ced0f8bc11b”) are created to reflect the
allocation of the application's microservices across the two selected platforms. These
Assignment objects are linked to the initial Deployment object with UUID “585fdf45-4959-
fdel-4d43-be89830bd890”, enabling full traceability of the deployment workflow. Log
messages from the Orchestration Manager and Datastore confirming these operations are
included below. In parallel, five Bundle objects are generated, each representing a single
microservice of the application. These Bundles are associated with the relevant Assignment
object and contain all necessary deployment descriptors for execution at the platform level.

for key ‘'/service/orchestrator/deployments/deployment/585fdf45-4959-f4el-4d43-be89836bds

active=15midetails=1 HTTP/1.1" 200 4036

for cluste
edofebcllb’ with Bund

d43-be89836bd896" in ETCD

Figure 37: Orchestration Manager log messages while processing Decision Engine response for the
application placement.

Orchestration Manager and EMPYREAN Controllers

The creation of Assignment objects triggers the activation of the EMPYREAN Controllers on
the two target platforms. Each Controller receives its respective Assignment object, which
contains references to the associated Bundles. Upon receipt, the EMPYREAN Controller
fetches the content of each referenced Bundle from the Datastore and leverages the
underlying K8s/K3s APl to perform the required deployment actions on its local infrastructure.

Next, we present log messages from the EMPYREAN Controller operating on the ICCS
Kubernetes cluster (7628b895-3a91-4f0c-b0b7-033eab309891), confirming the successful
execution of the assigned Bundle (Figure 38).

empyrean-horizon.eu 65/118

(E]MPYREAN
D5.2 — Initial release of EMPYREAN integrated platform N7

b7-833eab309

935], "status
“updatec 1750060834}

or bundle '351e89cd

n for bundle '351ed -342b-469b-81bc-935bb43b5282
2d-d558-4c06-bdcf-6279d037dSff' successfully executed

Figure 38: Log messages from the EMPYREAN Controller operating on the ICCS Kubernetes cluster.

5.4 Resource Management Layer

5.4.1 Al-Enabled Workloads Autoscaling

In D5.2, we rebuilt the metrics dataflow in Ryax scheduler and enhanced its interaction with
standardised metrics endpoints used by the Al-enabled autoscaler, the Intelliscale.

Previously, the metrics gathering logic was tightly coupled with the autoscaler pod. This
functionality has now been decoupled and reimplemented as a general-purpose component
within the Ryax Worker. This redesign enables broader reuse across other modules, such as
the accounting service, Ul, and data persistence layer, facilitating the generation of execution
datasets for training purposes. The metrics collection and computation logic was restructured
to prioritize both speed and accuracy. Additionally, we standardized all metrics sources to use
a homogeneous Prometheus-compatible API, simplifying future development and extensions.

The interaction between the metrics gathering component and Intelliscale has also been
significantly improved to be lighter, more flexible, and fine-grained. Rather than transmitting
entire histograms, only a single summary datapoint per execution is now sent to the
Intelliscale model. Communication has shifted from passive polling to proactive updates,
eliminating the previous 5-minute cold start delay. As a result, the Intelliscale pod is now
dedicated solely to executing Al algorithms, allowing it to independently support larger Al-
enable autoscaling models without interfering with the time-sensitive Ryax scheduler.

Metrics gathering component: Integration and Interfaces

The metrics gathering system is a core part of the Ryax Worker, Ryax’s distributed component
deployed at each site. It consists of four main subcomponents: a metrics endpoint fetcher,
metrics calculator, lifecycle manager, and downstream data feeder, each contributing to
efficient and reliable metrics collection and delivery.

empyrean-horizon.eu 66/118

A
(E]MPYREAN
D5.2 — Initial release of EMPYREAN integrated platform N7

metrics
endpoints data i
R execution ; execution
yax L e eXeulion persistency atrsat
scheduler | coliect and finish,
L execution calculate unregister full execution
start, every second race metric summary
register l ¢ ¢ |
X Y execution
st metrics gathering metrics Ul liscal
hathér component he | summary Ryax Intelliscale
”| calculation 7| training input

v

lifecycle

Figure 39: Lifecycle of metrics gathering for an incoming execution.

Figure 39 shows the complete lifecycle of metrics gathering for an incoming execution. A long-
running loop fetches and parses metrics from all available metrics endpoints, activated only
when at least one execution is registered. When an execution starts, it is registered into this
loop, enabling real-time extraction and in in-memory storage of relevant metrics. When the
execution ends, it is unregistered from the loop, all the related traces are fed to downstream
components, and the corresponding memory is freed.

Downstream components include a metrics summary calculator that computes key per-
execution level metrics, including percentiles, averages, and maximum utilization values. Both
the raw traces and the summaries are feed to (i) Ul to let user know the utilization, (ii) the
accounting component for tracking and resource auditing, (iii) data persistency for long-term
storage and future analysis, and (iv) Intelliscale for feeding AIU models used in autoscaling.

Metrics are collected from Prometheus-compatible sources to ensure format consistency and
extensibility. These include: (i) cAdvisor Prometheus endpoint for CPU, RAM, network, and
disk metrics, and (ii) NVIDIA DCGM Exporter for GPU and Multiple-Instance GPU (MIG)
metrics. This approach replaces previously heterogeneous sources like the Kubernetes client
API (which provide responses in JSON format), simplifying the calculation logic and improving
its expandability to new metric sources. Due to the large size of these Prometheus metrics, a
pre-filtering mechanism is applied before parsing them. This skips irrelevant lines, reducing
computation overhead and improving performance.

Below are the samples of cAdvisor and DCGM metrics APl in Prometheus format:

container_cpu_usage_seconds_total{container=
s-besteffort.slice/kubepods-besteffort-
podldd6c946_7554_46f7_84b4 _852924e0429c.slice",image="",name="",namespace="ryaxns -
monitoring",pod="prometheus-prometheus-node-exporter-wxjfw"} 4767.442561 1742249899112

,Ccpu="total",id="/kubepods.slice/kubepod

DCGM_FI_DEV_FB_USED{gpu="0",UUID="GPU-e7fe0866-4c61-ca8e-9094-

d8e15a074343" ,device="nvidia®" ,modelName="NVIDIA H100

PCIe",GPU_I_ PROFILE="1g.l10gb",GPU_I_ID="7",Hostname="scw-k8s-mlintra-pool-gpu-
138004ab087a43d2a62a2" ,DCGM_FI_DRIVER_VERSION="550.54.14",container="",namespace="",po
d=""} 12

After fetching metrics in Prometheus format, a dedicated parsing component processes the
data. Many key metrics are not directly available from the raw endpoints. For example, the
CPU utilization is the total rate of the container’s CPU usage in seconds. Typically, in

empyrean-horizon.eu 67/118

(E]MPYREAN
D5.2 — Initial release of EMPYREAN integrated platform N7

Prometheus, we use the “irate” function to obtain the CPU utilization, but here we implement
a simplified yet accurate “irate” in the metrics parser. This is more adapted and ignores some
corner cases that will never be used in our gathering logic. This approach also avoids the delay
and extra consumption associated with introducing the entire Prometheus stack. We only
need a tiny part of the Prometheus logic, so introducing the whole software just for this is not
good.

starting value in timerange (v2) - next occurance value in timerange (v1)

starting time in timerange (t2) - next occurance time in timerange (tl1)

API interaction with Ryax Workflow Management and Al-Enabled Workload Autoscaling

(Intelliscale)

After obtaining the full execution trace and summary metrics are collected, the Intelliscale Al
autoscaling model receives input from both the metrics summary and additional information
about the execution obtained from Ryax scheduler.

The interaction is implemented via a gRPC-based API, which defines the expected metrics
fields needed by Intelliscale. Among all these input fields, the Ryax scheduler provides
contextual information about each execution, enhancing the autoscaling model’s decision-
making capabilities. Figure 40 shows part of the metrics summary provided by metrics
gathering component, including additional execution data supplied by the scheduler.

optional float avg_gpu_mem_util_mb = 24;

optional float avg_cpu_util_cores = 25;

optional float avg_memory_util_bytes = 26;

optional float avg_network_receive_bytes_per_sec = 27;
optional float avg_network_transmit_bytes_per_sec = 28;

string execution_id = 1; optional float avg_disk_fs_read _bytes_per_sec = 29;
string execution_user_inputs = 2; optional float avg_disk_fs_write_bytes_per_sec = 30;
string workflow_id = 3; optional float avg_parallel_executions_on_same_gpu = 31;
uint32 action_order = 4; optional float sp_90_cpu_util_cores = 32;

string action_container_image = 5; optional float sp_90_memory_util_bytes = 33;

string action_run_id = 6;

optional float sp_95_cpu_util_cores = 34;

optional float sp_95_memory_util_bytes = 35;
ExecutionState execution_final_state = 7; Optional float sp_QB_cpu_util_cores = 36;
float execution_time_seconds = 8=| optional float sp_98_memory_util_bytes = 37;

Figure 40: Metrics summary from metrics gathering process.

empyrean-horizon.eu 68/118

(EIMPYREAN
D5.2 — Initial release of EMPYREAN integrated platform N

5.4.2 Unikernel Deployment

In modern cloud environments, generic containers are widely used for their flexibility and
ease of orchestration, providing isolated user-space environments atop shared host kernels.
Sandboxed containers take this further by enforcing stronger security boundaries, often
leveraging lightweight hypervisors or additional isolation mechanisms to reduce the host's
attack surface. However, unikernels, specialized, single-address-space machine images
tailored for a specific application, offer even tighter integration and performance but have
historically been challenging to manage using standard cloud-native tools. To bridge this gap,
the urunc runtime is introduced as a solution that harmonizes the deployment and
management of unikernel workloads within cloud-native ecosystems. By providing a unified
interface, urunc allows both traditional containerized applications and unikernel instances to
coexist and interoperate seamlessly, enabling organizations to harness the security and
efficiency benefits of unikernels without sacrificing the agility and tooling ecosystem of
modern container platforms.

Container Runtime

The urunc runtime emerges as an innovative bridge between traditional containerized
workloads and unikernel-based applications within cloud-native environments. Unlike
standard approaches that force organizations to choose between familiar container
interfaces and the performance or security benefits of unikernels, urunc enables both
paradigms to coexist on a unified platform. By doing so, it allows operators to leverage
unikernels, lightweight, highly specialized single-address-space machine images, for use cases
where minimal attack surface and maximum efficiency are crucial, all without forfeiting the
operational simplicity or orchestration capabilities of conventional container mechanisms.

Central to urunc’s integration into the cloud-native ecosystem is its implementation of the
Container Runtime Interface (CRI), the standardized protocol used by Kubernetes and similar
orchestrators to communicate with container runtimes. The CRI compatibility ensures that
urunc can accept workload scheduling, lifecycle management, and resource allocation
requests just like any mainstream container runtime. This facilitates seamless deployment
and management across heterogeneous workloads, empowering users to run, update, and
monitor unikernel instances alongside standard Linux containers through the same set of
tools and workflows. As a result, urunc not only expands the deployment possibilities for next-
generation cloud applications but also preserves the developer and operator experience,
accelerating the adoption of unikernels in practical, production-ready environments.

Coupled with our unikernel builder (bunny), described in Section 5.1.4, in EMPYREAN we are
able to build and deploy single-application kernels (or unikernels) in a pure cloud native way.
In the code snippets below, we provide the process to build a simple nginx (webserver) using
bunny (Table 6, Table 7), and the process to deploy it in K8s, using our container runtime,
urunc (Table 8).

empyrean-horizon.eu 69/118

(EIMPYREAN
D5.2 — Initial release of EMPYREAN integrated platform N

Table 6: Nginx Bunnyfile

#tsyntax=harbor.nbfc.io/nubificus/bunny:0.0.2
version: vo.1

platforms:
framework: linux
monitor: gemu
monitor: firecracker
architecture: x86

rootfs:
from: docker.io/library/nginx:alpine
type: raw

kernel:
from: local
path: vmlinuz

cmdline: "/usr/sbin/nginx -g \"daemon off; error_log stderr debug;\""

Table 7: Build urunc container image and push to a generic container image registry

docker build -f bunnyfile -t harbor.nbfc.io/nubificus/urunc/nginx-linux-urunc:x86_64 .

docker push harbor.nbfc.io/nubificus/urunc/nginx-linux-urunc:x86_64

Table 8: K8s manifest to deploy a urunc-compatible image

apiVersion: apps/vl
kind: Deployment
metadata:
labels:
run: nginx-urunc
name: nginx-urunc
spec:
replicas: 1
selector:
matchLabels:
run: nginx-urunc
template:
metadata:

labels:
run: nginx-urunc

spec:

runtimeClassName: urunc

containers:

- image: harbor.nbfc.io/nubificus/urunc/nginx-linux-urunc:x86_64
imagePullPolicy: Always
name: nginx-urunc
ports:

- containerPort: 80
protocol: TCP
resources:
requests:
cpu: 10m
restartPolicy: Always
apiVersion: vi
kind: Service
metadata:

empyrean-horizon.eu 70/118

(E]MPYREAN
D5.2 — Initial release of EMPYREAN integrated platform N

name: nginx-urunc
spec:
ports:
- port: 80
protocol: TCP
targetPort: 80
selector:
run: nginx-urunc
sessionAffinity: None
type: ClusterIP

5.4.3 Hardware Acceleration Abstractions

The vAccel framework enables seamless acceleration workload offloading by abstracting
hardware acceleration capabilities and offering a unified API for diverse backend targets. In
the context of EMPYREAN, vAccel is integrated to support efficient, low-latency execution of
Al/ML workloads across distributed, heterogeneous environments.

A key aspect of this integration involves supporting libRRR, the RDMA-capable, user-level
communication library described in D3.2 and Section 5.5.1, as a vAccel transport plugin. This
integration enables seamless remote Al/ML inference task offloading to hardware-
accelerated endpoints across the EMPYREAN loT-edge-cloud continuum. By embedding the
vAccel execution model within libRRR, EMPYREAN introduces a lightweight, low-latency, and
high-performance mechanism for invoking vAccel plugins over RDMA channels, ensuring
optimal performance and scalability.

An initial integration is in place, providing increased Frames Per Second, for a YOLOvS8 object
detection example, running on pyTorch (stock, vAccel local, vAccel over RDMA).

5.5 Data Management and Interconnection Layer

5.5.1 Software Defined Edge Interconnect

The EMPYREAN software-defined interconnect provides RDMA transport services to
EMPYREAN components that require low-latency and/or high-bandwidth communication,
such as the disaggregated vAccel framework developed by NUBIS.

This software-defined interconnect has two main subsystems: (i) the RDMA datapath and the
(ii) the software-defined control plane that controls and authenticates the RDMA pairings
between actors.

