

TRUSTWORTHY, COGNITIVE AND AI-DRIVEN

COLLABORATIVE ASSOCIATIONS OF IOT DEVICES AND

EDGE RESOURCES FOR DATA PROCESSING

Grant Agreement no. 101136024

Deliverable D2.1

State of the art, use cases analysis, platform

requirements and KPIs

Programme: HORIZON-CL4-2023-DATA-01-04

Project number: 101136024

Project acronym: EMPYREAN

Start/End date: 01/02/2024 – 31/01/2027

Deliverable type: Report

Related WP: WP2

Responsible Editor: UMU

Due date: 31/07/2024

Actual submission date: 31/07/2024 (initial submission v. 1.3)

24/10/2025 (revised version)

Dissemination level: Public

Revision: FINAL

This project has received funding from the European Union’s

Horizon Europe research and innovation programme under grant

agreement No 101136024

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 2/149

Revision History

Date Editor Status Version Changes

12/07/2024

Eduardo Cánovas,

Antonio Skarmeta

(UMU)

Draft 1.0
First complete version for internal

review.

17/07/2024 Roberto González Draft 1.1 First internal review

19/07/2024
Aristotelis Kretsis,

Panagiotis Kokkinos
Draft 1.2 Second internal review

26/07/2024 Partners inputs Draft 1.2 Last inputs from partners

29/07/2024

Eduardo Cánovas,

Antonio Skarmeta

(UMU)

Final 1.3 Final check

24/10/2025
Eduardo Cánovas,

Alonso Sánchez
Revised 1.4

Address first project review

comments

Author List

Organization Author

ICCS Aristotelis Kretsis, Panagiotis Kokkinos, Emmanouel Varvarigos

NVIDIA Dimitris Syrivelis

CC Márton Sipos, Marcell Fehér

UMU Antonio Skarmeta, Eduardo Cánovas

ZSCALE Iván Paez

RYAX Yuqiang Ma, Yiannis Georgiou

NUBIS
Christos Panagiotou, Anastasios Tsakas, Anastassios Nanos, Ilias Lagomatis,

Kostis Papazafeiropoulos

IDEKO Javier Martín, Aitor Fernández

NEC Roberto González, Jaime Fúster

EV ILVO Theodoros Chalazas, Panagiotis Ilias

TRAC Keshav Chintamani

Internal Reviewers

Aristotelis Kretsis, Polyzois Soumplis, ICCS

Roberto González, NEC

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 3/149

Abstract: This deliverable summarized the project analysis for the state of the art related to

the technologies being considered, an extensive use cases analysis, and finally, based on this

the identification of the platform requirements and associated KPIs. The deliverable presents

the outcomes of Task 2.1 “State-of-the-Art Analysis” and Task 2.2 “Concept, Use Cases and

Requirements Analysis” as part of the Work Package 2 “Use Cases Analysis, System

Requirements and Overall Architecture” of the EMPYREAN project, during its first iteration. It

includes EMPYREAN evaluation of state-of-the-art and beyond that will be covered in the

project for the different technologies being advanced within the project’s activities, the

detailed specification of the EMPYREAN use cases, and the initial analysis of the functional and

non-functional requirements for the EMPYREAN components. The deliverable additionally

reviews the enablers being considered for providing secure identity management, real-time

monitoring, efficient data transport, and intelligent workload management. They address

platform challenges, enabling seamless orchestration, robust security, and optimal resource

utilization across various applications and use cases.

Keywords: State-of-the-art, use case definition, functional requirements analysis, EMPYREAN

concept, EMPYREAN enablers

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 4/149

Disclaimer: The information, documentation and figures available in this deliverable are written by the

EMPYREAN Consortium partners under EC co-financing (project HORIZON-CL4-2023-DATA-01-04-

101136024) and do not necessarily reflect the view of the European Commission. The information in

this document is provided “as is”, and no guarantee or warranty is given that the information is fit for

any particular purpose. The reader uses the information at his/her sole risk and liability.

Copyright © 2024 the EMPYREAN Consortium. All rights reserved. This document may not be copied,

reproduced or modified in whole or in part for any purpose without written permission from the

EMPYREAN Consortium. In addition to such written permission to copy, reproduce or modify this

document in whole or part, an acknowledgement of the authors of the document and all applicable

portions of the copyright notice must be clearly referenced.

