

TRUSTWORTHY, COGNITIVE AND AI-DRIVEN

COLLABORATIVE ASSOCIATIONS OF IOT DEVICES AND

EDGE RESOURCES FOR DATA PROCESSING

Grant Agreement no. 101136024

Deliverable D5.2

Initial release of EMPYREAN integrated platform

Programme: HORIZON-CL4-2023-DATA-01-04

Project number: 101136024

Project acronym: EMPYREAN

Start/End date: 01/02/2024 – 31/01/2027

Deliverable type: Report

Related WP: WP5

Responsible Editor: ZSCALE

Due date: 31/07/2025

Actual submission date: 04/08/2025

Dissemination level: Public

Revision: FINAL

This project has received funding from the European Union’s Horizon

Europe research and innovation programme under grant agreement

No 101136024

Ref. Ares(2025)6351084 - 04/08/2025

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 2/118

Revision History

Date Editor Status Version Changes

30.04.2025 Ivan Paez (ZSCALE) Initial Draft 0.1 ToC definition, section definitions

30.05.2025 All partners Draft 0.2 First round of input collection

30.06.2025 All partners Complete

deliverable

0.5 First complete deliverable

15.07.2025 Reviewers feedback Reviewers

feedback

0.8 Reviewers provide feedback

25.07.2025 Ivan Paez (ZSCALE),

main editor

Final review,

project

coordinator

0.9 Addressing the reviewers'

feedback, comments,and

corrections

30.07.2025 Ivan Paez (ZSCALE) Final version 1.0 Format and camera-ready

deliverable.

Author List

Organization Author

CC Marton Sipos

ICCS Aristotelis Kretsis, Panagiotis Kokkinos, Fotis Kouzinos, Polizois

Soumplis, Emmanouel Varvarigos

NEC Jaime Fúster, Roberto González

NUBIS Anastassios Nanos, Christos Panagiotou, Charalampos Mainas,

Georgios Ntoutsos, Panagiotis Mavrikos, Maria Gkeka, Maria

Gkoutha, Ilias Lagomatis, Apostolos Giannousas

NVIDIA Dimitris Syrivelis

RYAX Pedro Velho, Yuqiang Ma, Michael Mercier, Yiannis Georgiou

UMU Antonio Skarmeta, Eduardo Cánovas, Alonso Sánchez, José Luis

Sánchez

ZSCALE Ivan Paez, Mahmoud Mazouz, Phani Gangula

Internal Reviewers

Aristotelis Kretsis, Polizois Soumplis (ICCS)

Anastassios Nanos (NUBIS)

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 3/118

Abstract: This deliverable summarizes the initial software release of the EMPYREAN platform,

which corresponds to the outcomes of T5.1 Integration, Testing, and Refinement from the

WP5 Platform Integration and Use Case Development. This deliverable presents the initial

platform release, along with a breakdown of the platform’s key building blocks and their

interactions.

Keywords: EMPYREAN platform, Association, integrated components, development and

integration environment, software deployment, operation flows

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 4/118

Disclaimer: The information, documentation and figures available in this deliverable are written by the

EMPYREAN Consortium partners under EC co-financing (project HORIZON-CL4-2023-DATA-01-04-

101136024) and do not necessarily reflect the view of the European Commission. The information in

this document is provided “as is”, and no guarantee or warranty is given that the information is fit for

any particular purpose. The reader uses the information at his/her sole risk and liability.

Copyright © 2024 the EMPYREAN Consortium. All rights reserved. This document may not be copied,

reproduced or modified in whole or in part for any purpose without written permission from the

EMPYREAN Consortium. In addition to such written permission to copy, reproduce or modify this

document in whole or part, an acknowledgement of the authors of the document and all applicable

portions of the copyright notice must be clearly referenced.

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 5/118

Table of Contents

1 Executive Summary ... 13

2 Introduction... 14

2.1 Purpose of this Document ... 14

2.2 Document Structure .. 14

2.3 Audience .. 15

3 The EMPYREAN Platform .. 16

3.1 EMPYREAN Architecture .. 16

3.2 Initial Release Status .. 18

3.3 Integration Infrastructure .. 19

4 Development and Integration Environment ... 21

4.1 Continuous Integration (CI/CD) and Continuous Deployment Process 21

4.1.1 Integration Testing Approaches ... 22

4.1.2 Integration Workflow... 23

4.2 Platform Release Plan .. 30

5 EMPYREAN Platform Components .. 32

5.1 Service Layer .. 32

5.1.1 Workflow Manager .. 32

5.1.2 Dataflow Programming .. 38

5.1.3 Action Packaging .. 39

5.1.4 Unikernel Building .. 42

5.2 Association Management Layer... 43

5.2.1 EMPYREAN Aggregator .. 43

5.2.2 EMPYREAN Registry ... 49

5.3 Multi-cluster Orchestration Layer ... 55

5.3.1 Decision Engine .. 55

5.3.2 Service Orchestrator .. 59

5.4 Resource Management Layer .. 66

5.4.1 AI-Enabled Workloads Autoscaling .. 66

5.4.2 Unikernel Deployment ... 69

5.4.3 Hardware Acceleration Abstractions ... 71

5.5 Data Management and Interconnection Layer.. 71

5.5.1 Software Defined Edge Interconnect ... 71

5.5.2 Decentralized & Distributed Data Manager .. 74

5.5.3 Edge Storage Service .. 75

5.5.4 IoT Query Engine .. 79

5.6 Security, Trust, and Privacy Manager .. 79

5.6.1 p-ABC Library ... 79

5.6.2 Privacy and Security Manager ... 80

5.6.3 Cyber Threat Intelligence Engine ... 83

5.7 Monitoring and Observability Layer .. 86

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 6/118

5.7.1 Telemetry Service .. 86

5.7.2 The Analytics Engine .. 90

6 Platform Integration and Operation Flows ... 96

6.1 Entity Enrolment, Security, and Resource Protection ... 96

6.1.1 Resource protection and access workflow .. 96

6.1.2 Secure device attestation and lightweight identity management 98

6.1.3 Secure user access via Privacy and Security Manager and RYAX Workflow

integration ... 99

6.2 Association Setup ... 101

6.3 Onboarding Computational and Storage Resources ... 106

6.3.1 Onboarding worker nodes ... 107

6.3.2 Onboarding storage resources .. 109

6.4 Inter-Association Application Deployment .. 113

7 Conclusions.. 117

8 References ... 118

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 7/118

List of Figures

Figure 1: EMPYREAN high-level architecture. .. 16

Figure 2: ICCS testbed – Computation and storage resources at K8s and K3s clusters. 19

Figure 3: Generic Continuous Development, Continuous Integration (CD/CI) pipeline. 22

Figure 4: EMPYREAN’s components integration workflow. .. 24

Figure 5: Illustration of the Service Orchestrator job in the GitHub repository. 25

Figure 6: Adding secrets to EMPYREAN Repository... 26

Figure 7: EMPYREAN's platform release roadmap. ... 30

Figure 8: Ryax Studio - RESTful API. ... 35

Figure 9: Ryax Runner - RESTful API. .. 37

Figure 10: Dataflow framework core components. ... 38

Figure 11: Dataflow getting started workflow. .. 39

Figure 12: Action Packaging – Repository microservice RESTful API. 42

Figure 13: EMPYREAN Aggregator architecture. ... 44

Figure 14: EMPYREAN Aggregator into CI/CD pipeline and deployment in two K8s clusters. 45

Figure 15: EMPYREAN Aggregator – API Gateway RESTful API. .. 46

Figure 16: Log messages from the EMPYREAN Aggregator. .. 47

Figure 17: Graphical representation of the updated Association information within the

Association Metadata Store service. ... 48

Figure 18: Graphical representation of the updated Association information within the

Association Metadata Store service. ... 49

Figure 19: EMPYREAN Registry architecture. .. 50

Figure 20: EMPYREAN Registry into EMPYREAN CI/CD pipeline. .. 51

Figure 21: EMPYREAN Registry components successful deployment in ICCS’s K8s cluster. ... 51

Figure 22: EMPYREAN Registry – API Gateway RESTful API. ... 52

Figure 23: Association Metadata Store RESTful API. ... 53

Figure 24: API Gateway – Processing request for creating a new Association. 53

Figure 25: Registry Manager – Processing request for creating a new Association. 53

Figure 26: Visual representation of available Associations within Association Metadata Store

service of the EMPYREAN Registry .. 54

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 8/118

Figure 27: The Decision Engine architecture, main components, and interactions. 55

Figure 28: Decision Engine into CI/CD pipeline and deployment in ICCS’s K8s cluster. 56

Figure 29: Decision Engine – Access Interface REST API. ... 57

Figure 30: Multi-agent operation across two EMPYREAN Associations for initial placement of

application’s microservices. ... 57

Figure 31: Query results in the EMPYREAN registry. ... 58

Figure 32: Service Orchestrator and EMPYREAN Controller architecture and its main

components. .. 60

Figure 33: Service Orchestrator and EMPYREAN Controller into EMPYREAN CI/CD pipeline and

their successful deployment in ICCS’s K8s cluster. .. 61

Figure 34: Setup for integration tests of Service Orchestrator and EMPYREAN Controllers. . 62

Figure 35: Service Orchestrator REST API. ... 62

Figure 36: Service Orchestrator REST API – Methods related to inter-component

communication. ... 63

Figure 37: Orchestration Manager log messages while processing Decision Engine response

for the application placement. .. 65

Figure 38: Log messages from the EMPYREAN Controller operating on the ICCS Kubernetes

cluster... 66

Figure 39: Lifecycle of metrics gathering for an incoming execution. 67

Figure 40: Metrics summary from metrics gathering process. ... 68

Figure 41: Overview of software-defined RDMA service operation. 72

Figure 42: Available C functions in the RDMA Remote Ring library (librrr)............................. 73

Figure 43: Characterization of the Eclipse Zenoh communication middleware. 74

Figure 44: Overview of Edge Storage Service components. .. 75

Figure 45: Example CI/CD pipeline run summary for one of the SkyFlok.com backend services.

.. 76

Figure 46: Output of BitBucket pipeline report on code coverage. .. 77

Figure 47: Privacy and Security Manager – Identity management REST API. 81

Figure 48: Privacy and Security Manager – Credential issuance REST API. 81

Figure 49: Privacy and Security Manager – JSW Signature REST API. 82

Figure 50: Privacy and Security Manager – Trusted Execution Environment (TEE) REST API. 82

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 9/118

Figure 51: Privacy and Security Manager – Securing resources REST API. 83

Figure 52: The CTI Engine REST API. .. 85

Figure 53: EMPYREAN Telemetry Service deployment. .. 87

Figure 54: Telemetry Service Prometheus API. ... 89

Figure 55: Telemetry Service Agent REST API. ... 89

Figure 56: Analytics Engine architecture and core components. .. 91

Figure 57: Analytics Engine – Access Interface RESTful API... 92

Figure 58: Analytics Engine – Data Manager RESTful API. ... 92

Figure 59: Analytics Engine – Data Connector plug-ins RESTful northbound interface. 93

Figure 60: Workflow for protecting and accessing resources in EMPYREAN, starting with the

Controller as the first protected resource. The Aggregator initiates protection, PSM

enforces policies via PEP/PDP, and all access is verified and immutably logged on

blockchain. ... 97

Figure 61: Secure attestation and decentralized identity integration flow involving

Manufacturer, Device, Attestation Server, and Blockchain. ... 98

Figure 62: Workflow of the EMPYREAN Privacy and Security Manager integrating RYAX and

Keycloak for attribute-based authentication and dynamic access control. 100

Figure 63: EMPYREAN components and testbed setup for the Association setup operation

flow. ... 102

Figure 64: EMPYREAN web-based dashboard. .. 103

Figure 65: Association description parameters for initial integration scenarios. 103

Figure 66: EMPYREAN Registry - API Gateway log messages during the definition of a new

EMPYREAN Association from the dashboard. ... 104

Figure 67: Graph-based representation of the first Association within the Association

Metadata Store service. ... 105

Figure 68: A log screenshot from the Registry Manager capturing all these interactions is

provided below. ... 106

Figure 69: Availability of two created Associations within the dashboard and their graph-

based representation. .. 106

Figure 70: Mapping of selected worker nodes to Associations during the onboarding process.

.. 108

Figure 71: Onboarding worker nodes through the EMPYREAN dashboard. 108

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 10/118

Figure 72: The two Associations along with the onboarding worker nodes within Association

Metadata Store. ... 109

Figure 73: Edge Support Service Developer Dashboard: two associations retrieved from the

EMPYREAN Registry. .. 110

Figure 74: Edge Support Service Developer Dashboard: form for registering a new Edge

Storage device. ... 110

Figure 75: Step 1 - list of Edge Storage devices running in the Association. 111

Figure 76: Step 2 - summary of edge-only storage policy. .. 111

Figure 77: Step 3 - four Edge Storage devices and the Edge Storage Gateway running locally

on a laptop. .. 112

Figure 78: Steps 5 and 6 - Simple Python script (left) that uses Amazon’s Boto3 library to access

the ESS and the results of running the script (right). .. 112

Figure 79: Toy cloud-native application for inter-Association deployment demonstrator. . 114

List of Tables

Table 1: Integration status of EMPYREAN components and interfaces. 18

Table 2: K8s and K3s clusters within the ICCS testbed. ... 20

Table 3: EMPYREAN CI/CD template. .. 27

Table 4: EMPYREAN Platform's Release Roadmap. ... 31

Table 5: Unikernel building - Bunnyfile syntax .. 43

Table 6: Nginx Bunnyfile .. 70

Table 7: Build urunc container image and push to a generic container image registry 70

Table 8: K8s manifest to deploy a urunc-compatible image ... 70

Table 9: Overview of Association setup operation flow .. 102

Table 10: Overview of onboarding computational and storage resources operation flows. 107

Table 11: Overview of operation flow for inter-association application deployment. 113

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 11/118

Abbreviations

ABAC Attribute-Based Access Control

AI Artificial Intelligence

AMQP Advanced Message Queuing Protocol

API Application Programming Interface

CI/CD Continuous Integration and Continuous Deployment

CLI Command Line Interface

CNCF Cloud-Native Computing Foundation

CPU Central Processing Unit

CRI Container Runtime Interface

CRUD Create, Read, Update, Delete

CTA Cyber Threat Alliance

CTI Cyber Threat Intelligence

D Deliverable

DAG Directed Acyclic Graphs

DICE Device Identifier Composition Engine

DID Decentralized Identifier

DLT Distributed Ledger Technology

ESS Edge Storage Service

FIFO Fist-In First-Out

GDD Generalized Data Deduplication

GHCR GitHub Container Registry

GPU Graphics Processing Unit

I/O Input / Output

IAM Identity and Access Management

IoC Indicator of Compromise

IoT Internet of Things

JWT JSON Web Tokens

K3s Lightweight Kubernetes

K8s Kubernetes

KPI Key Performance Indicator

M Month

MIG Multiple-Instance GPU

MISP Malware Information Sharing Platform

ML Machine Learning

MQTT Message Queue Telemetry Transport

NBI Northbound Interface

NIC Network Interface Card

OF Operation Flow

ORM Object-Relational Mapping

OTEL OpenTelemetry

p-ABC Privacy-Preserving Attribute-Based Credential

PDP Policy Decision Point

PEP Policy Enforcement Point

PSM Privacy and Security Manager

RDMA Remote Direct Memory Access

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 12/118

REST REpresentational State Transfer

RLNC Random Linear Network Coding

RNIC RDMA NIC

TCP Transmission Control Protocol

TEE Trusted Execution Environment

TRL Technology Readiness Level

UI User Interface

UUID Universally Unique Identifier

VC Verifiable Credential

VP Verifiable Presentation

WP Work Package

XACML eXtensible Access Control Markup Language

ZKP Zero-Knowledge Proofs

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 13/118

1 Executive Summary

The EMPYREAN project aims to address a broad range of challenges that arise in the hyper-

distributed computing paradigm, which spans heterogeneous IoT devices and computing,

storage, and connectivity resources. These resources may belong to different providers and

exist across various segments of the IoT-cloud-edge computing continuum.

EMPYREAN introduces a novel approach centred on federations of collaborative resources

and functionalities, referred to as IoT-Edge Associations or simply Associations. These

Associations are autonomously created and operated and seamlessly using the EMPYREAN’s

AI-enabled management framework. Within this Association-based continuum, distributed,

cognitive, and dynamic AI-enabled decision-making mechanisms balance computing tasks

and data both locally inside an Association as well as between federated Associations in a

decentralized, multi-agent setup. The ultimate goal is to optimize resources usage while

providing scalability, resiliency, energy efficiency, and quality of service.

EMPYREAN also addresses key challenges including: (i) device volatility and heterogeneity, (ii)

virtualization of continuum infrastructure and diverse network connectivity, (iii) optimized

and scalable service execution and performance, (iv) efficient resource utilization, including

energy usage, (v) trust, security, and privacy guarantees, (vi)reduce integration costs and

mitigate vendor lock-in, (vii) promotion of openness, adaptability, and data sharing, and (viii)

support for future edge services and data market.

This deliverable describes and accompanies the first iteration release of the EMPYREAN

platform. This initial release is based on the work carried out by the consortium initially to

define the system’s requirements and specifications, reported D2.1 (M6)[1], then to

incrementally design the EMPYREAN architecture and targeted operation flows (as described

in deliverables D2.2 (M7) [2] and D2.3 (M12), and finally to implement the relevant

functionalities within WPs 3 and 4 during the first iteration of the implementation phase (M1-

M15). The document outlines the functionalities implemented and integrated so far, targeting

a first subset of project objectives and use cases functionalities.

This alpha release of the EMPYREAN platform represents a preliminary implementation of

core functionalities, many of which are at the proof-of-concept stage. It enables early

integration testing and helps identify gaps along with their respective solutions. It also

outlines the roadmap for the upcoming beta and final releases, detailing the development

workflow, testbed setup, and integration procedures. To support ongoing development and

validation, the project has established a continuous integration and continuous deployment

(CI/CD) environment. Using this setup, the initial EMPYREAN release has been delivered,

demonstrating core platform functionality and serving as a proof-of-concept for most parts

of the architecture.

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 14/118

2 Introduction

2.1 Purpose of this Document

The purpose of D5.2 is to introduce the Continuous Integration (CI) and Continuous

Deployment (CD) process carried out in the EMPYREAN project during the preparation of the

initial release of its integrated platform. These DevOps practices aim to automate and

streamline the software development lifecycle. Here's a breakdown of each and how they

work together. The key steps for CI are:

• Code Commit: Developers commit code to a shared version control repository.

• Automated Build: A CI tool (e.g., Jenkins, GitHub Actions, GitLab CI) automatically

builds the code.

• Automated Testing: Unit tests and other test suites (e.g., linting, static analysis) are

executed.

• Feedback: Developers are notified of any errors or failures.

Continuous Delivery and Continuous Deployment (CD) continues from CI and includes:

• Artifact Packaging: Artifacts (e.g., Docker images, binaries) are packaged.

• Staging Environment: Code is deployed to a staging environment for further testing

and validation (e.g., integration and smoke tests).

• Deployment Approval (optional): Manual approval may be required for production

deployment, in the case of continuous delivery.

• Production Deployment: If all checks pass, the system is deployed to production.

• Monitoring & Rollback: Observability tools (e.g., Prometheus, Grafana) monitor the

deployment. Rollbacks happen if issues are detected.

2.2 Document Structure

The structure of D5.2 is as follows:

• Section 2 presents the introduction.

• Section 3 provides an overview of EMPYREAN platform and initial release status.

• Section 4 presents the CI&CD process adopted for the EMPYREAN development.

• Section 5 describes the implemented functionalities, testing, and initial integrations

for the EMPYREAN platform components.

• Section 6 demonstrates how the components developed and integrated as part of the

initial EMPYREAN release support the key operation flows.

• Section 7 concludes the deliverable.

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 15/118

2.3 Audience

This document is intended for software engineers, developers, analysts, and DevOps

practitioners. Software architects may find the CI/CD patterns and tooling choices insightful,

while end users can gain a better understanding of the complexity and rigor behind deploying

a secure and scalable edge-cloud platform like EMPYREAN.

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 16/118

3 The EMPYREAN Platform

3.1 EMPYREAN Architecture

The EMPYREAN architecture was initially introduced in Deliverable D2.2 “Initial Release of

EMPYREAN Architecture” (M7) and subsequently refined in its final form in Deliverable D2.3

“Final EMPYREAN architecture, use cases analysis and KPIs” (M12), incorporating feedback

from the first iteration of implementation activities. Deliverable D2.3 offers a comprehensive

overview of the system architecture, detailing the EMPYREAN components, their interfaces,

and the supported operational workflows. In this section, we provide a summary of the

architecture (Figure 1) to support the presentation of the initial release of the integrated

EMPYREAN platform.

Figure 1: EMPYREAN high-level architecture.

The Service Layer encompasses components that facilitate the development of Association-

native applications, offering robust support for application-level adaptations,

interoperability, elasticity, and scalability across the IoT-edge-cloud continuum. This layer

focuses on key aspects such as: (a) workflow design and management, simplifying the

creation and orchestration of hyper-distributed applications, (b) cloud-native unikernel

application development, supporting lightweight, secure, and efficient deployment models,

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 17/118

and (c) dataflow description, enabling precise and scalable data management within

applications.