In this initial release, we developed a full-fledged RDMA datapath solution and completed the
first integration with vAccel. Implementation of the software-defined control plane is
scheduled for the next implementation iteration of the period.

empyrean-horizon.eu 71/118

(E]MPYREAN
D5.2 — Initial release of EMPYREAN integrated platform

EMPYREAN'’s software-defined RDMA service is wrapped in a C library that is named RDMA
Remote Ring or “triple-R” (librrr). The basic concept, depicted in Figure 41, centers around a
ring buffer-based structure along with the provision of a very friendly software 1/0 dispatch
interface.

Request Client Ring RNIC RNIC Request Server

post(write_data)
RDMA Write

1.|Update

ACK

Completion ROMA Read) post(read_data)

2. PULL|CMD

Completion

RDMA Read post(read_data)

3.|PULL DATA sqp

= o

Figure 41: Overview of software-defined RDMA service operation.

Completion

In this model, the producers of the ring add requests and data to local in-memory ring buffer
structures, while the remote consumers get these requests and data from their corresponding
local in-memory rings. LibRRR transparently synchronizes the described disaggregated ring
state by detecting aggregation opportunities and efficiently leveraging RDMA.

The figure shows how RDMA NICs (RNICs) are instructed by librrr to update the ring data and
head/tail pointers in a coordinated manner. The ring interface is highly effective for
asynchronous 1/0, where the request path is completed decoupled from the response path
and can be implemented using independent threads. The rings also offer backpressure
mechanisms, and with properly selected ring buffer sizes, the system adapts I/O performance
to match either full link capacity or expose endpoint data generation or ingestion bottlenecks
that do not allow the full link bandwidth to be utilized.

Librrr has a C software interface which is comprised of functions for: (i) initialization and setup
of the RDMA resources, (ii) registration of ring buffer constructs and in-memory resources
with the network, (iii) ring buffer APIs for commands and data tuples to handle to manipulate
ring data (produce, consume and synchronize ring data as required, and (iv) tear down and
graceful disconnection that that cleans up also the resources.

This simple interface offers transparently RDMA services to user with minimal overhead but
also comes with responsibilities that relate to standard circular buffer management. Incorrect
handling of circular buffers within program flow may lead to deadlocks. Although librrr does
not offer any build-in support to identify deadlocks that arise from using the APl with

empyrean-horizon.eu 72/118

\
i®MPYREAN
D5.2 — Initial release of EMPYREAN integrated platform g

improper sequence, the library comes with guidelines and recommendations for good
practices. Figure 42 presents the set of C functions currently provided by the librrr.

261 * rrr_init_rdma_connection: initiates rdma connection over TCP tunnel. It does not depend on rdma_cm it implements it's own simplified version.
262 * if server_name is NULL this enters a server mode else it is client mode. This function fills up all rdma_connection struct fields with properly
263 * initiated rdma attributes. It keeps the tcp_tunnel active and returns a sockfd. It needs to be reinvoked if more rdma connections need to be set.
264 * The server is always the responder and the initiator is always the client.

265 * */

266 int rrr_init_rdma_connection(struct rdma_connection *res, int sockfd, const char * dev_name, unsigned ib_port);

267

268 /*

269 * rrr_init_rings: it initiates SQ/CQ mirror pair for both cmd and data. It needs as arguments the local receive and send buffer address arrays,

270 * which are expected to be already initialized externally. For the cmd/cmpl buffers it needs the size of the structs that will be mapped. These structs need to be packed.
ZF1 *f

272 int rrr_init_rings(int sockfd, struct rdma_connection *res, struct rrr_ring_pair *ringp, char * recv_bufs[], char * send_bufs[],\

273 int blocksize, int iedepth, int submit_ctrl_buf_size, int completion_ctrl_buf_size, bool isServer, bool ext_buf_management);
274

PR o

276 Get the next head entry of the command ring.This is for adding data. Upon success it returns a pointer to the cmd buffer else NULL.

.
277 * 5Q or CQ definitions need to be used

Z78 * to determine which ring of the ring pair this function should use. Typically SQ entry is retrieved by a requestor and CQ entry by the responder.
279 * The intent when using this function is to fill the ring with data (it advances the head). rrr_ring commit exposes data to the other side.

280 */

281 void * rrr_ring_get_next_head_cmd_buf(struct rrr_ring_pair *ringp, bool isSubmit);

282

283 /*

284 * Get next tail entry of command ring. This is for consuming data. Upon success it returns a pointer to the cmd buffer else NULL. Unlike

285 * the get_next_head counterpart this function needs rdma_connection info, because it leverages RDMA (Read Op) to sync contents with remote

286 * counterpart before returning the cmd data pointer. Typically responsder uses this function to retrieve new 5Q entries and requestor uses it

287 * to inspect (Q entries.

288 */

289 void * rrr_ring_get_next_tail_omd_buf(struct rrr_ring_pair *ringp, struct rdma_connection *res, uint3z_t *idx, bool isSubmit);

291 /*

292 * Getting next tail fixed data buffer, both sides of the rings.

293 */

294 void * rrr_ring_get_next_tail_fixed_data_buf(struct rrr_ring_pair *ringp, struct rdma_connection *res, uint3Z_t *idx, bool isSubmit);

295

296 int rrr_async_rdma_remote_data buf_list(struct rrr_ring_pair *ringp, struct rdma_connection *res, uint64_t *laddr, uint3Z_t *lkey, uint64_t *raddr,\

297 uint3Z_t *rkey, uint3Z_t *len, int entries);

298

299 void rrr_ring data_buf_cli_release({struct rrr_ring pair *ringp, bool isSubmit);
300

301 /*

392 * This function is employed when remote data buffer addresses are not apriori-known (fixed) but have arrived as part of the cmd. In this case,
303 * to enable aggregation this API allows to pull more than one remote buffers with single invocation.

304 */

305 int rrr_ring_sync_burst_not_fixed_data_buf(struct rrr_ring_pair *ringp, struct rdma_connection *res,\

306 uint32_t bufnum, uintb4_t *rembfs, uint3Z_t* remkey, uint3Z2_t * bsize, bool isSubmit);
307 /*

308 * to be discussed if needed.

309 */

310 int rrr_submit_ring_get_next_tail_free_data(struct rrr_ring_pair *ringp, uint3Z_t bufnum, uint84_t * localbfs, uint64_t *rembfs);
in

31z /*

313 * This unlocks 5Q or (Q rings for entry at idx. This allows the respective buffer to be recycled.

314 */

315 void rrr_ring_unlock_cmd_buf(struct rrr_ring_pair *ringp, uint3Z_t *idx, bool isSubmit);

316

317 /*

318 * This unlocks data buffer for selected side and that allows them to be recycled.

319 */

320 void rrr_ring_synchronous_unlock_data_buf(struct rrr_ring pair *ringp, uint3Z t *idx, bool isSubmit);

321

322 /*

323 * registers buffers post-initialization and pairs them with specific ring entries.

324 %/

325 int32_t rrr_register_buffer_for_transfer(struct rrr_ring_pair *ringp, struct rdma_connection *res,\

326 unsigned char * buffer, uint3Z_t bfidx, uint64_t size);

327 /*

328 * returns next 50 or CQ data ring head

329 */

330 int rrr_ring_data_get_next_head(struct rrr_ring_pair *ringp, bool isSubmit);

33

332 unsigned char * rrr_ring_data_async_pool_get_free_buffer(struct rrr_ring_pair *ringp, int *bufidx, bool isSubmit);
333

334 int rrr_ring_data_async_get next_head(struct rrr_ring pair *ringp, int bufidx, bool isSubmit);

335

336 int rrr_ring_fixed data async_buf_list_release(struct rrr_ring_pair *ringp, int *bufidlist, int lsize);

337

338 int rrr_ring_commit(struct rrr_ring_pair *ringp, struct rdma_connection *res, bool isSubmit);

Figure 42: Available C functions in the RDMA Remote Ring library (librrr).

Currently, librrr has been successfully integrated as a I/O backed for deployment of vAccel
framework, replacing the standard TCP-based communication layer.

empyrean-horizon.eu 73/118

(E]MPYREAN
D5.2 — Initial release of EMPYREAN integrated platform N7

5.5.2 Decentralized & Distributed Data Manager

The decentralised and distributed data exchange mechanism is carried out by the open-
sourced communication middleware Eclipse Zenoh [5], Figure 43 presents a characterization
of its layered architecture, and the main possible configuration decisions to take into
consideration when designing a real-time data exchange scenario.

Eclipse
Zenoh APT

Trnnsport/L'mk
Layer
|
[
Queryab!e ’TransPDTt ‘TromSport
| Unicast Multicast Routed
[Su!:s::ril:er] [Livg']nessj I
r . [P2P
Low latency Transmission Link ‘ Link
Transport Pipeline UDP Tcp
Universal Link Link
‘Tromsport QUIC TLS

Figure 43: Characterization of the Eclipse Zenoh communication middleware.

Conggurat'.on

1
Brokered

Publisher

Key components include:

e The session layer is the main entry point for an application to interact with Eclipse
Zenoh. The developer should select what communication pattern is going to be used:
pub/sub, queryable, or/and computations. The session establishment process
supports dynamic discovery and is automatic between two Zenoh instances/processes
running in the same network. The liveliness component is for monitoring system
components (i.e., stay alive signal).

e The Transport/Link layer handles the establishment and management of transport
connections, it also manages system’s resources, and implements various transport
protocols (TCP, TLS, UDP, QUIC, WebSocket, etc.).

e The Configuration layer is the central component for message routing and
dispatching. The application developer can select to use either brokered, routed, or
peer-to-peer communication patterns. Also, there is an admin space where the user
can provide system monitoring and management capabilities. Zenoh also supports
extensibility through dynamically loaded plugins that should be considered in the
configuration phase.

empyrean-horizon.eu 74/118

“~
©MPYREAN
D5.2 — Initial release of EMPYREAN integrated platform 7

5.5.3 Edge Storage Service

The Edge Storage Service (ESS) provides a simple-to-use, S3-compatible object storage
solution to EMPYREAN applications. It has several unique features, including the ability to
work with Associations, distributing erasure-coded data across cloud and edge storage
locations. Users can establish exactly how and where their data resides by defining a storage
policy and attaching it to an S3 bucket. Erasure coding, compression, and encryption
parameters can also be configured. Many of these features rely on the SkyFlok.com backend,
built to run CC’s SaaS service with the same name. Among the many enhancements developed
for EMPYREAN, the ESS introduces additional privacy-enhancing features such as the ability
to keep encryption keys solely at the edge, inside the Association. It also provides a temporary
autonomous function, making access to local storage possible, even when the link to the cloud
is severed.

SkyFlok.com backend Google Cloud Storage 15, 1hor cloud

providers

;
- . Amazon AWSS3 | Microsoft Azure |
Migration service 1]
Coud Storage ' Blob Storage]
Gateway i 1
AP H $3 API service Edge support : d :
service | ;
; i 1
| i 1
| i 1
i i |
]] " !
1 | 1 '
1] !]

,,

Developer dashboard

Association 1

App

BAaa Ban

Figure 44: Overview of Edge Storage Service components.

The main components of the ESS are shown in Figure 44. Each Association has one Edge
Storage Gateway that is deployed locally and provides access to the ESS’ different public APIs.
Storage resources are integrated using Edge storage devices, and a developer dashboard
helps application developers set up their storage account. A Cloud Storage Gateway is also
made available to users who are outside an association’s network. However, this provides a
limited feature set, in line with the association’s security model, only providing access to data
fragments that reside on public cloud providers. A detailed description of the service's
features and components was included in Deliverable 3.1 (M15).

empyrean-horizon.eu 75/118

(E]MPYREAN
D5.2 — Initial release of EMPYREAN integrated platform N7

Custom CI/CD using Bitbucket Pipelines

The components of the ESS are being developed by Chocolate Cloud in-house, using the
company’s established CI/CD practices.

Figure 45: Example CI/CD pipeline run summary for one of the SkyFlok.com backend services.

To ensure code quality and adherence to project requirements, we have created a
comprehensive set of rules and practices that guide us during component development. Here
we provide a few examples:

e Each component must have unit tests that cover a large proportion of the code base.
These unit tests are run automatically for each commit using a BitBucket pipeline, as
shown in Figure 45.

e When developing a new feature, a separate git branch must be created. Before
merging the branch, a pull request is created with two reviewers. Merging requires
the approval of both reviewers and code coverage (see Figure 46) must not drop after
the merge. Some critical components require additional checks by the lead software
engineer.

e Issues are tracked using Jira and assigned to component owners. Priority is given to
bugs.

To validate features in an end-to-end manner, we have created a separate S3 feature
coverage test suite with roughly 130 test cases.

empyrean-horizon.eu 76/118

D5.2 — Initial release of EMPYREAN integrated platform

Reports

Code coverage (B Code coverage

rage Reporter Pipe reported 3 days ago

+ Comparison against 42¢

Figure 46: Output of BitBucket pipeline report on code coverage.

S3 feature coverage tests

We have created a test suite of roughly 130 individual tests that cover all S3 endpoints the
ESS supports. In designing the suite, care was taken to cover different endpoint parameters
and their combinations. Whenever the AWS S3 documentation was not clear on a certain
aspect, functioning was validated using the AWS S3 cloud service.

At a high level, these tests have a two-fold role:
e Validate correct end-to-end functioning of S3 features.
e Check that ESS behaves in a compatible way with the AWS S3 cloud service.

Some tests check simple scenarios such as uploading and downloading objects. Others are
focused on complex processes such as creating objects as part of a multipart upload. Yet
others check interactions between different S3 endpoints, such as whether an S3 bucket with
a started multipart upload can be deleted. Returned data types, headers, error codes, and
messages are verified.

Integration and interfaces

S3-compatible API

The ESS S3-compatible object storage APl supports all major Create, Read, Update, Delete
(CRUD) features of both objects and buckets in their simplest form. Furthermore, support for
multipart uploads is also present, along with the ability to perform ranged GetObject queries.

empyrean-horizon.eu 77/118

(EIMPYREAN
D5.2 — Initial release of EMPYREAN integrated platform N

Buckets
e CreateBucket
e DeleteBucket
e ListBuckets

Objects
e GetObject
e HeadObject
e PutObject
e ListObjects
e ListObjectsV2
e ListObjectVersions
e DeleteObject

Multipart uploads
e CreateMultipartUpload
e AbortMultipartUpload
e CompleteMultipartUpload
e UploadPart
e ListMultipartUploads
e ListParts

An API reference can be found on Amazon’s website [8]. Some notes regarding compatibility
with AWS S3:

e From AWS'’s two addressing schemas, the ESS only supports path-style as there is no
need to provide large-scale, DNS-based global routing of requests.

e Only versioned buckets are supported. We plan to add support to for non-versioned
buckets.

e Authentication and request signing are performed using AWS Signature V4. Earlier
methods are not supported.

e Less common transfer-encoding methods that chunk data are also supported.