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 5/149

Table of Contents

1 Executive Summary ... 11

2 Introduction ... 12

2.1 Purpose of this document .. 12

2.2 Audience ... 12

3 EMPYREAN State of the art ... 13

3.1 EMPYREAN Advances over state of the art .. 13

3.1.1 Security, Trust, and Seamless Data and Computing Management 13

3.1.2 Decentralized Intelligence and AI-enabled Application Development and

Deployment ... 33

3.2 EMPYREAN Enablers ... 50

3.3 EMPYREAN relation with ongoing relevant EU projects .. 54

3.3.1 HORIZON EUROPE MLSYSOPS (2023-2025) ... 54

3.3.2 HORIZON EUROPE RESCALE (2024-2026)... 54

3.3.3 IPCEI EUROPE E2CC (2024-2027) .. 54

3.3.4 HORIZON EUROPE FLUIDOS (2024-2026) .. 55

4 Use Cases Analysis ... 56

4.1 Anomaly Detection in Robotic Machining Cells (UC1) ... 56

4.1.1 Overview... 56

4.1.2 Detailed Description ... 56

4.1.3 Current State - Future State with EMPYREAN .. 58

4.1.4 Challenges to be Addressed ... 60

4.1.5 Deployment Environment .. 61

4.1.6 KPIs ... 61

4.1.7 Validation and Testing .. 62

4.2 Proximal Sensing in Agriculture Fields (UC2) ... 62

4.2.1 Overview... 62

4.2.2 Detailed Description ... 62

4.2.3 Current State - Future State with EMPYREAN .. 63

4.2.4 Challenges to be Addressed ... 66

4.2.5 Deployment Environment .. 67

4.2.6 KPIs ... 68

4.2.7 Validation and Testing .. 70

4.3 5G-Enabled Vehicle-Assisted Services (UC3).. 71

4.3.1 Overview... 71

4.3.2 Detailed Description ... 72

4.3.3 Current State - Future State with EMPYREAN .. 72

4.3.4 Challenges to be Addressed ... 73

4.3.5 Deployment Environment .. 73

4.3.6 KPIs ... 74

4.3.7 Validation and testing .. 74

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 6/149

5 EMPYREAN Platform Components Definitions .. 76

5.1 EMPYREAN Ecosystem ... 76

5.2 Components Description .. 80

5.2.1 Privacy and Security Manager .. 80

5.2.2 P-ABC .. 81

5.2.3 Telemetry Service ... 81

5.2.4 Software-defined RDMA-based Unified Transport Service based on FlexDriver 82

5.2.5 Decentralized and Distributed Communication Layer ... 83

5.2.6 Edge Storage Gateway ... 84

5.2.7 Edge Storage ... 85

5.2.8 IoT Query Engine .. 85

5.2.9 RYAX Workflow Engine ... 86

5.2.10 AI-enabled Workload Autoscaling .. 87

5.2.11 CTI Analysis Module ... 88

5.2.12 Decision Engine .. 88

5.2.13 Analytics Engine ... 89

5.2.14 EMPYREAN Orchestrator and Controller ... 90

5.2.15 Telemetry Engine ... 90

5.2.16 EMPYREAN Registry.. 91

5.2.17 EMPYREAN Aggregator .. 92

5.2.18 vAccel.. 92

5.2.19 Application Builder for Unikernels ... 93

5.2.20 Application Packaging .. 93

5.2.21 Container Runtime ... 94

5.2.22 Secure execution environment .. 95

5.2.23 NIX-based Environment Packaging .. 96

5.3 Technical KPIs ... 96

6 Requirements Analysis .. 101

6.1 Functional Requirements ... 102

6.1.1 General Requirements ... 102

6.1.2 Associations Requirements .. 108

6.1.3 Security and Trust Requirements ... 117

6.1.4 Seamless Data and Computing Management Requirements 121

6.1.5 Decentralized Intelligence Requirements .. 123

6.1.6 Service Orchestration Requirements ... 130

6.1.7 Integration and Platform Development Requirements 139

7 Conclusions .. 149

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 7/149

List of Figures

Figure 1: Azure IoT Edge and Azure IoT Hub. ... 14

Figure 2: Google Cloud IoT & IoT Core and the execution of ML workloads. 15

Figure 3: An example use of Amazon’s IoT, Edge and ML related services. 15

Figure 4: KubeEdge architecture. ... 18

Figure 5: EdgeX Foundry architecture. ... 19

Figure 6: This use case proposes a scenario of a client with 3 robots 57

Figure 7: Different external sensors attached to a robot .. 58

Figure 8: The high-level description of the offline analysis ... 59

Figure 9: The workflow application for offline process monitoring .. 59

Figure 10: PSR+ field spectrometer .. 64

Figure 11: High-level description of possible concept architecture for the UC 66

Figure 12: Indicative high-level architecture for the use case demonstration 71

Figure 13: GAIA Lab testbed at the University of Murcia .. 71

Figure 14: EMPYREAN overall concept and vision ... 76

Figure 15: EMPYREAN ecosystem, key stakeholders and interactions 78

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 8/149

List of Tables

Table 1: Data sources and data acquisition frequency .. 58

Table 2: Characteristics of the deployment environment resources 61

Table 3: EMPYREAN Technical KPIs .. 97

Table 4: Analysis of general requirements ... 102

Table 5: Analysis of EMPYREAN IoT-Edge Associations requirements 108

Table 6: Analysis of security and trust requirements .. 117

Table 7: Analysis of seamless data and computing management requirements 121

Table 8: Analysis of decentralized intelligence requirements ... 124

Table 9: Analysis of service orchestration requirements ... 130

Table 10: Analysis of integration and platform development requirements 139

Table 11: Analysis of overall non-functional requirements ... 143

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 9/149

Abbreviations

AI Artificial Intelligence

AMQP Advanced Message Queuing Protocol

API Application Programming Interface

ATR Autonomous Towing Robots

AWS Amazon Web Services

CNC Computer Numerical Control

CNCF Cloud Native Computing Foundation

CNN Convolutional Neural Network

CPS Cyber Physical Systems

CTA Cyber Threat Alliance

CTI Cyber Threat Intelligence

CVEs Common Vulnerabilities and Exposures

D Deliverable

DDS Data Distribution Service

DID Decentralized Identifiers

DKMA Distributed Key Management and Authentication

DLT Distributed Ledger Technology

DNN Deep Neural Network

DoA Description of Action

DQN Deep Q-Learning

DRL Deep Reinforcement Learning

DTR Decision Tree Regression

EC European Commission

EO Earth Observation

EUs End Users

FCS Fleet Control System

FL Federated Learning

FOA Fog Orchestrator Agent

FPGA Field Programmable Gate Arrays

GIS Geographic Information System

GPU Graphics Processing Unit

GUI Graphical User Interface

HPC High Performance Computing

HW Hardware

IDS Intrusion Detection System

IEC International Electrotechnical Commission

ILP Integer Linear Programming

IoC Indicators of Compromise

IoT Internet of Things

IPC Industrial PC

K8s Kubernetes

KMS Key Management System

KPI Key Performance Indicator

LAN Local Area Network

LSTM Long Short-Term Memory

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 10/149

MANO Management and Orchestration

MEC Mobile Edge Cloud

ML Machine Learning

MLP Mixed Linear Programming

MQTT Message Queueing Telemetry Transport

MTTR Mean Time to Repair

NBS Nash Bargaining Solution

NFV Network Functions Virtualization

NIC Network Interface Card

NIR Near-Infrared Spectrum

NIST National Institute of Standards and Technology

NLP Natural Language Processing

OCI Open Container Initiative

OTX Open Threat Exchange

P2P Peer-to-Peer

PDP Policy Decision Point

PEP Policy Enforcement Point

PLC Programmable Logic Controller

PM Project Manager

PO Project Officer

PPFL Privacy-Preserving Federated Learning

PSMS Pointcheval–Sanders Multi-Signatures

PSO Particle Swarm Optimization

QoS Quality of Service

R2X Robot to Everything

RDMA Remote Direct Memory Access

REST REpresentational State Transfer

RL Reinforcement Learning

RLNC Random Linear Network Coding

ROI Return on Investment

SAM Segment Anything

SIG Special Interest Group

SLA Service Level Agreement

SOC Soil Organic Carbon

SSI Self-Sovereign Identity

SW Software

TPU Tensor Processing Unit

UAV Unmanned Aerial Vehicles

UC Use Case

VC Verifiable Credentials

Vis-NIR Visible and Near-Infrared Spectrum

VM Virtual Machine

VRA Variable Rate Application

WAN Wide Area Network

XACML Extensible Access Control Markup Language

ZKP Zero-Knowledge Proofs

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 11/149

1 Executive Summary

The EMPYREAN project aims to revolutionize the IoT-edge-cloud continuum by introducing a

collaborative, cognitive, and trust-enhanced infrastructure. This deliverable provides a

comprehensive state-of-the-art analysis across various domains such as security, trust,

seamless data management, and decentralized intelligence. EMPYREAN advances beyond

current technologies by developing a distributed trust management framework, enhancing

secure shared data management through blockchain integration, providing novel application

development and deployment mechanisms, enabling distributed decision-making, and

optimizing AI-based workload autoscaling. The project's innovative approach includes

collaborative continuum management, AI-enabled application deployment, and advanced

data interconnection management. These advancements promise significant improvements

in efficiency, security, and reliability for hyper-distributed applications across diverse and

impactful application areas, such as smart agriculture, advanced manufacturing, and robot-

based logistics.

Based on this innovative approach, EMPYREAN envisions a new paradigm for the continuum,

introducing the concept of collaborative collectives of IoT devices, robots, and resources

spanning from the edge to the cloud. EMPYREAN calls this the Association-based continuum,

in the sense that multiple Associations (collaborative collectives of IoT devices, robots, and

resources) operate in parallel in space and time and constitute the IoT-edge-cloud continuum.

Each Association is composed of shared and aggregated edge computing and storage

resources of various sizes and characteristics, encompassing both general-purpose and

specialized units. These Associations are dynamically formed and updated based on the

resource owners' participation, while central cloud resources can be utilized when and if

needed. This approach promises to enhance the flexibility, efficiency, and collaboration within

the IoT-edge-cloud ecosystem.

Within the deliverable, the detailed specification of the EMPYREAN use cases and the initial

analysis of the functional and non-functional requirements for the EMPYREAN components

and their associated baseline of enablers are being analysed.

The outcome of this deliverable will be used as a guideline for the architecture specification

(D2.2), research activities regarding the EMPYREAN platform (WP3-5) and EMPYREAN Use

Cases integration, development and evaluation (WP6), to focus on overcoming the current

identified technical and scientific boundaries.

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 12/149

2 Introduction

2.1 Purpose of this document

The objective of this deliverable is to present the state-of-the-art analysis regarding the

different technologies being advanced with the project’s activities, as well as existing

technologies, standards, and outcomes from ongoing relevant EU projects. The deliverable

will review the approach of EMPYREAN in relation to technologies like identity, security,

interoperability, resource and service orchestration, machine learning, extreme scale

analytics, and cloud securitization.

The deliverable also defines and analyses the Use Cases (UCs) associated with the project

evaluation and demonstration scenarios along with the collection of associated requirements.

These requirements will serve as the basis for designing the platform’s services, involving a

comprehensive specification of the EMPYREAN platform as well as the requirements of each

different building block; that latter will be detailed in the architecture defined in D2.2 (M7).

Task 2.2 will also provide the means to identify, define, and quantify the Key Performance

Indicators (KPIs) used to evaluate the project’s innovations. Depending on the individual UC

requirements, specific metrics for performance, interoperability, usability, and security,

among others, will be targeted.

The final deliverable (D2.3) of WP2, scheduled for M12, will present a detailed analysis of the

project use cases, the final analysis of both functional and non-functional requirements, as

well as the main identified success criteria and the definition of the KPIs for evaluating the

developed innovations.

2.2 Audience

This document is publicly available and should be of use to anyone interested in the detailed

specification of the EMPYREAN project and its UCs, along with the EMPYREAN platform

requirements analysis.

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 13/149

3 EMPYREAN State of the art

3.1 EMPYREAN Advances over state of the art

EMPYREAN aims to introduce and develop an ecosystem of innovative technologies and

methodologies towards a collaborative, trustful and cognitive IoT-edge-cloud continuum. In

this section, we present an overall view of the innovations that EMPYREAN pursues in different

key areas.

3.1.1 Security, Trust, and Seamless Data and Computing

Management

3.1.1.1 Collaborative Continuum’s Management

The shift from a centralized computing model to a distributed one due to increasing mobile

edge and IoT traffic is reflected in the infrastructure management and orchestration (MANO)

model. Current MANO systems typically employ either (i) a centralized orchestrator hosted at

a central cloud node, that oversees and makes decision on the entirety of the network, (ii) a

federated system of regional orchestrators whose area of jurisdiction comprises a subset of

localized, connected nodes or (iii) a hybrid system, usually consisting of two layers, with a high-

level orchestrator that is responsible for assigning application requests to local orchestrators

that control a subset of infrastructure nodes, with each local orchestrator subsequently

performing the necessary resource allocation to serve the applications’ workload and data,

optimizing a set of objectives1.

There are a number of platforms in the area of IoT-Edge-Cloud, some of them focus more on
the edge-cloud or IoT part, while others consider IoT, Edge and Cloud. These platforms enable
real-time data processing and storage of IoT data in the edge while also reducing bandwidth
costs and avoiding transfers, while supporting further processing in the cloud when needed.
Orchestration/scheduling of the resources is always one of the key aspects of the related
operations and platforms 2. The cloud federation reference architecture by NIST 3 can be also
considered as a base when designing the architecture of such a global continuum.

1 A. Ullah et al., “Orchestration in the Cloud-to-Things compute continuum: taxonomy, survey and future
directions,” Journal of Cloud Computing, vol. 12, no. 1, p. 135, Sep. 2023, doi: 10.1186/s13677-023-00516-5.
2 M. Schwarzkopf and P. Bailis, “Research for practice: cluster scheduling for datacenters,” Commun. ACM, vol.
61, no. 5, pp. 50–53, 2018.
3 R. B. Bohn, C. A. Lee, and M. Michel, “The NIST Cloud Federation Reference Architecture,” Feb. 2020, Accessed:
Apr. 16, 2021. [Online]. Available: https://www.nist.gov/publications/nist-cloud-federation-reference-
architecture.

https://www.nist.gov/publications/nist-cloud-federation-reference-architecture
https://www.nist.gov/publications/nist-cloud-federation-reference-architecture

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 14/149

3.1.1.1.1 Cloud Providers

Major public cloud providers, such as Google, Microsoft and Azure offer such

services/platforms. Azure IoT Edge and Azure IoT Hub 4 enable to scale out and manage an IoT

solution from the cloud, deploying, running and monitoring containerized Linux workloads.