The Association Management Layer dynamically manages Associations within the IoT-edge-

cloud continuum. Forming resource federations enables seamless collaboration, resource

sharing, and data distribution across various segments within the continuum. Together with

the Multi-Cluster Orchestration Layer, it is central to EMPYREAN’s distributed and

autonomous management, establishing a resilient Association-based continuum.

The Multi-Cluster Orchestration Layer handles service orchestration and resource

management across EMPYREAN's disaggregated infrastructure. Using autonomous,

distributed decision-making mechanisms, it orchestrates dynamic, hyper-distributed

applications while enabling self-driven adaptations. Multiple instances of this layer’s

components provide decentralized operation, optimize resource utilization, and ensure

scalability, resiliency, energy efficiency, and high service quality.

The Resource Management Layer unifies the management of IoT, edge, and cloud platforms

under the EMPYREAN platform. It integrates software mechanisms for both platform-level

scheduling (e.g., EMPYREAN Controller, AI-enabled Workload Autoscaling) and low-level

mechanisms (e.g., Unikernel Deployment). This layer operates within Kubernetes or K3s

clusters and offers modularity, simplifying the integration of new hardware and software.

The Data Management and Interconnection Layer ensures dynamic communication and

secure data storage between IoT devices and computing resources. Operating at both cluster

and Association levels, it provides flexible and scalable data management and seamless

integration of IoT, edge, and cloud resources. It also supports distributed operation,

facilitating efficient operation in complex, distributed environments.

The Security, Trust, and Privacy Layer ensures secure access, privacy, and trusted execution

across the EMPYREAN platform. Operating at both the cluster and Association levels, it

delivers distributed trust services, enables secure and trusted execution environments, and

provides controlled data access for guaranteeing data confidentiality and continuous

validation of trust among entities.

Finally, the Monitoring and Observability Layer integrates real-time monitoring,

observability, and service assurance components to provide full visibility and control over the

platform. It uses distributed and automated telemetry mechanisms to dynamically collect

diverse metrics from heterogeneous infrastructures and deployed applications. These

mechanisms continuously track the health, performance, and availability of IoT devices,

edge/cloud infrastructures, platform services, and applications, facilitating data-driven

decision-making and enabling advanced automation capabilities.

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 18/118

3.2 Initial Release Status

The initial release of the EMPYREAN platform comprises the components developed during

the project’s first implementation iteration (M1–M18). This version represents a partial yet

functional integration of the platform’s architecture, with each component delivering a

subset of the targeted features along with the primary interfaces required seamless for inter-

component communication.

The primary objective of this release is to deliver a working prototype that demonstrates the

core functionalities of the EMPYREAN platform, validating the design choices and enabling

early-state testing and feedback collection.

Table 1 provides a high-level overview of the platform components included in this release,

along with those scheduled for integration in the second release milestone (M30). A detailed

description of the components delivered in this first release is provided in Section 5.

Table 1: Integration status of EMPYREAN components and interfaces.

Layer Component Status at

First Release

(M18)

Second

planned

Release

(M30)

Service Layer

Workflow Manager

DataFlow Programming

Action Packaging

Unikernel Building

EMPYREAN SDK

Association

Management

Layer

EMPYREAN Aggregator

EMPYREAN Registry

Multi-cluster

Orchestration

Layer

Decision Engine
Service Orchestrator

Resource

Management

Layer

AI-Enabled Workloads Autoscaling
EMPYREAN Controller
Environment Packaging
Unikernel Deployment
Container Layers Locality Scheduler
Container Runtime
Hardware Acceleration Abstractions

Data

Management and

Interconnection

Layer

Software Defined Edge Interconnect
IoT Query Engine
Decentralized & Distributed Data Manager
Edge Storage & Edge Storage Gateway

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 19/118

Security, Trust

and Privacy Layer

p-ABC Library (UMU)
Verifiable Data Registry
CTI Engine
Privacy & Security Manager
Secure & Trusted Execution Environment

Monitoring and

Observability

Layer

Telemetry Service/Engine
Persistent Monitoring Data Storage
Analytics Engine
Monitoring Probes

3.3 Integration Infrastructure

EMPYREAN leverages multiple distributed infrastructures, provided by its partners, to deliver

the necessary resources supporting integration, qualification, and release processes.

The infrastructure at ICCS offers a versatile testbed located at the HSCNL premises, designed

to accommodate a wide range of computing and networking requirements, including

virtualization, container orchestration, and secure remote access. It is built around a Proxmox

[3] cluster deployed over two dedicated physical servers (DELL PowerEdge R530 and DELL

PowerEdge R6515). Within this environment, two distinct clusters have been configured

Figure 2 to serve different operational needs: a Kubernetes (K8s) cluster and a Lightweight

Kubernetes (K3s) cluster, interconnected via a reconfigurable network setup. This dual-cluster

setup enables seamless orchestration of complex services and flexible resource allocation

across diverse environments, closely mimicking real-world deployment scenarios.

Figure 2: ICCS testbed – Computation and storage resources at K8s and K3s clusters.

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 20/118

Table 2 summarizes the key characteristics of these clusters. They are utilized for deploying

the EMPYREAN control and management plane components, creating Associations, as well as

running containerized workloads.

Table 2: K8s and K3s clusters within the ICCS testbed.

Name Overview Worker Node Characteristics

K8s 1 x master node

4 x worker nodes

3 x worker nodes on VMs, each one:

architecture: amd64

8 CPU cores

16 GB RAM

160 GB DISK

1 x Jetson Orin Nano, each one:

architecture: arm64

6 CPU cores

8 GB RAM

64 GB DISK

hardware acceleration (GPU)

K3s 1 x master node

3 x worker nodes

2 x Jetson Orin Nano, each one:

architecture: arm64

6 CPU cores

8 GB RAM

64 GB DISK

hardware acceleration (GPU)

1 x Raspberry Pi 4, each one

architecture: arm64

4 CPU cores

8 GB RAM

32 GB DISK

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 21/118

4 Development and Integration Environment

4.1 Continuous Integration (CI/CD) and Continuous

Deployment Process

EMPYREAN embraces Continuous Integration and Continuous Deployment (CI/CD) practices

to establish a standardized, automated workflow for developing, testing, and releasing its

software components. This approach serves two primary goals: (i) to support developers in

evaluating and optimizing the performance of their services, and (ii) to address the concerns

of service operators when integrating third-party services into their infrastructure. This

section highlights the pivotal role of CI/CD in EMPYREAN’s development pipeline.

Acknowledging their importance, our strategy is carefully designed to improve efficiency,

enhance reliability, and accelerate delivery of software components across the platform.

Continuous Deployment (CD) ensures that every validated code change pass through all

pipeline and is then deployed into production. Validated features are first tested in a staging

environment and then seamlessly promoted to production environment without manual

intervention. This process aims to reduce time-to-market, lower deployment risks, and

improve operational efficiency by delivering small, incremental updates to end users in a

reliable and cost-effective manner.

In a Continuous Integration (CI) environment, developers frequently merge new or modified

code into a shared codebase. The CI/CD pipeline embodies a set of practices and tools that

enable teams to deliver high-quality code more frequently and reliably. It achieves this by

automating the build and testing processes, validating code both locally and at the integration

level before it is merged into the mainline. This continuous feedback loop significantly

accelerates release cycles, enhances debugging efficiency, and streamlines overall

development efforts.

Figure 3 illustrates these pipeline steps that the EMPYREAN platform implements.

1. The first step of the pipeline is when the developers commit their code source to the

code source repository1. The CI triggers the building process.

2. The CI triggers the run of the internal testing process. If the testing is successful

pipeline continues to the next step.

3. Packages are deployed to staging in a Kubernetes environment

4. Packages are also deployed in the Docker registry

5. Deploy to production. this step can be set up automatically or manually.

6. Monitor the application testing/usage by the application developer, alert if there are

issues

1 EMPYREAN - Source code repository in GitHub. https://github.com/empyrean-eu

https://github.com/empyrean-eu

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 22/118

Figure 3: Generic Continuous Development, Continuous Integration (CD/CI) pipeline.

4.1.1 Integration Testing Approaches

For the integration test for the different EMPYREAN components, three different approaches

were considered:

● Top-Down Approach (incremental): The top-down approach begins integration from

the top-level modules and progresses downward. Stubs are used to simulate lower-

level modules during early testing. While this approach validates high-level

functionality early and can identify major design flaws, it delays testing of lower-level

modules and requires the time-consuming development of stubs. Consequently,

integration issues in lower-level modules might only surface late in the process.

● Bottom-Up Approach (incremental): Conversely, the bottom-up approach starts from

the lowest-level modules and moves upward, using drivers to simulate higher-level

modules. This method allows for early validation of lower-level functionality, making

it easier to identify and fix defects in these modules. However, high-level functionality

is tested late, and the development of drivers can also be time-consuming, leading to

potential delays in discovering integration issues in higher-level modules.

● Big-Bang Approach (non-incremental): The Big-Bang approach involves integrating all

modules simultaneously and testing the complete system. This approach offers

comprehensive testing of the entire system, faster integration, and immediate

identification of interaction issues. It simplifies management by eliminating the need

for stubs and drivers. However, debugging can be challenging due to the simultaneous

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 23/118

integration of many components, and identifying the source of defects can be

complex. This method requires all modules to be ready for integration simultaneously.

The Big-Bang integration approach has been selected for the EMPYREAN project due to the

following key advantages:

● Holistic Validation: EMPYREAN integrates multiple complex components that must

function together seamlessly from the beginning.

● Faster Integration: Enables quicker development cycles, essential for meeting project

deadlines.

● Immediate Feedback: Allows for rapid identification and resolution of integration

issues across components.

● Resource Efficiency: Eliminates the need for stubs and drivers, optimizing resource

use.

● Simplified Management: Centralizes integration into a single, manageable phase.

● Best Fit for Tested Modules: Components in EMPYREAN will undergo thorough unit

testing, making them suitable for Big-Bang integration.

4.1.2 Integration Workflow

The integration process follows a similar workflow to the generic CI/CD pipeline. EMPYREAN’s

components integration is automated through GitHub Actions, using the Big-Bang approach

to test all modules as a unified system.

Figure 4 illustrates the component’s integration pipeline Steps:

1. Code source commit: an EMPYREAN developer pushes code to the project GitHub

repository (RYAX), triggering the pipeline.

2. Workflow Trigger: a GitHub Actions workflow is automatically triggered by the

commit.

3. Build: the goal is to build an image in the GitHub Runner.

4.1 Code Quality Analysis: the code is analysed using SonarQube to ensure it meets

quality standards.

4.2 Unit Testing: individual components are tested in isolation to verify their

correctness.

5. Integration Testing: components such as for example the Privacy and Security

Manager (PSM) and RYAX Workflow Engine are tested together to validate their

interactions within the system.

6a. Publish: if all checks the quality, unit-test, and integration tests pass, a Docker

image is built and published to the GitHub Container Registry (GHCR).

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 24/118

6b. Fail Build: if any check fails, the workflow stops and the image is not published.

7. Test Reporting: generates a detailed test report, providing visibility into the status

and results of the executed tests.

Figure 4: EMPYREAN’s components integration workflow.

Integration Requirements for EMPYREAN

Afterwards, to ensure effective integration, the following requirements must be met:

1. Unit Testing: each component must include comprehensive unit tests.

2. Load and Performance Testing: scripts and guidelines for performance validation

must be in place.

3. Dependency Mapping: all dependencies (e.g., libraries, tools, frameworks) must be

documented per module.

4. Integration Testing: designed to verify component interactions, including API calls and

service relationships.

5. Dockerfiles: each component must have a Docker file for consistent containerization.

6. Docker-Compose File: defines multi-container orchestration and service

relationships.

7. Environment Configuration: clear setup instructions, environment variables, and

config files.

8. API Documentation: complete and accessible API specs, including endpoints, data

formats, and authentication.

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 25/118

Key Components of GitHub Actions Workflow

In the official EMPYREAN GitHub repository [4] there are workflow definitions that describe

what actions should be taken when a specific event occurs. Workflows are defined in YAML

files stored in the “.github/workflows” directory of the project repository.

The main elements of these workflows are:

• Jobs: A job is a collection of steps that are executed together on the same runner. Jobs

are the main building blocks of a workflow, defining what tasks need to be done. A

workflow can have one or more jobs that run either in parallel or sequentially,

depending on the established conditions (Figure 5).

• Steps: These are individual steps within a job. Each step can execute a bash command

or a specific GitHub Action. Steps are executed in order within the context of the job.

• Actions: These are reusable commands that can be used in steps to perform specific

tasks (e.g., checking out code, running tests, setting up environments). GitHub

provides a large number of predefined actions, and users can also create custom

actions tailored to their needs.

Figure 5: Illustration of the Service Orchestrator job in the GitHub repository.

Secrets in GitHub

Secrets in GitHub are sensitive values, such as API keys or access tokens, that are securely

stored and used in GitHub Actions workflows. Secrets are encrypted and only accessible by

the repository's workflows. Adding secrets to EMPYREAN Repository is as simple as executing

the following steps in the GitHub repository, see Figure 6:

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 26/118

1. In the Settings tab of the repository.

2. In the left menu, select Secrets and variables and then Actions.

3. Click on New organization/repository secret.

4. Enter the name and value of the secret and click on Add secret.

Figure 6: Adding secrets to EMPYREAN Repository.

Using Secrets in a Workflow

To reference a secret in a GitHub Actions workflow, we can use following the syntax

${{secrets.NAME_OF_SECRET}}.

This allows developers to securely inject sensitive information into workflow steops without

exposing them in plain text.

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 27/118

Necessary Secrets for the Build Job of the Workflow

To ensure proper execution of the build job within the EMPYREAN CI/CD pipeline, a series of

secrets must be configured in the GitHub repository.

Table 3 presents a detailed overview of the EMPYREAN CI/CD template.

Table 3: EMPYREAN CI/CD template.

EMPYREAN’s ci-template.yml
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

name: CD/CI Pipeline

on: push

jobs:

 build:

 runs-on: [base-dind-2204-arm64]

 steps:

 - name: Checkout the repository

 uses: actions/checkout@v3

 - name: SonarQube Analysis

 uses: SonarSource/sonarqube-scan-action@v2

 env:

 SONAR_TOKEN: ${{ secrets.SONAR_TOKEN }}

 SONAR_HOST_URL: https://sonarqube.k8s-ants.inf.um.es

 - name: Set up Python

 uses: actions/setup-python@v3

 with:

 python-version: 3.9

 - name: Install dependencies

 run: |

 python -m pip install --upgrade pip

 pip install -r requirements.txt

 - name: Run unit tests inside runner system

 run: |

 export PYTHONPATH="$PYTHONPATH:$(pwd)"

 pytest tests/

 - name: Build Docker image

 run: docker build -t empyrean-eu/template-image:latest .

 - name: Run tests inside Docker container

 run: |

 docker run --rm empyrean-eu/template-image:latest pytest tests/

 - name: Set up Docker Buildx

 uses: docker/setup-buildx-action@v3

 - name: Login to GitHub Container Registry

 uses: docker/login-action@v3

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 28/118

45

46

47

48

49

50

51

 with:

 registry: ghcr.io

 username: ${{ github.actor }}

 password: ${{ secrets.GITHUB_TOKEN }}

 # Push Docker image to Docker Hub

 - name: Push Docker image

 run: docker push ghcr.io/empyrean-eu/template-image:latest

Workflow name
name: CD/CI Pipeline

Workflow Triggers

The workflow is configured to automatically run whenever any changes are made and pushed

to the repository.
on: push

Jobs

The workflow defines a single job named build, which contains a series of steps to build and

test and push the Docker image based on the repository code. The build job runs on a self-

hosted runner that we select using the following tags:
jobs:

 build:

 runs-on: [base-dind-2204-arm64]

Repository Checkout

This step uses the action actions/checkout@v3 to check out the repository's source code

into the workspace. This allows subsequent steps to access the source code needed to build,

test and push the Docker image.
 steps:

 - name: Checkout the repository

 uses: actions/checkout@v3

Code quality analysis

In this step, the action sonarqube-scan-action@v2 is used in order to launch a code

quality analysis in the server https://sonarqube.k8s-ants.inf.um.es that will

provide information about test coverage, code smells, hotspots, maintainability, reliability,

duplications, and security.
 - name: SonarQube Analysis

 uses: SonarSource/sonarqube-scan-action@v2

 env:

 SONAR_TOKEN: ${{ secrets.SONAR_TOKEN }}

 SONAR_HOST_URL: https://sonarqube.k8s-ants.inf.um.es

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 29/118

Python Setup

This step uses the action actions/setup-python@v3 to set up the python version that is

needed by the repository code. In this workflow the python version used is the 3.9.
 - name: Set up Python

 uses: actions/setup-python@v3

 with:

 python-version: 3.9

Dependencies Installation

In this step, the command pip install is used to install the dependencies needed by the

repository code that are defined in the requirements.txt file. Before doing so, it is

recommended to upgrade pip.
 - name: Install dependencies

 run: |

 python -m pip install --upgrade pip

 pip install -r requirements.txt

Unit Tests before Build

This step is meant to run the unit tests inside the runner system before building the image.

This shows the test results without having to build the image, which saves the building time

in case an output with errors in the pushed code is found. This guarantees a less time-

consuming workflow.
 - name: Run unit tests inside runner system

 run: |

 export PYTHONPATH="$PYTHONPATH:$(pwd)"

 pytest tests/

Build Docker Image

This step builds the Docker image using the docker build command. The image is tagged

as template-image:latest, which specifies the image name and tag.
 - name: Build Docker image

 run:| docker build -t empyrean-eu/template-image:latest

Docker Container Unit Tests

In this step the tests run in the previous step are now run inside the docker container which

makes sure the building process worked properly and the image is built as expected.
 - name: Run tests inside Docker container

 run:docker run --rm empyrean-eu/template-image:latest pytest

tests/

Docker Buildx Setup

This step sets up Docker Buildx, a tool that enables the building of multi-platform Docker

images. The action docker/setup-buildx-action@v3 is used to prepare the build

environment.

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 30/118

 - name: Set up Docker Buildx

 uses: docker/setup-buildx-action@v3

Login to GitHub Container Registry

In this step, the login to GitHub Container Registry is performed using credentials stored in

repository secrets. The secret GHCR_TOKEN provides the authentication token.
 - name: Login to GitHub Container Registry

 uses: docker/login-action@v3

 with:

 registry: ghcr.io

 username: ${{ github.actor }}

 password: ${{ secrets.GITHUB_TOKEN }}

Push Docker Image

Publishing the Docker image to the GitHub Container Registry using the following command.
 - name: Push Docker image

 run: docker push ghcr.io/empyrean-eu/template-image:latest

4.2 Platform Release Plan

The implementation, integration, validation, and delivery of EMPYREAN developments follow

a structured, phased approach (Figure 7) designed to ensure a systematic and iterative

progression towards the project’s objectives and the release of the final platform. Each phase

builds upon the outcomes of the previous one, enabling smooth transitions from

requirements analysis and development, to integration and the deployment of a fully

functional platform. This approach incorporates continuous feedback and incremental

improvements through the development lifecycle.

Figure 7: EMPYREAN's platform release roadmap.

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 31/118

In line with this strategy, the EMPYREAN platform is planned to be delivered through three

major milestones, presented in Table 4.

Table 4: EMPYREAN Platform's Release Roadmap.

Milestone Deadline (date)

Initial platform release M18 (July 2025)

Full platform release M30 (July 2026)

Final platform release M36 (Jan 2027)

It is important to emphasize that each phase utilizes an agile approach to Continuous

Integration and Continuous Deployment (CI/CD), as discussed in the previous subsections.

This method enables us to respond effectively to advancements in the field and emerging

technological trends while allowing for continuous improvement based on real-world

experimentation.

D5.2 marks the successful release of the initial version of the EMPYREAN platform, developed

during the first iteration of the project’s implementation (M4–M15). In this version, each

component delivers a subset of its intended functionality, along with the core interfaces

required for inter-component communication. The initial release serves as a foundational

prototype that effectively demonstrates the core capabilities of the EMPYREAN platform

while also offering valuable insights and feedback to guide the second development iteration

(M18–M36).

Building upon this foundation, the full platform release will extend the prototype by

incorporating the remaining functionalities not included in the initial version. As the

development activities within the technical work packages (WP3 and WP4) conclude by M26,

the full release is scheduled for M30. Its objective is to deliver a fully integrated and feature-

complete platform, ready to support pilot deployments and experimentation. The final

release, to be delivered at the end of the project (M36), will focus on refining the platform

based on insights gathered from the final evaluation and the demonstration of the project’s

use cases.

By following this structured and iterative development approach, the EMPYREAN consortium

ensures a smooth and effective transition from concept to a fully operational and exploitable

platform, in alignment with the project’s technical goals and stakeholder needs.

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 32/118

5 EMPYREAN Platform Components

This section describes in detail the platform components, each of which delivers a subset of

the targeted features along with the primary interfaces required for inter-component

communication.

5.1 Service Layer

5.1.1 Workflow Manager

The Ryax platform is architected as a collection of modular, containerized microservices

orchestrated by Kubernetes to enable flexible, scalable, and fault-tolerant deployment of

data processing workflows. Based on the initial analysis provided in D4.1 (M15), two critical

microservices in this architecture are Studio and Runner. While the Studio microservice

enables users to define and configure workflows in a low-code, declarative manner, the

Runner microservice is responsible for executing those workflows and managing their

runtime behavior. The following sections detail these services from two perspectives: their

design and purpose within the platform, and their technical interfaces and integration points

within the Ryax system, preparing the way to integrate with other EMPYREAN components.