Storage Policy API

The Storage Policy API will allow EMPYREAN users to create and retrieve storage policies
programmatically. These can be thought of as recipes used to translate an application’s
storage requirements into a storage resource allocation. This APl will be established shortly.

Storage Resource Telemetry API

The ESS will provide a list of supported Cloud Storage locations, along with their static
characteristics. Beyond this, the performance of cloud locations is continuously monitored by
the SkyFlok.com backend. The ESS will also expose this information through its Telemetry API.
This APl will be established shortly.

empyrean-horizon.eu 78/118

(E]MPYREAN
D5.2 — Initial release of EMPYREAN integrated platform N

The list of Edge Storage devices is maintained by both the ESS and the EMPYREAN Registry.
Their dynamic characteristics can be collected directly through a Prometheus-compatible
interface exposed by MinlO [9]. No communication with the ESS is needed. This interface
provides a way to both monitor performance characteristics as well as configure alert rules
for certain types of abnormal events.

5.5.4 1oT Query Engine

The EMPYREAN platform introduces an "Analytics-Friendly Distributed Storage" solution
specifically designed for loT time-series data, building upon existing object storage with novel
features. This system aims to balance the cost-effectiveness and reliability of erasure coding
with the efficiency needed for querying time-series data. Unlike conventional systems that
must scan entire objects or incur high costs by replicating data for analytics, EMPYREAN
utilizes a new data alignment and coding scheme, incorporating Random Linear Network
Coding (RLNC), to enable byte-level access without full file reconstruction. This approach
significantly reduces data retrieval overhead while maintaining the benefits of erasure coding.

A key innovation being explored is the ability to compress data while retaining byte-level
access, using Generalized Data Deduplication (GDD). This technique offers a deterministic
relationship between uncompressed and compressed data, potentially further enhancing
cost-effectiveness when combined with erasure coding. The project, a basic research effort
by CC, has a low Technology Readiness Level (TRL) and focuses on establishing the feasibility
and initial evaluation of these techniques. It addresses critical technical KPIs related to limiting
data transfer costs and ensuring linear scaling of erasure-coded data retrieval for queries,
directly contributing to EMPYREAN's objective of efficient data handling in cloud
environments.

The loT Query Engine will be integrated into the EMPYREAN platform in time for the next
platform release.

5.6 Security, Trust, and Privacy Manager

5.6.1 p-ABC Library

The Privacy and Security Manager (PSM) will integrate a privacy-preserving Attribute-Based
Credential (p-ABC) library as a foundational component across all its security functions within
EMPYREAN. The p-ABC library enables the issuance, management, and verification of
credentials that support selective disclosure of identity attributes, enhancing privacy while
maintaining strong trust guarantees.

This library is critical for several core PSM capabilities:

e Verifiable Credential Generation: Allows the issuance of VCs where attributes are
cryptographically bound but can be selectively disclosed by the holder.

empyrean-horizon.eu 79/118

(EIMPYREAN
D5.2 — Initial release of EMPYREAN integrated platform N

e Decentralized Identifiers (DIDs): Facilitate the generation of cryptographic keys and
identifiers, especially for constrained devices and low-power loT entities, enabling
them to hold verifiable identities.

e Attestation for Devices and Services: Provides lightweight cryptographic proofs that
can be used in attestation processes, ensuring device integrity and trustworthiness
even in resource-constrained environments.

e Privacy-Preserving Authorization: Ensures that during access control and
authorization workflows, only the minimum necessary information is shared, adhering
to data minimization principles.

5.6.2 Privacy and Security Manager

The Privacy and Security Manager (PSM) is a core component of the EMPYREAN platform,
enabling decentralized identity, verifiable credentials, secure authentication, and policy-
based access control across Associations. Building upon Hyperledger Aries® and Fabric?, and
integrating OP-TEE for trusted execution, the PSM allows privacy-preserving identity flows
and blockchain-backed authorization mechanisms. This section outlines the implementation
progress of the PSM, describing key APls, architectural features, and new capabilities.

Integration and interfaces

This section details the implementation progress of the PSM APIs and their integration into
the broader EMPYREAN platform. It exposes a comprehensive set of RESTful interfaces that
support key security and identity functionalities, allowing other platform components, such
as the Aggregator and external services, to interact securely and consistently. The following
subsections describe the different modules that compose the PSM’s external interface.

We begin with Identity Management (Figure 47), which covers decentralized identifier (DID)
creation and retrieval of trusted issuer registries. Then, we present the Credential Issuance
interface (Figure 48), which enables enrolment, credential generation, and the construction
and verification of Verifiable Presentations based on privacy-preserving attribute-based
credentials. Following this, the JWT Signature module is explained, which provides
mechanisms for signing and verifying JSON Web Tokens, including support for nested tokens
used in chained authorization flows (Figure 49).

Next, the section covers TEE Management, which outlines the API for generating secure key
pairs within the Trusted Execution Environment (OP-TEE) (Figure 50). Finally, we introduce
the new Securing Resources capability, which allows EMPYREAN Aggregators to dynamically
protect services by deploying Policy Decision Point (PDP)/Policy Enforcement Point (PEP)
proxies, defining policy-based access requirements, and enforcing authorization decisions
backed by blockchain and smart contracts (Figure 51).

3 https://github.com/hyperledger/aries
4 https://github.com/hyperledger/fabric

empyrean-horizon.eu 80/118

(EIMPYREAN
D5.2 — Initial release of EMPYREAN integrated platform N

Verifiable Data Registry (Identity Manager)

These APIs handle the creation of Decentralized Identifiers (DIDs) and the retrieval of trusted
issuers. They enable unique, verifiable identities across Associations and ensure credentials
are issued only by authorized entities.

identity identity Management ~
/empyrean/idm/generateDID Generate a decentralized identifier (DID) N
/empyrean/idm/trustedIssuers Retrieve a list of trusted issuers v

Figure 47: Privacy and Security Manager — Identity management REST API.

e GenerateDID (POST /empyrean/idm/generateDID): Generates a Decentralized
Identifier (DID) for users or devices, enabling unique and verifiable digital identities.

e GetTrustedlssuerlList (GET /empyrean/idm/trustedissuers): Retrieves a list of pre-
approved credential issuers stored in the Trusted Issuers Registry.

Credential Issuance

The Credential Issuance APIs support the enrolment of entities and the lifecycle of Verifiable
Credentials (VCs). These calls allow users to receive credentials based on verified attributes,
generate Verifiable Presentations (VPs) for selective disclosure, and verify the authenticity of
submitted credentials.

credential Credential Issuance and Presentation ~
/empyrean/idm/VerifyCredential Verify a credential v
/empyrean/idm/acceptEnrolment Accept enrolment v
/empyrean/idm/doEnrolment Perform enrolment £
/empyrean/idm/generateVp Generate a verifiable presentation (VP) A
/empyrean/idm/getVCredential Retrieve a verifiable credential ~

Figure 48: Privacy and Security Manager — Credential issuance REST API.

e DoEnrolment (POST /empyrean/idm/doEnrolment): Registers a new entity into the
platform by issuing a Verifiable Credential based on verified attributes.

e GetVCredential (POST /empyrean/idm/getVCredential): Returns a previously issued
VC associated with a DID.

e GenerateVerifiablePresentation (POST /empyrean/idm/generateVP): Constructs a
Verifiable Presentation (VP) from one or more VCs, supporting selective disclosure via
Zero-Knowledge Proofs.

e VerifyCredential (POST /fempyrean/idm/VerifyCredential): Validates the authenticity,
integrity, and issuer trust level of a presented VC or VP.

empyrean-horizon.eu 81/118

(EIMPYREAN
D5.2 — Initial release of EMPYREAN integrated platform N

JWT Signature

These endpoints enable the signing and verification of JSON Web Tokens (JWTs), which are
used to encapsulate identity claims and access rights. Support for nested JWTs allows for
secure delegation and composability in authorization chains.

iwt JWT Signing and Verification FaN
/empyrean/idm/signJWTContent Sign JWT content ~
/empyrean/idm/signIJWTNested Sign nested JWT v
/empyrean/idm/verifyJWTContent Verify JWT content ~

Figure 49: Privacy and Security Manager — JSW Signature REST API.

e Sign)WTContent (POST /empyrean/idm/signJWTContent): Signs raw JSON payloads
into JWTs, optionally embedding credentials or access rights.

e Sign)WTNested (POST /empyrean/idm/signJWTNested): Signs a nested JWT that
contains another signed JWT as payload. This is used to delegate access securely
across chained authorization flows.

e VerifyJWTContent (POST /empyrean/idm/verifyJWTContent): Validates JWT
signatures and checks expiration, issuer, and audience claims.

Secure & Trusted Execution Environment Management

This module provides a secure interface for generating key pairs within the Trusted Execution
Environment (OP-TEE), ensuring hardware-isolated handling of sensitive cryptographic
operations.

tee Trusted Execution Environment A

/empyrean/idm/tee/generatekeypair Generate a key pair in TEE v

Figure 50: Privacy and Security Manager — Trusted Execution Environment (TEE) REST API.

e TEE GenerateKeyPair (POST /empyrean/idm/tee/generatekeypair): Generates a
hardware-backed key pair using OP-TEE, isolating private key material from the host
0s.

Securing Resources

This new feature allows the dynamic protection of services by registering resources and
associating them with PDP/PEP proxies. The PSM enforces attribute-based policies and logs
all access decisions on the blockchain for traceability.

empyrean-horizon.eu 82/118

(EIMPYREAN
D5.2 — Initial release of EMPYREAN integrated platform N

resource Resource Protection and Policy Enforcement A

/empyrean/idm/secureResource Secure a resource with PDP/PEP proxy v

Figure 51: Privacy and Security Manager — Securing resources REST API.

e SecureResource (POST /fempyrean/idm/secureResource) [New Feature — In
Progress]:

o This API allows Aggregators or EMPYREAN entities to register a service or
resource (e.g., a URL, IP:port pair) that should be protected using dynamic
authorization mechanisms.

o Upon receiving this request, the PSM:

m Deploys a dedicated PDP/PEP proxy component acting as a gateway
to the protected resource.

m Stores the corresponding access control policies as XACML rules via
smart contracts on the blockchain.

m Associates each policy with specific attribute-based access
requirements (e.g., "role=technician" or "purpose=diagnostic").

o The proxy returns a new port or secure endpoint through which the resource
is now accessible.

o Consumers must present a Verifiable Presentation (VP) and invoke
SignJWTContent to obtain a valid token encoding their access claims. This
token is then used to interact with the protected resource.

o All access attempts are recorded on-chain using the access traceability smart
contract, capturing:

m The subject's DID
Token claims (attributes)

m Resource identifier
m Decision outcome (GRANTED/DENIED)
m Timestamp

5.6.3 Cyber Threat Intelligence Engine

The EMPYREAN platform integrates a powerful Cyber Threat Intelligence (CTI) engine as a
core component of its security, trust, and privacy framework. Designed to operate across the
loT-edge-cloud continuum, the CTl engine is responsible for automated cyber threat analysis,
enabling the platform to identify, analyze, and respond to cybersecurity threats in a proactive
and intelligent manner. By leveraging advanced mechanisms for threat detection, behavioral
analysis, and intrusion response, the CTl engine empowers EMPYREAN to deliver robust and
adaptive security capabilities tailored to complex, distributed environments.

One of the main features of the CTl engine is its ability to collect and analyze data from trusted
external sources, including platforms such as the Cyber Threat Alliance (CTA) and the Malware
Information Sharing Platform (MISP). By integrating with MISP, the CTI engine enables
seamless ingestion, normalization, and correlation of cyber threat intelligence, providing

empyrean-horizon.eu 83/118

(EIMPYREAN
D5.2 — Initial release of EMPYREAN integrated platform N

comprehensive situational awareness for both ongoing and emerging threats. The engine’s
architecture is designed to facilitate the periodic retrieval and processing of Indicators of
Compromise (loCs), structured threat data (e.g., STIX format), and other critical security
insights that can be leveraged for real-time defense.

The CTl engine is also closely integrated with the EMPYREAN Telemetry Service, enabling it to
ingest real-time monitoring data from across the platform. This tight coupling allows the CTI
engine to provide context-aware threat intelligence, supporting automated security
workflows, localized detection, and timely mitigation actions at both the Association and
infrastructure levels. In addition, the CTI engine provides data and analytics interfaces that
can be used by other EMPYREAN components, as well as by external security tools, ensuring
compatibility with the broader cybersecurity ecosystem and facilitating the integration of
intelligence-driven defense strategies into platform operations.

Through these capabilities, the EMPYREAN CTI engine forms the backbone of the platform’s
security posture—enabling proactive adaptation, rapid threat response, and continuous
situational awareness across hyper-distributed 10T, edge, and cloud environments.

The API provided by the EMPYREAN CTI engine is purpose-built to empower both automated
dashboards and human security experts with timely and actionable cyber threat intelligence.
Recognizing the complexity and volume of security-relevant data within hyper-distributed
environments, the APl exposes structured endpoints that allow the platform’s dashboards to
visually present up-to-date CTIl information, trends, and alerts in an accessible and intuitive
manner.

This API-driven approach is essential for enabling situational awareness and decision support
for security professionals operating the EMPYREAN platform. Through clearly defined RESTful
endpoints, dashboards can retrieve detailed threat intelligence, query contextual
information, visualize time series of cyber events, and analyze the ranking of malware families
or specific incidents detected in the system. The design ensures that both real-time data and
historical trends can be efficiently accessed and correlated.

A key architectural feature of the CTl engine is its seamless integration with the MISP API for
the collection and normalization of cyber threat intelligence relevant to EMPYREAN. By
leveraging the MISP API, the component can automatically ingest and process Indicators of
Compromise (loCs) and other structured threat data, ensuring the EMPYREAN CTI engine
maintains a comprehensive and current view of the threat landscape. The collected
intelligence is then made available to dashboards and experts through the EMPYREAN API,
supporting a full cycle of intelligence-driven security operations—from data collection to
actionable insight.

This design philosophy not only supports automation and proactive threat management via
dashboards but also provides security experts with the tools they need to explore,
understand, and respond to security events across the platform, leveraging both external
intelligence (via MISP) and internally generated telemetry.

empyrean-horizon.eu 84/118

(EIMPYREAN
D5.2 — Initial release of EMPYREAN integrated platform N

/search Search for objects

/context Get context information v

/timeSeries Gettime series data for a term ~

/rankingmaluare Getr

/specialCases Gotspec

/bundleFigure Gatbundls figurs by id v

Figure 52: The CTI Engine REST API.