Also, other Azure services like Azure Defender and Azure Stream Analytics provide security

and analytics services. Azure IoT Edge is made up of three components (Figure 2):

● IoT Edge modules are containers that run Azure services, third-party services, or other

code. The IoT Edge runtime runs on each IoT Edge device and manages the modules

deployed to each device.

● The runtime sits on the IoT Edge device, and performs management and

communication operations between downstream devices and an IoT Edge device,

between modules on an IoT Edge device, and between an IoT Edge device and the

cloud.

● A cloud-based interface enables also to remotely monitor and manage IoT Edge

devices.

Figure 1: Azure IoT Edge and Azure IoT Hub.

Google Cloud IoT & IoT Core5 is a fully managed service that allows to easily and securely

connect, manage, and ingest data from millions of globally dispersed devices. Google Cloud

IoT Core, in combination with other services on Google Cloud IoT platform, provides a

complete solution for collecting, processing, analyzing, and visualizing IoT data in real time. In

particular, it is possible to build and train ML models in the cloud, then run those models on

the Cloud IoT Edge devices, while utilizing Edge TPU hardware accelerators and or GPU- and

CPU-based accelerators. Edge TPU is Google’s purpose-built ASIC chip designed to run

TensorFlow Lite ML models at the edge. Cloud IoT Edge can run on Android Things or Linux

OS-based devices, and its key components are (Figure 3):

● A runtime for gateway class devices, that provides local processing, while seamlessly

interoperating with the rest of Cloud IoT platform.

4 "Azure IoT Edge: Extend Cloud Intelligence and Analytics to Edge Devices," Microsoft Azure. Available:

https://azure.microsoft.com/en-us/products/iot-edge
5 "Google Cloud IoT Core: Managed Service for Connecting and Managing IoT Devices," Google Cloud. Available:
https://cloud.google.com/iot-core

https://azure.microsoft.com/en-us/products/iot-edge
https://azure.microsoft.com/en-us/products/iot-edge
https://azure.microsoft.com/en-us/products/iot-edge
https://cloud.google.com/iot-core
https://cloud.google.com/iot-core
https://cloud.google.com/iot-core

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 15/149

● The Edge IoT Core runtime that more securely connects edge devices to the cloud,

enabling software and firmware updates and managing the exchange of data with

Cloud IoT Core.

● The TensorFlow Lite-based Edge ML runtime that performs local ML inference using

pre-trained models.

Figure 2: Google Cloud IoT & IoT Core and the execution of ML workloads.

AWS offers a variety of services for IoT and edge. AWS IoT Core is a managed cloud service

that enables connected devices to securely interact with cloud applications and other devices.

AWS IoT Greengrass is an IoT open source edge runtime that helps build, deploy, and manage

device software. Amazon SageMaker enables developers to optimize machine learning (ML)

models for inference in the cloud and supported devices at the edge. Figure 3 illustrates an

example of deploying and using GPU accelerated image classification utilizing NVIDIA Jetson

modules and NVIDIA’s and AWS services.

Figure 3: An example use of Amazon’s IoT, Edge and ML related services.

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 16/149

3.1.1.1.2 Open Source and Other platforms

There are also a number of open source platforms that target the IoT-Edge-Cloud continuum.

As far as container and microservice orchestration in the cloud is concerned, Kubernetes (K8s)
6,7,8 has been the standard solution, simplifying deployment, and incorporating scheduling,

scaling, and monitoring. Mesos 9 is also an advanced and known open-source orchestrator.

Kubernetes orchestrator enables the support of Software Defined Infrastructures and

resources disaggregation by leveraging on container-based deployments and particular

drivers based on standardized interfaces (Container Runtime Interface 10, Container Storage

Interface 11, Container Network Interface 12 and the device plugins framework 13). These

interfaces enable the definition of abstractions for finer-grain control of computation, state,

and communications in multi-tenant environments along with optimal usage of the underlying

hardware resources. However, even if Kubernetes is today production-level for typical cloud

data centers, the default distribution is not adapted for the constrained and heterogeneous

edge capabilities nor for multi-cluster deployments, so as to integrate different layers of

compute resources (edge, fog and cloud).

Efforts are currently ongoing to better adapt Kubernetes for the edge, such as those done by

the IoT-Edge working group 14 which are mainly focused on guidelines and best practices with

the current ecosystem. Also, there have been several attempts at creating frameworks that

can be utilized as K8s alternatives that are usable in edge-computing paradigms. These

solutions can be divided into two main categories. The first school of thought attempts to

replicate K8s by adopting the same centralized structure but also reducing the necessary

system requirements for employing Kubernetes so that its deployment can be viable in a

broader range of potential devices, while the second tries to create a novel framework that is

better suited for distributed computing environments by utilizing a number of main

Kubernetes principles but also adapting them to the specificities of edge and aiming for cross

layer cooperation and integration 15.

6 Kubernetes, “Overview.” May 2023. [Online]. Available: https://kubernetes.io/docs/concepts/overview/
7 B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes, “Borg, Omega, and Kubernetes: Lessons learned
from three container-management systems over a decade,” Queue, vol. 14, no. 1, pp. 70–93, 2016.
8 “Production-Grade Container Orchestration,” Kubernetes. https://kubernetes.io/ (accessed Apr. 16, 2021).
9 B. Hindman et al., “Mesos: A platform for fine-grained resource sharing in the data center.,” in NSDI, 2011, vol.
11, no. 2011, pp. 22–22.
10 “Introducing Container Runtime Interface (CRI) in Kubernetes,” Kubernetes, Dec. 19, 2016.
https://kubernetes.io/blog/2016/12/Container-Runtime-Interface-Cri-In-Kubernetes/ (accessed Apr. 16, 2021).
11 “Container Storage Interface (CSI) for Kubernetes GA,” Kubernetes, Jan. 15, 2019.
https://kubernetes.io/blog/2019/01/15/container-storage-interface-ga/ (accessed Apr. 16, 2021)
12 containernetworking/cni. CNI, 2021
13 “Device Plugins,” Kubernetes. https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-
net/device-plugins/ (accessed Apr. 16, 2021).
14 “kubernetes/community,” GitHub. https://github.com/kubernetes/community (accessed Apr. 16, 2021).
15 R. Vaño, I. Lacalle, P. Sowiński, R. S-Julián, and C. E. Palau, “Cloud-Native Workload Orchestration at the Edge:
A Deployment Review and Future Directions,” Sensors, vol. 23, no. 4, p. 2215, Feb. 2023, doi:
10.3390/s23042215.

https://kubernetes.io/docs/concepts/overview/
https://kubernetes.io/
https://kubernetes.io/blog/2016/12/Container-Runtime-Interface-Cri-In-Kubernetes/
https://kubernetes.io/blog/2019/01/15/container-storage-interface-ga/
https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-net/device-plugins/
https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-net/device-plugins/
https://github.com/kubernetes/community

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 17/149

In the first category, employing the centralized aggregation architecture of K8s, K3s 16 has seen

a great rise in popularity. In k3s, Kubernetes heavyweight internal procedures have been

stripped down as another alternative that simplifies the autonomy of single edge devices using

the same Kubernetes API. Achieving a great reduction in minimum requirements, K3s can run

on several different architectures which is ideal for employing clusters at the edge. Also in that

category, published by Canonical as a lightweight alternative to K8s, MicroK8s 17 offers a clear

performance improvement for low computing power and capacity devices to its parent.

Microk8s can enable the deployment of individual autonomous edge resources, needing to

orchestrate tasks and workflows autonomously when disconnected from the network. Both

distributions enable cluster deployment at the edge but employ a central aggregator that

cannot be easily expanded to multi-cluster scenarios due to the complexities in the cross-layer

communication.

Regarding the second group, the deployment is focused on transferring the principles of

Kubernetes to the edge, by keeping the control plane of the system in the cloud and

implementing specific controllers and modules for the edge, allowing for varying degrees of

autonomy on the application level. A typical example of a framework of that type is KubeEdge
18, which is an open-source project by the Cloud Native Computing Foundation (CNCF) and

driven by several vendors. It facilitates seamless integration of edge nodes into Kubernetes

clusters, allowing orchestration and application monitoring at the edge to a degree, while the

cloud is responsible for high level decision-making on workload provisioning and

reconfiguration. KubeEdge is built upon Kubernetes and extends native containerized

application orchestration and device management to hosts at the Edge while being fully

compatible with the Kubernetes APIs. It ensures that edge nodes run autonomously and the

applications in edge run normally, when the cloud-edge network is unstable or edge is offline

and restarted. It consists of cloud part and edge part and supports MQTT. With KubeEdge it is

easy to get and deploy existing complicated machine learning, image recognition, event

processing and other high level applications to the edge. KubeEdge also incorporates a cache

mechanism on the edge to assure that no data is lost in case of connection loss.

The most important components of KubeEdge are the following (Figure 5):

● CloudHub & EdgeHub: a web socket server and client responsible for the edge cloud

communication.