This section presents the functional roles and architectural responsibilities of the Studio and

Runner microservices in the broader context of the Ryax platform. While both services

operate independently, they are closely integrated: Studio acts as the control layer that

defines workflows, and Runner is the data execution layer that brings them to life. Together,

they support Ryax’s core objective, enabling users to design and deploy end-to-end data

automation pipelines on cloud, edge, and hybrid infrastructures with minimal operational

overhead.

Studio

The Studio microservice is the central component responsible for managing the lifecycle and

configuration of workflows in the Ryax platform. It empowers users, through both graphical

and programmatic interfaces, to create, edit, and deploy complete data processing

applications composed of modular building blocks called actions (triggers, processors,

publishers). It offers a low-code, declarative workflow design environment, allowing users to

define workflows as Directed Acyclic Graphs (DAGs) using an intuitive UI or YAML-based

configurations. Each node (action) in the workflow can process data, produce outputs, and

pass results downstream in a well-defined data stream model.

Internally, it is implemented as a stateless HTTP REST API using Python. It uses a PostgreSQL

database to persist workflow definitions, metadata, and configurations, and applies an ORM

(Object-Relational Mapping) layer for maintainable and structured data management. Studio

abstracts the complexity of defining data analytics pipelines and container-based

deployments. It is tightly integrated with Ryax’s internal services such as the Repository,

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 33/118

Action Builder, and Runner, acting as the control plane for pipeline definition and

deployment.

Runner

The Runner microservice is the execution engine of the Ryax platform. It is responsible for

managing the runtime behavior of workflows defined via the Studio service. Once a workflow

is deployed, Runner orchestrates the execution of each action, handles task scheduling and

data flow, collects logs, and manages execution metadata.

Runner supports containerized, distributed execution over Kubernetes-managed

infrastructures and communicates with deployed actions using gRPC. It integrates with Ryax’s

MinIO-based Filestore to handle execution inputs and outputs, and uses RabbitMQ as its

internal messaging broker for service coordination.

Designed to handle execution at scale, Runner ensures that workflows are executed

efficiently, that tasks are retried upon failure, and that results are stored and made available

via structured APIs. It also exposes real-time monitoring capabilities to allow users and

administrators to track the progress of executions across distributed resources.

Integration and Interfaces

Studio

The Studio microservice exposes a comprehensive RESTful API (Figure 8) that is consumed by

both the Ryax WebUI (Angular-based frontend) and the Ryax CLI (Python-based tool). These

interfaces allow users to interact with the platform visually or programmatically.

The API, defined in an OpenAPI (Swagger) specification, includes endpoints for:

• Workflow lifecycle management: Create, update, delete, and retrieve workflows.

• Action and workflow structure management: Define and link triggers, processors,

and publishers as part of a DAG.

• Input/output configuration: Specify and manage action parameters and data flow.

• Deployment and monitoring metadata: Track deployment state, trigger executions,

and view errors.

• Project-level variables: Inject reusable parameters and configurations across

workflows.

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 34/118

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 35/118

Figure 8: Ryax Studio - RESTful API.

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 36/118

Studio interacts with other internal services such as: (i) Repository to import or discover

actions from Git, (ii) Action Builder to package and prepare actions for deployment, and (iii)

Runner to trigger executions and manage runtime coordination.

All service-to-service communication occurs over HTTP or asynchronous message passing via

RabbitMQ. Authentication and authorization are enforced through integrated user

management services.

Runner

The Runner API exposes the interfaces (Figure 9) required to manage workflow execution,

track their status, and access runtime results and logs. It complements the Studio API by

operationalizing workflow definitions into executable tasks. The API is organized into the

following key functional areas:

• Execution lifecycle management: Interfaces to start, cancel, and monitor workflow

runs, as well as manage run history and execution metadata.

• Live monitoring and observability: Endpoints to access execution logs (both batch and

streaming), deployment events, and system health checks.

• Portal access: Workflow triggering mechanisms designed for end-user or third-party

access via portals.

• Data handling: APIs to retrieve results, download execution outputs, and access

intermediate files stored during execution.

• Security and access control: Functionality for API key management and user

authentication for protected operations.

• Infrastructure awareness: Interfaces for querying available execution sites and

collecting accounting data on resource usage.

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 37/118

Figure 9: Ryax Runner - RESTful API.

These APIs enable seamless integration of Runner with Ryax’s internal monitoring tools, such

as Prometheus, Grafana, and Loki, as well as with orchestration systems like Kubernetes and

resource-aware scaling mechanisms. Runner also exposes WebSocket endpoints to enable

real-time streaming of logs and deployment events, ensuring robust operational visibility.

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 38/118

All communication with Runner is authenticated and scoped to user projects, supporting

multi-tenant deployments and secure access control. Internally, it uses gRPC to communicate

with action containers and Protobuf-encoded messaging via RabbitMQ for event dispatching

across services.

5.1.2 Dataflow Programming

The dataflow programming component is implemented on top of the Eclipse Zenoh network

protocol [5]. In the following paragraphs, we provide a high-level understanding of the

component’s structure, main components, and how they work together to enable distributed

computations spanning from cloud to edge devices.

Zenoh-Flow [6] is a Zenoh-based data flow programming framework designed for

computations that span from the cloud to the device. The system enables users to define,

deploy, and manage distributed dataflows using a declarative approach with dynamic node

loading and runtime management capabilities. The system architecture is depicted in Figure

10, it maps directly to the specific Rust crates and modules, providing a clear separation of

concerns across the distributed dataflow processing pipeline.

Figure 10: Dataflow framework core components.

The Dataflow component is organized as a Rust workspace containing multiple

interconnected crates, each serving specific functionality within the distributed dataflow

system.

Integration and interfaces

The command-line interface for Zenoh-Flow is called zfctl, which is used to deploy and

manage the dataflow instances. It supports the commands to cover the essential workflow

from starting daemons to deploying and controlling dataflow instances.

Before starting a new dataflow implementation, the application engineer needs to have the

following pre-requisites:

• A working Zenoh network (zfctl connects as a peer with multicast scouting by default)

• Compiled node libraries available for the dataflows

• Access to dataflow descriptor files in YAML format

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 39/118

Figure 11: Dataflow getting started workflow.

The typical workflow involves three main phases: daemon management, dataflow

deployment, and instance control, see Figure 11. Detailed information can be found in the

Online Zenohflow tutorial [5].

5.1.3 Action Packaging

The Action Packaging component of EMPYREAN is realized through two distinct services

within the Ryax architecture: the Repository and the Action Builder. These microservices form

the backbone of Ryax's action development pipeline, enabling the seamless integration of

user-defined logic into workflows. They allow custom actions to be scanned, built, and made

available within the Ryax ecosystem.

The Repository service handles source control integration and action registration, while the

Action Builder compiles those actions into runnable components using a deterministic build

process. This section describes their responsibilities and integration pathways.

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 40/118

This section highlights the functional roles of the Repository and Action Builder microservices.

These components enable extensibility in Ryax by providing users with tools to onboard

custom logic, manage versioning, and ensure reliable and reproducible builds. This

extensibility is central to Ryax’s low-code, empowering users to easily incorporate domain-

specific code without manual packaging or orchestration.

Repository

The Repository microservice is responsible for integrating external Git repositories into Ryax.

Users can register repositories (e.g., on GitHub or GitLab), scan their contents for Ryax-

compliant action definitions, and trigger builds of those actions. It serves as the source

management and synchronization layer in the Ryax architecture. Internally, Repository stores

metadata about imported repositories, actions, and their build status using a PostgreSQL

database, abstracted via an ORM. It exposes a RESTful HTTP API and is accessible via both the

WebUI and CLI.

Once an action is scanned and a build is triggered, the Repository forwards the build request

to the Action Builder service. Upon successful build completion, it registers the built action

with the Studio's action store, making it immediately available for use in workflow

construction. This microservice ensures a clean separation between source integration, build

execution, and workflow design, enabling a robust, scalable, and CI/CD-friendly approach to

managing custom actions.

Action Builder

The Action Builder microservice is responsible for compiling and packaging user-defined Ryax

actions received from the Repository service. It enforces build isolation, dependency

resolution, and reproducibility using the Nix package manager, a purely functional system

designed to create deterministic builds. Build requests are processed sequentially and

synchronously, with each build occupying the entire builder service until completion. This

design simplifies resource usage and debugging, although it limits concurrency to one build

at a time per builder instance.

The Action Builder performs the following steps for each build:

1. Validates the action's structure and metadata.

2. Resolves and installs required dependencies using Nix.

3. Packages the action into a Docker-compatible runtime unit.

4. Notifies the Repository service upon completion or failure.

As a purely backend component, Action Builder does not interact directly with the user-facing

WebUI or CLI but acts as a worker that listens for instructions from Repository. It

communicates results via API callbacks and logging channels.

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 41/118

Integration and Interfaces

This section explains how the Repository and Action Builder services integrate with broader

Ryax system. Exposed via REST APIs and documented with OpenAPI, they support seamless

integration with automation tools, CI/CD systems, and Ryax's internal services. They are

accessible through both CLI and WebUI for streamlined development workflows.

Repository

The Repository API (Figure 12) provides endpoints that allow users to:

• Manage Git repositories: Add, update, delete, and retrieve source repositories

(/sources, /v2/sources)

• Scan repositories: Detect Ryax-compatible action definitions from Git-based sources

(/v2/sources/{id}/scan)

• Trigger action builds: Initiate builds for all or individual actions in a repository

(/v2/sources/{id}/build, /modules/{id}/build)

• Manage repository actions: List or delete imported actions (/modules, /modules/{id})

• Handle build operations: Cancel ongoing builds either per action or per repository

(/v2/actions/{id}/cancel_build, /v2/sources/{id}/cancel_all_builds)

• Monitor health: Check service status (/healthz)

The WebUI uses the API to enable developers to link external code and build Ryax actions

directly from the browser. Similarly, CLI-based users can automate action imports and

updates within CI/CD pipelines. The Studio service is notified upon successful builds, allowing

actions to be added to the platform’s shared action catalog.

Internally, the Repository communicates with the Action Builder through REST-based build

request calls and uses PostgreSQL to track repository state, action metadata, and build

history.

Action Builder

Although it does not expose user-facing endpoints directly, the Action Builder operates via a

dedicated internal interface used exclusively by the Repository service. It performs one build

job at a time, processing incoming tasks in FIFO order.

Key integration characteristics include:

• Tightly coupled build queue: Build jobs are dispatched directly from Repository as

synchronous API calls.

• Nix-based reproducibility: Ensures that all dependencies for custom actions are

resolved in a clean, sandboxed environment.

• Result reporting: Status updates (success or failure) are relayed back to the

Repository, which then triggers any required downstream actions, such as Studio

registration or error notification.

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 42/118

Because of its dependency on Nix and synchronous job model, Action Builder is typically

deployed with constrained concurrency, but it can be horizontally scaled with job distribution

logic in the Repository for high-volume environments.

Figure 12: Action Packaging – Repository microservice RESTful API.

5.1.4 Unikernel Building

Traditional cloud-native deployments use POSIX-like containers, which can be inefficient for

lightweight tasks such as network services or serverless functions. The Unikernels Builder

(Bunny) enables deployment of unikernel images, single-purpose, bootable VMs without

extra dependencies, fulfilling EMPYREAN’s need for secure, scalable, lightweight applications

across IoT-edge-cloud environments.

Bunny automates building, packaging (OCI-compatible), publishing, and deploying unikernel

apps, and integrates with container registries and Kubernetes via urunc, allowing unikernels

to run in standard cloud-native deployment workflows.

With Bunny, EMPYREAN achieves flexible deployments that minimize memory footprint, boot

time, and attack surface, crucial for edge and embedded systems in sensitive contexts.

Integration and interfaces

To align with current cloud-native standards, Bunny supports OCI-compliant image packaging,

ensuring compatibility with popular container registries and orchestration platforms.

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 43/118

Applications intended for unikernel deployment can now leverage a familiar interface akin to

Dockerfile, allowing developers to define build steps, dependencies, and runtime

configuration in a declarative manner. This streamlined workflow lowers the barrier for

onboarding and integration, as existing containerization knowledge translates directly to the

unikernel packaging process.

Bunnyfiles offer a Dockerfile-like experience tailored specifically for unikernel builds. Table 5

shows the currently supported options for a bunnyfile. Building such an OCI image is done via

the generic Docker interface (docker build -f Bunnyfile -t TAG ./context).

Table 5: Unikernel building - Bunnyfile syntax

#syntax=harbor.nbfc.io/nubificus/bunny:latest # [1] Set bunnyfile syntax for automatic recognition from buildkit.
version: v0.1 # [2] Bunnyfile version.

platforms: # [3] The target platform for building/packaging.
 framework: unikraft # [3a] The unikernel framework.
 version: v0.15.0 # [3b] The version of the unikernel framework.
 monitor: qemu # [3c] The hypervisor/VMM or any other kind of monitor.
 architecture: x86 # [3d] The target architecture.

rootfs: # [4] (Optional) Specifies the rootfs of the unikernel.
 from: local # [4a] (Optional) The source or base of the rootfs.
 path: initrd # [4b] (Required if from is not scratch) The path in the source,
where the prebuilt rootfs file resides.
 type: initrd # [4c] (optional) The type of rootfs (e.g. initrd, raw, block)
 include: # [4d] (Optional) A list of local files to include in the rootfs
 - src:dst

kernel: # [5] Specify a prebuilt kernel to use
 from: local # [5a] Specify the source of a prebuilt kernel.
 path: local # [5b] The path where the kernel image resides.

cmdline: hello # [6] The cmdline of the app.

5.2 Association Management Layer

5.2.1 EMPYREAN Aggregator

The EMPYREAN Aggregator forms the management fabric of the Association-based

continuum, enabling seamless coordination and control of distributed resources and services.

The Aggregator oversees resource provisioning, workload scheduling, and interconnection

across Associations. Aggregators interact not only with each other but also with underlying

edge infrastructures and multi-cloud environments, ensuring cohesive, scalable, and adaptive

management. This structure enables localized decision-making while maintaining global

coordination, promoting efficiency and autonomy.

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 44/118

Figure 13: EMPYREAN Aggregator architecture.

The Aggregator consolidates multiple EMPYREAN services and components (Figure 13). It

serves as an abstraction point between Service and Multi-Cluster Orchestration layers,

ensuring composability and interoperability across the continuum. Further details on the

design and initial design of this component can be found in D4.2 (M15) [7].

Integration and interfaces

The EMPYREAN Aggregator is a cloud-native application developed in Python. Its core services

are containerized and managed using Kubernetes for orchestration. To enable efficient

development and integration, the Aggregator is fully integrated into the EMPYREAN CI/CD

pipeline. After the testing phase, container images of the related services are automatically

built and made available in the official EMPYREAN image repository. Additionally, all

necessary Kubernetes deployment descriptors, such as ConfigMaps, Deployments, and

Services, are provided to facilitate automated deployment and lifecycle management within

the EMPYREAN integration infrastructure, see Figure 14.

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 45/118

Figure 14: EMPYREAN Aggregator into CI/CD pipeline and deployment in two K8s clusters.

The API Gateway provides two northbound interfaces (NBIs): (i) a REST interface (Figure 15)

exposed to core EMPYREAN orchestration and management services, such as EMPYREAN

Registry and Workflow Manager, and (ii) a gRPC interface exposed to the rest of the

EMPYREAN Aggregators.

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 46/118

Figure 15: EMPYREAN Aggregator – API Gateway RESTful API.

We provide representative interactions among the EMPYREAN Aggregator and other

EMPYREAN platform components to facilitate core operational flows. These examples

highlight both REST and gRPC-based communications, covering actions such as onboarding

resources, retrieving information, and supporting cross-Aggregator coordination.

Association with the Aggregator assignment for management

When a new Association is defined, the API Gateway of the EMPYREAN Registry notifies the

corresponding Aggregator to take control for managing and coordinating the Association. This

is achieved by invoking the following POST method exposed by the Aggregator’s RESTful API.

POST /api/v1/aggregator/associations

h

{"uuid": "ebe12f54-a9cb-476a-b930-4befb0236fce", "name": "ICCS Default Association",

"labels": ["platform-arch:amd64", "platform-arch:arm64"], "aggregator_uuid":

"a2b66fa3-3f13-416b-8644-56328e0de4ba", "owner_uuid":"71c1642b-69c9-4e25-abcc-

dda116e8becd", "policy_uuid":"5c0eed16-31a8-467d-83db-ef1010466755", "description":""}

Figure 16 presents the log messages from the EMPYREAN Aggregator.

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 47/118

Figure 16: Log messages from the EMPYREAN Aggregator.

Onboarding computational resources

During the onboarding process, the resource owner provides the EMPYREAN Aggregator,

responsible for managing the targeted Association, with a description of the resource's

characteristics and applicable policies. The Aggregator then performs the overall process,

orchestrating the necessary interactions with various EMPYREAN services, including the

EMPYREAN Registry. This is achieved by invoking a PUT request to the Aggregator, where the

request body specifies the resource type (via the resource_type field) and resources identity

parameters (via the resources field). Below is an example illustrating the onboarding of three

worker nodes belonging to two different clusters

PUT /api/v1/aggregator/ebe12f54-a9cb-476a-b930-4befb0236fce/resources

{ "resource_type": "computing_resources","resources": [{"kind":

"worker_node","cluster_uuid":"7628b895-3a91-4f0c-b0b7-

033eab309891","machine_id":"02e257de949c4486b85ba436ec983663","name":"wn1-

paros","policy_uuid":"dd9ceff4-667e-4704-bb06-88e3272cbb27","owner_uuid":"8a99c456-

ff60-44aa-8a79-ca58fe9f6b2d"},{"kind":"worker_node","cluster_uuid":"7628b895-3a91-

4f0c-b0b7-033eab309891","machine_id":"dc156c5469db44c0be8121e8b94e31f6","name":"wn2-

serifos","policy_uuid":"dd9ceff4-667e-4704-bb06-88e3272cbb27","owner_uuid":"8a99c456-

ff60-44aa-8a79-ca58fe9f6b2d"},{"kind":"worker_node","cluster_uuid": "2b05cfdf-679f-

45f1-95f8-a334ec87faaf","machine_id": "f51aa228c77741e797f8d8fe6ac29efe","name": "wn1-

ios","policy_uuid": "dd9ceff4-667e-4704-bb06-88e3272cbb27","owner_uuid":"8a99c456-

ff60-44aa-8a79-ca58fe9f6b2d"}]}}

Log messages from the EMPYREAN Registry and graphical representation of the updated

Association information within the Association Metadata Store service.

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 48/118

Figure 17: Graphical representation of the updated Association information within the Association Metadata

Store service.

Onboarding edge storage resources

Edge storage devices are onboarded in a similar manner to Associations. The Storage Service

makes a PUT request to the corresponding Aggregator, supplying the required configuration

details. Upon receiving this request, the Aggregator updates its internal state accordingly and

notifies the EMPYREAN Registry to reflect the updated capabilities of the Association. The

following request onboards two edge storage devices within Association with UUID

“ebe12f54-a9cb-476a-b930-4befb0236fce”.

PUT /api/v1/aggregator/ebe12f54-a9cb-476a-b930-4befb0236fce/resources

{"resource_type": "storage_resources", "resources": [{"edge_storage_uuid":"7381fd0a-

ce7e-401e-86b0-c163c1f06c93", "name": "ICCS-edge-storage-1", "lat":37.983810,

"lng":23.727539}, {"edge_storage_uuid":"263020f1-5f19-44a0-a358-2edb905798aa", "name":

"ICCS-edge-storage-2", "lat":37.983810, "lng":23.727539}]}

Log messages from the EMPYREAN Aggregator.

Log messages from the EMPYREAN Registry and graphical representation of the updated

Association information within the Association Metadata Store service.

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 49/118

Figure 18: Graphical representation of the updated Association information within the Association Metadata

Store service.

Association details

The Aggregator exposes a RESTful endpoint that allows the retrieval of detailed information

about a managed Association. The following GET method returns details for the Association

with UUID “ebe12f54-a9cb-476a-b930-4befb0236fce”, including information on the

onboarded computing and storage resources under its management.