The EMPYREAN CTI engine exposes a suite of RESTful APl endpoints, see Figure 52, designed
to deliver actionable and contextual threat intelligence to both automated dashboards and
human security analysts. Each endpoint is tailored to support a specific type of data retrieval
or analysis relevant to the cybersecurity operations of the platform. Below, we describe the
purpose and typical usage of each endpoint:

/search

The /search endpoint allows users and dashboards to query the CTI engine for objects or
entities that match a given search term. This is typically used to quickly locate indicators,
assets, or other threat intelligence objects within the EMPYREAN dataset, supporting
investigative workflows and contextual analysis.

/context

The /context endpoint provides detailed contextual information about a specified term or
indicator. When security experts or automated systems need to understand the background,
related events, or threat associations of a specific entity, this endpoint returns enriched
context drawn from both internal analysis and external intelligence sources.

/timeSeries

The /timeSeries endpoint is designed to deliver time series data for a given term or indicator.
This supports trend analysis, anomaly detection, and temporal correlation of cyber events,
enabling dashboards to visualize how threat-related activity evolves over time and allowing
experts to track the progression or resolution of specific incidents.

/rankingmalware

The /rankingmalware endpoint offers insights into the prevalence or significance of different
malware samples or families within the EMPYREAN platform. By retrieving rankings—either
by individual malware or by family—security professionals can prioritize attention and
resources toward the most impactful threats affecting their environment.

/specialCases

The /specialCases endpoint surfaces information on noteworthy or exceptional threat
scenarios detected within the platform. This may include rare, novel, or otherwise significant
events that warrant special attention, supporting proactive defense and targeted
investigation.

empyrean-horizon.eu 85/118

(E]MPYREAN
D5.2 — Initial release of EMPYREAN integrated platform N

/bundleFigure

The /bundleFigure endpoint returns detailed information for the creation of figures or visual
representations associated with a specific bundle or incident identifier. This supports the
visualization needs of dashboards and analytical tools, allowing experts to quickly interpret
complex data and relationships within specific threat events.

These endpoints offer a comprehensive interface to the EMPYREAN CTl engine, enabling both
automated systems and analysts to efficiently access, interpret, and act upon the rich threat
intelligence collected and processed by the platform. By organizing the API in this modular
fashion, the CTI engine facilitates both operational security monitoring and in-depth forensic
analysis, aligning with EMPYREAN’s mission of adaptive, intelligence-driven defence.

5.7 Monitoring and Observability Layer

5.7.1 Telemetry Service

The EMPYREAN Telemetry Service is a foundational component designed to provide real-time
observability and situational awareness across distributed, device-rich Associations operating
in the loT-edge-cloud continuum. Tailored for heterogeneous infrastructures composed of
embedded systems, loT devices, edge clusters, and cloud services, the service enables
intelligent, context-aware management by continuously collecting, aggregating, and exposing
performance and status data.

At the heart of the telemetry infrastructure lies a modular and distributed architecture, where
multiple Telemetry Agents are deployed close to the data sources, either on loT nodes, edge
platforms, or orchestrated containers. These agents handle local data collection and
preliminary filtering before forwarding selected metrics to Telemetry Aggregators at the
Association level. Each Aggregator is responsible for correlating and normalizing telemetry
from different local platforms, enabling high-level visibility across the Association.

The system supports device registration and association mapping, automatically linking
telemetry data to specific devices, applications, and orchestration workflows. This
association-aware telemetry model ensures traceability and enables targeted monitoring and
diagnostics in scenarios involving large fleets of constrained or mobile loT devices.

Data is exposed through standardized interfaces (e.g., REST, gRPC, Prometheus APIs) to
platform components such as the Orchestration Manager, Analytics Engine, and CTI Engine,
enabling closed-loop automation, threat detection, and optimization. The telemetry service
is tightly integrated with the orchestration stack, adapting its data collection strategies to
events such as device onboarding, service deployment, scaling, and failure recovery.
Leveraging extensible backends like Prometheus, it supports persistent storage and time-
series analysis for real-time and historical insight.

Designed to operate under resource and connectivity constraints typical of loT environments,
the EMPYREAN Telemetry Service incorporates lightweight components and edge-level
processing to ensure scalability, resilience, and low-latency observability in hyper-distributed

empyrean-horizon.eu 86/118

(E]MPYREAN
D5.2 — Initial release of EMPYREAN integrated platform N7

deployments. Its extensible design allows seamless integration of new device types and
metrics, making it a versatile telemetry backbone for intelligent and autonomous operations
across EMPYREAN Associations.

Figure 53 presents a high-level summary of the Telemetry Service deployment, illustrating the
end-to-end flow of telemetry data, from collection to consumption across the platform.

Local Telemetry Service

Local Node / IoT devices : @
..................... :

REST API

: Used by other
% H platform components
i (I : o
o o _ 4 —_— —_—
ITs : : Telemetry Prometheus
0T device : * > Receives, processes, and (lsst Benager
> = exports telemetry. Alerts and
: : > Filters and transforms Notifications
: E collected data.
E : > Ensures efficient telemetry
H H : management. :
H Node exporter i
Grafana :
: Visualization and H
Monitoring

Figure 53: EMPYREAN Telemetry Service deployment.

Integration and interfaces

To support dynamic observability in distributed environments, the service exposes well-
defined interfaces—both internal and public—that allow efficient interaction with devices,
agents, orchestration components, and higher-level analytics modules. These interfaces are
designed to ensure smooth data flow across the telemetry pipeline, from collection at the
edge to processing, storage, and consumption by platform services and external users.

Integration with loT Devices and Edge Environments

One of the core design priorities of the telemetry infrastructure is to support telemetry data
ingestion from diverse loT devices, often operating under strict constraints in power,
bandwidth, or computational resources. For this purpose, the EMPYREAN Telemetry Service
includes support for lightweight telemetry agents deployed on devices. These agents can
collect local metrics, such as CPU load, temperature, memory usage, sensor readings, and
network status, and forward them via lightweight messaging protocols like MQTT or AMQP.

To ensure seamless ingestion of such device-originated telemetry, specialized receivers within
the OpenTelemetry (OTEL) Collector are configured to handle these protocols and data
formats. This allows raw or pre-processed telemetry data to be received, normalized, and
forwarded for further processing, regardless of the device's hardware or operating system.
The system also enables association-aware telemetry, tagging incoming metrics with

empyrean-horizon.eu 87/118

(E]MPYREAN
D5.2 — Initial release of EMPYREAN integrated platform N

identifiers that bind the data to specific nodes, applications, or user-defined associations,
facilitating fine-grained analysis and traceability.

Internal Interfaces and Pipeline Management

The telemetry infrastructure supports a robust set of internal interfaces that govern the
configuration, management, and orchestration of telemetry pipelines. These interfaces are
exposed through a dedicated agent API, built with FastAPI, which enables the dynamic
management of telemetry pipelines at runtime.

Key functionalities of the agent APl include:

e Dynamic pipeline creation and modification: APIs support the injection or removal of
OpenTelemetry pipeline components (e.g., receivers, processors, exporters) through
declarative updates to the OTEL Collector configuration.

e Lifecycle operations: Endpoints allow operators and automated systems to start, stop,
restart, or reconfigure telemetry pipelines without service interruption.

e Namespace-aware integration: The APl operates across Kubernetes namespaces,
applying configuration changes via ConfigMaps and monitoring pods using label
selectors and controller logic.

e Component inspection: Clients can query current pipeline status, list telemetry
agents, and perform health checks across the telemetry mesh.

e Reload operations: Secure endpoints allow on-demand configuration reloads,
minimizing disruption during updates or deployments.

This internal control layer ensures that the telemetry service can adapt in real time to
infrastructure changes, such as the onboarding of new devices, service migrations, or scaling
actions initiated by the orchestration layer.

5.7.1.1 Data Access via Public APIs

To enable data access via public APls and support data consumption by platform services and
users, the service exposes telemetry metrics through two primary public interfaces: the
Prometheus APl and the Agent API.

The Prometheus API provides access to real-time and historical time-series telemetry via
PromQL endpoints. It includes metrics such as CPU usage, memory consumption, disk 1/0O,
energy usage, and custom application-specific data. These endpoints are utilized by internal
modules like the Decision Engine, Analytics Engine, and CTI Engine, as well as by external tools
like Grafana for dashboard generation. As illustrated in Figure 54, the API supports time-range
filtering, label-based querying, and data aggregation, making it ideal for both manual
debugging and automated analytics workflows. For instance, the Analytics Engine may use
historical telemetry for anomaly detection, while the Decision Engine relies-on real-time
usage trends to optimize workload scheduling across devices and Associations.

empyrean-horizon.eu 88/118

(EIMPYREAN
D5.2 — Initial release of EMPYREAN integrated platform N

/query Instant query A

Executes an instant query against time series data
Parameters Try it out
Name Description

* PromQL expression.
query
string query
(query)
time Evaluation timestamp.

string time

(query)

Figure 54: Telemetry Service Prometheus API.

The Agent APl is a RESTful interface that enables interaction with the telemetry infrastructure.
It allows developers and orchestration components to dynamically reconfigure pipelines, add
or remove telemetry sources, and adapt metrics collection to evolving system conditions. The
initial version of the API (Figure 55), includes several methods for listing, updating, and
deleting pipelines, as well as reloading the configuration in real time.

/configurations ListPipelines ~
/configurations uUpdate Pipeline v
/configurations Add Pipeline v
‘m /configurations Remove Pipeline o
/reload Reload Config o

Figure 55: Telemetry Service Agent REST API.

These public APIs enable open integration with other EMPYREAN components, ensuring
interoperability and extensibility in diverse environments.

Integration with EMPYREAN Services

The Telemetry Service plays a pivotal role in coordinating with other key components of the
EMPYREAN architecture:

o Decision Engine: Consumes real-time metrics for performance-aware scheduling, load
balancing, and energy-aware workload placement. Integration is achieved through
Prometheus queries to retrieve the latest system state across Associations and
devices.

® Analytics Engine: Leverages long-term telemetry data from Prometheus to train
machine learning models and detect anomalies. Integration occurs through RESTful
gueries and subscription to telemetry topics.

e Orchestration Engine: Sends events (e.g., deployment, migration, scaling) to the
telemetry infrastructure to trigger corresponding adjustments in monitoring

empyrean-horizon.eu 89/118

(EIMPYREAN
D5.2 — Initial release of EMPYREAN integrated platform N

configurations. In return, it consumes telemetry outputs to make informed
orchestration decisions.

e CTI Engine: Subscribes to telemetry streams related to system behavior and security
events. Correlates monitoring signals with Indicators of Compromise (IoCs) or threat
intelligence for early detection and mitigation.

This bidirectional communication ensures that the telemetry service is not only a passive
observability tool but an active enabler of intelligent automation and proactive system
adaptation.

Scalability and Federation Across Associations

In line with EMPYREAN'’s architecture, the Telemetry Service supports federated operation
across multiple Associations. Each Association deploys one or more Telemetry Aggregators
responsible for: (i) collecting and correlating metrics from all devices, applications, and agents
within its scope, and (ii) propagating relevant metrics to global services for inter-Association
coordination. This distributed model ensures scalability, fault isolation, and low-latency
telemetry handling, while still providing global visibility and unified access to data.

Visualization Interfaces

Telemetry data is visualized via integrated Grafana dashboards, which connect to the
Prometheus API. Dashboards are designed to support:

Device-level monitoring and health status.
Association-level resource usage and topology overviews.
Real-time event tracking and incident diagnosis.
Historical trend analysis for predictive maintenance.

5.7.2 The Analytics Engine

The Analytics Engine enables autonomous operation and adaptive self-management across
the Association-based continuum. The EMPYREAN platform deploys multiple instances of the
Analytics Engine, each leveraging real-time telemetry data to implement distributed service
assurance mechanisms. These engines apply continuous analysis techniques to verify that
applications operate as expected and proactively or reactively trigger re-optimization actions
to maintain optimal performance, reliability, and efficiency across the platform.

The Analytics Engine is designed as a modular and scalable microservices-based system,
comprising four core components: Access Interface, Data Connector, Data Manager, and
Event Detection Engine. Figure 56 illustrates the engine’s architecture, detailing its main
components and their interactions with other EMPYREAN services. Additional details
regarding the design, initial implementation, and exposed interfaces of the Analytics Engine
are provided in D3.2 (M15).

empyrean-horizon.eu 90/118

(E]MPYREAN
D5.2 — Initial release of EMPYREAN integrated platform N7

(v |] R
’ API| Server ‘ Notification Manager
'y .
Y T Access Interface
|
(N [N8I]
EMPYREAN DATA
Distributor REst
3B [sBi | L1

Data Handler

I—&]

| | ' — o~ —~ —
‘_ Data Connector J . =1 = =)
- 1| Time-series =t J. =1 NosaL ,

H 7Elaubaus Model Repository 7Eluubas-s :

\ Data Manager 7__/'

s ! ™
Dispatcher Event Reporter
1 Model Training

\)
\ Event Detection Engine s

~—

Model Execution

I-

Figure 56: Analytics Engine architecture and core components.

Integration and interfaces

The initial version of the EMPYREAN Analytics Engine delivers the core functionalities of the
Access Interface, Data Connector, and Data Manager services. Implemented in Python and
adhering to a microservices architecture, each service exposes a well-defined set of interfaces
that enable seamless interaction, both internally among Analytics Engine components and
externally with other key platform services, such as the Telemetry Service, EMPYREAN
Aggregator, and Service Orchestrator.

The Access Interface enables bidirectional communication to exchange commands,
information, and notifications among the Analytic Engine instances and other services within
the distributed EMPYREAN control and management plane. The Data Connector service
manages the collection of raw monitoring and streaming telemetry data from various sources
within the Monitoring and Observability layer. Finally, the Data Manager manages data
storage and facilitates data exchange between internal and external components, providing
local storage of processed data, trained models, and analysis results.

All services are developed, integrated, and packaged through the EMPYREAN CI/CD pipeline,
ensuring consistent quality and streamlined deployment. Dedicated container images are
provided for each Analytics Engine service, accompanied by their respective configuration
files, which support automated deployment within the EMPYREAN testbed infrastructure.