● EdgeController: an extended Kubernetes controller which manages edge nodes and

pods metadata so that the data can be targeted to a specific edge node.

● DeviceController: an extended Kubernetes controller which manages devices so that

the device metadata/status data can be synced between edge and cloud.

● Edged: an agent that runs on edge nodes and manages containerized applications.

16 “K3s.” [Online]. Available: https://k3s.io
17 “MicroK8s - Zero-ops Kubernetes for developers, edge and IoT | MicroK8s.” [Online]. Available:
https://microk8s.io
18 “KubeEdge, a Kubernetes Native Edge Computing Framework.” May 2019. [Online]. Available:
https://kubernetes.io/blog/2019/03/19/kubeedge-k8s-based-edge-intro/

https://k3s.io/
https://microk8s.io/
https://kubernetes.io/blog/2019/03/19/kubeedge-k8s-based-edge-intro/

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 18/149

● EventBus: a MQTT client to interact with MQTT servers (mosquitto), offering publish

and subscribe capabilities to other components.

Figure 4: KubeEdge architecture.

In a similar way, the multi-cluster special interest group (SIG) community of Kubernetes works

on the federation v2 project, named kubefed 19 that focuses on integrating multiple clusters

under a federation while providing a generic scheduling engine that, based on policies, can

make decisions on how to place arbitrary Kubernetes API objects. The project is now

deprecated but other open source software such as Karmada20 and Kubesphere21 have

adopted some advanced aspects of kubefed and can be currently used in production.

EdgeX Foundry 22 is a standardized interoperability framework for IoT edge computing. It can

connect with various sensors and devices via different protocols, manage them and collect

data from them, and export the data to a local application at the edge or the cloud for further

processing. EdgeX is designed to be agnostic to hardware, CPU, operating system, and

application environment. It can run natively or run in docker containers. EdgeX Foundry is a

collection of open source micro services that are organized into 4 service layers, and 2

underlying augmenting system services (Figure 6):

19 kubernetes-sigs/kubefed. Kubernetes SIGs, 2021
20 Karmada, https://karmada.io/
21 Kubeshpere, https://kubesphere.io/
22 “EdgeX Foundry | The Open Source Edge Platform”, [Online]. Available: www.edgexfoundry.org

https://karmada.io/
https://kubesphere.io/
http://www.edgexfoundry.org/

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 19/149

● Application services are the means to extract, process/transform and send sensed data

from EdgeX to an endpoint or process of your choice (e.g. major cloud providers, to

MQTT(s) topics, and HTTP(s) REST endpoints)

● Supporting services layer include a wide range of microservices to perform edge

analytics and other duties such as logging, scheduling, and data clean up.

● Core services layer acts as an intermediary between the device layer and application

layer providing information about device connectivity, data flow and configurations.

● The device services are the edge connectors to interact with field level devices. The

device service communicates with the devices, sensors, actuators, and other IoT

objects through protocols native to each device object.

● Security elements of EdgeX Foundry protect the data and control of devices, sensors,

and other IoT objects managed by EdgeX Foundry.

● System management service acts as a point of contact to external management

systems to perform actions in EdgeX platform like START/ STOP/ RESTART and get

metrics on used EdgeX services.

Figure 5: EdgeX Foundry architecture.

Similarly, OpenYurt 23 by Chinese giant Alibaba follows a typical cloud-edge architecture

integrating more powerful edge data centers into Kubernetes clusters. Both implementations

utilize secure tunnels to ensure privacy in heterogeneous device communication. Their

traditional master-slave/worker design, however, offers limited usability in the case of edge

isolation.

23 “An open platform that extends upstream Kubernetes to Edge | OpenYurt.” [Online]. Available:
https://openyurt.io

https://openyurt.io/

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 20/149

Other federated frameworks like KubeFed 24, StarlingX 25 enable autonomy for subnetworks

in case of outages. More specifically, Kubefed comprises a centralized server that distributes

Kubernetes API objects to clusters, allowing for independent management. Similarly, StarlingX

creates independent edge clouds, adopting a layered architecture that tasks a central cloud

with an abstraction of the control plane and employing a number of sub-clouds. The main

drawbacks of StarlingX and KubeFed lie in their inability to federate inter-cluster cooperation.

Other alternatives that could be used to provide the communication layer across services that

run on multiple Kubernetes clusters are Submariner 26 and Istio27 but they do not offer the

capabilities of scheduling which has to be provided separately. Submariner utilizes a Broker

object to orchestrate and synchronize the state information for all clusters to establish

cooperation between Pods and Services belonging to different clusters. Submarines can

handle scenarios where the connection to the cloud is lost, but any shifts in application

requirements or anomalous events, cannot be solved locally as these require a -no longer

available- higher-level decisions entity.

They are also commercial IoT-Edge-Cloud platforms. ClearBlade28 is an edge computing
software enabling enterprises to rapidly engineer and run secure, real-time, scalable industrial
IoT applications.

3.1.1.1.3 More on Kubernetes Scheduler

The decisions regarding where to execute pods are taken by the Kubernetes schedulers. Kube-

scheduler is the default scheduler of Kubernetes and its role is to dispatch pods to nodes based

on a scheduling policy29. Depending on the metric focused by the platform, sometimes the

best allocation is not achieved with such a scheduler. Besides Kubernetes allowing the

developers to modify its default one, there are some available options such other open-source

schedulers for Kubernetes such as Volcano30, YuniKorn 31,32, Safe Scheduler33 and Multiple

ClusterDispatcher34. Each one addresses some of the different focus on scheduling objectives.

Since all the tools mentioned above are based on Kubernetes and its default scheduler, we

will depict its mechanism.

The Kubernetes scheduling process is based on some steps where filtering and scoring are the

two main parts. Basically, before scheduling a pod to a node, the kube-scheduler filters all

24 “Kubernetes Cluster Federation (KubeFed).” May 2023. [Online]. Available: https://github.com/kubernetes-
retired/kubefed
25 “Open-Source Edge Cloud Computing Architecture - StarlingX.” [Online]. Available: https://www.starlingx.io
26 “Submariner (2022).” May 2024. [Online]. Available: https://github.com/submariner-io/submariner
27 Istio, https://istio.io/
28 “ClearBlade: Edge Computing Platform for Enterprise IoT”, [Online]. Available: www.clearblade.com
29 “Kubernetes Scheduler,” Kubernetes. https://kubernetes.io/docs/concepts/scheduling-eviction/kube-
scheduler/ (accessed Apr. 01, 2021).
30 “Volcano.” https://volcano.sh/en/ (accessed Apr. 16, 2021).
31 “Welcome to Apache YuniKorn (Incubating) | Apache YuniKorn (Incubating).” https://yunikorn.apache.org
(accessed Apr. 16, 2021).
32 apache/incubator-yunikorn-core. The Apache Software Foundation, 2021.
33 IBM/kube-safe-scheduler. International Business Machines, 2021.
34 IBM/multi-cluster-app-dispatcher. International Business Machines, 2021.

https://github.com/kubernetes-retired/kubefed
https://github.com/kubernetes-retired/kubefed
https://www.starlingx.io/
https://github.com/submariner-io/submariner
https://istio.io/
http://www.clearblade.com/
https://kubernetes.io/docs/concepts/scheduling-eviction/kube-scheduler/
https://kubernetes.io/docs/concepts/scheduling-eviction/kube-scheduler/
https://volcano.sh/en/
https://yunikorn.apache.org/

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 21/149

available nodes and if there are any, it scores them to select the most valuable one. If the

kube-scheduler algorithm is not the most suitable option for some specific case, Kubernetes

allows developers to change it. Policies35 are the way that Kubernetes implements the filtering

and scoring phases for the scheduler. Anyone can access and change its parameters.

Furthermore, Kubernetes split its scheduling process in stages, for instance, QueueSort, Filter,

Score, Bind, Reserve and others. Each Stage represents a scheduling step, and they are

exposed by Extension Points. Extension Points behaviors are implemented by Plugins36. A

Plugin can be used by one or more Extension Points. In the end, the set of Extension Points

and its Plugins compose a Profile37. A Profile is a mechanism that allows developers to

configure Plugins to implement different scheduling behaviors for different Stages. If not

provided at pod creation, Kubernetes considers its default Profile, the default-scheduler.

There is also the possibility to develop several Profiles and to use them within different pods

as a multiple-scheduler mechanism 38. For instance, an example is the QueueSort Extension

Point. As an Extension Point it defines a scheduling Stage. It provides ordering functions to

sort the pods in the schedule queue. To do so the QueueSort Extension Point uses the

PrioritySort Plugin, which implements the default priority-based sorting. With many others,

QueueSort Extension Point, and consequently the PrioritySortPlugin, compose the default-

scheduler Profile. Since the Kubernetes environment evolves and changes over time, some

resources might become under or over usage. For instance, a very simple example is if a pod

fails, and it is duplicated for fault tolerant reasons. If the failed pod becomes available again

the cluster would be running two instances of the same pod. For this and other reasons, there

is a mechanism to avoid such under or over resources usage named descheduler39. The goal

of the descheduler mechanism is to find pods that can be moved and evict them. This does

not mean that the descheduler will replace the evicted pods, but if needed, that can be done

by the scheduler itself.

3.1.1.1.4 Research oriented platforms and surveys

In the research literature there are also a number of surveys about the IoT-Edge-Cloud

continuum covering various aspects like, taxonomy, algorithms and software 40.