GET /api/v1/aggregator/associations/ebe12f54-a9cb-476a-b930-4befb0236fce

{"uuid":"ebe12f54-a9cb-476a-b930-4befb0236fce","name":"ICCS Default Association",

"labels":["platform-arch:amd64","platform-arch:arm64"],"aggregator_uuid":"a2b66fa3-

3f13-416b-8644-56328e0de4ba","owner_uuid":"71c1642b-69c9-4e25-abcc-

dda116e8becd","policy_uuid":"5c0eed16-31a8-467d-83db-

ef1010466755","description":"","status":"READY","clusters":["7628b895-3a91-4f0c-b0b7-

033eab309891"],"storage_resources":[{"edge_storage_uuid":"7381fd0a-ce7e-401e-86b0-

c163c1f06c93","name":"ICCS-edge-storage-1", "lat": 37.98381,"lng":

23.727539},{"edge_storage_uuid": "263020f1-5f19-44a0-a358-2edb905798aa","name": "ICCS-

edge-storage-2","lat": 37.98381,"lng":

23.727539}],"computing_resources":[{"cluster_uuid": "7628b895-3a91-4f0c-b0b7-

033eab309891", "machine_id":"02e257de949c4486b85ba436ec983663","name":"wn1-

paros"},{"cluster_uuid": "7628b895-3a91-4f0c-b0b7-

033eab309891","machine_id":"dc156c5469db44c0be8121e8b94e31f6","name":"wn2-

serifos"}],"schedulable": true, "created_at": 1750087208,"updated_at": 1750087217}

5.2.2 EMPYREAN Registry

The EMPYREAN Registry plays a central role in enabling coordination, management, and

governance across the EMPYREAN platform’s complex, distributed environment. Acting as a

unified entry point, it supports both core platform services and third-party entities by

enabling the discovery, cataloguing, and advertising of Associations, services, and

infrastructure components within the Association-based continuum.

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 50/118

Key responsibilities of the Registry include:

● Facilitating the registration and lifecycle of IoT devices, edge, and cloud resources

within Associations.

● Maintaining up-to-date information on available Associations, their associated

services, and the mapping of resources to each Association.

Capturing and managing the relationships between users and Associations, ensuring

consistent and policy-compliant platform behaviour.

Figure 19: EMPYREAN Registry architecture.

Its architecture, see Figure 19, consists of seven core services, each exposing well-defined

interfaces to support interoperability, extensibility, and robust communication across

platform components. Further details on the design and initial design of this component can

be found in Deliverable D4.2 (M15) [7].

Integration and interfaces

The work during the initial phase covers the implementation of the API Gateway, Association

Metadata Store, Service Catalogue, and Container Image Repository components. The

Container Image Repository is based on the CNCF Distribution Registry2, an open-source

stateless and highly scalable storage and content delivery system that holds named container

images and other content, available in different tagged versions. The other components are

implemented in Python and are containerized to ensure portability and isolation. The modular

architecture allows individual services to evolve independently while interacting through

internal REST APIs, ensuring loose coupling and ease of maintenance.

To streamline development, testing, and deployment workflows, the Registry is integrated

into the EMPYREAN CI/CD pipeline (Figure 20).

2 https://distribution.github.io/distribution/

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 51/118

Figure 20: EMPYREAN Registry into EMPYREAN CI/CD pipeline.

Container images for the developed Registry components are automatically built and pushed

to the EMPYREAN image repository. Corresponding Kubernetes YAML descriptors are

maintained to support automated deployment in test, staging, and production environments

(Figure 21).

Figure 21: EMPYREAN Registry components successful deployment in ICCS’s K8s cluster.

The API Gateway exposes a RESTful interface to enable stateless communication and provide

external access to Registry’s services. This interface is designed to support low-complexity

interactions, such as registering new resources, querying available Associations, and

retrieving service metadata. Incoming requests to the API Gateway are forwarded to the

Registry Manager, which serves as the internal coordination point. The Registry Manager

processes requests and interacts with other core components, including the Association

Metadata Store, to fetch or update information related to Associations and their registered

services.

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 52/118

Figure 22 shows the available REST methods, covering key operations for external entities to

interact with the Registry securely and consistently. All endpoints are documented using the

OpenAPI specification.

Figure 22: EMPYREAN Registry – API Gateway RESTful API.

The Association Metadata Store aggregates metadata from multiple distributed Associations.

Its primary function is to maintain structured information about each Association’s

participating resources, workload, sharing policies, and other governance rules. This enables

effective coordination, trust, and intelligent orchestration across the Association-based

continuum. The service provides a RESTful API (Figure 23) to support integration with other

EMPYREAN Registry services and EMPYREAN Aggregators.

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 53/118

Figure 23: Association Metadata Store RESTful API.

Next, we present key interactions among the components of the EMPYREAN Registry that

highlight the stateless REST API exposed by the API Gateway, the role of the Registry Manager,

and the internal coordination with services like the Association Metadata Store. In Section 6,

we provide a detailed walkthrough of critical operation flows, such as the creation of an

EMPYREAN Association, device onboarding, and cross-platform service deployment, which

rely on these fundamental Registry operations.

Create a new Association

The definition of a new Association is initiated via a POST request, which is first handled by

the API Gateway. The API Gateway (Figure 24) performs initial parameter validation and then

forwards the request to the Registry Manager (Figure 25), which orchestrates the creation

process by interacting with the Association Metadata Store to persist the new Association

record.

POST /api/v1/registry/associations

{"name": "ICCS Default Association", "labels": ["platform-arch:amd64", "platform-

arch:arm64"],"aggregator_uuid": "a2b66fa3-3f13-416b-8644-56328e0de4ba","owner_uuid":

"71c1642b-69c9-4e25-abcc-dda116e8becd","policy_uuid":"5c0eed16-31a8-467d-83db-

ef1010466755"}

Figure 24: API Gateway – Processing request for creating a new Association.

Figure 25: Registry Manager – Processing request for creating a new Association.

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 54/118

Figure 26: Visual representation of available Associations within Association Metadata Store service of the

EMPYREAN Registry

Retrieve all available Associations

When a client issues a request to retrieve information about available Associations, the API

Gateway queries the Association Metadata Store through its internal API. The Association

Metadata Store handles the retrieval of Association records and returns them to API Gateway.

GET /api/v1/registry/associations

[{"name":"ICCS Default Association","uuid":"f0a55297-d68f-411f-b7fa-

9c1526c0db16","aggregator_uuid":"a2b66fa3-3f13-416b-8644-56328e0de4ba","schedulable":

false}]

Advertise a new service

When a new service is advertised, the API Gateway receives the request and forwards it to

the Registry Manager, which validates the service metadata and stores it in the Service

Catalogue. This process ensures that the service becomes discoverable across the EMPYREAN

platform and is correctly linked to the relevant Association. The following GET method lists

the available Aggregator services within the EMPYREAN platform.

GET /api/v1/registry/services?category=aggregator

[{"uuid":"a2b66fa3-3f13-416b-8644-

56328e0de4ba","category":"Aggregator","service_endpoint":

"http://147.102.16.114:30800"}, {"uuid":"4790a1e3-aa38-4461-8b81-8f771c60dbb5",

"category": "Aggregator", "service_endpoint": "http://147.102.16.115:30800"}]

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 55/118

5.3 Multi-cluster Orchestration Layer

5.3.1 Decision Engine

The Decision Engine Controller coordinates multiple Execution Engines, lightweight, modular

workers responsible for executing decision-making logic Figure 27. The Decision Engine

interfaces directly with the Service Orchestrator (Section 5.3.2), processing incoming service

deployment and management requests. It operates on real-time insights from the EMPYREAN

Telemetry Service (Section 5.7.1), allowing it to make data-driven decisions that adapt to

changing infrastructure and application conditions. To support distributed, multi-agent

orchestration, the Decision Engine leverages the Distributed Data Manager (Section 5.5.2),

which is based on Eclipse Zenoh [5]. This integration ensures high-performance, dynamic, and

scalable data exchange between orchestration components, even across geographically

dispersed clusters.

Further details on the design and implementation of the Decision Engine, including a

comprehensive analysis of the initial algorithms developed, are provided in D4.2 (M15) [7].

Figure 27: The Decision Engine architecture, main components, and interactions.

Integration and interfaces

The Decision Engine components are implemented in Python and packaged as containerized

microservices to ensure streamlined and efficient development, deployment, and testing

workflow. Separate container images are provided for the Decision Engine Controller and the

Execution Engine, and these are maintained in the official EMPYREAN image repository.

Moreover, the corresponding Kubernetes YAML description files are available to facilitate its

deployment on Kubernetes platforms. These definitions enable the automatic deployment

and scaling of the Decision Engine components. They are also integrated into EMPYREAN’s

CI/CD pipeline, supporting continuous integration and delivery processes, see Figure 28.

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 56/118

Figure 28: Decision Engine into CI/CD pipeline and deployment in ICCS’s K8s cluster.

The Decision Engine exposes two distinct Northbound Interfaces (NBIs) to support interaction

with external components and users: a RESTful API and an asynchronous messaging interface

based on the Advanced Message Queuing Protocol (AMQP). The REST API interface, see

Figure 29, provides a set of control operations that allow external entities to manage and

inspect the execution of deployment algorithms, query the status and capabilities of available

Execution Engines, and perform administrative tasks related to user management. This

interface is fully documented using the OpenAPI specification, ensuring clarity, consistency,

and ease of integration for developers and third-party services. Complementing this, the

second interface enables asynchronous communication between the Decision Engine

Controller and end users, facilitating the exchange of notification messages and results.

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 57/118

Figure 29: Decision Engine – Access Interface REST API.

Next, we detail the interaction among the Decision Engine components, the Service

Orchestrator, and the Telemetry Service for supporting multi-agent operations across

EMPYREAN Associations. Specifically, we focus on the initial placement of an application’s

microservices, considering a scenario involving three available Associations (Figure 30).

This operation corresponds to the operation flow OF 4.1.1, initially defined in D2.3 (M12) and

fully specified in D4.2 (M15). It exemplifies how the Decision Engine leverages multi-agent

coordination to evaluate resource availability and policy constraints to make an optimal initial

placement decision across distributed infrastructure domains abstracted by Associations.

Figure 30: Multi-agent operation across two EMPYREAN Associations for initial placement of application’s

microservices.

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 58/118

Service Orchestrator to Decision Engine

The Service Orchestrator initiates the multi-agent decision-making process across the

Associations by issuing the following POST request to its designated Decision Engine. This

request triggers the evaluation of candidate deployment options across multiple

infrastructure domains. During this process, the Decision Engine located in the originating

Association acts as the supervisor, coordinating the distributed decision-making activity

among participating Execution Engines

POST /api/v1/decision_engine/multi_agent/execution

{"execution_plugin": "AssociationMatch", "parameters":

{ "application_description":[{"kind":"Deployment","name":"frontend","replicas":1},{"ki

nd":"Deployment", "name": "data-producer","replicas": 1}, {"kind":"Deployment","name":

"classifier", "replicas": 1}, {"kind": "Deployment", "name": "model-manager",

"replicas": 1}, {"kind": "Deployment", "name": "state-manager", "replicas":

1}],"deployment_objectives": [{"colocation": ["frontend", "state-manager"], "data-

producer": {"latency": 5}, "classifier": {"latency": 5, "energy": 3}, "model-manager":

{"availability": 4}}]}}

Decision Engine to EMPYREAN Registry

The supervisor Decision Engine queries the EMPYREAN Registry to identify Associations that

meet the required deployment criteria, utilizing the Registry’s exposed RESTful API.

Figure 31: Query results in the EMPYREAN registry.

Initial coordination among Decision Engines

The Decision Engine dynamically creates exchange topics within the Distributed Data Broker

to enable bidirectional communication among participating Decision Engines. It then notifies

the selected Decision Engines about the newly created topics by executing the following POST

request. The following request corresponds to the configuration of the Decision Engine at the

“Association 2”.

POST /api/v1/decision_engine/multi_agent/configuration

{

 "multi_agent_operation_id ": "984b9759-5a7f-4eb6-8020-0a4e37150893",

 "agent_uuid": "7ee00459-9635-40f9-81fe-ab92be1f3a8c",

 "supervisor_uuid": "299cf3e8-be6c-4ff0-b5c7-7c8eb60be7b6"

}

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 59/118

Each selected Decision Engine registers to the assigned topics and sends an acknowledgment

message to the supervisor Decision Engine.

Multi-agent execution

Once all expected acknowledgments are received, the supervisor proceeds to initiate the

multi-agent execution by issuing requests through each participating Decision Engine’s Access

Interface.

POST /api/v1/decision_engine/multi_agent/start

The supervisor Decision Engine collects responses from the collaborating Decision Engines

through the exchange topics provided by the Distributed Data Broker

Using the received data, it determines the optimal distribution of the application's

microservices across the available Associations, aiming to meet user requirements while

maximizing resource efficiency.

Multi-agent termination

At the end of the process, the supervisor Decision Engine notifies the participating Decision

Engines of the multi-agent session completion by sending a termination request through their

exposed RESTful API. For example, to notify the Decision Engine in Association 3, the following

DELETE request is executed.

5.3.2 Service Orchestrator

The Service Orchestrator operates within an EMPYREAN Association, coordinating multiple

platform-specific container orchestration systems such as Kubernetes (K8s) and Lightweight

Kubernetes (K3s). These platform-level orchestrators manage distinct infrastructure

segments within the Association. To enable abstracted and unified service deployment and

management, the Service Orchestrator employs hierarchical and distributed orchestration

mechanisms, which operate at the Association level. This approach ensures consistent and

policy-compliant service management across diverse platforms.

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 60/118

The Service Orchestrator consists of two primary services: the Orchestration API Server and

the Orchestration Manager. Together, these services form the core of the orchestration logic

and expose the interfaces necessary for service deployment and management within an

EMPYREAN Association. The architecture is complemented by a centralized Datastore that

ensures consistent operation and coordination among the various Service Orchestrator

components.

Supporting this architecture, EMPYREAN Controllers, also referred to as Orchestration

Drivers, are deployed on each managed platform. These components are responsible for

interfacing with the Local Orchestrators and underlying platform-specific APIs, handling low-

level orchestration operations such as container scheduling, resource provisioning, and

telemetry collection. Figure 32 depicts the architecture and the main components of the

Service Orchestrator and EMPYREAN Controller.

Figure 32: Service Orchestrator and EMPYREAN Controller architecture and its main components.

Integration and interfaces

The Resource Orchestrator services, and associated Orchestration Drivers have been

developed in Python. These components, along with their configuration files, are packaged as

modular Python applications and seamlessly integrated into the EMPYREAN CI/CD pipeline.

The Orchestration API and Orchestration Manager services are bundled into a dedicated

container image, while both Orchestration Drivers are distributed via a shared image.

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 61/118

To support Kubernetes-based deployment, all necessary Kubernetes YAML manifests,

including ConfigMap, Deployment, Service, and Ingress definitions, have been created. These

descriptions facilitate consistent, reproducible deployment of the orchestration components

across test and production environments. Furthermore, the entire orchestration stack has

been integrated into EMPYREAN’s CI/CD pipeline, enabling automated deployment into the

EMPYREAN testbed infrastructure (Figure 33).

Figure 33: Service Orchestrator and EMPYREAN Controller into EMPYREAN CI/CD pipeline and their

successful deployment in ICCS’s K8s cluster.

A comprehensive overview of the setup used for initial integration testing of the Service

Orchestrator is presented in Figure 34, showcasing the robustness, modularity, and

integration readiness of the developed solution.

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 62/118

Figure 34: Setup for integration tests of Service Orchestrator and EMPYREAN Controllers.

The initial version of the exposed REST API includes several methods organized into two main

categories. The first set of methods, see Figure 35, enables the deployment and management

of cloud-native applications within and across Associations and the cognitive creation of

secure storage policies.

Figure 35: Service Orchestrator REST API.

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 63/118

The second set, see Figure 36, abstracts the interaction of the Orchestration Manager and

EMPYREAN Controllers services.

Figure 36: Service Orchestrator REST API – Methods related to inter-component communication.

Service Orchestrator and EMPYREAN Controllers

During initialization, each EMPYREAN Controller registers with its associated Service

Orchestrator by using a REST endpoint provided by the Orchestration API Server. As part of

this process, it also sends a summary of the resources available on the cluster it manages.

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 64/118

PUT /api/v1/service_orchestrator/clusters T

{"cluster_uuid": "2b05cfdf-679f-45f1-95f8-a334ec87faaf", "type": "k8s", "info":

{"nodes": [{"node_name": "master-amorgos", "labels": {"beta.kubernetes.io/arch":

"amd64", "kubernetes.io/hostname": "master-amorgos"}, "capacity": {"cpu": "2",

"ephemeral-storage": "60575596Ki", "hugepages-2Mi": "0", "memory": "8132592Ki",

"pods": "110"}, {"node_name": "wn1-ios", "labels": {"beta.kubernetes.io/arch":

"arm64", "jetson": "true", "kubernetes.io/hostname": "wn1-ios"}, "capacity": {"cpu":

"6", "ephemeral-storage": "30538800Ki", "hugepages-1Gi": "0", "hugepages-2Mi": "0",

"hugepages-32Mi": "0", "hugepages-64Ki": "0", "memory": "7800596Ki", "pods":

"110"}}]}}

The Orchestration API Server uses this data to update the corresponding entries in the

Datastore. Below is an example showing the K8s and K3s clusters managed by the first Service

Orchestrator in the testbed setup illustrated above. This information can be retrieved using

the following GET request.

GET /api/v1/service_orchestrator/clusters

{"clusters":[{"cluster_uuid":"2b05cfdf-679f-45f1-95f8-

a334ec87faaf","type":"k3s","last_seen":"1750059454"}, {"cluster_uuid":"7628b895-3a91-

4f0c-b0b7-033eab309891","type":"k8s","last_seen":"1750059501"}]}

Cross-Association application deployment

Next, we examine the integration among the Service Orchestrator services during the

deployment of a cloud-native application. Specifically, we consider a demo application

composed of five microservices: “frontend”, “state-manager”, “model-manager”, “classifier”,

and “data-producer”. The deployment process begins when the Orchestration API Server

receives a request through its POST endpoint (/api/v1/service_orchestrator/deployments).

Upon receiving the request, the API Server validates the payload and creates the

corresponding Deployment object in the Datastore, initializing the orchestration workflow

{"kind": "Deployment", "name": "demo-deployment ", "deployment_uuid": "585fdf45-4959-

f4e1-4d43-be89830bd890", "deployment_description": "YAML DESCRIPTION", "assignments":

[], "assignments_status": [], logs":[{"timestamp":1750060830, "event":"Deployment

description received."}], "status":1, "updated_by": "Orchestration.API","created_at":

1750060830, "updated_at": 1750060830 }

The Orchestration Manager is subsequently notified of the new deployment request and,

through its Scheduler Controller, invokes the Decision Engine to produce a high-level

orchestration decision, defining how the application's microservices should be distributed

across the available platforms (Section 5.3.1). Next, we present the output generated by the

Decision Engine, which guides the subsequent execution phase of the deployment process.

{"kind":"Deployment", "assignments":[{"cluster_uuid": "2b05cfdf-679f-45f1-95f8-

a334ec87faaf", "deployments":["data-manager","classifier","model-manager"]},

{"cluster_uuid":"7628b895-3a91-4f0c-b0b7-033eab309891", "deployments":["state-

manager","frontend"]}]}

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 65/118

Based on the orchestration decision provided by the Decision Engine, the Execution Controller

of the Orchestration Manager proceeds to create the corresponding Assignment and Bundle

objects in the Datastore. Two Assignment objects (UUIDs “d99b982d-d558-4c06-bdcf-

6279d037d5ff” and “03b61ed2-91b4-478c-8842-9ced0f8bc11b”) are created to reflect the

allocation of the application's microservices across the two selected platforms. These

Assignment objects are linked to the initial Deployment object with UUID “585fdf45-4959-

f4e1-4d43-be89830bd890”, enabling full traceability of the deployment workflow. Log

messages from the Orchestration Manager and Datastore confirming these operations are

included below. In parallel, five Bundle objects are generated, each representing a single

microservice of the application. These Bundles are associated with the relevant Assignment

object and contain all necessary deployment descriptors for execution at the platform level.

Figure 37: Orchestration Manager log messages while processing Decision Engine response for the

application placement.

Orchestration Manager and EMPYREAN Controllers

The creation of Assignment objects triggers the activation of the EMPYREAN Controllers on

the two target platforms. Each Controller receives its respective Assignment object, which

contains references to the associated Bundles. Upon receipt, the EMPYREAN Controller

fetches the content of each referenced Bundle from the Datastore and leverages the

underlying K8s/K3s API to perform the required deployment actions on its local infrastructure.

Next, we present log messages from the EMPYREAN Controller operating on the ICCS

Kubernetes cluster (7628b895-3a91-4f0c-b0b7-033eab309891), confirming the successful

execution of the assigned Bundle (Figure 38).

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 66/118

Figure 38: Log messages from the EMPYREAN Controller operating on the ICCS Kubernetes cluster.

5.4 Resource Management Layer

5.4.1 AI-Enabled Workloads Autoscaling

In D5.2, we rebuilt the metrics dataflow in Ryax scheduler and enhanced its interaction with

standardised metrics endpoints used by the AI-enabled autoscaler, the Intelliscale.

Previously, the metrics gathering logic was tightly coupled with the autoscaler pod. This

functionality has now been decoupled and reimplemented as a general-purpose component

within the Ryax Worker. This redesign enables broader reuse across other modules, such as

the accounting service, UI, and data persistence layer, facilitating the generation of execution

datasets for training purposes. The metrics collection and computation logic was restructured

to prioritize both speed and accuracy. Additionally, we standardized all metrics sources to use

a homogeneous Prometheus-compatible API, simplifying future development and extensions.

The interaction between the metrics gathering component and Intelliscale has also been

significantly improved to be lighter, more flexible, and fine-grained. Rather than transmitting

entire histograms, only a single summary datapoint per execution is now sent to the

Intelliscale model. Communication has shifted from passive polling to proactive updates,

eliminating the previous 5-minute cold start delay. As a result, the Intelliscale pod is now

dedicated solely to executing AI algorithms, allowing it to independently support larger AI-

enable autoscaling models without interfering with the time-sensitive Ryax scheduler.