Next, we summarize the initial set of implemented REST APIs and asynchronous
communication interfaces exposed by the component services, see Figure 57, and Figure 58.

empyrean-horizon.eu 91/118

AN
EMPYREAN
D5.2 — Initial release of EMPYREAN integrated platform 2

Configuration ~
. Japi/vi/analyties_engine/config Getavailable operation configurations of Anafvtics Engine instance A
Japi/vi/analytics_engine/config Addanew operation configuration of Analytics Engine nstance A

Jfapi/vl/analytics_engine/config Updale operation configuration of Analytics Engine instance N

Japi/vifanalytics_engine/config/{conf_id} Getspeific operation configuration of Analytics Engine instance ~

Japifvi/analytics_engine/config/{conf_id} Delele aspecific operation configuration e]
. Japifvi/analytics_engine/config/activate/{conf_id} Activate aspecific operabon configuration S
[Japifvi/analytics_engine/config/activate/{conf_id} Terminates a specific operation configuration e]

Associations ~
| /api/v1/analytics_engine/associations Get A for service analytics v ‘
’ /api/v1/analytics_engine/associations Register a new Association for service assurance analytics v ‘
m /api/v1/analytics_engine/associations Update Association registration for service assurance analytics v
P /api/vi/analytics_engine/associations/{association_id} v ‘
Get details for a speific A: ion for service analytics.

[/api/vi/analytics_engine/associations/{association_id} Delete aregistred Association from service assruance analytics. v ‘

Models ~

/api/v1/analytics_engine/models Getavaiable trained models in the Data Manager. v ‘
/api/v1/analytics_engine/models Create and store a specific trained model in the Data Manager. v ‘
m /api/v1/analytics_engine/models Update and store a specific trained model in the Data Manager. v ‘
/api/v1/analytics_engine/models/{model_id} Get details about a specific trained model v ‘
[/api/vi/analytics_engine/models/{model_id} Delete a specific traided model from the Data Manager. v l

Figure 57: Analytics Engine — Access Interface RESTful API.

Data Manager ~
| /api/vi/analytics_engine/data_manager/clusters/metrics/{cluster_id} Retrieve historical telemetry data for the worker nodes within a KB83/K3s cluster. v ‘
l m /api/vi/analytics_engine/data_manager/clusters/pods/{cluster_id} Retrieve historcal telemetry data for the available Pods within 3 K8s/K3s cluster. v l
‘ /api/vi/analytics_engine/data_manager/ iations/metrics/{ iation_id} Retrieve historical telemetry data for an EMPYREAN Association. v ‘

' ﬂ /api/vi/analytics_engine/data_manager/deployments/metrics/{deployment_id} Retreve historical telemetry data for a specific appication deployment within EMPYREAN platform. \/ |

| /api/vi/analytics_engine/data_manager/clusters/metrics Store telemetry data for the worker nodes within 3 K8s/K3s cluster. v ‘
‘ /api/vi/analytics_engine/data_manager/clusters/pods Store historical telemetry cata for the avaiable Pods within a KBS/K3s cluster v ‘
‘ /api/vi/analytics_engine/data_manager/ iations/metrics Store historical telematry data for an EMPYREAN Association. v 1
‘ m /api/vi/analytics_engine/data_manager /metrics tasometry data for & specific spplication depioyment within EMPYREAN platiorm v |

Figure 58: Analytics Engine — Data Manager RESTful API.

empyrean-horizon.eu 92/118

(E]MPYREAN
D5.2 — Initial release of EMPYREAN integrated platform N7

Analytics Engine and Associations

Upon the creation of a new Association within the EMPYREAN platform, the responsible
EMPYREAN Aggregator performs several operations, including notifying the corresponding
Analytics Engine about the newly defined Association. The complete operational flow for this
process is detailed in Section 6.2. This interaction enables the Analytics Engine to seamlessly
collect relevant data and perform service assurance activities at the Association level,
ensuring both the correct operation of participating resources and the compliance of
deployed services with the desired state.

To facilitate this, the Aggregator communicates with the Access Interface service of the
Analytics Engine by invoking its exposed REST API. Specifically, it issues the following POST
request to register the new Association

POST /api/vl/analytics_engine/associations

{"association_uuid": "ebel2f54-a9cb-476a-b930-4befb0236fce"”, "aggregator_uuid":
"a2b66fa3-3f13-416b-8644-56328e0@dedba”, "policy uuid":"5cOeedl6-31a8-467d-83db-
ef1010466755"}

Additionally, the following GET method can be used to retrieve a list of active Associations
registered within a given Analytics Engine instance.

GET /api/vl/analytics_engine/associations

[{"association_uuid":"ebel2f54-a9cb-476a-b930-4befb0236fce", "aggregator_uuid":
"a2b66fa3-3f13-416b-8644-56328e0dedba", "policy uuid": "5c@eedl16-31a8-467d-83db-
ef1010466755", "status": "active", "enabled_at": 1751639172}]

Data connectors registration and management

The implementation enables the dynamic registration and configuration of various Data
Connectors via a common northbound REST interface, see Figure 59, exposed by the Data
Connector service. During initialization, each Data Connector is expected to register with a
specific Analytics Engine instance automatically.

Data Connectors -~

fapifvifanalytics_engine/data_connectors Listavailabie data connectors v
fapi/vi/analytics_engine/data_connectors Enabiea new connector to retieve data for a specific data sourse type v
fapi/vi/analytics_engine/data_connectors Update ine configuration of a data connector v
/api/vifanalytics_engine/data_connectors/{id} Getdetais about a specific data connector plug-in configuration & Status (uud. type. configuration_parameters. Stus ~

m fapi/vifanalyties_engine/data_connectors/{id) Disstie a specise sata connector v

Figure 59: Analytics Engine — Data Connector plug-ins RESTful northbound interface.

This registration is executed by invoking the corresponding POST method. Below is an
example showing how to register a Data Connector designed to collect information from the
EMPYREAN Telemetry Service through the Prometheus interface.

empyrean-horizon.eu 93/118

S
®MPYREAN
D5.2 — Initial release of EMPYREAN integrated platform 7

POST /api/vl/analytics_engine/data_connectors

{"uuid": "ddced532-2c76-4557-9bel-2be622cbdcee", "connector_type":
"prometheus_connector", "mode": "pulling", "connection_parameters":

{"service url":"http:147.102.16.114:90", "authentication":{"token": "ACCESS_TOKEN"}},
"operational parameters": {"retain_period": 900, "retrieval interval":180,
"caching_expiration_period": 7200, "active_notifications":true, "namespaces":
["empyrean", "empyrean_integration"]}}

In addition to registration, the operation parameters of a Data Connector can be dynamically
updated using the exposed PUT method. In the following example, we modify the active
configuration of a previously registered data Connector (UUID “ddced532-2¢76-4557-9bel-
2be622chdcee”) by setting the data pulling period to five minutes and disabling the emission
of operational notifications.

PUT /api/vl/analytics_engine/data_connectors

{"uuid":"ddced532-2c76-4557-9bel-2be622cbdcee", "operational parameters":
{"retrieval_internal":300,"active_notifications": false}}

Data Manager

The Data Connectors use the appropriate POST methods exposed by the Data Manager to
submit collected monitoring data. This interface enables the continuous ingestion of time-
series metrics into the Analytics Engine. The following request demonstrates the update of
collected data related to deployed services within a specific Association.

POST /api/vl/analytics_engine/data_manager/associations/metrics

{"association_uuid":" ebel2f54-a9cb-476a-b930-

4befb0236fce", "metrics":[{"cluster_uuid":"7628b895-3a91-4f0c-bob7-

033eab309891", "creation_timestamp":1751701148, "deployment_uuid":"fdf45855-1299-47F1-
8ea6-98be8d89030b", "name" : "data-producer-475b4c6b85-k89b5" , "namespace" : "empyrean-

non w,n

integration", "node":"wn2-

serifos","phase":"Running", "restarts":0,"start_time":1751701150, "timestamp":1751701848
,"usage" :{"cpu":"1002310835n", "memory":"150672Ki"}},{"cluster_uuid":"7628b895-3a91-
4f0c-bob7-033eab309891","creation_timestamp":1751701148, "deployment_uuid":"fdf45855 -

1299-47f1-8ea6-98be8d89030b", "name" : "state-manager-5b4c6b4785-

n,n uwon w,n

g7jb5", "namespace": "empyrean-integration”, "node" :"wn2-
serifos","phase":"Running","restarts":0,"start_time":1751701150, "timestamp":1751701848
,"usage" :{"cpu":"1006083037n", "memory":"175124Ki"}}, {"cluster_uuid":"7628b895-3a91-
4f0c-bob7-033eab309891", "creation_timestamp":1751701148, "deployment_uuid":"fdf45855-
1299-47f1-8ea6-98be8d89030b", "group_id" :"wn4-santorini”,"name":"classifier-21a9d90c6a-

nw,n won w,n

5b4c6","namespace":"empyrean-integration", "node":"wn4-

O TN n,n non

santorini","phase":"Running", "restarts":0,"start_time":1751701151,"timestamp":17517018
49,"usage" :{"cpu":"100476936n", "memory" : "204008Ki"}}]}

empyrean-horizon.eu 94/118

S
®MPYREAN
D5.2 — Initial release of EMPYREAN integrated platform 7

The Event Detection Engine can access the collected monitoring and historical data through
the GET methods exposed by the Data Manager service. This REST interface enables the
retrieval of time-series or contextual information necessary for event analysis and anomaly
detection. For instance, the following request retrieves the available monitoring data for a
specific worker node of a Kubernetes cluster within the EMPYREAN platform (ICCS K8s with
UUID 7628b895-3a91-4f0c-b0b7-033eab309891).

GET /api/vl/analytics_engine/data_manager/clusters/metrics/7628b895-3a91-4f0c-bob7-
033eab309891?wn=wn2-serifos

{"cluster_uuid":"7628b895-3a91-4f0c-bob7-

033eab309891","timestamp":1751703648, "nodes" : [{"node_cpus":[{"idle":14649163.75, "label
":"0","used":1011547.1},{"idle":14403219.21,"1label":"1","used" :1245255.79}, {"idle":142
73190.45,"label":"2","used" :1378752.47},{"idle":14093762.62,"label":"3","used" :1559953
.59}],"node_filesystem_avail bytes":60301340672, " node_filesystem_free_bytes":603181178
88,"node_filesystem_size bytes":207929917440,"node_filesystem_usage_percentage":70.99,
"node_filesystem _used_bytes":147611799552, "node_memory Buffers_bytes":1945653248, "node
_memory_Cached_bytes" :57360580608, "node_memory_MemAvailable_bytes":64005013504, "node_m
emory_MemFree_bytes":1168969728, "node_memory_ MemTotal bytes":67434598400, "node_memory

w,n

MemUsed_bytes" :66265628672, "node_memory_usage_percentage":98.27,"node_name":"wn2-

non

serifos"”,"node_total_running_pods":14}]}

empyrean-horizon.eu 95/118

(E]MPYREAN
D5.2 — Initial release of EMPYREAN integrated platform N

6 Platform Integration and Operation Flows

This section demonstrates how the components developed and integrated as part of the
initial EMPYREAN release support the key operation flows defined in Deliverable D2.3 (M12).
By showcasing end-to-end interactions among the core platform services, we illustrate the
orchestration, coordination, and automation capabilities of the EMPYREAN platform across
the loT-edge-cloud continuum. These flows validate the implementation and integration work
carried out, highlighting the platform’s readiness to support secure, dynamic, distributed, and
intelligent management of an Association-based continuum.

6.1 Entity Enrolment, Security, and Resource Protection

The EMPYREAN platform integrates a comprehensive framework for resource protection,
enrolment, and access governance, establishing a robust security mechanism that secures
critical platform components from the first stages of operation. This framework is based on
the coordinated interaction between the Privacy and Security Manager (PSM), the EMPYREAN
Aggregator, and the policy enforcement infrastructure composed of the Policy Enforcement
Point (PEP), the Policy Decision Point (PDP), and an immutable traceability layer powered by
Distributed Ledger Technology (DLT).

In the EMPYREAN architecture, the term resource broadly refers to any protected asset
exposed within the platform, including services, APls, data endpoints, or computational
functions. The first critical resource protected by this mechanism is the EMPYREAN Controller,
as it manages the onboarding of resources across the platform. The EMPYREAN Aggregator
initiates this protection process, ensuring that this central management service is fully
secured before being exposing it to any enrolled entity. Although, the initial integration
focuses on protecting the EMPYREAN Controller, the same mechanism applies universally to
any resource registered within an Association.

6.1.1 Resource protection and access workflow

The complete protection and access workflow is illustrated in Figure 60, showing how a
resource is protected, accessed by authorized entities, and how all actions are securely
logged.

empyrean-horizon.eu 96/118

(EIMPYREAN
D5.2 — Initial release of EMPYREAN integrated platform N

2 | ® A
g o im .l,‘.'-ll

e e [E— gt
Hangeaiey Py o by o Mevemnky RectPuiria A T CHAR

il | (S

PTG TR0 NS0T
i) o ATl o o]y T T v L o -

i S PRty ST AN DR e, S Ll
NECESTEN PROTECTION FOLICES WA SMART CONTRACT -

- ACSOURCT_PROTDCTE DY Poley_

"
B AL

LT PSR ROTICTID Pl el Comte

Figure 60: Workflow for protecting and accessing resources in EMPYREAN, starting with the Controller as the
first protected resource. The Aggregator initiates protection, PSM enforces policies via PEP/PDP, and all
access is verified and immutably logged on blockchain.

6.1.1.1 Workflow description

The process starts with the optional onboarding of the resource into the EMPYREAN Registry,
where the Aggregator records its metadata, endpoints, and other relevant details. This
ensures that the resource is recognized and discoverable within the platform.

The Aggregator then sends a Request Resource Protection to the PSM, specifying the resource
identifier, network endpoints, and the access policies that define who can interact with the
resource. The PSM processes this request by deploying a PEP proxy and enforcing the policies
through the PDP, which dynamically evaluates every access request. The policies are also
registered via a smart contract on the blockchain, ensuring traceability and integrity.

Once the protection is in place, the PSM returns a Policy ID to the Aggregator. This identifier
not only confirms the protection status but also establishes ownership of the protection policy
for that resource. The Aggregator can use this Policy ID to update later, refine, or revoke the
policy, enabling the protection to evolve dynamically. For example, the policy can be updated
to restrict access further, loosen constraints, or adapt to new operational or security
requirements. The Aggregator also updates the EMPYREAN Registry with the secured
resource’s updated endpoints.

When an Enrolled Consumer, an entity properly onboarded and holding the necessary
Verifiable Credentials (VCs) or JWTs derived from VCs, attempts to access the protected
resource, the request is intercepted by the PEP. The PDP verifies the presented credentials,
checking their signatures through the associated Decentralized Identifiers (DIDs) and
evaluating their attributes against the enforced policies. If the access is authorized, the
request is forwarded to the resource (e.g., the EMPYREAN Controller), which returns the
appropriate response.

empyrean-horizon.eu 97/118

A
(E]MPYREAN
D5.2 — Initial release of EMPYREAN integrated platform N7

6.1.1.2 Generalization to all EMPYREAN resources

While the EMPYREAN Controller serves as the initial resource protected via this mechanism,
the architecture is designed to generalize across all resources within the platform. Any
service, API, data endpoint, or computational function can be secured following the same
workflow, ensuring consistent and scalable security governance across the EMPYREAN
ecosystem.