Castellano et al. 41 adopted a distributed approach in which orchestration is implemented at

the application level, with an object being instantiated every time a new application is

initiated. The decisions made by the service defined orchestrator (SDA) are based on policies

35 “Scheduling Policies,” Kubernetes. https://kubernetes.io/docs/reference/scheduling/policies (accessed Apr.
16, 2021).
36 kubernetes-sigs/scheduler-plugins. Kubernetes SIGs, 2021.
37 “Scheduler Configuration,” Kubernetes. https://kubernetes.io/docs/reference/scheduling/config (accessed
Apr. 16, 2021).
38“Configure Multiple Schedulers,” Kubernetes. https://kubernetes.io/docs/tasks/extend-kubernetes/configure-
multiple-schedulers (accessed Apr. 16, 2021).
39 kubernetes-sigs/descheduler. Kubernetes SIGs, 2021.
40 Liu, Fang, et al. "A survey on edge computing systems and tools", Proceedings of the IEEE, 107.8, pp. 1537-
1562, 2019.
41G. Castellano, F. Esposito, and F. Risso, “A Service-Defined Approach for Orchestration of Heterogeneous
Applications in Cloud/Edge Platforms,” IEEE Transactions on Network and Service Management, vol. 16, no. 4,
pp. 1404–1418, Dec. 2019, doi: 10.1109/TNSM.2019.2941639.

https://kubernetes.io/docs/reference/scheduling/policies/
https://kubernetes.io/docs/reference/scheduling/config
https://kubernetes.io/docs/tasks/extend-kubernetes/configure-multiple-schedulers/
https://kubernetes.io/docs/tasks/extend-kubernetes/configure-multiple-schedulers/

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 22/149

provided by a behavior model which produces its output based on system parameters such as

the topology, the application deployment request characteristics etc. This approach is useful

for smaller distributed loads but its usability is limited by the lack of proactive SDA

cooperation. Similarly, Pires et al. 42 adopt a Peer-to-Peer (P2P) decentralized model, where

every node is both an orchestrator and a computational resource. The system can scale easily

by incorporating new volunteer nodes which are rewarded based on a market-oriented

approach. However, it does not support cloud integration and only supports edge systems,

possibly limiting its scope. Mathias et al. 43 solution describes a hybrid system, where a central

aggregator has the overview of all fog nodes while a Fog Orchestrator Agent (FOA), which is

an entity executed at each fog node, manages the underlying infrastructure. The twist of this

method is that the FOA can act as the local orchestrator in the event of communication loss

adding to the adaptability of the system. Nevertheless, the orchestration behavior must be

defined beforehand, instead of being based on dynamic policies.

Alam et al. 44 proposed a centralized system designed for publish-subscribe IoT applications,

with limited dynamicity, that concentrates basic functions like monitoring and orchestration

at the cloud and uses the rest of the network for secondary tasks. Their approach incorporates

a data mining component to detect and log anomalous behavior to provide adaptability. On

the contrary, Santos et al. 45 adopted a hybrid approach for smart city applications. In their

work, they have expanded the ETSI NFV MANO standard to include data monitoring and

analysis functionality that is assigned to a central orchestrator running in the cloud. This entity

is tasked with additional responsibilities including universal decision-making and fog node

management, while the fog orchestrators have a limited scope and manage the local

infrastructure. Their framework adopts the OSFP protocol for inter-layer communication and

utilizes a GUI to allow users to manually configure the infrastructure’s nodes and perform

system parameters updates. Another solution designed for smart buildings is IoTEF 46, in which

distributed orchestration is combined with a unified management interface that allows the

system to be configured at cloud and edge side if the processing power of a node is sufficient.

IoTEF’s focus is on moving processing closer to the source and minimizes latency and network

bandwidth all of which are validated by test results.

42 A. Pires, J. Simão, and L. Veiga, “Distributed and Decentralized Orchestration of Containers on Edge Clouds,” J
Grid Comput, vol. 19, no. 3, p. 36, Sep. 2021, doi: 10.1007/s10723-021-09575-x.
43 M. S. de Brito et al., “A service orchestration architecture for Fog-enabled infrastructures,” in 2017 Second
International Conference on Fog and Mobile Edge Computing (FMEC), IEEE, May 2017, pp. 127–132. doi:
10.1109/FMEC.2017.7946419.
44 M. Alam, J. Rufino, J. Ferreira, S. H. Ahmed, N. Shah, and Y. Chen, “Orchestration of Microservices for IoT Using
Docker and Edge Computing,” IEEE Communications Magazine, vol. 56, no. 9, pp. 118–123, Sep. 2018, doi:
10.1109/MCOM.2018.1701233.
45 J. Santos, T. Wauters, B. Volckaert, and F. De Turck, “Fog Computing: Enabling the Management and
Orchestration of Smart City Applications in 5G Networks,” Entropy, vol. 20, no. 1, p. 4, Dec. 2017, doi:
10.3390/e20010004.
46 A. Javed, J. Robert, K. Heljanko, and K. Främling, “IoTEF: A Federated Edge-Cloud Architecture for Fault-Tolerant
IoT Applications,” J Grid Comput, vol. 18, no. 1, pp. 57–80, Mar. 2020, doi: 10.1007/s10723-019-09498-8.

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 23/149

3.1.1.1.5 Beyond state of the art

Most of the solutions presented previously compose low level systems that require technical

knowledge and expertise to set up and operate. Higher level applications orchestration

systems are also essential to implement the full stack of resource orchestration in the edge

cloud environment, while obfuscating the complex technical details, e.g., behind an

abstraction layer in the form of GUIs or a standardized specification language (e.g. TOSCA),

considering issues like application workflows, application deployment, IoT devices,

authentication etc. Several solutions of that kind have been provided conceptually in

academic papers, with a few of them being developed and deployed as parts of research

projects and/or industry initiatives.

Also, the majority of the solutions presented above, employ some sort of central entity with

varying degrees of authority and responsibilities over the underlying infrastructure. This

centralized architecture is prone to node and connection outages. On the other hand, some

of the distributed environments also pose the risk of connection outages and node isolation,

offering in practice limited autonomy.

A new distributed architecture is necessary to ensure that distributed resources can operate

autonomously without the need of a centralized aggregator. The aim of EMPYREAN is to

implement a distributed management fabric, consisting of sets of resources, IoT devices and

robots, namely Associations that are managed by Aggregators. Each Association must be able

to operate autonomously at a satisfactory level when connectivity to remote cloud resources

or other Associations is impossible or undesirable. At the same time, each Association must

optimally utilize its heterogeneous resources and achieve inter-Association collaboration,

when necessary, through Aggregators’ communication to create a collaborative continuum

management fabric.

3.1.1.2 Distributed Trust Management

The EMPYREAN project aims to implement a distributed approach to trust management,

focusing on the user perspective and Self-Sovereign Identity (SSI), as outlined by C. Allen47 and

supported by initiatives such as the European Self Sovereign Identity framework (eSSIF)48.

Traditional centralized access control systems, which depend on a trusted third party, face

significant drawbacks, including high trust costs and the risk of a single point of failure. Recent

studies suggest utilizing decentralized identifiers (DIDs)49 and verifiable credentials (VCs)50 as

a highly distributed and lightweight alternative to traditional authentication methods.

Blockchain technology can replace the registration authority51 and serve as an authorization

47 C. Allen, "Decentralized Identity: What’s Next?" http://www.lifewithalacrity.com/2016/04/the-path-to-self-
sovereign-identity.html
48 European Self Sovereign Identity framework (eSSIF)
https://www.eesc.europa.eu/sites/default/files/files/1.panel-_daniel_du_seuil.pdf
49 DIDs and their applications in decentralized systems https://w3c.github.io/did-core/#did-document
50 Verifiable Credentials standard https://www.w3.org/TR/vc-data-model
51 A. Mühle et al., "A blockchain-based approach for the registration authority"
https://doi.org/10.1016/j.cose.2018.10.002

http://www.lifewithalacrity.com/2016/04/the-path-to-self-sovereign-identity.html
http://www.lifewithalacrity.com/2016/04/the-path-to-self-sovereign-identity.html
https://w3c.github.io/did-core/#did-document
https://www.w3.org/TR/vc-data-model
https://doi.org/10.1016/j.cose.2018.10.002

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 24/149

mechanism for distributed services, as seen in mobile applications targeting mobile cloud

services52. For example, smart contracts can dynamically update access permissions and

reduce storage overhead by recording users' access privileges on different service providers

within a single blockchain transaction.

Further advancements include a proof of concept for a DID registry and a distributed Policy

Decision Point (PDP) and Policy Enforcement Point (PEP)53. These components facilitate fine-

grained, decentralized security policy decisions through languages like Extensible Access

Control Markup Language (XACML)54, allowing a PEP to query PDPs for authorization decisions

in a highly distributed manner.

In managing cryptographic keys within the cloud-to-edge continuum, a Distributed Key

Management and Authentication (DKMA) solution can address issues that centralized key

distribution methods cannot55. Cloud-based Key Management Systems (KMSs) such as AWS56

KMS, Microsoft Azure Key Vault57, and Google Cloud KMS58 offer scalable and cost-effective

services that can be integrated easily into cloud environments. Additionally, containerization

is emerging as a popular deployment model for KMS solutions, providing greater flexibility and

portability across various environments.