Metrics gathering component: Integration and Interfaces

The metrics gathering system is a core part of the Ryax Worker, Ryax’s distributed component

deployed at each site. It consists of four main subcomponents: a metrics endpoint fetcher,

metrics calculator, lifecycle manager, and downstream data feeder, each contributing to

efficient and reliable metrics collection and delivery.

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 67/118

Figure 39: Lifecycle of metrics gathering for an incoming execution.

Figure 39 shows the complete lifecycle of metrics gathering for an incoming execution. A long-

running loop fetches and parses metrics from all available metrics endpoints, activated only

when at least one execution is registered. When an execution starts, it is registered into this

loop, enabling real-time extraction and in in-memory storage of relevant metrics. When the

execution ends, it is unregistered from the loop, all the related traces are fed to downstream

components, and the corresponding memory is freed.

Downstream components include a metrics summary calculator that computes key per-

execution level metrics, including percentiles, averages, and maximum utilization values. Both

the raw traces and the summaries are feed to (i) UI to let user know the utilization, (ii) the

accounting component for tracking and resource auditing, (iii) data persistency for long-term

storage and future analysis, and (iv) Intelliscale for feeding AIU models used in autoscaling.

Metrics are collected from Prometheus-compatible sources to ensure format consistency and

extensibility. These include: (i) cAdvisor Prometheus endpoint for CPU, RAM, network, and

disk metrics, and (ii) NVIDIA DCGM Exporter for GPU and Multiple-Instance GPU (MIG)

metrics. This approach replaces previously heterogeneous sources like the Kubernetes client

API (which provide responses in JSON format), simplifying the calculation logic and improving

its expandability to new metric sources. Due to the large size of these Prometheus metrics, a

pre-filtering mechanism is applied before parsing them. This skips irrelevant lines, reducing

computation overhead and improving performance.

Below are the samples of cAdvisor and DCGM metrics API in Prometheus format:

container_cpu_usage_seconds_total{container="",cpu="total",id="/kubepods.slice/kubepod

s-besteffort.slice/kubepods-besteffort-

pod1dd6c946_7554_46f7_84b4_852924e0429c.slice",image="",name="",namespace="ryaxns-

monitoring",pod="prometheus-prometheus-node-exporter-wxjfw"} 4767.442561 1742249899112

DCGM_FI_DEV_FB_USED{gpu="0",UUID="GPU-e7fe0866-4c61-ca8e-9094-

d8e15a074343",device="nvidia0",modelName="NVIDIA H100

PCIe",GPU_I_PROFILE="1g.10gb",GPU_I_ID="7",Hostname="scw-k8s-mlintra-pool-gpu-

138004ab087a43d2a62a2",DCGM_FI_DRIVER_VERSION="550.54.14",container="",namespace="",po

d=""} 12

After fetching metrics in Prometheus format, a dedicated parsing component processes the

data. Many key metrics are not directly available from the raw endpoints. For example, the

CPU utilization is the total rate of the container’s CPU usage in seconds. Typically, in

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 68/118

Prometheus, we use the “irate” function to obtain the CPU utilization, but here we implement

a simplified yet accurate “irate” in the metrics parser. This is more adapted and ignores some

corner cases that will never be used in our gathering logic. This approach also avoids the delay

and extra consumption associated with introducing the entire Prometheus stack. We only

need a tiny part of the Prometheus logic, so introducing the whole software just for this is not

good.

API interaction with Ryax Workflow Management and AI-Enabled Workload Autoscaling

(Intelliscale)

After obtaining the full execution trace and summary metrics are collected, the Intelliscale AI

autoscaling model receives input from both the metrics summary and additional information

about the execution obtained from Ryax scheduler.

The interaction is implemented via a gRPC-based API, which defines the expected metrics

fields needed by Intelliscale. Among all these input fields, the Ryax scheduler provides

contextual information about each execution, enhancing the autoscaling model’s decision-

making capabilities. Figure 40 shows part of the metrics summary provided by metrics

gathering component, including additional execution data supplied by the scheduler.

Figure 40: Metrics summary from metrics gathering process.

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 69/118

5.4.2 Unikernel Deployment

In modern cloud environments, generic containers are widely used for their flexibility and

ease of orchestration, providing isolated user-space environments atop shared host kernels.

Sandboxed containers take this further by enforcing stronger security boundaries, often

leveraging lightweight hypervisors or additional isolation mechanisms to reduce the host's

attack surface. However, unikernels, specialized, single-address-space machine images

tailored for a specific application, offer even tighter integration and performance but have

historically been challenging to manage using standard cloud-native tools. To bridge this gap,

the urunc runtime is introduced as a solution that harmonizes the deployment and

management of unikernel workloads within cloud-native ecosystems. By providing a unified

interface, urunc allows both traditional containerized applications and unikernel instances to

coexist and interoperate seamlessly, enabling organizations to harness the security and

efficiency benefits of unikernels without sacrificing the agility and tooling ecosystem of

modern container platforms.

Container Runtime

The urunc runtime emerges as an innovative bridge between traditional containerized

workloads and unikernel-based applications within cloud-native environments. Unlike

standard approaches that force organizations to choose between familiar container

interfaces and the performance or security benefits of unikernels, urunc enables both

paradigms to coexist on a unified platform. By doing so, it allows operators to leverage

unikernels, lightweight, highly specialized single-address-space machine images, for use cases

where minimal attack surface and maximum efficiency are crucial, all without forfeiting the

operational simplicity or orchestration capabilities of conventional container mechanisms.

Central to urunc’s integration into the cloud-native ecosystem is its implementation of the

Container Runtime Interface (CRI), the standardized protocol used by Kubernetes and similar

orchestrators to communicate with container runtimes. The CRI compatibility ensures that

urunc can accept workload scheduling, lifecycle management, and resource allocation

requests just like any mainstream container runtime. This facilitates seamless deployment

and management across heterogeneous workloads, empowering users to run, update, and

monitor unikernel instances alongside standard Linux containers through the same set of

tools and workflows. As a result, urunc not only expands the deployment possibilities for next-

generation cloud applications but also preserves the developer and operator experience,

accelerating the adoption of unikernels in practical, production-ready environments.

Coupled with our unikernel builder (bunny), described in Section 5.1.4, in EMPYREAN we are

able to build and deploy single-application kernels (or unikernels) in a pure cloud native way.

In the code snippets below, we provide the process to build a simple nginx (webserver) using

bunny (Table 6, Table 7), and the process to deploy it in K8s, using our container runtime,

urunc (Table 8).

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 70/118

Table 6: Nginx Bunnyfile

#syntax=harbor.nbfc.io/nubificus/bunny:0.0.2
version: v0.1

platforms:
 framework: linux
 monitor: qemu
 # monitor: firecracker
 architecture: x86

rootfs:
 from: docker.io/library/nginx:alpine
 type: raw

kernel:
 from: local
 path: vmlinuz

cmdline: "/usr/sbin/nginx -g \"daemon off; error_log stderr debug;\""

Table 7: Build urunc container image and push to a generic container image registry

docker build -f bunnyfile -t harbor.nbfc.io/nubificus/urunc/nginx-linux-urunc:x86_64 .

docker push harbor.nbfc.io/nubificus/urunc/nginx-linux-urunc:x86_64

Table 8: K8s manifest to deploy a urunc-compatible image

apiVersion: apps/v1
kind: Deployment
metadata:
 labels:
 run: nginx-urunc
 name: nginx-urunc
spec:
 replicas: 1
 selector:
 matchLabels:
 run: nginx-urunc
 template:
 metadata:
 labels:
 run: nginx-urunc
 spec:
 runtimeClassName: urunc
 containers:
 - image: harbor.nbfc.io/nubificus/urunc/nginx-linux-urunc:x86_64
 imagePullPolicy: Always
 name: nginx-urunc
 ports:
 - containerPort: 80
 protocol: TCP
 resources:
 requests:
 cpu: 10m
 restartPolicy: Always

apiVersion: v1
kind: Service
metadata:

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 71/118

 name: nginx-urunc
spec:
 ports:
 - port: 80
 protocol: TCP
 targetPort: 80
 selector:
 run: nginx-urunc
 sessionAffinity: None
 type: ClusterIP

5.4.3 Hardware Acceleration Abstractions

The vAccel framework enables seamless acceleration workload offloading by abstracting

hardware acceleration capabilities and offering a unified API for diverse backend targets. In

the context of EMPYREAN, vAccel is integrated to support efficient, low-latency execution of

AI/ML workloads across distributed, heterogeneous environments.

A key aspect of this integration involves supporting libRRR, the RDMA-capable, user-level

communication library described in D3.2 and Section 5.5.1, as a vAccel transport plugin. This

integration enables seamless remote AI/ML inference task offloading to hardware-

accelerated endpoints across the EMPYREAN IoT-edge-cloud continuum. By embedding the

vAccel execution model within libRRR, EMPYREAN introduces a lightweight, low-latency, and

high-performance mechanism for invoking vAccel plugins over RDMA channels, ensuring

optimal performance and scalability.

An initial integration is in place, providing increased Frames Per Second, for a YOLOv8 object

detection example, running on pyTorch (stock, vAccel local, vAccel over RDMA).

5.5 Data Management and Interconnection Layer

5.5.1 Software Defined Edge Interconnect

The EMPYREAN software-defined interconnect provides RDMA transport services to

EMPYREAN components that require low-latency and/or high-bandwidth communication,

such as the disaggregated vAccel framework developed by NUBIS.

This software-defined interconnect has two main subsystems: (i) the RDMA datapath and the

(ii) the software-defined control plane that controls and authenticates the RDMA pairings

between actors.

In this initial release, we developed a full-fledged RDMA datapath solution and completed the

first integration with vAccel. Implementation of the software-defined control plane is

scheduled for the next implementation iteration of the period.

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 72/118

EMPYREAN’s software-defined RDMA service is wrapped in a C library that is named RDMA

Remote Ring or “triple-R” (librrr). The basic concept, depicted in Figure 41, centers around a

ring buffer-based structure along with the provision of a very friendly software I/O dispatch

interface.

Figure 41: Overview of software-defined RDMA service operation.

In this model, the producers of the ring add requests and data to local in-memory ring buffer

structures, while the remote consumers get these requests and data from their corresponding

local in-memory rings. LibRRR transparently synchronizes the described disaggregated ring

state by detecting aggregation opportunities and efficiently leveraging RDMA.

The figure shows how RDMA NICs (RNICs) are instructed by librrr to update the ring data and

head/tail pointers in a coordinated manner. The ring interface is highly effective for

asynchronous I/O, where the request path is completed decoupled from the response path

and can be implemented using independent threads. The rings also offer backpressure

mechanisms, and with properly selected ring buffer sizes, the system adapts I/O performance

to match either full link capacity or expose endpoint data generation or ingestion bottlenecks

that do not allow the full link bandwidth to be utilized.

Librrr has a C software interface which is comprised of functions for: (i) initialization and setup

of the RDMA resources, (ii) registration of ring buffer constructs and in-memory resources

with the network, (iii) ring buffer APIs for commands and data tuples to handle to manipulate

ring data (produce, consume and synchronize ring data as required, and (iv) tear down and

graceful disconnection that that cleans up also the resources.

This simple interface offers transparently RDMA services to user with minimal overhead but

also comes with responsibilities that relate to standard circular buffer management. Incorrect

handling of circular buffers within program flow may lead to deadlocks. Although librrr does

not offer any build-in support to identify deadlocks that arise from using the API with

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 73/118

improper sequence, the library comes with guidelines and recommendations for good

practices. Figure 42 presents the set of C functions currently provided by the librrr.

Figure 42: Available C functions in the RDMA Remote Ring library (librrr).

Currently, librrr has been successfully integrated as a I/O backed for deployment of vAccel

framework, replacing the standard TCP-based communication layer.

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 74/118

5.5.2 Decentralized & Distributed Data Manager

The decentralised and distributed data exchange mechanism is carried out by the open-

sourced communication middleware Eclipse Zenoh [5] , Figure 43 presents a characterization

of its layered architecture, and the main possible configuration decisions to take into

consideration when designing a real-time data exchange scenario.

Figure 43: Characterization of the Eclipse Zenoh communication middleware.

Key components include:

• The session layer is the main entry point for an application to interact with Eclipse

Zenoh. The developer should select what communication pattern is going to be used:

pub/sub, queryable, or/and computations. The session establishment process

supports dynamic discovery and is automatic between two Zenoh instances/processes

running in the same network. The liveliness component is for monitoring system

components (i.e., stay alive signal).

• The Transport/Link layer handles the establishment and management of transport

connections, it also manages system’s resources, and implements various transport

protocols (TCP, TLS, UDP, QUIC, WebSocket, etc.).

• The Configuration layer is the central component for message routing and

dispatching. The application developer can select to use either brokered, routed, or

peer-to-peer communication patterns. Also, there is an admin space where the user

can provide system monitoring and management capabilities. Zenoh also supports

extensibility through dynamically loaded plugins that should be considered in the

configuration phase.

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 75/118

5.5.3 Edge Storage Service

The Edge Storage Service (ESS) provides a simple-to-use, S3-compatible object storage

solution to EMPYREAN applications. It has several unique features, including the ability to

work with Associations, distributing erasure-coded data across cloud and edge storage

locations. Users can establish exactly how and where their data resides by defining a storage

policy and attaching it to an S3 bucket. Erasure coding, compression, and encryption

parameters can also be configured. Many of these features rely on the SkyFlok.com backend,

built to run CC’s SaaS service with the same name. Among the many enhancements developed

for EMPYREAN, the ESS introduces additional privacy-enhancing features such as the ability

to keep encryption keys solely at the edge, inside the Association. It also provides a temporary

autonomous function, making access to local storage possible, even when the link to the cloud

is severed.

Figure 44: Overview of Edge Storage Service components.

The main components of the ESS are shown in Figure 44. Each Association has one Edge

Storage Gateway that is deployed locally and provides access to the ESS’ different public APIs.

Storage resources are integrated using Edge storage devices, and a developer dashboard

helps application developers set up their storage account. A Cloud Storage Gateway is also

made available to users who are outside an association’s network. However, this provides a

limited feature set, in line with the association’s security model, only providing access to data

fragments that reside on public cloud providers. A detailed description of the service’s

features and components was included in Deliverable 3.1 (M15).

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 76/118

Custom CI/CD using Bitbucket Pipelines

The components of the ESS are being developed by Chocolate Cloud in-house, using the

company’s established CI/CD practices.

Figure 45: Example CI/CD pipeline run summary for one of the SkyFlok.com backend services.

To ensure code quality and adherence to project requirements, we have created a

comprehensive set of rules and practices that guide us during component development. Here

we provide a few examples:

• Each component must have unit tests that cover a large proportion of the code base.

These unit tests are run automatically for each commit using a BitBucket pipeline, as

shown in Figure 45.

• When developing a new feature, a separate git branch must be created. Before

merging the branch, a pull request is created with two reviewers. Merging requires

the approval of both reviewers and code coverage (see Figure 46) must not drop after

the merge. Some critical components require additional checks by the lead software

engineer.

• Issues are tracked using Jira and assigned to component owners. Priority is given to

bugs.

To validate features in an end-to-end manner, we have created a separate S3 feature

coverage test suite with roughly 130 test cases.

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 77/118

Figure 46: Output of BitBucket pipeline report on code coverage.

S3 feature coverage tests

We have created a test suite of roughly 130 individual tests that cover all S3 endpoints the

ESS supports. In designing the suite, care was taken to cover different endpoint parameters

and their combinations. Whenever the AWS S3 documentation was not clear on a certain

aspect, functioning was validated using the AWS S3 cloud service.

At a high level, these tests have a two-fold role:

• Validate correct end-to-end functioning of S3 features.

• Check that ESS behaves in a compatible way with the AWS S3 cloud service.

Some tests check simple scenarios such as uploading and downloading objects. Others are

focused on complex processes such as creating objects as part of a multipart upload. Yet

others check interactions between different S3 endpoints, such as whether an S3 bucket with

a started multipart upload can be deleted. Returned data types, headers, error codes, and

messages are verified.

Integration and interfaces

S3-compatible API

The ESS S3-compatible object storage API supports all major Create, Read, Update, Delete

(CRUD) features of both objects and buckets in their simplest form. Furthermore, support for

multipart uploads is also present, along with the ability to perform ranged GetObject queries.

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 78/118

Buckets

• CreateBucket

• DeleteBucket

• ListBuckets

Objects

• GetObject

• HeadObject

• PutObject

• ListObjects

• ListObjectsV2

• ListObjectVersions

• DeleteObject

Multipart uploads

• CreateMultipartUpload

• AbortMultipartUpload

• CompleteMultipartUpload

• UploadPart

• ListMultipartUploads

• ListParts

An API reference can be found on Amazon’s website [8]. Some notes regarding compatibility

with AWS S3:

• From AWS’s two addressing schemas, the ESS only supports path-style as there is no

need to provide large-scale, DNS-based global routing of requests.

• Only versioned buckets are supported. We plan to add support to for non-versioned

buckets.

• Authentication and request signing are performed using AWS Signature V4. Earlier

methods are not supported.

• Less common transfer-encoding methods that chunk data are also supported.

Storage Policy API

The Storage Policy API will allow EMPYREAN users to create and retrieve storage policies

programmatically. These can be thought of as recipes used to translate an application’s

storage requirements into a storage resource allocation. This API will be established shortly.

Storage Resource Telemetry API

The ESS will provide a list of supported Cloud Storage locations, along with their static

characteristics. Beyond this, the performance of cloud locations is continuously monitored by

the SkyFlok.com backend. The ESS will also expose this information through its Telemetry API.

This API will be established shortly.

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 79/118

The list of Edge Storage devices is maintained by both the ESS and the EMPYREAN Registry.

Their dynamic characteristics can be collected directly through a Prometheus-compatible

interface exposed by MinIO [9]. No communication with the ESS is needed. This interface

provides a way to both monitor performance characteristics as well as configure alert rules

for certain types of abnormal events.

5.5.4 IoT Query Engine

The EMPYREAN platform introduces an "Analytics-Friendly Distributed Storage" solution

specifically designed for IoT time-series data, building upon existing object storage with novel

features. This system aims to balance the cost-effectiveness and reliability of erasure coding

with the efficiency needed for querying time-series data. Unlike conventional systems that

must scan entire objects or incur high costs by replicating data for analytics, EMPYREAN

utilizes a new data alignment and coding scheme, incorporating Random Linear Network

Coding (RLNC), to enable byte-level access without full file reconstruction. This approach

significantly reduces data retrieval overhead while maintaining the benefits of erasure coding.

A key innovation being explored is the ability to compress data while retaining byte-level

access, using Generalized Data Deduplication (GDD). This technique offers a deterministic

relationship between uncompressed and compressed data, potentially further enhancing

cost-effectiveness when combined with erasure coding. The project, a basic research effort

by CC, has a low Technology Readiness Level (TRL) and focuses on establishing the feasibility

and initial evaluation of these techniques. It addresses critical technical KPIs related to limiting

data transfer costs and ensuring linear scaling of erasure-coded data retrieval for queries,

directly contributing to EMPYREAN's objective of efficient data handling in cloud

environments.

The IoT Query Engine will be integrated into the EMPYREAN platform in time for the next

platform release.

5.6 Security, Trust, and Privacy Manager

5.6.1 p-ABC Library

The Privacy and Security Manager (PSM) will integrate a privacy-preserving Attribute-Based

Credential (p-ABC) library as a foundational component across all its security functions within

EMPYREAN. The p-ABC library enables the issuance, management, and verification of

credentials that support selective disclosure of identity attributes, enhancing privacy while

maintaining strong trust guarantees.

This library is critical for several core PSM capabilities:

• Verifiable Credential Generation: Allows the issuance of VCs where attributes are

cryptographically bound but can be selectively disclosed by the holder.

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 80/118

• Decentralized Identifiers (DIDs): Facilitate the generation of cryptographic keys and

identifiers, especially for constrained devices and low-power IoT entities, enabling

them to hold verifiable identities.

• Attestation for Devices and Services: Provides lightweight cryptographic proofs that

can be used in attestation processes, ensuring device integrity and trustworthiness

even in resource-constrained environments.

• Privacy-Preserving Authorization: Ensures that during access control and

authorization workflows, only the minimum necessary information is shared, adhering

to data minimization principles.

5.6.2 Privacy and Security Manager

The Privacy and Security Manager (PSM) is a core component of the EMPYREAN platform,

enabling decentralized identity, verifiable credentials, secure authentication, and policy-

based access control across Associations. Building upon Hyperledger Aries3 and Fabric4, and

integrating OP-TEE for trusted execution, the PSM allows privacy-preserving identity flows

and blockchain-backed authorization mechanisms. This section outlines the implementation

progress of the PSM, describing key APIs, architectural features, and new capabilities.

Integration and interfaces

This section details the implementation progress of the PSM APIs and their integration into

the broader EMPYREAN platform. It exposes a comprehensive set of RESTful interfaces that

support key security and identity functionalities, allowing other platform components, such

as the Aggregator and external services, to interact securely and consistently. The following

subsections describe the different modules that compose the PSM’s external interface.