6.1.2 Secure device attestation and lightweight identity
management

An integration strategy has been defined that combines secure device attestation,
decentralized identities (DIDs), and Verifiable Credentials (VCs), specially tailored for
constrained loT devices. As illustrated in Figure 61, the approach leverages the Device
Identifier Composition Engine (DICE) mechanism to derive cryptographic keys at boot time,
tightly coupling the device’s identity to the integrity of its firmware. The integration flow
illustrates DICE-based key derivation, generation of Verifiable Credentials, and manufacturer
validation using Decentralized Identifiers (DIDs) or X.509 certificates.

DID Proys
ol fSabncmanutnctuner 123
L— key: cEMkenampieDrvice myPubisc Ragiabaring Attastation Events
SC trmcoakii
Klared et =+ ry
ol) “ Aprratien: nSley Cort with Koy Pus: “di 58 gl Pl
’) ==] L Attestation -
I_....D-mﬂr'- e e e i sﬂﬂltﬂ-'
i . . ves| \ {DOMAIM ISSUER)
! . o
uDS Sign I
| Davice KeyZpub) i Ty Rpe”; " by i PRy
Canl i }
""""""" {\.:‘l'-.-;&-w

lszues a Yerifiable Credential

'E'\'J#subm \\
devicalD; "dev123”

attastationPasult: "0}
H

Figure 61: Secure attestation and decentralized identity integration flow involving Manufacturer, Device,
Attestation Server, and Blockchain.

At manufacturing, the Manufacturer registers a decentralized identifier (e.g., did:fabric) on a
blockchain or decentralized ledger, exposing public keys that correspond to specific devices
or device families. As an alternative, the manufacturer may issue an X.509 certificate

empyrean-horizon.eu 98/118

(E]MPYREAN
D5.2 — Initial release of EMPYREAN integrated platform N

embedding the did:fabric identifier in a custom field, enabling subsequent key validation in
both decentralized and traditional public key infrastructure (PKI) environments.

When a device boots, it signs an attestation package that contains:

e Firmware measurements.
e A public key derived via DICE mechanism.
e A self-issued Verifiable Credential (VC) embedding these evidences.

The device forwards this information through a discovery mechanism (such as Akri) to the
Attestation Server, which validates the attestation using the manufacturer’s public keys
(retrieved via the DID document or X.509 certificate). The Attestation Server may also:

e Register traceability events on the blockchain.
e Actas anissuer of domain Verifiable Credentials, confirming the device integrity (e.g.,
attestationResult: OK).

To accommodate the constraints of loT resource-limited devices, the solution integrates the
p-ABC library (Privacy-preserving Attribute-Based Credentials) instead of deploying a full
Privacy and Security Manager (PSM). This allows devices to produce selective disclosure
proofs and privacy-preserving verifications with minimal computational overhead.

6.1.3 Secure user access via Privacy and Security Manager and RYAX
Workflow integration

The EMPYREAN platform supports privacy-preserving user authentication and authorization
across the loT-edge-cloud continuum by integrating its Privacy and Security Manager (PSM)
with the RYAX Workflow Engine. Incorporating Keycloak® as the underlying Identity and
Access Management (IAM) system, this integration (Figure 62) provides a unified and
comprehensive mechanism for managing user identities, attributes, and controlled access to
protected services.

This integration involved the coordinated operation of several core actors and components.
1. Privacy and Security Manager (PSM): Authentication and Credential Issuance

The PSM authenticates entities and issues privacy-preserving Attribute-Based Credentials (p-
ABCs) in the form of Verifiable Credentials (VCs). These credentials securely encode user or
platform entity attributes, enabling privacy-preserving authorization across services. At the
core of this process is the p-ABC library, a critical cryptographic module that enables advanced
privacy techniques such as Zero-Knowledge Proofs (ZKPs), selective disclosure, and unlinkable
token generation. This allows entities to prove specific required attributes without exposing
additional information, ensuring secure and private access across EMPYREAN's distributed
services.

5 https://www.keycloak.org

empyrean-horizon.eu 99/118

(EIMPYREAN
D5.2 — Initial release of EMPYREAN integrated platform N

Write/Read Privacy and
Kot 1 Security Manager

I Authenbcation

p-ABCs

£

]

5 Read . Identity Attributes Extornal attribute
~ >y EMPYREAN Entity <——p provider(RYAX
(4] ’ Keycloak)
L.

m

Authorization &
Service usage

@ Write/Read
K " Relying party

Figure 62: Workflow of the EMPYREAN Privacy and Security Manager integrating RYAX and Keycloak for
attribute-based authentication and dynamic access control.

2. External Attribute Provider (RYAX Keycloak)

Keycloak, embedded within the RYAX platform, serves as the external attribute provider,
responsible for certifying entity attributes such as roles, permissions, or organizational
affiliations. These certified attributes are retrieved by the Relying Party from Keycloak and
forwarded to the PSM as part of the p-ABCs issuance process. This procedure forms a bridge
between EMPYREAN’s decentralized, privacy-preserving credential ecosystem and
established IAM systems.

3. EMPYREAN Entity

An EMPYREAN Entity represents any participant in the platform that enrolls into the system
to access services. This can include users, devices, applications, or agents that interact with
EMPYREAN’s services. Once enrolled and issued the appropriate p-ABCs, the EMPYREAN
Entity can interact with services protected by dynamic resource protection mechanisms, such
as privacy-preserving proxies or other access control systems enforced by the PSM. These
protections ensure that all access is mediated through policies based on attributes rather than
static identities, enabling fine-grained, context-aware control.

4. Relying Party

The Relying Party is any platform component or service that requires verifying attributes and
requesting credentials to access or enable access to protected services. It retrieves entity
attributes from Keycloak and requests the issuance of p-ABCs from the PSM. Armed with
these credentials, the Relying Party can then access services safeguarded by the platform’s
dynamic access control mechanisms (e.g., ABAC-enforced proxies), ensuring compliance with
security and privacy policies.

empyrean-horizon.eu 100/118

(E]MPYREAN
D5.2 — Initial release of EMPYREAN integrated platform N

5. Blockchain as a Verifiable Data Registry

The EMPYREAN architecture employs a Blockchain-based Verifiable Data Registry to securely
anchor credential issuance, policy enforcement, and potential revocations. This registry
ensures transparency, immutability, and auditability of the trust and access control processes,
establishing a reliable foundation for secure interactions across decentralized associations.

This integration enables the following key functionalities:

e Entity Enrolment: Enrolment of EMPYREAN Entities (users, devices, applications) into
the platform, enabling them to interact securely with services.

e Attribute Certification via Keycloak: Relying Parties obtain certified attributes from
Keycloak to initiate credential requests.

e Issuance of Privacy-Preserving Credentials: PSM issues p-ABCs based on attributes,
enabling selective disclosure and privacy-preserving authentication.

¢ Unlinkable Token Generation: Tokens derived from p-ABCs allow entities to access
services without linkability across sessions or services.

e Dynamic Resource Protection: Access to services is mediated by dynamic protection
mechanisms (e.g., privacy-preserving proxies, ABAC policies) governed by the PSM.

e Attribute-Based Access Control (ABAC): Fine-grained access decisions enforced
through dynamically evaluated attribute-based policies.

e Blockchain-Backed Trust: Credential issuance, policy updates, and revocations are
immutably recorded on blockchain, ensuring traceability and auditability.

6.2 Association Setup

This integration scenario highlights the capabilities of the initial release of the EMPYREAN
platform to support the creation of Associations, enabling the establishment of collaborative
virtual execution environments across heterogeneous edge and cloud platforms. This
corresponds to operation flow OF2.1, which is executed by EMPYREAN administrators and
authorized infrastructure providers with the appropriate permissions. In accordance with
EMPYREAN’s generic operation flow, these actions are preceded by the initialization of the
platform by the administrator, including the deployment of core services such as the
EMPYREAN Registry and Identity and Authorization Engine. Additionally, the initial
stakeholders must be enrolled in the system, as described in Section 6.1.

Table 9 provides an overview of this operation flow, detailing the involved EMPYREAN
components, relevant interfaces, coverage of platform requirements, and the enabling
project technologies that support its execution.

empyrean-horizon.eu 101/118

.
(EIMPYREAN
D5.2 — Initial release of EMPYREAN integrated platform N7

Table 9: Overview of Association setup operation flow

EMPYREAN EMPYREAN Registry:
Components e AP| Gateway: http://147.102.16.114:30150
e Service Catalogue: http://registry-service-catalogue.empyrean:10090

e Association Metadata Store: http://registry-association-metadata-

service.empyrean:10086
EMPYREAN Aggregator 1: http://147.102.16.114:30800
EMPYREAN Aggregator 2: http://147.102.16.115:30800
Dashboard: http://147.102.22.140:8080

Type of APIs REST

Requirements F GR.1, F. GR2, F GR4, F GRS, F.ST.1, F.ST.2, F SO.6, F_ASSOC.1,
Coverage F_ASSOC.8, F_ASSOC.10

Enablers EN_1,EN_9, EN_10, EN_11

EMPYREAN Registry

Zenoh
] L ' H Aggregator 2 ¥ '
Association Management & ' - ' ') Router H
Multi-Cluster Orchesration Layers : : ' I E
i t isi i : .| Service Orch «— Decision Engine '
Resource Management l I
Layer
EMPYREAN Controller EMPYREAN Controller BRI
I _,I
Infrastructure \ . @ @ 1
Layer ' ¥

K¥s VMs : Kind - Worker Wedes ,-:I
...................................... _.-' Jetson Orfin Nare , e

K¥s Chuster KFs kind - For debug

Figure 63: EMPYREAN components and testbed setup for the Association setup operation flow.

The integration scenario encompasses two Kubernetes (K8s) clusters and one K3s cluster,
each featuring distinct characteristics, see Figure 63. The EMPYREAN Registry was deployed
using EMPYREAN’s Cl/CD mechanisms on the ICCS K8s cluster. While the Registry API Gateway
is publicly accessible, access is restricted through authentication mechanisms. The internal
Registry services (Service Catalogue and Association Metadata Store) are configured for
internal cluster access but remain accessible externally through the APl Gateway. The setup
also includes two EMPYREAN Aggregators, the first (UUID “a2b66fa3-3f13-416b-8644-
56328e0de4ba”) is deployed on the ICCS K8s cluster, while the second (UUID “d09ac308-
4b4e-4623-9d75-a2633f229c7f”) on the other K8s cluster.

empyrean-horizon.eu 102/118

http://147.102.16.114:30150/
http://registry-service-catalogue.empyrean:10090/
http://registry-service-catalogue.empyrean:10090/
http://registry-association-metadata-service.empyrean:10086/
http://registry-association-metadata-service.empyrean:10086/
http://registry-association-metadata-service.empyrean:10086/
http://147.102.16.114:30800/
http://147.102.16.114:30800/
http://147.102.16.115:30800/
http://147.102.16.115:30800/
http://147.102.22.140:8080/
http://147.102.22.140:8080/

A
(E]MPYREAN
D5.2 — Initial release of EMPYREAN integrated platform N7

In addition, a web-based application written in Python was developed to facilitate the
demonstration of this integration scenario (Figure 64). Deployed within the ICCS premises,
the application leverages the exposed REST APIs of the EMPYREAN components to interact
with the platform. It also provides a visual representation of the available Associations and
the onboarded devices.

{EMPYREAN
:u:' . T ——— S——- E—— ('@ 0o [W |

Figure 64: EMPYREAN web-based dashboard.

Using our web-based application, we created two Associations owned by the same user. The
main difference is that, in the next phase (Section 6.3), different sets of resources will be
onboarded to each of them. An administrator enrolled through the previous operation flow
with Verifiable Credentials and JSON Web Token (JWT) access token logins to the dashboard.

When creating an Association, the user must select an Aggregator to manage it and link it to
an existing access policy. In addition to these key parameters, which affect usage and resource
management, optional configuration settings support integration with other platform
services. These include the Association’s name, an optional description, and user-defined
labels used to identify Associations based on specific criteria.

Figure 65 presents the two Associations along with their corresponding configuration
parameters as defined for the EMPYREAN control plane mechanisms.

{ {
“name”: “ICCS Association”, “name”: “Mini Association”,
“description”: “The default Association based on resources from the “description”: “The default Association based on resources from the
ICCS testbed” ICCS testbed”
“lables”: [“platform-arch:amd64”, “platform-arch:armé4”], “lables"”: [“platform-arch:arme4”, “device_label:jetson”],
“aggregator_uuid”: "a2b66fa3-3f13-416b-8644-56328e0dedba”, “aggregator_uuid”: "d09ac308-4bde-4623-9d75-a2633f229c7f",
“owner_uuid”: “71c1642b-69¢9-4e25-abcc-ddall6e8becd”, “owner_uuid”: “71c1642b-69¢9-4e25-abcc-ddall6e8becd”,
“policy_uuid”: “ScOeed16-31a8-467d-83db-ef1010466755" “policy_uuid”: “Sc0eed16-31a8-467d-83db-ef1010466755"

} }

Figure 65: Association description parameters for initial integration scenarios.

empyrean-horizon.eu 103/118

A
(E]MPYREAN
D5.2 — Initial release of EMPYREAN integrated platform N7

The provisioning process is orchestrated by the EMPYREAN Registry. To initiate it, the
dashboard invokes the Registry’s POST method (/api/v1/registry/associations), which triggers
the end-to-end Association creation procedure.

Upon receiving the request, the EMPYREAN Registry APl Gateway performs an initial
validation to ensure that all required information is provided. It then delegates the
authorization process to the Privacy and Security Manager (PSM), specifically the Policy
Decision Point (PDP) component. The PDP evaluates the request against predefined policies
to verify that the user has the appropriate permissions to perform the operation. A log
screenshot from the APl Gateway illustrating these interactions is provided below. The red
highlighted box shows the interactions between the dashboard and the APl Gateway for
retrieving available Associations, Aggregators, and access policies. The blue highlighted box
depicts the involvement of the APl Gateway during the creation of a new Association.

Figure 66: EMPYREAN Registry - APl Gateway log messages during the definition of a new EMPYREAN
Association from the dashboard.