3.1.1.2.1 Beyond state of the art

The EMPYREAN project advances beyond the current state of the art in distributed trust

management by integrating decentralized identifiers (DIDs) and verifiable credentials (VCs)

with distributed ledger technologies (DLTs) to create a robust, transparent, and scalable trust

management framework. Unlike traditional centralized systems, this approach leverages the

immutability and transparency of blockchain technology to ensure verifiable and tamper-

proof records of identity and access transactions. Additionally, the use of attribute-based

credentials and zero-knowledge proofs (ZKPs) enhances privacy by allowing secure

authentication and authorization without disclosing unnecessary personal information. These

innovations collectively contribute to a more secure, user-centric, and privacy-preserving trust

management system that is capable of meeting the complex requirements of modern

distributed computing environments. The integration of these advanced cryptographic

techniques and decentralized technologies positions, brings EMPYREAN at the forefront of

trust management innovation, providing a comprehensive solution that addresses the

challenges of scalability, security, and privacy in a heterogeneous IoT-edge-cloud continuum.

52 Yu L. et al., "Smart contracts for mobile cloud services" https://doi.org/10.3390/s23031264
53 N. Fotiou et al., "Proof of concept for a DID registry and distributed PDP/PEP"
https://doi.org/10.1145/3338507.3358622
54 G. Peterson, "Decentralized security policy decisions with XACML"
55 S. Kahvazadeh et al., "Distributed Key Management and Authentication (DKMA) solution"
https://doi.org/10.1109/CIoT.2018.8627114
56 AWS Key Management Service (KMS) https://aws.amazon.com/kms
57 Microsoft Azure Key Vault https://azure.microsoft.com/en-us/services/key-vault
58 Google Cloud KMS https://cloud.google.com/kms

https://doi.org/10.3390/s23031264
https://doi.org/10.1145/3338507.3358622
https://doi.org/10.1109/CIoT.2018.8627114
https://aws.amazon.com/kms
https://azure.microsoft.com/en-us/services/key-vault/
https://cloud.google.com/kms

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 25/149

3.1.1.3 Secure Shared Data Management

3.1.1.3.1 Blockchain-based Data Sharing

Blockchain technology offers an immutable and decentralized method for sharing and

managing data. It has found applications in various fields, including finance, healthcare, and

energy sectors59. Utilizing a distributed data model based on Blockchain enhances security,

boosts performance efficiency, and provides numerous benefits for data management and

sharing. These benefits include heightened security, untampered data streams, integrity, and

increased trust among stakeholders60. The absence of centralized data management ensures

data security and system integrity, eliminating the risk of a single point of failure.

Distributed ledger technologies have recently been adopted across a broad range of domains,

from data governance to specific sectors like agriculture, healthcare, and transportation 59,60.

Blockchain serves as a digital ledger of transactions, replicated and distributed across the

entire network. It provides a decentralized system for managing data and transactions within

a peer-to-peer network. Unlike traditional data sharing through Web 2.0 clouds, this

decentralized system segments data into blocks, each secured against unauthorized

modifications. Any data change must be validated by all peers or miners within the network

using advanced cryptographic techniques.

3.1.1.3.2 Beyond state of the art

In the EMPYREAN project, advancements will push the boundaries of current blockchain

technology by integrating it into a highly innovative, collaborative IoT-edge-cloud continuum.

The project will establish a distributed trust management framework, utilizing blockchain to

ensure continuous, dynamic trust assessment and validation. This approach will enhance the

security, efficiency, and reliability of data sharing across IoT devices, edge resources, and cloud

platforms. By minimizing data reconstruction overheads and improving small message

performance, EMPYREAN aims to create a seamless, resilient, and scalable infrastructure for

future hyper-distributed applications and services.

3.1.1.3.3 Trustworthy Data Sharing

Trustworthiness, particularly within the context of IoT, such as industrial Internet/Industry 4.0

and autonomous systems, has been a significant topic of discussion. The Industrial Internet

Consortium (IIC) has established the foundation of a Trustworthiness model through several

papers. This IIC-based model defines Trustworthiness as a combination of System

Characteristics, including Security, Reliability, Resilience, Privacy, and Safety, as illustrated by

59 A. A. Monrat, O. Schelén and K. Andersson, “A survey of blockchain from the perspectives of applications,
challenges, and opportunities,” IEEE Access, vol. 7, p. 117134–117151, 2019.
60 M. A. Khan and K. Salah, “IoT security: Review, blockchain solutions, and open challenges,” Future generation
computer systems, vol. 82, p. 395–411, 2018.

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 26/149

the Trustworthiness Radar61. Discussions with the Japanese Robot Revolution Initiative and

the German Platform Industry 4.0 have extended these characteristics, incorporating Integrity

and considering a selection of other system characteristics, ultimately advancing

standardization efforts 62,63.

In parallel, the HORIZON 2020 project SecureIoT formalized the original IIC model, introducing

a staggered evaluation of a weighted sum of characteristics, consisting of further weighted

sums of attributes and the degree of fulfillment of related properties. Initial metrics for

quantification and measurement were outlined in64. Trust levels, akin to the security levels

described in IEC 62443, illustrate the complexity of specifying Trustworthiness, as it depends

on intended use and selected measures. These levels can be seen as maturity levels of the IoT

system related to each system characteristic. The project highlighted that a technical

evaluation of Trustworthiness requires further research on quantification and measurement

standards, policies, and legal descriptions in application areas.

Another research stream considered Trustworthiness in the context of autonomous systems.

In the area of autonomous vehicles, non-functional aspects like Availability, Usability, Ethics,

Legal Compliance, and Robustness were introduced65. These "emerging" characteristics are

not implemented within autonomous systems but should be included in a Trustworthiness

concept prior to system implementation.

Whether as a basis for continuous evaluation of measurable Trustworthiness or as part of pre-

development analysis, the objectives of the characteristics representing policies need

alignment, and their interdependencies must be conflict-free. Moreover, the selection of

characteristics, attributes, and properties should be done carefully and potentially

dynamically.

3.1.1.3.4 Beyond state of the art

The quantification and evaluation of characteristics attributes and properties should

incorporate existing trust assurance methods, such as standards or compliance guidelines.

This involves specifying appropriate metrics, which might include monitoring device behavior

rather than adhering to fixed catalogs. This task relates to T3.1 Distributed Trust Management,

Trust Propagation, and Verification, and T3.2 Data Management for Distributed Data

61 J. Neises and T. Walloschke, “Trustworthiness as Key Enabler for Connected Services in Mobility,” 12 February
2021. [Online]. Available: https://standards.ieee.org/wp-content/uploads/import/documents/other/e2e-
presentations/feb-2021/02-Trustworthiness_as_Key_Enabler_Connected_Services_in_Mobility.pdf.
62 EFFRA Innovation Portal - ISO/IEC 30149 - Internet of things (IoT) -Trustworthiness framework
https://portal.effra.eu/result/show/4086
63 ISO/IEC AWI 30149 Internet of things (IoT) — Trustworthiness framework
https://www.iso.org/standard/53269.html
64 T. W. C. G. J. Neises and B. Popovici, “Trustworthiness as facilitator of Policy and Access Management in Supply
Chains,” 12 February 2021. Available:https://www.plattform-
i40.de/PI40/Redaktion/DE/Downloads/Publikation/2021-conference-volume-industrie40-
security.pdf?__blob=publicationFile&v=5.
65 H. J. Putzer and E. Wozniak, “Trustworthy Autonomous/Cognitive Systems – A Structured Approach,”
Whitepaper, 2020.

https://standards.ieee.org/wp-content/uploads/import/documents/other/e2e-presentations/feb-2021/02-Trustworthiness_as_Key_Enabler_Connected_Services_in_Mobility.pdf
https://standards.ieee.org/wp-content/uploads/import/documents/other/e2e-presentations/feb-2021/02-Trustworthiness_as_Key_Enabler_Connected_Services_in_Mobility.pdf
https://portal.effra.eu/result/show/4086
https://www.iso.org/standard/53269.html
https://www.plattform-i40.de/PI40/Redaktion/DE/Downloads/Publikation/2021-conference-volume-industrie40-security.pdf?__blob=publicationFile&v=5
https://www.plattform-i40.de/PI40/Redaktion/DE/Downloads/Publikation/2021-conference-volume-industrie40-security.pdf?__blob=publicationFile&v=5
https://www.plattform-i40.de/PI40/Redaktion/DE/Downloads/Publikation/2021-conference-volume-industrie40-security.pdf?__blob=publicationFile&v=5

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 27/149

Processing. Additionally, mechanisms for resolving non-matching policies must be defined.

Metrics, policies, and conflict resolution methods likely depend on business requirements and

may vary across different use cases. These challenges will be addressed within the EMPYREAN

project.

3.1.1.4 Distributed Data Communication Management

An increasing number of systems span from the data-center down to the microcontroller and

need to smoothly operate across this continuum composed of extremely heterogeneous

network technologies and computing platforms. Building these systems today is quite

challenging due to limitations of the existing technological stacks that are explained below.

Connectivity Islands: Existing communication protocols were designed to work on a very

specific use case and in a way address a “connectivity island.” As an example, the Data

Distribution Service (DDS) 66was designed to provide a pub/sub protocol that works best for

applications running on resourceful hardware connected by multicast-enabled (UDP/IP) wired

Local Area Network (LAN). Another assumption in DDS’ design is that peer-to- peer

communication is quintessential and most of the applications consume data from every other

application.