We begin with Identity Management (Figure 47), which covers decentralized identifier (DID)

creation and retrieval of trusted issuer registries. Then, we present the Credential Issuance

interface (Figure 48), which enables enrolment, credential generation, and the construction

and verification of Verifiable Presentations based on privacy-preserving attribute-based

credentials. Following this, the JWT Signature module is explained, which provides

mechanisms for signing and verifying JSON Web Tokens, including support for nested tokens

used in chained authorization flows (Figure 49).

Next, the section covers TEE Management, which outlines the API for generating secure key

pairs within the Trusted Execution Environment (OP-TEE) (Figure 50). Finally, we introduce

the new Securing Resources capability, which allows EMPYREAN Aggregators to dynamically

protect services by deploying Policy Decision Point (PDP)/Policy Enforcement Point (PEP)

proxies, defining policy-based access requirements, and enforcing authorization decisions

backed by blockchain and smart contracts (Figure 51).

3 https://github.com/hyperledger/aries
4 https://github.com/hyperledger/fabric

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 81/118

Verifiable Data Registry (Identity Manager)

These APIs handle the creation of Decentralized Identifiers (DIDs) and the retrieval of trusted

issuers. They enable unique, verifiable identities across Associations and ensure credentials

are issued only by authorized entities.

Figure 47: Privacy and Security Manager – Identity management REST API.

• GenerateDID (POST /empyrean/idm/generateDID): Generates a Decentralized

Identifier (DID) for users or devices, enabling unique and verifiable digital identities.

• GetTrustedIssuerList (GET /empyrean/idm/trustedIssuers): Retrieves a list of pre-

approved credential issuers stored in the Trusted Issuers Registry.

Credential Issuance

The Credential Issuance APIs support the enrolment of entities and the lifecycle of Verifiable

Credentials (VCs). These calls allow users to receive credentials based on verified attributes,

generate Verifiable Presentations (VPs) for selective disclosure, and verify the authenticity of

submitted credentials.

Figure 48: Privacy and Security Manager – Credential issuance REST API.

• DoEnrolment (POST /empyrean/idm/doEnrolment): Registers a new entity into the

platform by issuing a Verifiable Credential based on verified attributes.

• GetVCredential (POST /empyrean/idm/getVCredential): Returns a previously issued

VC associated with a DID.

• GenerateVerifiablePresentation (POST /empyrean/idm/generateVP): Constructs a

Verifiable Presentation (VP) from one or more VCs, supporting selective disclosure via

Zero-Knowledge Proofs.

• VerifyCredential (POST /empyrean/idm/VerifyCredential): Validates the authenticity,

integrity, and issuer trust level of a presented VC or VP.

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 82/118

JWT Signature

These endpoints enable the signing and verification of JSON Web Tokens (JWTs), which are

used to encapsulate identity claims and access rights. Support for nested JWTs allows for

secure delegation and composability in authorization chains.

Figure 49: Privacy and Security Manager – JSW Signature REST API.

• SignJWTContent (POST /empyrean/idm/signJWTContent): Signs raw JSON payloads

into JWTs, optionally embedding credentials or access rights.

• SignJWTNested (POST /empyrean/idm/signJWTNested): Signs a nested JWT that

contains another signed JWT as payload. This is used to delegate access securely

across chained authorization flows.

• VerifyJWTContent (POST /empyrean/idm/verifyJWTContent): Validates JWT

signatures and checks expiration, issuer, and audience claims.

Secure & Trusted Execution Environment Management

This module provides a secure interface for generating key pairs within the Trusted Execution

Environment (OP-TEE), ensuring hardware-isolated handling of sensitive cryptographic

operations.

Figure 50: Privacy and Security Manager – Trusted Execution Environment (TEE) REST API.

• TEE GenerateKeyPair (POST /empyrean/idm/tee/generatekeypair): Generates a

hardware-backed key pair using OP-TEE, isolating private key material from the host

OS.

Securing Resources

This new feature allows the dynamic protection of services by registering resources and

associating them with PDP/PEP proxies. The PSM enforces attribute-based policies and logs

all access decisions on the blockchain for traceability.

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 83/118

Figure 51: Privacy and Security Manager – Securing resources REST API.

● SecureResource (POST /empyrean/idm/secureResource) [New Feature – In

Progress]:

○ This API allows Aggregators or EMPYREAN entities to register a service or

resource (e.g., a URL, IP:port pair) that should be protected using dynamic

authorization mechanisms.

○ Upon receiving this request, the PSM:

■ Deploys a dedicated PDP/PEP proxy component acting as a gateway

to the protected resource.

■ Stores the corresponding access control policies as XACML rules via

smart contracts on the blockchain.

■ Associates each policy with specific attribute-based access

requirements (e.g., "role=technician" or "purpose=diagnostic").

○ The proxy returns a new port or secure endpoint through which the resource

is now accessible.

○ Consumers must present a Verifiable Presentation (VP) and invoke

SignJWTContent to obtain a valid token encoding their access claims. This

token is then used to interact with the protected resource.

○ All access attempts are recorded on-chain using the access traceability smart

contract, capturing:

■ The subject's DID

■ Token claims (attributes)

■ Resource identifier

■ Decision outcome (GRANTED/DENIED)

■ Timestamp

5.6.3 Cyber Threat Intelligence Engine

The EMPYREAN platform integrates a powerful Cyber Threat Intelligence (CTI) engine as a

core component of its security, trust, and privacy framework. Designed to operate across the

IoT-edge-cloud continuum, the CTI engine is responsible for automated cyber threat analysis,

enabling the platform to identify, analyze, and respond to cybersecurity threats in a proactive

and intelligent manner. By leveraging advanced mechanisms for threat detection, behavioral

analysis, and intrusion response, the CTI engine empowers EMPYREAN to deliver robust and

adaptive security capabilities tailored to complex, distributed environments.

One of the main features of the CTI engine is its ability to collect and analyze data from trusted

external sources, including platforms such as the Cyber Threat Alliance (CTA) and the Malware

Information Sharing Platform (MISP). By integrating with MISP, the CTI engine enables

seamless ingestion, normalization, and correlation of cyber threat intelligence, providing

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 84/118

comprehensive situational awareness for both ongoing and emerging threats. The engine’s

architecture is designed to facilitate the periodic retrieval and processing of Indicators of

Compromise (IoCs), structured threat data (e.g., STIX format), and other critical security

insights that can be leveraged for real-time defense.

The CTI engine is also closely integrated with the EMPYREAN Telemetry Service, enabling it to

ingest real-time monitoring data from across the platform. This tight coupling allows the CTI

engine to provide context-aware threat intelligence, supporting automated security

workflows, localized detection, and timely mitigation actions at both the Association and

infrastructure levels. In addition, the CTI engine provides data and analytics interfaces that

can be used by other EMPYREAN components, as well as by external security tools, ensuring

compatibility with the broader cybersecurity ecosystem and facilitating the integration of

intelligence-driven defense strategies into platform operations.

Through these capabilities, the EMPYREAN CTI engine forms the backbone of the platform’s

security posture—enabling proactive adaptation, rapid threat response, and continuous

situational awareness across hyper-distributed IoT, edge, and cloud environments.

The API provided by the EMPYREAN CTI engine is purpose-built to empower both automated

dashboards and human security experts with timely and actionable cyber threat intelligence.

Recognizing the complexity and volume of security-relevant data within hyper-distributed

environments, the API exposes structured endpoints that allow the platform’s dashboards to

visually present up-to-date CTI information, trends, and alerts in an accessible and intuitive

manner.

This API-driven approach is essential for enabling situational awareness and decision support

for security professionals operating the EMPYREAN platform. Through clearly defined RESTful

endpoints, dashboards can retrieve detailed threat intelligence, query contextual

information, visualize time series of cyber events, and analyze the ranking of malware families

or specific incidents detected in the system. The design ensures that both real-time data and

historical trends can be efficiently accessed and correlated.

A key architectural feature of the CTI engine is its seamless integration with the MISP API for

the collection and normalization of cyber threat intelligence relevant to EMPYREAN. By

leveraging the MISP API, the component can automatically ingest and process Indicators of

Compromise (IoCs) and other structured threat data, ensuring the EMPYREAN CTI engine

maintains a comprehensive and current view of the threat landscape. The collected

intelligence is then made available to dashboards and experts through the EMPYREAN API,

supporting a full cycle of intelligence-driven security operations—from data collection to

actionable insight.

This design philosophy not only supports automation and proactive threat management via

dashboards but also provides security experts with the tools they need to explore,

understand, and respond to security events across the platform, leveraging both external

intelligence (via MISP) and internally generated telemetry.

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 85/118

Figure 52: The CTI Engine REST API.

The EMPYREAN CTI engine exposes a suite of RESTful API endpoints, see Figure 52, designed

to deliver actionable and contextual threat intelligence to both automated dashboards and

human security analysts. Each endpoint is tailored to support a specific type of data retrieval

or analysis relevant to the cybersecurity operations of the platform. Below, we describe the

purpose and typical usage of each endpoint:

/search

The /search endpoint allows users and dashboards to query the CTI engine for objects or

entities that match a given search term. This is typically used to quickly locate indicators,

assets, or other threat intelligence objects within the EMPYREAN dataset, supporting

investigative workflows and contextual analysis.

/context

The /context endpoint provides detailed contextual information about a specified term or

indicator. When security experts or automated systems need to understand the background,

related events, or threat associations of a specific entity, this endpoint returns enriched

context drawn from both internal analysis and external intelligence sources.

/timeSeries

The /timeSeries endpoint is designed to deliver time series data for a given term or indicator.

This supports trend analysis, anomaly detection, and temporal correlation of cyber events,

enabling dashboards to visualize how threat-related activity evolves over time and allowing

experts to track the progression or resolution of specific incidents.

/rankingmalware

The /rankingmalware endpoint offers insights into the prevalence or significance of different

malware samples or families within the EMPYREAN platform. By retrieving rankings—either

by individual malware or by family—security professionals can prioritize attention and

resources toward the most impactful threats affecting their environment.

/specialCases

The /specialCases endpoint surfaces information on noteworthy or exceptional threat

scenarios detected within the platform. This may include rare, novel, or otherwise significant

events that warrant special attention, supporting proactive defense and targeted

investigation.

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 86/118

/bundleFigure

The /bundleFigure endpoint returns detailed information for the creation of figures or visual

representations associated with a specific bundle or incident identifier. This supports the

visualization needs of dashboards and analytical tools, allowing experts to quickly interpret

complex data and relationships within specific threat events.

These endpoints offer a comprehensive interface to the EMPYREAN CTI engine, enabling both

automated systems and analysts to efficiently access, interpret, and act upon the rich threat

intelligence collected and processed by the platform. By organizing the API in this modular

fashion, the CTI engine facilitates both operational security monitoring and in-depth forensic

analysis, aligning with EMPYREAN’s mission of adaptive, intelligence-driven defence.

5.7 Monitoring and Observability Layer

5.7.1 Telemetry Service

The EMPYREAN Telemetry Service is a foundational component designed to provide real-time

observability and situational awareness across distributed, device-rich Associations operating

in the IoT-edge-cloud continuum. Tailored for heterogeneous infrastructures composed of

embedded systems, IoT devices, edge clusters, and cloud services, the service enables

intelligent, context-aware management by continuously collecting, aggregating, and exposing

performance and status data.

At the heart of the telemetry infrastructure lies a modular and distributed architecture, where

multiple Telemetry Agents are deployed close to the data sources, either on IoT nodes, edge

platforms, or orchestrated containers. These agents handle local data collection and

preliminary filtering before forwarding selected metrics to Telemetry Aggregators at the

Association level. Each Aggregator is responsible for correlating and normalizing telemetry

from different local platforms, enabling high-level visibility across the Association.

The system supports device registration and association mapping, automatically linking

telemetry data to specific devices, applications, and orchestration workflows. This

association-aware telemetry model ensures traceability and enables targeted monitoring and

diagnostics in scenarios involving large fleets of constrained or mobile IoT devices.

Data is exposed through standardized interfaces (e.g., REST, gRPC, Prometheus APIs) to

platform components such as the Orchestration Manager, Analytics Engine, and CTI Engine,

enabling closed-loop automation, threat detection, and optimization. The telemetry service

is tightly integrated with the orchestration stack, adapting its data collection strategies to

events such as device onboarding, service deployment, scaling, and failure recovery.

Leveraging extensible backends like Prometheus, it supports persistent storage and time-

series analysis for real-time and historical insight.

Designed to operate under resource and connectivity constraints typical of IoT environments,

the EMPYREAN Telemetry Service incorporates lightweight components and edge-level

processing to ensure scalability, resilience, and low-latency observability in hyper-distributed

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 87/118

deployments. Its extensible design allows seamless integration of new device types and

metrics, making it a versatile telemetry backbone for intelligent and autonomous operations

across EMPYREAN Associations.

Figure 53 presents a high-level summary of the Telemetry Service deployment, illustrating the

end-to-end flow of telemetry data, from collection to consumption across the platform.

Figure 53: EMPYREAN Telemetry Service deployment.

Integration and interfaces

To support dynamic observability in distributed environments, the service exposes well-

defined interfaces—both internal and public—that allow efficient interaction with devices,

agents, orchestration components, and higher-level analytics modules. These interfaces are

designed to ensure smooth data flow across the telemetry pipeline, from collection at the

edge to processing, storage, and consumption by platform services and external users.

Integration with IoT Devices and Edge Environments

One of the core design priorities of the telemetry infrastructure is to support telemetry data

ingestion from diverse IoT devices, often operating under strict constraints in power,

bandwidth, or computational resources. For this purpose, the EMPYREAN Telemetry Service

includes support for lightweight telemetry agents deployed on devices. These agents can

collect local metrics, such as CPU load, temperature, memory usage, sensor readings, and

network status, and forward them via lightweight messaging protocols like MQTT or AMQP.

To ensure seamless ingestion of such device-originated telemetry, specialized receivers within

the OpenTelemetry (OTEL) Collector are configured to handle these protocols and data

formats. This allows raw or pre-processed telemetry data to be received, normalized, and

forwarded for further processing, regardless of the device's hardware or operating system.

The system also enables association-aware telemetry, tagging incoming metrics with

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 88/118

identifiers that bind the data to specific nodes, applications, or user-defined associations,

facilitating fine-grained analysis and traceability.

Internal Interfaces and Pipeline Management

The telemetry infrastructure supports a robust set of internal interfaces that govern the

configuration, management, and orchestration of telemetry pipelines. These interfaces are

exposed through a dedicated agent API, built with FastAPI, which enables the dynamic

management of telemetry pipelines at runtime.

Key functionalities of the agent API include:

● Dynamic pipeline creation and modification: APIs support the injection or removal of

OpenTelemetry pipeline components (e.g., receivers, processors, exporters) through

declarative updates to the OTEL Collector configuration.

● Lifecycle operations: Endpoints allow operators and automated systems to start, stop,

restart, or reconfigure telemetry pipelines without service interruption.

● Namespace-aware integration: The API operates across Kubernetes namespaces,

applying configuration changes via ConfigMaps and monitoring pods using label

selectors and controller logic.

● Component inspection: Clients can query current pipeline status, list telemetry

agents, and perform health checks across the telemetry mesh.

● Reload operations: Secure endpoints allow on-demand configuration reloads,

minimizing disruption during updates or deployments.

This internal control layer ensures that the telemetry service can adapt in real time to

infrastructure changes, such as the onboarding of new devices, service migrations, or scaling

actions initiated by the orchestration layer.

5.7.1.1 Data Access via Public APIs

To enable data access via public APIs and support data consumption by platform services and

users, the service exposes telemetry metrics through two primary public interfaces: the

Prometheus API and the Agent API.

The Prometheus API provides access to real-time and historical time-series telemetry via

PromQL endpoints. It includes metrics such as CPU usage, memory consumption, disk I/O,

energy usage, and custom application-specific data. These endpoints are utilized by internal

modules like the Decision Engine, Analytics Engine, and CTI Engine, as well as by external tools

like Grafana for dashboard generation. As illustrated in Figure 54, the API supports time-range

filtering, label-based querying, and data aggregation, making it ideal for both manual

debugging and automated analytics workflows. For instance, the Analytics Engine may use

historical telemetry for anomaly detection, while the Decision Engine relies-on real-time

usage trends to optimize workload scheduling across devices and Associations.

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 89/118

Figure 54: Telemetry Service Prometheus API.

The Agent API is a RESTful interface that enables interaction with the telemetry infrastructure.

It allows developers and orchestration components to dynamically reconfigure pipelines, add

or remove telemetry sources, and adapt metrics collection to evolving system conditions. The

initial version of the API (Figure 55), includes several methods for listing, updating, and

deleting pipelines, as well as reloading the configuration in real time.

Figure 55: Telemetry Service Agent REST API.

These public APIs enable open integration with other EMPYREAN components, ensuring

interoperability and extensibility in diverse environments.

Integration with EMPYREAN Services

The Telemetry Service plays a pivotal role in coordinating with other key components of the

EMPYREAN architecture:

● Decision Engine: Consumes real-time metrics for performance-aware scheduling, load

balancing, and energy-aware workload placement. Integration is achieved through

Prometheus queries to retrieve the latest system state across Associations and

devices.

● Analytics Engine: Leverages long-term telemetry data from Prometheus to train

machine learning models and detect anomalies. Integration occurs through RESTful

queries and subscription to telemetry topics.

● Orchestration Engine: Sends events (e.g., deployment, migration, scaling) to the

telemetry infrastructure to trigger corresponding adjustments in monitoring

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 90/118

configurations. In return, it consumes telemetry outputs to make informed

orchestration decisions.

● CTI Engine: Subscribes to telemetry streams related to system behavior and security

events. Correlates monitoring signals with Indicators of Compromise (IoCs) or threat

intelligence for early detection and mitigation.

This bidirectional communication ensures that the telemetry service is not only a passive

observability tool but an active enabler of intelligent automation and proactive system

adaptation.

Scalability and Federation Across Associations

In line with EMPYREAN’s architecture, the Telemetry Service supports federated operation

across multiple Associations. Each Association deploys one or more Telemetry Aggregators

responsible for: (i) collecting and correlating metrics from all devices, applications, and agents

within its scope, and (ii) propagating relevant metrics to global services for inter-Association

coordination. This distributed model ensures scalability, fault isolation, and low-latency

telemetry handling, while still providing global visibility and unified access to data.

Visualization Interfaces

Telemetry data is visualized via integrated Grafana dashboards, which connect to the

Prometheus API. Dashboards are designed to support:

● Device-level monitoring and health status.

● Association-level resource usage and topology overviews.

● Real-time event tracking and incident diagnosis.

● Historical trend analysis for predictive maintenance.

5.7.2 The Analytics Engine

The Analytics Engine enables autonomous operation and adaptive self-management across

the Association-based continuum. The EMPYREAN platform deploys multiple instances of the

Analytics Engine, each leveraging real-time telemetry data to implement distributed service

assurance mechanisms. These engines apply continuous analysis techniques to verify that

applications operate as expected and proactively or reactively trigger re-optimization actions

to maintain optimal performance, reliability, and efficiency across the platform.

The Analytics Engine is designed as a modular and scalable microservices-based system,

comprising four core components: Access Interface, Data Connector, Data Manager, and

Event Detection Engine. Figure 56 illustrates the engine’s architecture, detailing its main

components and their interactions with other EMPYREAN services. Additional details

regarding the design, initial implementation, and exposed interfaces of the Analytics Engine

are provided in D3.2 (M15).

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 91/118

Figure 56: Analytics Engine architecture and core components.

Integration and interfaces

The initial version of the EMPYREAN Analytics Engine delivers the core functionalities of the

Access Interface, Data Connector, and Data Manager services. Implemented in Python and

adhering to a microservices architecture, each service exposes a well-defined set of interfaces

that enable seamless interaction, both internally among Analytics Engine components and

externally with other key platform services, such as the Telemetry Service, EMPYREAN

Aggregator, and Service Orchestrator.

The Access Interface enables bidirectional communication to exchange commands,

information, and notifications among the Analytic Engine instances and other services within

the distributed EMPYREAN control and management plane. The Data Connector service

manages the collection of raw monitoring and streaming telemetry data from various sources

within the Monitoring and Observability layer. Finally, the Data Manager manages data

storage and facilitates data exchange between internal and external components, providing

local storage of processed data, trained models, and analysis results.

All services are developed, integrated, and packaged through the EMPYREAN CI/CD pipeline,

ensuring consistent quality and streamlined deployment. Dedicated container images are

provided for each Analytics Engine service, accompanied by their respective configuration

files, which support automated deployment within the EMPYREAN testbed infrastructure.

Next, we summarize the initial set of implemented REST APIs and asynchronous

communication interfaces exposed by the component services, see Figure 57, and Figure 58.

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 92/118

Figure 57: Analytics Engine – Access Interface RESTful API.

Figure 58: Analytics Engine – Data Manager RESTful API.

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 93/118

Analytics Engine and Associations

Upon the creation of a new Association within the EMPYREAN platform, the responsible

EMPYREAN Aggregator performs several operations, including notifying the corresponding

Analytics Engine about the newly defined Association. The complete operational flow for this

process is detailed in Section 6.2. This interaction enables the Analytics Engine to seamlessly

collect relevant data and perform service assurance activities at the Association level,

ensuring both the correct operation of participating resources and the compliance of

deployed services with the desired state.