Once authorization is successfully granted, control is handed over to the Registry Manager
service, which coordinates all subsequent steps to set up the Association. It begins by creating
an Association object in the internal Datastore, capturing the initial configuration parameters
of the new Association. Next, the Registry Manager stores the Association’s metadata, along
with essential operational parameters, into the Association Metadata Store service by calling
the relevant POST method (/api/v1/association_metadata_store/associations) exposed by its
REST API. At this stage, the Metadata Manager component populates the graph database with
the following nodes: (i) Association, (ii) Label(s), if specified, (iii) Aggregator, (iv) Owner, and
(iv) Policy. Moreover, it establishes the following relationships: (i) Association to Aggregator,
(ii) Association to Label(s), If specified, (iii) Association to Owner, and (iv) Association to Policy

empyrean-horizon.eu 104/118

(E]MPYREAN
D5.2 — Initial release of EMPYREAN integrated platform N7

Figure 67 provides a visual representation of the graph-based internal mapping of
Associations within the EMPYREAN platform following the successful creation of the first
Association

Overview

Node labels

Relationship types

amdé4

Displaying 6 nodes, 5 relationships.

Figure 67: Graph-based representation of the first Association within the Association Metadata Store
service.

The next step involves assigning the newly created Association to an EMPYREAN Aggregator
for management. In the current release of the EMPYREAN platform, only existing Aggregators
can be assigned. However, the final release will also support the automatic deployment of a
new Aggregator, along with the corresponding Association assignment.

To perform the assignment, the Registry Manager invokes the corresponding POST method
(/api/v1/aggregator/associations), which instructs the designated Aggregator to register the
new Association in its State Management service. From that point onward, the Aggregator
autonomously manages the Association, abstracting the complexities of interacting with its
underlying platform mechanisms. Furthermore, the Aggregator informs the Telemetry Service
and the related Analytics Engine about the new Association, enabling relevant data collection
and monitoring processes to begin. Once this step is completed, the Association is successfully
registered within the platform and marked as “CREATED”. However, its schedulable property
remains False, as no resources have been onboarded yet.

empyrean-horizon.eu 105/118

(E]MPYREAN
D5.2 — Initial release of EMPYREAN integrated platform N7

ager.Instan

Figure 68: A log screenshot from the Registry Manager capturing all these interactions is provided below.

Figure 69 illustrates the details for the two created Associations within the Association
Metadata Store.

MANAGED_BY Q OWNED_BY
g

i
o)
N
R
S

Overview ?

Node labels

&
K %,
Y *

F fl

S

2 190cc7e...

@
>
e

%,
%
2> - amd64
5 LABE!
HAS_LABEL HAS:

Policy (1)

Q
2
Z
bl
o
)
-3

Relationship types

Displaying 9 nodes, 0 relationships.

g GIOVNYY

O

Figure 69: Availability of two created Associations within the dashboard and their graph-based
representation.

6.3 Onboarding Computational and Storage Resources

Following the successful setup of Associations within the EMPYREAN platform, the next step
involves the onboarding of computational and storage resources to make these Associations
operational. This process enables the dynamic inclusion of diverse resource types, ranging
from Kubernetes (K8s/K3s) worker nodes to loT devices and edge storage systems, into the
virtual execution environments defined by the Associations. The onboarding operation flows
ensure that the EMPYREAN platform can securely and efficiently extend its control and service
orchestration and deployment capabilities across heterogeneous infrastructure components.

This section details the implemented procedures within the initial release for onboarding:

e Worker nodes from Kubernetes and K3s clusters, which contribute containerized

compute capacity to the Association.

Edge storage resources, enabling localized data persistence and content availability
within the Association scope.

empyrean-horizon.eu 106/118

(EIMPYREAN
D5.2 — Initial release of EMPYREAN integrated platform N

Table 10: Overview of onboarding computational and storage resources operation flows.

EMPYREAN EMPYREAN Registry APl Gateway: http://147.102.16.114:30150
Components Aggregator 1:

e APl Gateway: http://147.102.16.114:30800

e Service Orchestrator: http://147.102.16.114:30100
Aggregator 2:

e APl Gateway: http://147.102.16.115:30800

e Service Orchestrator: http://147.102.16.115:30100
An EMPYREAN Controller at each cluster
Edge Storage Service
Dashboard: http://147.102.22.140:8080

Type of APIs REST

Requirements F_GR.1, F_GR.4, F_GR.6, F_ASSOC.1, F_ASSOC.2, F_ASSOC.7, F_ASSOC.8,

Coverage F_ASSOC.9, F_ASSOC.7, F_DCM.1, F_DI.4, F_S0O.4,F_SO.8, F_SO.14, F_ST.1,F ST.2,
F DI6

Enablers En_1,EN_2, EN_5,EN_9, EN_10, EN_11, EN_16

6.3.1 Onboarding worker nodes

This integration scenario utilizes the testbed and the EMPYREAN platform services introduced
in Section 6.2. In addition to those, the scenario also includes two Service Orchestrators, one
per Aggregator, along with three EMPYREAN Controllers, each managing a distinct cluster
(ICCS K8s “7628b895-3a91-4f0c-b0b7-033eab309891”, ICCS K3s “2b05cfdf-679f-45f1-95f8-
a334ec87faaf”, and K8s-kind “5a075716-7d7d-4b40-9566-bc1a33ee70c2”).

The initial release of the EMPYREAN platform supports the static onboarding of worker nodes
into Associations. This process must be initiated by either an EMPYREAN administrator or an
infrastructure provider, both of whom must first be identified and authenticated as resource
owners via the Security and Privacy Manager. To ensure the integrity of the onboarding
process, the EMPYREAN Controller facilitates secure node registration. Each worker node
(e.g., Kubernetes/K3s node) must authenticate before being admitted into an Association,
ensuring identity verification and trustworthiness of resources.

The onboarding process can be triggered either through the EMPYREAN dashboard or via
exposed REST APIs. The authorized user selects the target Association and designates which
worker nodes to onboard. Figure 70 presents an overview of the selected nodes from the
three available clusters and their mapping to the two Associations.

empyrean-horizon.eu 107/118

http://147.102.16.114:30150/
http://147.102.16.114:30800/
http://147.102.16.114:30100/
http://147.102.16.115:30800/
http://147.102.16.115:30100/
http://147.102.22.140:8080/

D5.2 — Initial release of EMPYREAN integrated platform

Association 1 | A iation 2 I
| ' | wnd-santorini |
' Ki [R Y —— ! !
X wrg hklnd , Ir : (K8s) i
: (Other) : g AV) b e \ e FTTT e [
........... '\ (Kss) : ' i+ wn2sikinos |
o e ' wn3-sifnres ;. 1l ' (K3s) H
“““““ | .. :“_(_Kff)“__: E wn1-ios i et
| wnd-santorini | :- -m:n-z-sar-if::u; i :. .- -(E(:_35_]_ .- .:
. (Kas) . : (K8s) H
1
1

Figure 70: Mapping of selected worker nodes to Associations during the onboarding process.

Using the dashboard (Figure 71), the user selects an appropriate EMPYREAN Controller based
on access policies. The Controller then presents the available worker nodes eligible for
onboarding. Once selection is complete, the onboarding is triggered, under the hood, this
corresponds to a PUT request to the Aggregator API Gateway
(/api/v1/aggregator/ASSOCIATION_UUID/resources).

o Clusters Bg Worker Nodes

Name K8s - ICCS V. Machine ID Name Architecture GPU
020257de949c4486b85ba436ec383663 wn1-paros amd64 False m
dc156¢5469db44c0be8121e8b94e3116 wn2-serifos amdé4 False m
0be8121e8bdc156c5469db44cI4e3116 wn3-sifnos amd64 False m
367bcdcd3a374409a30fdcOcaS 71870 wnd-santorini armé4 True
¥ Onboard

Figure 71: Onboarding worker nodes through the EMPYREAN dashboard.

Next, we present the exact REST payload sent during the onboarding of resources for the first
Association, along with a log excerpt from the Aggregator responsible for managing the
second Association (c593b878-19ac-4690-b40e-0e812eecbf98), illustrating the internal
handling of the onboarding process.

{"resource_type":"computing_resources","resources":[{"kind":"worker_node","name":"wnl-
paros","cluster_uuid":"7628b895-3a91-4f0c-bob7-

033eab309891", "machine_id":"02e257de949c4486b85bad36ec983663","policy uuid":"dd9ceff4 -
667e-4704-bb06-88e3272cbb27", "owner_uuid":"8a99c456-ff60-44aa-8a79-

ca58fe9feb2d"}, {"kind": "worker_node","cluster_uuid":"7628b895-3a91-4f0c-bob7-
033eab309891", "name": "wn2-
serifos","machine_id":"dc156c5469db44cObe8121e8b94e31f6", "policy uuid":"dd9ceff4-667e-
4704-bb06-88e3272cbb27", "owner_uuid": "8a99c456-ff60-44aa-8a79-

ca58feofeb2d"}, {"kind": "worker_node","cluster_uuid":"7628b895-3a91-4f0c-bob7-
033eab309891", "machine_id":"dc156c5469db44cObe8121e8b94e31f6", "name": "wn3 -
sifnos","policy_uuid":"dd9ceff4-667e-4704-bb06-88e3272cbb27", "owner_uuid":"8a99c456-
ff60-44aa-8a79-ca58fe9f6b2d"}, {"kind" : "worker_node","cluster_uuid":"7628b895-3a91-
4f0c-bob7-033eab309891", "machine_id":"367bc4c43a374409a30fdc9c457F870f", "name" : "wn4 -
santorini","policy uuid":"dd9ceff4-667e-4704-bbo6-
88e3272cbb27","owner_uuid":"8a99c456-ff60-44aa-8a79-

empyrean-horizon.eu 108/118

A
(E]MPYREAN
D5.2 — Initial release of EMPYREAN integrated platform N7

ca58fe9feb2d"}, {"kind": "worker_node","cluster_uuid":"5a075716-7d7d-4b40-9566-
bcla33ee70c2", "machine_id":"4e06de61977c4c8aaf9cle9bf239aaab", "name" : "wnl-
kind","policy uuid":"dd9ceff4-667e-4704-bbo6-88e3272cbb27", "owner_uuid":"8a99c456-
ff60-44aa-8a79-ca58fe9f6b2d"}]}

593b878- 19ac oard HTTP/1.1* 201 2

Once the onboarding process is complete, the worker nodes are fully integrated into the
Association and become available for workload assignments, contributing to the Association’s
overall computational and operational capacity. Finally, Figure 72 visualizes the updated state
of both Associations as recorded in the Association Metadata Store service within the
EMPYREAN Registry.

T Overview
y N\
km)‘ Node labeis
i - D CID

Cluster (3) WorkerNode (8)

Vo : £ s (s
Q e :‘\ \/ {\"‘;} ' Qg) Relationship types
4 @

Ba078T)

7easom.

fwezsna..) F £ /) (wntaing
" A

Figure 72: The two Associations along with the onboarding worker nodes within Association Metadata
Store.

6.3.2 Onboarding storage resources

The Edge Storage Service (ESS) is an integrated part of the initial EMPYREAN platform release.
It manages storage entities such as S3-compatible buckets and objects, as well as some of the
storage-related resources and infrastructure. Since Associations, including their associated
resources, are handled by the Registry, the ESS periodically polls this component for any
changes through the APl described in Section 5.2.1. Figure 73 shows two Associations that
have been retrieved from the EMPYREAN Registry and stored in the ESS’s database for
authorizing user requests.

empyrean-horizon.eu 109/118

A
(E]MPYREAN
D5.2 — Initial release of EMPYREAN integrated platform N7

Associations

New Association Join Association

My Associations
4 1@ Associations ~

« Ust Associations

o Ao ICCS Association *..* Mini Association

Members Gateways Edge Storage Members Gateways Edge Storage

EMPYREAN team admin

Figure 73: Edge Support Service Developer Dashboard: two associations retrieved from the EMPYREAN
Registry.

Once the Association Setup workflow is complete and the ESS has retrieved the list of
Associations, storage resources can be onboarded. In particular, the Edge Storage devices can
be registered using a form on the ESS Developer Dashboard, as shown in Figure 74. The
Association’s owner/administrator must specify the location of the storage resource and what
credentials can be used to access it. These credentials are persisted by the ESS, but are not
shared with any of the Association’s members. Instead, the access is performed using pre-
signed URLs [10].

Create Edge Storage

Name

CC local edge device

Description
This is an edge device used for development, testing and demonstration

purposes.

S3 APl Base URL

https://edge-deviceO.local

Access Key

A A R

Secret Key

T

Cancel Create Edge Storage

Figure 74: Edge Support Service Developer Dashboard: form for registering a new Edge Storage device.

The ESS notifies the EMPYREAN Registry that a new edge resource has been onboarded for
the association in question using the API described in Section 5.2.1.

empyrean-horizon.eu 110/118

(E]MPYREAN
D5.2 — Initial release of EMPYREAN integrated platform N7

In the following, we describe a typical storage workflow from the perspective of an
EMPYREAN user. We have defined the workflow to demonstrate the level of integration at
the time of the platform’s initial release as well as to provide an initial assessment of how well
different storage-related requirements are met.

To make the demonstration robust, we have set up an Association with edge resources
running on a single laptop. This allows us to quickly deploy both an Edge Storage Gateway
and several Edge Storage devices.

1. As a first step, we list the Association’s storage resources as shown in Figure 75.

Association Details

¢ {*: Marton's laptop association

Edge Storage

&) + Add Edge Storage

NAME DESCRIFTION 53 API BASE URL CREATED 1

(]

Laptop storage 0 hitp:/flacalhost:1000 7

L]

Laptop storage 3 : ! - http:/flocalhost:1003 ?

Laptop storage 2 e http:/flocalhast:1002 7

(']

Laptop storage 1 hitp:/fiocalhost:-1001 A

Build: production 53 Gateway: hitps:/js3.sky-flok.com Chocolate Cloud ApS

Figure 75: Step 1 - list of Edge Storage devices running in the Association.

2. We can use these to create an edge-only storage policy. Figure 76 shows the result,
an erasure coded policy with 33% redundancy that distributes data to all four Edge
Storage devices.

Storage Policies

laptop 43 + New Policy

NAME < BUCKETS RELIABILITY OCATIONS

& Marton-aptop-storage T -

0
[@
(o

Figure 76: Step 2 - summary of edge-only storage policy.