At the opposite side of the spectrum we have MQTT,67 which was designed to support pub/sub

via a client to broker architecture over TCP/IP networks. What is interesting is that both DDS

and MQTT provide pub/sub. Yet, their implementations force onto the user very specific

communication topologies that are completely orthogonal to the concept of pub/sub. This

introduces architectural inflexibility and scalability issues. As an example, DDS is notoriously

hard to work with and scale on a Wide Area Network (WAN) as a consequence of its (flat)

peer-to-peer only model and its reliance on multicast IP. MQTT, on the other hand, makes

communicating across a WAN easy, as far as one can accept to have a hub-and-spoke

architecture and a topology not ideal for several edge applications.

But things are even worse. While Message Queueing Telemetry Transport (MQTT) is often

referred-to as a lightweight protocol, it relies on TCP/IP and this is not always available nor

desirable for constrained hardware and constrained networks. Thus, other protocols are often

used to deal with constrained hardware, such as Constrained Application Protocol (CoAP) 68

At this point, the legitimate question to ask is: how can we deal with systems that include

constrained hardware and networks, require high-performance peer-to-peer on the edge, and

need to efficiently scale over the Internet? Thus far, the solution has been to use different

protocols on different segments of the system and integrate them together hoping to have

some meaningful end-to-end semantics. This is tedious, error-prone and inefficient. A

66 “The data distribution service,” 2017. [Online]. Available: http://omg.org/spec/dds
67 OASIS, “Mq telemetry transport (mqtt) v3.1.1 protocol specification,” OASIS, Tech. Rep., October 2014.
68 Z. Shelby, K. Hartke, and C. Bormann, “The Constrained Application Protocol (CoAP),” RFC 7252, Jun. 2014.
[Online]. Available: https://www.rfc-editor.org/info/ rfc7252

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 28/149

consequence of the inability of established protocols to deal with the cloud-to-device

continuum – they weren’t simply designed for it.

Data in Motion and Data at Rest: Pub/Sub protocols have emerged as the technology of

choice to deal with data in motion, while databases as the technology of choice to deal with

data at rest. These two technology ecosystems are intimately related. Data in movement

needs, at some point, to be stored, thus becoming at rest, and eventually retrieved. Yet, from

a programmer perspective there is no unified API to deal with both of them. Additionally,

while pub/sub features location transparency, databases are location centric. In other words,

when expressing a subscription in a pub/sub system one doesn’t need to know the location of

the publisher(s), yet, when submitting a query it is required to know the location of the

database. As a consequence, either one has to keep all the data in a central location – like the

solutions provided by cloud storage – or has to deal with the complexity of tracking data’s

location. This is a major challenge for edge applications. As for these applications it is key to

have data stored in a distributed manner, to avoid the cost, including energetic cost, of

shipping it to the cloud and to reduce the latency to retrieve it.

Computations: While distributed applications can be modelled as data flows, with

computations being triggered only by data, it is rare that a distributed application is entirely

based on this paradigm. Often it is convenient to have services and be able to trigger, and

invoke their execution. This in turn requires reliance on yet another technology ecosystem

that supports request/reply. Which means that in turn the developer needs to learn yet

another set of abstractions and APIs. Additionally, existing request/reply frameworks are host-

centric, making it hard to deal with load-balancing, and fault-tolerance.

3.1.1.4.1 Beyond state of the art

EMPYREAN’s decentralized and distributed data management stack proposes a single solution

for data distribution that can work efficiently from the server-grade cloud data-center to the

embedded micro-controller and extremely constrained networks. Such data fabric should

bridge communications between the enterprise and the embedded world. Additionally, data-

centric message protocols enable the user to express interest in a given topic, without any

concern about the location of the data source. This characteristic is called location

transparency. EMPYREAN’s data fabric proposed is agnostic to the underlying technology,

implementing a networking layer capable of running above a Data Link, Network, or Transport

Layer from the OSI stack. Having a custom routing and networking protocol, enables

EMPYREAN to reduce energy consumption by exploiting decentralized and local

communication i.e. peer-to-peer, brokered, client-server, without having to send all data

through a centralized data-center in the cloud.

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 29/149

3.1.1.5 Secure Edge Data Storage

Secure and highly available data storage solutions are of utmost importance for both

businesses and home users. In the context of data storage, security should be linked to the

ability of the storage provider to protect data from malicious actors who seek to compromise

either its confidentiality or integrity. Meanwhile, availability relates to the user's ability to

retrieve and use data when desired. A common scenario when storing data is to use a cloud

provider such as Amazon Web Services, Google Cloud or Microsoft Azure. As part of their

service portfolio, they support uploading and downloading data with specific guarantees on

data storage reliability.

However, using a single cloud location results in three key challenges. First, when it comes to

security, users are generally concerned about their data privacy, but tend to make decisions

about data sharing and consents based on trust and perceived relation between costs and

benefits69. This phenomenon could potentially lead users to trust an untrustworthy provider,

causing privacy issues. Second, as described in Amazon Web Services (AWS) documentation70,

data availability is often measured as a percentage of uptime over a period of time. At some

point, downtime will occur and users' data will become unavailable. Third, long-term data

reliability (also referred to as durability) is a common concern for applications that utilize cloud

storage. While large-scale permanent data loss events are rare, they are not without

precedent. For example, several companies who stored their data solely in OVH's Strasbourg

data centers experienced data loss as part of a fire event in 202171.

Traditionally, multi-region replication has long been the standard solution to increase data

availability and reliability. However, it does not provide additional security benefits and it

comes at a significantly greater storage cost compared to using a single cloud location.

Furthermore, it does not protect against some of the outages providers experience. Custom

solutions that replicate data across different providers are better in this regard, but typically

are cost-prohibitive due to the need to move data to and between different clouds. To

alleviate this problem, SkyFlok distributes erasure coded versions of user data to multiple

cloud providers and locations. Thus, no single provider or location has sufficient information

to recover the original contents. In addition, SkyFlok uses a novel erasure coding technique

called Random Linear Network Coding (RLNC), which has additional privacy benefits due to

the random coefficients used to generate the erasure coded fragments72. Compared to using

69 Andree E. Widjaja, Jengchung Victor Chen, Badri Munir Sukoco, and Quang-An Ha. 2019. Understanding users’
willingness to put their personal information on the personal cloud-based storage applications: An empirical
study. Computers in Human Behavior 91 (2019), 167–185. https://doi.org/10.1016/j.chb.2018.09.034
70 Amazon Web Services. 2023. Reliability Pillar - AWS Well-Architected Framework.
https://docs.aws.amazon.com/wellarchitected/latest/reliability-pillar/reliability.html
71 Law Office of S. Grynwajc, PLLC, 2023, OVH must pay more than 400,000 € after a fire destroyed its data
centers – why this decision is important for hosting providers hosting EU personal data?,
https://www.transatlantic-lawyer.com/ovh-must-pay-more-than-400000-e-after-a-fire-destroyed-its-data-
centers-why-this-decision-is-important-for-hosting-providers-hosting-eu-personal-data/
72 Alejandro Cohen, Rafael G. L. D’Oliveira, Salman Salamatian, and Muriel Médard, 2021, Network Coding-Based
Post-Quantum Cryptography. IEEE Journal on Selected Areas in Information Theory 2, 1 (2021), 49–64.
https://doi.org/10.1109/JSAIT.2021.3054598

https://doi.org/10.1016/j.chb.2018.09.034
https://docs.aws.amazon.com/wellarchitected/latest/reliability-pillar/reliability.html
https://www.transatlantic-lawyer.com/ovh-must-pay-more-than-400000-e-after-a-fire-destroyed-its-data-centers-why-this-decision-is-important-for-hosting-providers-hosting-eu-personal-data/
https://www.transatlantic-lawyer.com/ovh-must-pay-more-than-400000-e-after-a-fire-destroyed-its-data-centers-why-this-decision-is-important-for-hosting-providers-hosting-eu-personal-data/
https://doi.org/10.1109/JSAIT.2021.3054598

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 30/149

a single cloud, multi-cloud solutions force malicious actors to compromise the security of

multiple providers and locations, a significantly greater challenge.

3.1.1.5.1 Beyond the state of art

To improve data access latency and further reduce the need to trust cloud providers, SkyFlok

has been extended in the SERRANO project 73 to support edge storage locations. By supporting

edge locations, prospective users are able to choose between different storage policies. They

can store data either in the cloud, on the edge, or using both through a hybrid approach. In all

cases, they can specify the exact locations as well as the desired level of reliability. This feature

set that advances the state of the art has been proven to be effective through evaluation

performed on a prototype implementation. In EMPYREAN, CC will continue to increase the

maturity of this solution.

Traditional storage solutions have relied on a system of tiers to provide users with different

choices to trade off availability, reliability, performance, storage and access costs. Through the

use of customizable erasure coding, and support for edge-cloud hybrid storage, we do away

with the discrete tier system. Instead, users are provided with a seamless, tierless storage

continuum. By greatly increasing the granularity of decisions with which the aforementioned

trade-offs can be approached, flexibility is gained which translates into a system that is better

able to meet users’ requirements.