To facilitate this, the Aggregator communicates with the Access Interface service of the

Analytics Engine by invoking its exposed REST API. Specifically, it issues the following POST

request to register the new Association

POST /api/v1/analytics_engine/associations

{"association_uuid": "ebe12f54-a9cb-476a-b930-4befb0236fce", "aggregator_uuid":

"a2b66fa3-3f13-416b-8644-56328e0de4ba","policy_uuid":"5c0eed16-31a8-467d-83db-

ef1010466755"}

Additionally, the following GET method can be used to retrieve a list of active Associations

registered within a given Analytics Engine instance.

GET /api/v1/analytics_engine/associations

[{"association_uuid":"ebe12f54-a9cb-476a-b930-4befb0236fce", "aggregator_uuid":

"a2b66fa3-3f13-416b-8644-56328e0de4ba", "policy_uuid": "5c0eed16-31a8-467d-83db-

ef1010466755", "status": "active", "enabled_at": 1751639172}]

Data connectors registration and management

The implementation enables the dynamic registration and configuration of various Data

Connectors via a common northbound REST interface, see Figure 59, exposed by the Data

Connector service. During initialization, each Data Connector is expected to register with a

specific Analytics Engine instance automatically.

Figure 59: Analytics Engine – Data Connector plug-ins RESTful northbound interface.

This registration is executed by invoking the corresponding POST method. Below is an

example showing how to register a Data Connector designed to collect information from the

EMPYREAN Telemetry Service through the Prometheus interface.

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 94/118

POST /api/v1/analytics_engine/data_connectors

{"uuid": "ddced532-2c76-4557-9be1-2be622cbdcee", "connector_type":

"prometheus_connector", "mode": "pulling", "connection_parameters":

{"service_url":"http:147.102.16.114:90", "authentication":{"token": "ACCESS_TOKEN"}},

"operational_parameters": {"retain_period": 900, "retrieval_interval":180,

"caching_expiration_period": 7200, "active_notifications":true, "namespaces":

["empyrean", "empyrean_integration"]}}

In addition to registration, the operation parameters of a Data Connector can be dynamically

updated using the exposed PUT method. In the following example, we modify the active

configuration of a previously registered data Connector (UUID “ddced532-2c76-4557-9be1-

2be622cbdcee”) by setting the data pulling period to five minutes and disabling the emission

of operational notifications.

PUT /api/v1/analytics_engine/data_connectors

{"uuid":"ddced532-2c76-4557-9be1-2be622cbdcee","operational_parameters":

{"retrieval_internal":300,"active_notifications": false}}

Data Manager

The Data Connectors use the appropriate POST methods exposed by the Data Manager to

submit collected monitoring data. This interface enables the continuous ingestion of time-

series metrics into the Analytics Engine. The following request demonstrates the update of

collected data related to deployed services within a specific Association.

POST /api/v1/analytics_engine/data_manager/associations/metrics

{"association_uuid":" ebe12f54-a9cb-476a-b930-

4befb0236fce","metrics":[{"cluster_uuid":"7628b895-3a91-4f0c-b0b7-

033eab309891","creation_timestamp":1751701148,"deployment_uuid":"fdf45855-1299-47f1-

8ea6-98be8d89030b","name":"data-producer-475b4c6b85-k89b5","namespace":"empyrean-

integration","node":"wn2-

serifos","phase":"Running","restarts":0,"start_time":1751701150,"timestamp":1751701848

,"usage":{"cpu":"1002310835n","memory":"150672Ki"}},{"cluster_uuid":"7628b895-3a91-

4f0c-b0b7-033eab309891","creation_timestamp":1751701148,"deployment_uuid":"fdf45855-

1299-47f1-8ea6-98be8d89030b","name":"state-manager-5b4c6b4785-

g7jb5","namespace":"empyrean-integration","node":"wn2-

serifos","phase":"Running","restarts":0,"start_time":1751701150,"timestamp":1751701848

,"usage":{"cpu":"1006083037n","memory":"175124Ki"}},{"cluster_uuid":"7628b895-3a91-

4f0c-b0b7-033eab309891","creation_timestamp":1751701148,"deployment_uuid":"fdf45855-

1299-47f1-8ea6-98be8d89030b","group_id":"wn4-santorini","name":"classifier-21a9d90c6a-

5b4c6","namespace":"empyrean-integration","node":"wn4-

santorini","phase":"Running","restarts":0,"start_time":1751701151,"timestamp":17517018

49,"usage":{"cpu":"100476936n","memory":"204008Ki"}}]}

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 95/118

The Event Detection Engine can access the collected monitoring and historical data through

the GET methods exposed by the Data Manager service. This REST interface enables the

retrieval of time-series or contextual information necessary for event analysis and anomaly

detection. For instance, the following request retrieves the available monitoring data for a

specific worker node of a Kubernetes cluster within the EMPYREAN platform (ICCS K8s with

UUID 7628b895-3a91-4f0c-b0b7-033eab309891).

GET /api/v1/analytics_engine/data_manager/clusters/metrics/7628b895-3a91-4f0c-b0b7-

033eab309891?wn=wn2-serifos

{"cluster_uuid":"7628b895-3a91-4f0c-b0b7-

033eab309891","timestamp":1751703648,"nodes":[{"node_cpus":[{"idle":14649163.75,"label

":"0","used":1011547.1},{"idle":14403219.21,"label":"1","used":1245255.79},{"idle":142

73190.45,"label":"2","used":1378752.47},{"idle":14093762.62,"label":"3","used":1559953

.59}],"node_filesystem_avail_bytes":60301340672,"node_filesystem_free_bytes":603181178

88,"node_filesystem_size_bytes":207929917440,"node_filesystem_usage_percentage":70.99,

"node_filesystem_used_bytes":147611799552,"node_memory_Buffers_bytes":1945653248,"node

_memory_Cached_bytes":57360580608,"node_memory_MemAvailable_bytes":64005013504,"node_m

emory_MemFree_bytes":1168969728,"node_memory_MemTotal_bytes":67434598400,"node_memory_

MemUsed_bytes":66265628672,"node_memory_usage_percentage":98.27,"node_name":"wn2-

serifos","node_total_running_pods":14}]}

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 96/118

6 Platform Integration and Operation Flows

This section demonstrates how the components developed and integrated as part of the

initial EMPYREAN release support the key operation flows defined in Deliverable D2.3 (M12).

By showcasing end-to-end interactions among the core platform services, we illustrate the

orchestration, coordination, and automation capabilities of the EMPYREAN platform across

the IoT-edge-cloud continuum. These flows validate the implementation and integration work

carried out, highlighting the platform’s readiness to support secure, dynamic, distributed, and

intelligent management of an Association-based continuum.

6.1 Entity Enrolment, Security, and Resource Protection

The EMPYREAN platform integrates a comprehensive framework for resource protection,

enrolment, and access governance, establishing a robust security mechanism that secures

critical platform components from the first stages of operation. This framework is based on

the coordinated interaction between the Privacy and Security Manager (PSM), the EMPYREAN

Aggregator, and the policy enforcement infrastructure composed of the Policy Enforcement

Point (PEP), the Policy Decision Point (PDP), and an immutable traceability layer powered by

Distributed Ledger Technology (DLT).

In the EMPYREAN architecture, the term resource broadly refers to any protected asset

exposed within the platform, including services, APIs, data endpoints, or computational

functions. The first critical resource protected by this mechanism is the EMPYREAN Controller,

as it manages the onboarding of resources across the platform. The EMPYREAN Aggregator

initiates this protection process, ensuring that this central management service is fully

secured before being exposing it to any enrolled entity. Although, the initial integration

focuses on protecting the EMPYREAN Controller, the same mechanism applies universally to

any resource registered within an Association.

6.1.1 Resource protection and access workflow

The complete protection and access workflow is illustrated in Figure 60, showing how a

resource is protected, accessed by authorized entities, and how all actions are securely

logged.

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 97/118

Figure 60: Workflow for protecting and accessing resources in EMPYREAN, starting with the Controller as the

first protected resource. The Aggregator initiates protection, PSM enforces policies via PEP/PDP, and all

access is verified and immutably logged on blockchain.

6.1.1.1 Workflow description

The process starts with the optional onboarding of the resource into the EMPYREAN Registry,

where the Aggregator records its metadata, endpoints, and other relevant details. This

ensures that the resource is recognized and discoverable within the platform.

The Aggregator then sends a Request Resource Protection to the PSM, specifying the resource

identifier, network endpoints, and the access policies that define who can interact with the

resource. The PSM processes this request by deploying a PEP proxy and enforcing the policies

through the PDP, which dynamically evaluates every access request. The policies are also

registered via a smart contract on the blockchain, ensuring traceability and integrity.

Once the protection is in place, the PSM returns a Policy ID to the Aggregator. This identifier

not only confirms the protection status but also establishes ownership of the protection policy

for that resource. The Aggregator can use this Policy ID to update later, refine, or revoke the

policy, enabling the protection to evolve dynamically. For example, the policy can be updated

to restrict access further, loosen constraints, or adapt to new operational or security

requirements. The Aggregator also updates the EMPYREAN Registry with the secured

resource’s updated endpoints.

When an Enrolled Consumer, an entity properly onboarded and holding the necessary

Verifiable Credentials (VCs) or JWTs derived from VCs, attempts to access the protected

resource, the request is intercepted by the PEP. The PDP verifies the presented credentials,

checking their signatures through the associated Decentralized Identifiers (DIDs) and

evaluating their attributes against the enforced policies. If the access is authorized, the

request is forwarded to the resource (e.g., the EMPYREAN Controller), which returns the

appropriate response.

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 98/118

6.1.1.2 Generalization to all EMPYREAN resources

While the EMPYREAN Controller serves as the initial resource protected via this mechanism,

the architecture is designed to generalize across all resources within the platform. Any

service, API, data endpoint, or computational function can be secured following the same

workflow, ensuring consistent and scalable security governance across the EMPYREAN

ecosystem.

6.1.2 Secure device attestation and lightweight identity

management

An integration strategy has been defined that combines secure device attestation,

decentralized identities (DIDs), and Verifiable Credentials (VCs), specially tailored for

constrained IoT devices. As illustrated in Figure 61, the approach leverages the Device

Identifier Composition Engine (DICE) mechanism to derive cryptographic keys at boot time,

tightly coupling the device’s identity to the integrity of its firmware. The integration flow

illustrates DICE-based key derivation, generation of Verifiable Credentials, and manufacturer

validation using Decentralized Identifiers (DIDs) or X.509 certificates.

Figure 61: Secure attestation and decentralized identity integration flow involving Manufacturer, Device,

Attestation Server, and Blockchain.

At manufacturing, the Manufacturer registers a decentralized identifier (e.g., did:fabric) on a

blockchain or decentralized ledger, exposing public keys that correspond to specific devices

or device families. As an alternative, the manufacturer may issue an X.509 certificate

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 99/118

embedding the did:fabric identifier in a custom field, enabling subsequent key validation in

both decentralized and traditional public key infrastructure (PKI) environments.

When a device boots, it signs an attestation package that contains:

• Firmware measurements.

• A public key derived via DICE mechanism.

• A self-issued Verifiable Credential (VC) embedding these evidences.

The device forwards this information through a discovery mechanism (such as Akri) to the

Attestation Server, which validates the attestation using the manufacturer’s public keys

(retrieved via the DID document or X.509 certificate). The Attestation Server may also:

• Register traceability events on the blockchain.

• Act as an issuer of domain Verifiable Credentials, confirming the device integrity (e.g.,

attestationResult: OK).

To accommodate the constraints of IoT resource-limited devices, the solution integrates the

p-ABC library (Privacy-preserving Attribute-Based Credentials) instead of deploying a full

Privacy and Security Manager (PSM). This allows devices to produce selective disclosure

proofs and privacy-preserving verifications with minimal computational overhead.

6.1.3 Secure user access via Privacy and Security Manager and RYAX

Workflow integration

The EMPYREAN platform supports privacy-preserving user authentication and authorization

across the IoT-edge-cloud continuum by integrating its Privacy and Security Manager (PSM)

with the RYAX Workflow Engine. Incorporating Keycloak5 as the underlying Identity and

Access Management (IAM) system, this integration (Figure 62) provides a unified and

comprehensive mechanism for managing user identities, attributes, and controlled access to

protected services.

This integration involved the coordinated operation of several core actors and components.

1. Privacy and Security Manager (PSM): Authentication and Credential Issuance

The PSM authenticates entities and issues privacy-preserving Attribute-Based Credentials (p-

ABCs) in the form of Verifiable Credentials (VCs). These credentials securely encode user or

platform entity attributes, enabling privacy-preserving authorization across services. At the

core of this process is the p-ABC library, a critical cryptographic module that enables advanced

privacy techniques such as Zero-Knowledge Proofs (ZKPs), selective disclosure, and unlinkable

token generation. This allows entities to prove specific required attributes without exposing

additional information, ensuring secure and private access across EMPYREAN’s distributed

services.

5 https://www.keycloak.org

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 100/118

Figure 62: Workflow of the EMPYREAN Privacy and Security Manager integrating RYAX and Keycloak for

attribute-based authentication and dynamic access control.

2. External Attribute Provider (RYAX Keycloak)

Keycloak, embedded within the RYAX platform, serves as the external attribute provider,

responsible for certifying entity attributes such as roles, permissions, or organizational

affiliations. These certified attributes are retrieved by the Relying Party from Keycloak and

forwarded to the PSM as part of the p-ABCs issuance process. This procedure forms a bridge

between EMPYREAN’s decentralized, privacy-preserving credential ecosystem and

established IAM systems.

3. EMPYREAN Entity

An EMPYREAN Entity represents any participant in the platform that enrolls into the system

to access services. This can include users, devices, applications, or agents that interact with

EMPYREAN’s services. Once enrolled and issued the appropriate p-ABCs, the EMPYREAN

Entity can interact with services protected by dynamic resource protection mechanisms, such

as privacy-preserving proxies or other access control systems enforced by the PSM. These

protections ensure that all access is mediated through policies based on attributes rather than

static identities, enabling fine-grained, context-aware control.

4. Relying Party

The Relying Party is any platform component or service that requires verifying attributes and

requesting credentials to access or enable access to protected services. It retrieves entity

attributes from Keycloak and requests the issuance of p-ABCs from the PSM. Armed with

these credentials, the Relying Party can then access services safeguarded by the platform’s

dynamic access control mechanisms (e.g., ABAC-enforced proxies), ensuring compliance with

security and privacy policies.

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 101/118

5. Blockchain as a Verifiable Data Registry

The EMPYREAN architecture employs a Blockchain-based Verifiable Data Registry to securely

anchor credential issuance, policy enforcement, and potential revocations. This registry

ensures transparency, immutability, and auditability of the trust and access control processes,

establishing a reliable foundation for secure interactions across decentralized associations.

This integration enables the following key functionalities:

• Entity Enrolment: Enrolment of EMPYREAN Entities (users, devices, applications) into

the platform, enabling them to interact securely with services.

• Attribute Certification via Keycloak: Relying Parties obtain certified attributes from

Keycloak to initiate credential requests.

• Issuance of Privacy-Preserving Credentials: PSM issues p-ABCs based on attributes,

enabling selective disclosure and privacy-preserving authentication.

• Unlinkable Token Generation: Tokens derived from p-ABCs allow entities to access

services without linkability across sessions or services.

• Dynamic Resource Protection: Access to services is mediated by dynamic protection

mechanisms (e.g., privacy-preserving proxies, ABAC policies) governed by the PSM.

• Attribute-Based Access Control (ABAC): Fine-grained access decisions enforced

through dynamically evaluated attribute-based policies.

• Blockchain-Backed Trust: Credential issuance, policy updates, and revocations are

immutably recorded on blockchain, ensuring traceability and auditability.

6.2 Association Setup

This integration scenario highlights the capabilities of the initial release of the EMPYREAN

platform to support the creation of Associations, enabling the establishment of collaborative

virtual execution environments across heterogeneous edge and cloud platforms. This

corresponds to operation flow OF2.1, which is executed by EMPYREAN administrators and

authorized infrastructure providers with the appropriate permissions. In accordance with

EMPYREAN’s generic operation flow, these actions are preceded by the initialization of the

platform by the administrator, including the deployment of core services such as the

EMPYREAN Registry and Identity and Authorization Engine. Additionally, the initial

stakeholders must be enrolled in the system, as described in Section 6.1.

Table 9 provides an overview of this operation flow, detailing the involved EMPYREAN

components, relevant interfaces, coverage of platform requirements, and the enabling

project technologies that support its execution.

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 102/118

Table 9: Overview of Association setup operation flow

EMPYREAN

Components

EMPYREAN Registry:

● API Gateway: http://147.102.16.114:30150

● Service Catalogue: http://registry-service-catalogue.empyrean:10090

● Association Metadata Store: http://registry-association-metadata-

service.empyrean:10086

EMPYREAN Aggregator 1: http://147.102.16.114:30800

EMPYREAN Aggregator 2: http://147.102.16.115:30800

Dashboard: http://147.102.22.140:8080

Type of APIs REST

Requirements

Coverage

F_GR.1, F_GR.2, F_GR.4, F_GR.5, F_ST.1, F_ST.2, F_SO.6, F_ASSOC.1,

F_ASSOC.8, F_ASSOC.10

Enablers EN_1, EN_9, EN_10, EN_11

Figure 63: EMPYREAN components and testbed setup for the Association setup operation flow.

The integration scenario encompasses two Kubernetes (K8s) clusters and one K3s cluster,

each featuring distinct characteristics, see Figure 63. The EMPYREAN Registry was deployed

using EMPYREAN’s CI/CD mechanisms on the ICCS K8s cluster. While the Registry API Gateway

is publicly accessible, access is restricted through authentication mechanisms. The internal

Registry services (Service Catalogue and Association Metadata Store) are configured for

internal cluster access but remain accessible externally through the API Gateway. The setup

also includes two EMPYREAN Aggregators, the first (UUID “a2b66fa3-3f13-416b-8644-

56328e0de4ba”) is deployed on the ICCS K8s cluster, while the second (UUID “d09ac308-

4b4e-4623-9d75-a2633f229c7f”) on the other K8s cluster.

http://147.102.16.114:30150/
http://registry-service-catalogue.empyrean:10090/
http://registry-service-catalogue.empyrean:10090/
http://registry-association-metadata-service.empyrean:10086/
http://registry-association-metadata-service.empyrean:10086/
http://registry-association-metadata-service.empyrean:10086/
http://147.102.16.114:30800/
http://147.102.16.114:30800/
http://147.102.16.115:30800/
http://147.102.16.115:30800/
http://147.102.22.140:8080/
http://147.102.22.140:8080/

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 103/118

In addition, a web-based application written in Python was developed to facilitate the

demonstration of this integration scenario (Figure 64). Deployed within the ICCS premises,

the application leverages the exposed REST APIs of the EMPYREAN components to interact

with the platform. It also provides a visual representation of the available Associations and

the onboarded devices.

Figure 64: EMPYREAN web-based dashboard.

Using our web-based application, we created two Associations owned by the same user. The

main difference is that, in the next phase (Section 6.3), different sets of resources will be

onboarded to each of them. An administrator enrolled through the previous operation flow

with Verifiable Credentials and JSON Web Token (JWT) access token logins to the dashboard.

When creating an Association, the user must select an Aggregator to manage it and link it to

an existing access policy. In addition to these key parameters, which affect usage and resource

management, optional configuration settings support integration with other platform

services. These include the Association’s name, an optional description, and user-defined

labels used to identify Associations based on specific criteria.

Figure 65 presents the two Associations along with their corresponding configuration

parameters as defined for the EMPYREAN control plane mechanisms.

Figure 65: Association description parameters for initial integration scenarios.

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 104/118

The provisioning process is orchestrated by the EMPYREAN Registry. To initiate it, the

dashboard invokes the Registry’s POST method (/api/v1/registry/associations), which triggers

the end-to-end Association creation procedure.

Upon receiving the request, the EMPYREAN Registry API Gateway performs an initial

validation to ensure that all required information is provided. It then delegates the

authorization process to the Privacy and Security Manager (PSM), specifically the Policy

Decision Point (PDP) component. The PDP evaluates the request against predefined policies

to verify that the user has the appropriate permissions to perform the operation. A log

screenshot from the API Gateway illustrating these interactions is provided below. The red

highlighted box shows the interactions between the dashboard and the API Gateway for

retrieving available Associations, Aggregators, and access policies. The blue highlighted box

depicts the involvement of the API Gateway during the creation of a new Association.

Figure 66: EMPYREAN Registry - API Gateway log messages during the definition of a new EMPYREAN

Association from the dashboard.

Once authorization is successfully granted, control is handed over to the Registry Manager

service, which coordinates all subsequent steps to set up the Association. It begins by creating

an Association object in the internal Datastore, capturing the initial configuration parameters

of the new Association. Next, the Registry Manager stores the Association’s metadata, along

with essential operational parameters, into the Association Metadata Store service by calling

the relevant POST method (/api/v1/association_metadata_store/associations) exposed by its

REST API. At this stage, the Metadata Manager component populates the graph database with

the following nodes: (i) Association, (ii) Label(s), if specified, (iii) Aggregator, (iv) Owner, and

(iv) Policy. Moreover, it establishes the following relationships: (i) Association to Aggregator,

(ii) Association to Label(s), If specified, (iii) Association to Owner, and (iv) Association to Policy

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 105/118

Figure 67 provides a visual representation of the graph-based internal mapping of

Associations within the EMPYREAN platform following the successful creation of the first

Association

Figure 67: Graph-based representation of the first Association within the Association Metadata Store

service.