3. Atthis point, we have registered all resources and created an initial storage policy. To
use the ESS, we must deploy an Edge Storage Gateway and the four Edge Storage
devices within our Association. For this demonstration, we accomplish this using
Docker Swarm. Figure 77 shows the result. The Gateway must be associated with the
Association and has been set up using the Developer Dashboard (not shown for
brevity).

empyrean-horizon.eu 111/118

(E]MPYREAN
D5.2 — Initial release of EMPYREAN integrated platform

F $ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS
NAMES
b6c44340115b minio-eval3 "Jusr/bin/docker-ent.." 26 seconds ago Up 25 seconds 0.0.0.0:1003->1003/tc
p, [::]:1003->1003/tcp, 0.0.0.0: - ::]:9003->9003/tcp, 9000/tcp practical_swartz
2742f8f14f82 minilo-eval2 / i - 26 seconds ago Up 25 seconds 0.0.0.0:1002->1002/tc|

->1002/tcp, 0.0.0.0:9002->9002/tcp, 19002->9002/tcp, 9000/tcp dreamy_satoshi
minio-evall "Jusr/bin/docker-ent 26 seconds ago Up 25 seconds 0.0.0.0:1001->1001/tc
->1001/tcp, 0.0.0.0:9001->9001/tcp, 19001->9001/tcp, 9000/tcp blissful_chatelet
minio-eval® "fusr/bin/docker-ent 26 seconds ago Up 26 seconds 0.0.0.0:1000->1000/tc
->1000/tcp, 0.0.0.0:9000->9000/tcp, 19000->9000/tcp brave_banzai
45347cf555ae a2f0faaacd4eb "uvicorn main:app --." 12 days ago Up 6 seconds
skyflok-s3-gateway

Figure 77: Step 3 - four Edge Storage devices and the Edge Storage Gateway running locally on a laptop.

4. To access the service and sign our application’s requests, we need a set of credentials.
In S3, this consists of a pair of items (Access Key ID and Secret Access Key) that we
collectively refer to as an S3 API key. This can be done using the Developer Dashboard
(not shown for brevity). We can create a non-restricted S3 API key that can access any
of the team’s buckets, or we can permit read-only or full access on a per-bucket basis.

5. Finally, the application must be configured to use the Gateway’s URL and the S3 API
keys (Figure 78 - left).

6. The application can make S3 API requests to the ESS, through the Gateway. A simple
script (Figure 78 - left) and its resulting output (Figure 78 - right) have been included.

import os marton@Blade:~/repo/EMPYREANS python3 gent_demo.py
import boto3
from botocore.client import Config **% Listing buckets #*#*#*

Bucket name: my-third-demo

##+ Listing objects in bucket ***
Key: test-object

UK" Size: 100

QAAMLCOtt5dL1u60drdrfd Last modified: 2025-07-14 14:33:47+00:00
marton@Blade : ~/repo/EMPYREANS

endpoint_url

config=confi

aws_access_ke
aws_secret_access_key=SECRET_KEY,
verify=False

= s3.put_object (Body=file_data, Bucket=BUCKET_NAME, Key=OBJECT_KEY
Metadata={'string-a': 'string'},

= s3.list_objects_v2 (Bucket=BUCKET_NAME, MaxKeys = 200

in bucket #*%%")

")
: {obj['LastModified']}")

Figure 78: Steps 5 and 6 - Simple Python script (left) that uses Amazon’s Boto3 library to access the ESS and
the results of running the script (right).

empyrean-horizon.eu 112/118

(EIMPYREAN
D5.2 — Initial release of EMPYREAN integrated platform N

6.4 Inter-Association Application Deployment

This operation flow highlights EMPYREAN’s capability to deploy cloud-native applications
across federated Associations. Application operators manage deployments using developer-
provided descriptions that define resource and configuration requirements. Deployment
follows a structured, multi-phase orchestration process. In Phase 1 (OF4.1.1), decentralized
orchestration selects the most suitable Associations based on deployment goals. Phase 2
(OF4.1.2) performs cognitive orchestration within each Association, refining deployment
plans based on local policies and infrastructure conditions. Finally, in the third phase
(OF4.1.3), the deployment is executed at the infrastructure level by local orchestrators. This
section focuses on the first two orchestration phases. Summarised in Table 11

Table 11: Overview of operation flow for inter-association application deployment.

EMPYREAN EMPYREAN Registry APl Gateway: http://147.102.16.114:30150
Components Aggregator 1 APl Gateway: http://147.102.16.114:30800
Aggregator 2 AP| Gateway: http://147.102.16.115:30800
Service Orchestrator 1: http://147.102.16.114:30100

Service Orchestrator 2: http://147.102.16.115:30100

Decision Engine 1: http://147.102.16.114:30020

Decision Engine 2: http://147.102.16.115:30020

Telemetry Service: http://147.102.16.114:30070

Type of APIs REST
Requirements F_GR.1, F_GR.2, F_GR.3, F_GR.4, F_GR.5, F_GR.6, F_ASSOC.1, F_ASSOC.5,
Coverage F_ASSOC.8, F_ASSOC.9, F_ASSOC.10, F_ST.2, F_DI.1, F_DI.2, F_DI.3, F_SO.2,

F_SO.3,F_SO.4, F_SO.5, F_SO.6, F_S0.9, F_SO.14

Enablers EN_2, EN_4, EN_9, EN_10, EN_11, EN_14, EN_17

This scenario builds on testbed and the EMPYREAN platform services introduced in Section
6.2. A toy application, composed of five microservices (Figure 79), is used to demonstrate
end-to-end integration. The application collects data, performs quality inference, stores
results, and includes a retraining trigger based on inference outcomes. A simple web Ul allows
users to view outputs. Each microservice serves a specific role in processing apple quality
data, using datasets and models were sourced from Kaggle’s Apple Quality Dataset [11].
Deployment is managed via K8s\K3s YAML descriptions, defining key components
Deployment, ConfigMap, Service, and PersistentVolume. Figure 79 maps these objects to
each microservice

empyrean-horizon.eu 113/118

http://147.102.16.114:30150/
http://147.102.16.114:30150/
http://147.102.16.114:30800/
http://147.102.16.114:30800/
http://147.102.16.115:30800/
http://147.102.16.115:30800/
http://147.102.16.114:30100/
http://147.102.16.114:30100/
http://147.102.16.115:30100/
http://147.102.16.115:30100/
http://147.102.16.114:30020/
http://147.102.16.114:30020/
http://147.102.16.115:30020/
http://147.102.16.115:30020/
http://147.102.16.114:30070/
http://147.102.16.114:30070/

A
(E]MPYREAN
D5.2 — Initial release of EMPYREAN integrated platform N7

08

State Mnmage.r‘

oeo|0o)

Mode| Manager Data Preducer

(@ S i
I, (oee|@e8|

Frontend Classifer

@ Data Preducer |—_4b @) Clossifier e aiaeaan
Application Deseription (YAML)

Figure 79: Toy cloud-native application for inter-Association deployment demonstrator.

OFA4.1.1: Assighment of application’s microservices to EMPYREAN Associations

The application operator initiates this operation flow by sending the appropriate POST
method in their designated Aggregator (Step 1), including also the application description
along with any relevant deployment objectives. In the validation scenario, Aggregator 1
(UUID: “a2b66fa3-3f13-416b-8644-56328e0dedba”) is used. Upon receiving the request, the
Aggregator APl Gateway validates the input parameters and proceeds to create the
corresponding Application and EMPYREAN Deployment APl objects in its Datastore (Steps 2-
3). The Aggregator then responds with the unique EMPYREAN deployment identifier
“23b4065c-f4cb-4bb4-b06d-045f831cdad9” for reference.

The Aggregator Dispatcher service, which monitors the deployment-related topic (i.e,
/empyrean/aggregator/a2b66fa3-3f13-416b-8644-56328e0dedba/empyrean_deployments/
deployment) detects the update (Step 4). After interpreting the deployment request, it
forwards it to its corresponding Service Orchestrator for further processing (Step 5).

The Orchestration API Server receives the incoming request and creates the corresponding
MultiAgent Deployment APl object in its local Datastore (Step 6).

INFO:Orchestrator.OrchestratorAPI:Incoming request for new multi-agent deployment ...
DEBUG:Orchestrator.OrchestratorAPI:Assigned deployment uuid 'da53eble-09d3-49d7-996f-eaa80dd39f3a’

DEBUG:Service.Orchestrator.OrchestratorAPI:Create MultiAgent Deployment API object for deployment 'daS3eble-09d3-49d7-996f-eaa8edd39f3a’

This action triggers the Orchestration Manager, which watches the topic
/empyrean/orchestrator/multi_agent_deployments/deployment for related events (Step 7).
Upon activation, the Orchestration Manager, through its internal controllers, begins handling

empyrean-horizon.eu 114/118

(E]MPYREAN
D5.2 — Initial release of EMPYREAN integrated platform N7

the orchestration process. As a next step, the Orchestration Manager’s Scheduler Controller
invokes the Decision Engine to initiate a collaborative, multi-agent decision-making process
across participating Aggregators (Step 8). This process aims to distribute the application’s
microservices across suitable Associations.

The orchestration request submitted to the Decision Engines includes both the deployment
objectives and the application graph, which is parsed from the initial application description.
Each Decision Engine independently queries the Telemetry Service to obtain real-time metrics
for resources available within its respective Associations (Step 9). These outcomes are then
forwarded to the designated coordinator Decision Engine to support collective decision-
making. The following log excerpt, captured from Decision Engine 1, which manages
Association “c593b878-19ac-4690-b40e-0e812eecbf98”, demonstrates that the engine
considers only the four worker nodes onboarded from the two clusters assigned to this
Association.

Once consensus is reached, the coordinator Decision Engine notifies its local Service
Orchestrator of the agreed resource allocation plan. The orchestrator then updates the
originating Aggregator accordingly (Step 10).

DEBUG:ur
INFO:0rc
-b4be-0e812eecbfI8

tion v

OF4.1.2: Hierarchical and cognitive orchestration at the Association level

Once the application’s microservices have been logically assigned to the appropriate
Associations, the orchestration process advances to its second phase. This phase runs in
parallel across all selected Associations and focuses on refining and localizing the deployment
strategy according to the infrastructure and policies of each Association.

The initiating Aggregator triggers this phase by delegating the deployment responsibilities to
the Aggregators managing the selected Associations. Within each participating Aggregator,
the Aggregator APl Gateway processes the relevant portion of the deployment plan and
creates a corresponding Deployment API object in its local Datastore. This object contains
only the microservices allocated to that Association, along with their associated configuration
descriptors (e.g., ConfigMap, Secrets, etc.) extracted from the original application definition.

empyrean-horizon.eu 115/118

D5.2 — Initial release of EMPYREAN integrated platform

In the demonstration scenario, three microservices are assigned to the first Association,
which is managed by the initiating Aggregator, while the remaining ones are delegated to the
second Association. The following log illustrates how the Aggregator responsible for the
second Association coordinates and progresses the orchestration process.

3d

ith UUID 'Sfdla :
gnments’: [{ 3a91-4f@c-bob7

By the end of this phase, each Aggregator possesses a fully scoped deployment blueprint
tailored to its respective Association, ready to be passed to the local deployment engine for
execution in phase OF4.1.3.

empyrean-horizon.eu 116/118

(EIMPYREAN
D5.2 — Initial release of EMPYREAN integrated platform N

7 Conclusions

Deliverable 5.2 provides a comprehensive overview of the first implementation cycle of the
EMPYREAN platform, highlighting the development progress, integration activities, and early
validation of core components. During this initial phase (M1-M18), the consortium
successfully implemented core components, defined key interfaces, and delivered partial yet
functional components across all architectural layers, including cloud-native development
and deployment, telemetry, orchestration, Al-enabled services, and security.

Moreover, the deliverable presents the project’s CI/CD processes along with the related
development and integration guidelines. This structured approach aims to maximize the level
of automation, thereby minimizing effort and risks during the integration of diverse modules
and services developed by different partners.

The initial release demonstrates the feasibility of EMPYREAN’s modular and federated
approach to building an intelligent, self-managing loT-Edge-Cloud continuum. Integration
efforts have begun to align individual components to support interoperability within
EMPYREAN Associations, and early validations have confirmed the viability of the core
concepts and operation flows.

The results documented in this deliverable will guide the upcoming development and
integration cycle, leading to the second release at M30. Feedback from internal testing and
use case development will be used to further improve the platform’s robustness, scalability,
and Al-driven autonomy. The full integrated release, including all platform components and
new features across all architecture layers, is planned for M30, following the conclusion of
the second implementation iteration (M16-M26), which will be reported in deliverables D3.3
and D4.3 at M26.

For the final release of the EMPYREAN platform, delivered at the end of the project, the
consortium will incorporate feedback from the final evaluation of the EMPYREAN platform
through the demonstration of project use cases. This version will be fully integrated and
documented in deliverables D5.4 “Final release of EMPYREAN integrated platform” (M36) and
D6.2 “Demonstrators’ deployment and EMPYREAN evaluation” (M36).

empyrean-horizon.eu 117/118

S
®MPYREAN
D5.2 — Initial release of EMPYREAN integrated platform 7

8 References

[1] EMPYREAN System requirements and specifications D2.1
[2] EMPYREAN System General Architecture Design D2.2

[3] Proxmox Platform. https://www.proxmox.com/en/

[4] EMPYREAN Code Source repository in GitHub. https://github.com/empyrean-eu

[5] Eclipse Zenoh. Official GitHub repository. (available online, visited July 2025)
https://github.com/eclipse-zenoh/zenoh

[6] Zenoh-Flow Tutorial (available online, visited July 2025)
https://www.youtube.com/watch?v=wGEM6-ByALS

[7] EMPYREAN deliverable D4.2 Intelligent Resource Management, Cyber Threat Intelligence and
EMPYREAN Aggregator.

[8] AWS-S3 API reference (available online, visited in July 2025):

https://docs.aws.amazon.com/AmazonS3/latest/API/API Operations Amazon Simple Storage Ser
vice.html

[9] MinlO’s Prometheus-compatible telemetry API (available online, visited in July 2025)
https://min.io/docs/minio/linux/operations/monitoring/collect-minio-metrics-using-
prometheus.html

[10] AWS - Amazon S3 pre-signed URLs (Available Online, visited on July 2025):
https://docs.aws.amazon.com/AmazonS3/latest/userguide/ShareObjectPreSignedURL.html)

[11]Kaggle’s Apple Quality Dataset: https://www.kaggle.com/datasets/nelgiriyewithana/apple-

quality/data

empyrean-horizon.eu 118/118

https://www.proxmox.com/en/
https://github.com/empyrean-eu
https://github.com/eclipse-zenoh/zenoh
https://www.youtube.com/watch?v=wGEM6-ByAL8
https://docs.aws.amazon.com/AmazonS3/latest/API/API_Operations_Amazon_Simple_Storage_Service.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_Operations_Amazon_Simple_Storage_Service.html
https://min.io/docs/minio/linux/operations/monitoring/collect-minio-metrics-using-prometheus.html
https://min.io/docs/minio/linux/operations/monitoring/collect-minio-metrics-using-prometheus.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/ShareObjectPreSignedURL.html
https://www.kaggle.com/datasets/nelgiriyewithana/apple-quality/data
https://www.kaggle.com/datasets/nelgiriyewithana/apple-quality/data