The next step involves assigning the newly created Association to an EMPYREAN Aggregator

for management. In the current release of the EMPYREAN platform, only existing Aggregators

can be assigned. However, the final release will also support the automatic deployment of a

new Aggregator, along with the corresponding Association assignment.

To perform the assignment, the Registry Manager invokes the corresponding POST method

(/api/v1/aggregator/associations), which instructs the designated Aggregator to register the

new Association in its State Management service. From that point onward, the Aggregator

autonomously manages the Association, abstracting the complexities of interacting with its

underlying platform mechanisms. Furthermore, the Aggregator informs the Telemetry Service

and the related Analytics Engine about the new Association, enabling relevant data collection

and monitoring processes to begin. Once this step is completed, the Association is successfully

registered within the platform and marked as “CREATED”. However, its schedulable property

remains False, as no resources have been onboarded yet.

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 106/118

Figure 68: A log screenshot from the Registry Manager capturing all these interactions is provided below.

Figure 69 illustrates the details for the two created Associations within the Association

Metadata Store.

Figure 69: Availability of two created Associations within the dashboard and their graph-based

representation.

6.3 Onboarding Computational and Storage Resources

Following the successful setup of Associations within the EMPYREAN platform, the next step

involves the onboarding of computational and storage resources to make these Associations

operational. This process enables the dynamic inclusion of diverse resource types, ranging

from Kubernetes (K8s/K3s) worker nodes to IoT devices and edge storage systems, into the

virtual execution environments defined by the Associations. The onboarding operation flows

ensure that the EMPYREAN platform can securely and efficiently extend its control and service

orchestration and deployment capabilities across heterogeneous infrastructure components.

This section details the implemented procedures within the initial release for onboarding:

● Worker nodes from Kubernetes and K3s clusters, which contribute containerized

compute capacity to the Association.

● Edge storage resources, enabling localized data persistence and content availability

within the Association scope.

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 107/118

Table 10: Overview of onboarding computational and storage resources operation flows.

EMPYREAN

Components

EMPYREAN Registry API Gateway: http://147.102.16.114:30150

Aggregator 1:

• API Gateway: http://147.102.16.114:30800

• Service Orchestrator: http://147.102.16.114:30100

Aggregator 2:

• API Gateway: http://147.102.16.115:30800

• Service Orchestrator: http://147.102.16.115:30100

An EMPYREAN Controller at each cluster

Edge Storage Service

Dashboard: http://147.102.22.140:8080

Type of APIs REST

Requirements

Coverage

F_GR.1, F_GR.4, F_GR.6, F_ASSOC.1, F_ASSOC.2, F_ASSOC.7, F_ASSOC.8,

F_ASSOC.9, F_ASSOC.7, F_DCM.1, F_DI.4, F_SO.4, F_SO.8, F_SO.14, F_ST.1, F_ST.2,

F_DI.6

Enablers En_1, EN_2, EN_5, EN_9, EN_10, EN_11, EN_16

6.3.1 Onboarding worker nodes

This integration scenario utilizes the testbed and the EMPYREAN platform services introduced

in Section 6.2. In addition to those, the scenario also includes two Service Orchestrators, one

per Aggregator, along with three EMPYREAN Controllers, each managing a distinct cluster

(ICCS K8s “7628b895-3a91-4f0c-b0b7-033eab309891”, ICCS K3s “2b05cfdf-679f-45f1-95f8-

a334ec87faaf”, and K8s-kind “5a075716-7d7d-4b40-9566-bc1a33ee70c2”).

The initial release of the EMPYREAN platform supports the static onboarding of worker nodes

into Associations. This process must be initiated by either an EMPYREAN administrator or an

infrastructure provider, both of whom must first be identified and authenticated as resource

owners via the Security and Privacy Manager. To ensure the integrity of the onboarding

process, the EMPYREAN Controller facilitates secure node registration. Each worker node

(e.g., Kubernetes/K3s node) must authenticate before being admitted into an Association,

ensuring identity verification and trustworthiness of resources.

The onboarding process can be triggered either through the EMPYREAN dashboard or via

exposed REST APIs. The authorized user selects the target Association and designates which

worker nodes to onboard. Figure 70 presents an overview of the selected nodes from the

three available clusters and their mapping to the two Associations.

http://147.102.16.114:30150/
http://147.102.16.114:30800/
http://147.102.16.114:30100/
http://147.102.16.115:30800/
http://147.102.16.115:30100/
http://147.102.22.140:8080/

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 108/118

Figure 70: Mapping of selected worker nodes to Associations during the onboarding process.

Using the dashboard (Figure 71), the user selects an appropriate EMPYREAN Controller based

on access policies. The Controller then presents the available worker nodes eligible for

onboarding. Once selection is complete, the onboarding is triggered, under the hood, this

corresponds to a PUT request to the Aggregator API Gateway

(/api/v1/aggregator/ASSOCIATION_UUID/resources).

Figure 71: Onboarding worker nodes through the EMPYREAN dashboard.

Next, we present the exact REST payload sent during the onboarding of resources for the first

Association, along with a log excerpt from the Aggregator responsible for managing the

second Association (c593b878-19ac-4690-b40e-0e812eecbf98), illustrating the internal

handling of the onboarding process.

{"resource_type":"computing_resources","resources":[{"kind":"worker_node","name":"wn1-

paros","cluster_uuid":"7628b895-3a91-4f0c-b0b7-

033eab309891","machine_id":"02e257de949c4486b85ba436ec983663","policy_uuid":"dd9ceff4-

667e-4704-bb06-88e3272cbb27","owner_uuid":"8a99c456-ff60-44aa-8a79-

ca58fe9f6b2d"},{"kind":"worker_node","cluster_uuid":"7628b895-3a91-4f0c-b0b7-

033eab309891","name":"wn2-

serifos","machine_id":"dc156c5469db44c0be8121e8b94e31f6","policy_uuid":"dd9ceff4-667e-

4704-bb06-88e3272cbb27","owner_uuid":"8a99c456-ff60-44aa-8a79-

ca58fe9f6b2d"},{"kind":"worker_node","cluster_uuid":"7628b895-3a91-4f0c-b0b7-

033eab309891","machine_id":"dc156c5469db44c0be8121e8b94e31f6","name":"wn3-

sifnos","policy_uuid":"dd9ceff4-667e-4704-bb06-88e3272cbb27","owner_uuid":"8a99c456-

ff60-44aa-8a79-ca58fe9f6b2d"},{"kind":"worker_node","cluster_uuid":"7628b895-3a91-

4f0c-b0b7-033eab309891","machine_id":"367bc4c43a374409a30fdc9c457f870f","name":"wn4-

santorini","policy_uuid":"dd9ceff4-667e-4704-bb06-

88e3272cbb27","owner_uuid":"8a99c456-ff60-44aa-8a79-

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 109/118

ca58fe9f6b2d"},{"kind":"worker_node","cluster_uuid":"5a075716-7d7d-4b40-9566-

bc1a33ee70c2","machine_id":"4e06de61977c4c8aaf9c1e9bf239aaab","name":"wn1-

kind","policy_uuid":"dd9ceff4-667e-4704-bb06-88e3272cbb27","owner_uuid":"8a99c456-

ff60-44aa-8a79-ca58fe9f6b2d"}]}

Once the onboarding process is complete, the worker nodes are fully integrated into the

Association and become available for workload assignments, contributing to the Association’s

overall computational and operational capacity. Finally, Figure 72 visualizes the updated state

of both Associations as recorded in the Association Metadata Store service within the

EMPYREAN Registry.

Figure 72: The two Associations along with the onboarding worker nodes within Association Metadata

Store.

6.3.2 Onboarding storage resources

The Edge Storage Service (ESS) is an integrated part of the initial EMPYREAN platform release.

It manages storage entities such as S3-compatible buckets and objects, as well as some of the

storage-related resources and infrastructure. Since Associations, including their associated

resources, are handled by the Registry, the ESS periodically polls this component for any

changes through the API described in Section 5.2.1. Figure 73 shows two Associations that

have been retrieved from the EMPYREAN Registry and stored in the ESS’s database for

authorizing user requests.

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 110/118

Figure 73: Edge Support Service Developer Dashboard: two associations retrieved from the EMPYREAN

Registry.

Once the Association Setup workflow is complete and the ESS has retrieved the list of

Associations, storage resources can be onboarded. In particular, the Edge Storage devices can

be registered using a form on the ESS Developer Dashboard, as shown in Figure 74. The

Association’s owner/administrator must specify the location of the storage resource and what

credentials can be used to access it. These credentials are persisted by the ESS, but are not

shared with any of the Association’s members. Instead, the access is performed using pre-

signed URLs [10].

.

Figure 74: Edge Support Service Developer Dashboard: form for registering a new Edge Storage device.

The ESS notifies the EMPYREAN Registry that a new edge resource has been onboarded for

the association in question using the API described in Section 5.2.1.

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 111/118

In the following, we describe a typical storage workflow from the perspective of an

EMPYREAN user. We have defined the workflow to demonstrate the level of integration at

the time of the platform’s initial release as well as to provide an initial assessment of how well

different storage-related requirements are met.

To make the demonstration robust, we have set up an Association with edge resources

running on a single laptop. This allows us to quickly deploy both an Edge Storage Gateway

and several Edge Storage devices.

1. As a first step, we list the Association’s storage resources as shown in Figure 75.

Figure 75: Step 1 - list of Edge Storage devices running in the Association.

2. We can use these to create an edge-only storage policy. Figure 76 shows the result,

an erasure coded policy with 33% redundancy that distributes data to all four Edge

Storage devices.

Figure 76: Step 2 - summary of edge-only storage policy.

3. At this point, we have registered all resources and created an initial storage policy. To

use the ESS, we must deploy an Edge Storage Gateway and the four Edge Storage

devices within our Association. For this demonstration, we accomplish this using

Docker Swarm. Figure 77 shows the result. The Gateway must be associated with the

Association and has been set up using the Developer Dashboard (not shown for

brevity).

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 112/118

Figure 77: Step 3 - four Edge Storage devices and the Edge Storage Gateway running locally on a laptop.

4. To access the service and sign our application’s requests, we need a set of credentials.

In S3, this consists of a pair of items (Access Key ID and Secret Access Key) that we

collectively refer to as an S3 API key. This can be done using the Developer Dashboard

(not shown for brevity). We can create a non-restricted S3 API key that can access any

of the team’s buckets, or we can permit read-only or full access on a per-bucket basis.

5. Finally, the application must be configured to use the Gateway’s URL and the S3 API

keys (Figure 78 - left).

6. The application can make S3 API requests to the ESS, through the Gateway. A simple

script (Figure 78 - left) and its resulting output (Figure 78 - right) have been included.

Figure 78: Steps 5 and 6 - Simple Python script (left) that uses Amazon’s Boto3 library to access the ESS and

the results of running the script (right).

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 113/118

6.4 Inter-Association Application Deployment

This operation flow highlights EMPYREAN’s capability to deploy cloud-native applications

across federated Associations. Application operators manage deployments using developer-

provided descriptions that define resource and configuration requirements. Deployment

follows a structured, multi-phase orchestration process. In Phase 1 (OF4.1.1), decentralized

orchestration selects the most suitable Associations based on deployment goals. Phase 2

(OF4.1.2) performs cognitive orchestration within each Association, refining deployment

plans based on local policies and infrastructure conditions. Finally, in the third phase

(OF4.1.3), the deployment is executed at the infrastructure level by local orchestrators. This

section focuses on the first two orchestration phases. Summarised in Table 11

Table 11: Overview of operation flow for inter-association application deployment.

EMPYREAN

Components

EMPYREAN Registry API Gateway: http://147.102.16.114:30150

Aggregator 1 API Gateway: http://147.102.16.114:30800

Aggregator 2 API Gateway: http://147.102.16.115:30800

Service Orchestrator 1: http://147.102.16.114:30100

Service Orchestrator 2: http://147.102.16.115:30100

Decision Engine 1: http://147.102.16.114:30020

Decision Engine 2: http://147.102.16.115:30020

Telemetry Service: http://147.102.16.114:30070

Type of APIs REST

Requirements

Coverage

F_GR.1, F_GR.2, F_GR.3, F_GR.4, F_GR.5, F_GR.6, F_ASSOC.1, F_ASSOC.5,

F_ASSOC.8, F_ASSOC.9, F_ASSOC.10, F_ST.2, F_DI.1, F_DI.2, F_DI.3, F_SO.2,

F_SO.3, F_SO.4, F_SO.5, F_SO.6, F_SO.9, F_SO.14

Enablers EN_2, EN_4, EN_9, EN_10, EN_11, EN_14, EN_17

This scenario builds on testbed and the EMPYREAN platform services introduced in Section

6.2. A toy application, composed of five microservices (Figure 79), is used to demonstrate

end-to-end integration. The application collects data, performs quality inference, stores

results, and includes a retraining trigger based on inference outcomes. A simple web UI allows

users to view outputs. Each microservice serves a specific role in processing apple quality

data, using datasets and models were sourced from Kaggle’s Apple Quality Dataset [11].

Deployment is managed via K8s\K3s YAML descriptions, defining key components

Deployment, ConfigMap, Service, and PersistentVolume. Figure 79 maps these objects to

each microservice

http://147.102.16.114:30150/
http://147.102.16.114:30150/
http://147.102.16.114:30800/
http://147.102.16.114:30800/
http://147.102.16.115:30800/
http://147.102.16.115:30800/
http://147.102.16.114:30100/
http://147.102.16.114:30100/
http://147.102.16.115:30100/
http://147.102.16.115:30100/
http://147.102.16.114:30020/
http://147.102.16.114:30020/
http://147.102.16.115:30020/
http://147.102.16.115:30020/
http://147.102.16.114:30070/
http://147.102.16.114:30070/

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 114/118

Figure 79: Toy cloud-native application for inter-Association deployment demonstrator.

OF4.1.1: Assignment of application’s microservices to EMPYREAN Associations

The application operator initiates this operation flow by sending the appropriate POST

method in their designated Aggregator (Step 1), including also the application description

along with any relevant deployment objectives. In the validation scenario, Aggregator 1

(UUID: “a2b66fa3-3f13-416b-8644-56328e0de4ba”) is used. Upon receiving the request, the

Aggregator API Gateway validates the input parameters and proceeds to create the

corresponding Application and EMPYREAN Deployment API objects in its Datastore (Steps 2-

3). The Aggregator then responds with the unique EMPYREAN deployment identifier

“23b4065c-f4cb-4bb4-b06d-045f831cdad9” for reference.

The Aggregator Dispatcher service, which monitors the deployment-related topic (i.e,

/empyrean/aggregator/a2b66fa3-3f13-416b-8644-56328e0de4ba/empyrean_deployments/

deployment) detects the update (Step 4). After interpreting the deployment request, it

forwards it to its corresponding Service Orchestrator for further processing (Step 5).

The Orchestration API Server receives the incoming request and creates the corresponding

MultiAgent Deployment API object in its local Datastore (Step 6).

This action triggers the Orchestration Manager, which watches the topic

/empyrean/orchestrator/multi_agent_deployments/deployment for related events (Step 7).

Upon activation, the Orchestration Manager, through its internal controllers, begins handling

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 115/118

the orchestration process. As a next step, the Orchestration Manager’s Scheduler Controller

invokes the Decision Engine to initiate a collaborative, multi-agent decision-making process

across participating Aggregators (Step 8). This process aims to distribute the application’s

microservices across suitable Associations.

The orchestration request submitted to the Decision Engines includes both the deployment

objectives and the application graph, which is parsed from the initial application description.

Each Decision Engine independently queries the Telemetry Service to obtain real-time metrics

for resources available within its respective Associations (Step 9). These outcomes are then

forwarded to the designated coordinator Decision Engine to support collective decision-

making. The following log excerpt, captured from Decision Engine 1, which manages

Association “c593b878-19ac-4690-b40e-0e812eecbf98”, demonstrates that the engine

considers only the four worker nodes onboarded from the two clusters assigned to this

Association.

Once consensus is reached, the coordinator Decision Engine notifies its local Service

Orchestrator of the agreed resource allocation plan. The orchestrator then updates the

originating Aggregator accordingly (Step 10).

OF4.1.2: Hierarchical and cognitive orchestration at the Association level

Once the application’s microservices have been logically assigned to the appropriate

Associations, the orchestration process advances to its second phase. This phase runs in

parallel across all selected Associations and focuses on refining and localizing the deployment

strategy according to the infrastructure and policies of each Association.

The initiating Aggregator triggers this phase by delegating the deployment responsibilities to

the Aggregators managing the selected Associations. Within each participating Aggregator,

the Aggregator API Gateway processes the relevant portion of the deployment plan and

creates a corresponding Deployment API object in its local Datastore. This object contains

only the microservices allocated to that Association, along with their associated configuration

descriptors (e.g., ConfigMap, Secrets, etc.) extracted from the original application definition.

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 116/118

In the demonstration scenario, three microservices are assigned to the first Association,

which is managed by the initiating Aggregator, while the remaining ones are delegated to the

second Association. The following log illustrates how the Aggregator responsible for the

second Association coordinates and progresses the orchestration process.

By the end of this phase, each Aggregator possesses a fully scoped deployment blueprint

tailored to its respective Association, ready to be passed to the local deployment engine for

execution in phase OF4.1.3.

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 117/118

7 Conclusions

Deliverable 5.2 provides a comprehensive overview of the first implementation cycle of the

EMPYREAN platform, highlighting the development progress, integration activities, and early

validation of core components. During this initial phase (M1–M18), the consortium

successfully implemented core components, defined key interfaces, and delivered partial yet

functional components across all architectural layers, including cloud-native development

and deployment, telemetry, orchestration, AI-enabled services, and security.

Moreover, the deliverable presents the project’s CI/CD processes along with the related

development and integration guidelines. This structured approach aims to maximize the level

of automation, thereby minimizing effort and risks during the integration of diverse modules

and services developed by different partners.

The initial release demonstrates the feasibility of EMPYREAN’s modular and federated

approach to building an intelligent, self-managing IoT-Edge-Cloud continuum. Integration

efforts have begun to align individual components to support interoperability within

EMPYREAN Associations, and early validations have confirmed the viability of the core

concepts and operation flows.

The results documented in this deliverable will guide the upcoming development and

integration cycle, leading to the second release at M30. Feedback from internal testing and

use case development will be used to further improve the platform’s robustness, scalability,

and AI-driven autonomy. The full integrated release, including all platform components and

new features across all architecture layers, is planned for M30, following the conclusion of

the second implementation iteration (M16-M26), which will be reported in deliverables D3.3

and D4.3 at M26.

For the final release of the EMPYREAN platform, delivered at the end of the project, the

consortium will incorporate feedback from the final evaluation of the EMPYREAN platform

through the demonstration of project use cases. This version will be fully integrated and

documented in deliverables D5.4 “Final release of EMPYREAN integrated platform” (M36) and

D6.2 “Demonstrators’ deployment and EMPYREAN evaluation” (M36).

D5.2 – Initial release of EMPYREAN integrated platform

empyrean-horizon.eu 118/118

8 References

[1] EMPYREAN System requirements and specifications D2.1

[2] EMPYREAN System General Architecture Design D2.2

[3] Proxmox Platform. https://www.proxmox.com/en/

[4] EMPYREAN Code Source repository in GitHub. https://github.com/empyrean-eu

[5] Eclipse Zenoh. Official GitHub repository. (available online, visited July 2025)

https://github.com/eclipse-zenoh/zenoh

[6] Zenoh-Flow Tutorial (available online, visited July 2025)

https://www.youtube.com/watch?v=wGEM6-ByAL8

[7] EMPYREAN deliverable D4.2 Intelligent Resource Management, Cyber Threat Intelligence and

EMPYREAN Aggregator.

[8] AWS-S3 API reference (available online, visited in July 2025):

https://docs.aws.amazon.com/AmazonS3/latest/API/API_Operations_Amazon_Simple_Storage_Ser

vice.html

[9] MinIO’s Prometheus-compatible telemetry API (available online, visited in July 2025)

https://min.io/docs/minio/linux/operations/monitoring/collect-minio-metrics-using-

prometheus.html

[10] AWS - Amazon S3 pre-signed URLs (Available Online, visited on July 2025):

https://docs.aws.amazon.com/AmazonS3/latest/userguide/ShareObjectPreSignedURL.html)

[11] Kaggle’s Apple Quality Dataset: https://www.kaggle.com/datasets/nelgiriyewithana/apple-

quality/data

https://www.proxmox.com/en/
https://github.com/empyrean-eu
https://github.com/eclipse-zenoh/zenoh
https://www.youtube.com/watch?v=wGEM6-ByAL8
https://docs.aws.amazon.com/AmazonS3/latest/API/API_Operations_Amazon_Simple_Storage_Service.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_Operations_Amazon_Simple_Storage_Service.html
https://min.io/docs/minio/linux/operations/monitoring/collect-minio-metrics-using-prometheus.html
https://min.io/docs/minio/linux/operations/monitoring/collect-minio-metrics-using-prometheus.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/ShareObjectPreSignedURL.html
https://www.kaggle.com/datasets/nelgiriyewithana/apple-quality/data
https://www.kaggle.com/datasets/nelgiriyewithana/apple-quality/data