The current extension of SkyFlok goes beyond what competitors offer through the

aforementioned features. These features are achieved through the careful coordination of the

SkyFlok backend. This is a highly redundant cloud-hosted system. Beyond the many benefits,

it unfortunately comes with some limitations. Should the cloud become unavailable or the

user’s internet connection fail, data cannot be reached even if it is stored exclusively at the

edge. To get around this issue, we propose a further extension to SkyFlok which allows

temporary autonomous operation at the edge. To further increase user confidence, we plan

to offer users the ability to supply and store encryption keys locally. While compromising

reliability to some degree and placing some security burdens on the users’ shoulder, the

benefits are clear. Commercial cloud storage solutions such as Tresorit74 offer comparable

features.

3.1.1.6 RDMA for Edge Nodes Supporting IoT-based Sensor Data

Remote Direct Memory Access provides a lower CPU codepath length for network I/O that

provides significant performance gains. This is achieved by offloading the network Transport

layer to an accelerator onto the NIC and allowing the NIC peripheral to directly read/write into

the application address space buffers. In the described context, the CPU merely orchestrates

the network I/O transfers, by simply initiating transfer requests and checking for their

completions. Notably, the most popular RDMA API (named Verbs) allows developers to

implement in a straightforward manner the Proactor Software model where the request path

73 https://ict-serrano.eu/
74 "Tresorit: Encrypted Cloud Storage for Businesses." Available: https://tresorit.com/

https://tresorit.com/
https://tresorit.com/

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 31/149

is totally decoupled from the completion path, which enables the application to generate I/O

requests in a pipelined manner. The approach provides significant performance gains,

especially for small-sized I/O accesses because it favors request and completion aggregation

and their handling in batches, at all levels of the network stack.

Given the described RDMA characteristics, it is a good fit to act as the backhaul network fabric

that connects an edge node to other edge nodes or centralized cloud compute resources. An

IoT edge node may collect a storm of small messages, which can be transported towards

centralized compute resources with less jitter and as they are captured effectively forming a

distributed pipeline with the compute nodes.

RDMA I/O is popular in HPC applications and typically underpins AI training on large clusters

where latency and bandwidth performance are of paramount importance. Since RDMA

relieves the CPU from network I/O tasks it can provide a significant boost on resource

constraint devices, which can dedicate more compute resources to actual data manipulating

tasks rather than having to deal with data transfer tasks as well. For a number of reasons,

which are primarily challenging programmability and NIC hardware dependency, leveraging

RDMA in IoT edge node deployments is currently largely unexplored.

3.1.1.6.1 Beyond the state of art

While RDMA performance gains is critical for efficient edge node operation going forward, the

RDMA verbs API is very low-level and difficult to integrate with IoT pipelines or application

specific appliances (e.g. FPGA-based edge devices). For the former case the software-based

integration of RDMA requires an interface that is typically used for communication in IoT like

pub/sub communication. In the latter case a hardware interface is required that provides the

right streaming interface abstraction that can introduce network I/O as a pipeline extension

to the existing hardware operation. At EMPYREAN we introduce the flexdriver framework for

RDMA that provides the right interface abstractions to integrate RDMA operation in IoT edge

nodes be it hardware or software frameworks.

The goal is to leverage RDMA and accelerate existing communication frameworks that are

typically used in IoT deployments like pub/sub brokers, by changing/extending appropriately

the internals, while using the same API that allows for easy integration with existing IoT

applications.

3.1.1.7 Cross-platform and Lightweight Container Packaging

The convergence of IoT, edge, and cloud infrastructures necessitates efficient mechanisms for

workload execution, particularly for data analytics and AI applications. This drives the need

for lightweight containerization solutions that maximize performance and minimize overhead.

Unikernels have emerged as a compelling option due to their minimalist philosophy. Unlike

traditional operating systems, unikernels compile applications directly into single-purpose

images with only the necessary resources, which enhances security and performance

efficiency. Notable examples include MirageOS and OSv, which have demonstrated

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 32/149

substantial improvements in boot times and memory usage. This article75 provides empirical

evidence supporting their benefits in cloud-native environments. Unikraft is an advanced,

flexible unikernel development framework designed to simplify and optimize the process of

creating unikernels. Developed under the auspices of the Xen Project, Unikraft leverages a

component-based architecture, which allows developers to selectively include only the

minimal set of libraries and runtime components that their application necessitates. This

modular design ensures that unikernels built with Unikraft are highly optimized both in terms

of resource usage and performance, which is particularly advantageous for IoT, edge, and

cloud environments. Unikraft distinguishes itself through several key innovations. Firstly, its

configuration and build process is highly automated, significantly reducing the complexity

associated with creating and maintaining unikernels. Unikraft supports a diversity of platforms

and architectures, including x86, ARM, and various hypervisors, thereby facilitating broad

applicability across different hardware and virtualization scenarios. A study by Kuenzer et

al.76, presents benchmarking results showcasing Unikraft-built unikernels' superior

performance metrics compared to traditional VMs and even some other unikernel solutions.

The modular nature of Unikraft allows for reductions in boot times and memory footprints,

while still providing competitive execution speeds—characteristics that are essential for

latency-sensitive applications in edge computing and resource-constrained IoT devices.

Furthermore, Unikraft's ecosystem supports popular programming languages and runtime

environments, such as C, C++, Python, and Go, enhancing its usability for a wide range of

applications from microservices to complex AI workloads. This support is crucial for

developers needing to port existing applications to unikernel environments with minimal re-

engineering efforts, thus expediting deployment and scalability in heterogeneous IoT-edge-

cloud ecosystems.

Open Container Initiative (OCI) containers prioritize standardization and compatibility across

various platforms. OCI containers, such as those implemented through Docker and

Kubernetes, encapsulate applications along with their dependencies. This guarantees that a

given container will run consistently regardless of the underlying environment. This approach

not only enhances cross-platform portability but also facilitates orchestration and

management at scale, which is particularly beneficial for managing distributed AI workloads

and data analytics tasks across hybrid IoT-edge-cloud ecosystems. Felter et al.77, illustrate how

these containers can efficiently handle intensive computational tasks, making them a

pragmatic choice for modern data workflows.

75 Manco, V., Arnal, G., Brandan, C., Macialek, D., Martin, B., & Watson, I. A. (2018). Unikernels: Library Operating
Systems for the Cloud. ACM Computing Surveys (CSUR), 51(6), 134.
76 Kuenzer, S., Wojcik, M., Girol, T., Pacher, M., Lankes, S., Beri, P., & Fritsch, S. (2021). Unikraft: Fast, Specialized
Unikernels the Easy Way. ASPLOS '21: Proceedings of the ACM International Conference on Architectural Support
for Programming Languages and Operating Systems.
77 Felter, W., Ferreira, A., Rajamony, R., & Rubio, J. (2015). An updated performance comparison of virtual
machines and Linux containers. 2015 IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS), Philadelphia, PA.

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 33/149

Complementing these technologies, the NIX functional package manager offers a declarative

approach to software deployment, enabling reproducibility and consistency in hybrid

infrastructures. NIX's purely functional environment ensures that system dependencies are

isolated, reducing the risk of "dependency hell" and enabling seamless transitions between

development and production environments. This is particularly relevant for AI applications

that often demand specific library versions and configurations. Research, such as this article78

by Dolstra et al., provides a comprehensive overview of how NIX can streamline software

management and ensure that applications deployed across different stages of the IoT-edge-

cloud continuum maintain their integrity and performance. This functional paradigm aligns

well with the modular and microservices architectures prevalent in modern IoT and edge

computing frameworks.

3.1.1.7.1 Beyond state of the art

In the context of EMPYREAN, we are going to propose techniques making use of NIX functional

package manager to efficiently build unikernel environments based on OCI standards. This will

enable a functional, reproducible way to build OCI-based unikernel images. In our studies we

will also consider applications needing to be executed on accelerators but since unikernels do

not have this ability yet we need to consider techniques enabling the separation in different

images.

3.1.2 Decentralized Intelligence and AI-enabled Application

Development and Deployment

3.1.2.1 IoT-Edge-Cloud resource orchestration

IoT-edge-cloud resource orchestration algorithms are a vibrant research area, relying on

multi-objective optimization79,80 and encompassing a diverse set of techniques, including

heuristic81, metaheuristic82, and machine learning83 based algorithms that aim at handling the

increased complexity of resource orchestration across multi-domain heterogeneous

environments. Additional challenges include: the infrastructure size, its dynamicity, scalability

and energy efficiency issues, along with other conflicting optimization criteria that in many

78 Dolstra, E., Löh, A., & Pierron, O. (2010). NixOS: A Purely Functional Linux Distribution. Journal of Functional
Programming, 20(5-6), 577-615.
79 H. Yuan, “Energy and performance-optimized scheduling of tasks in distributed cloud and edge computing
systems,” 2020.
80 Luc Angelelli, Anderson Andrei Da Silva, Yiannis Georgiou, Michael Mercier and Gregory Mounié Towards a
Multi-objective Scheduling Policy for Serverless-based Edge-Cloud Continuum. CCGrid2023, May 2023
81 A. M. Maia, Y. Ghamri-Doudane, D. Vieira, and M. F. de Castro, “Optimized placement of scalable iot services
in edge computing,” in 2019 IFIP/IEEE Symposium on Integrated Network and Service Management (IM), 2019,
pp. 189–197.
82 S. Wang, Y. Li, S. Pang, Q. Lu, S. Wang, and J. Zhao, “A Task Scheduling Strategy in Edge-Cloud Collaborative
Scenario Based on Deadline,” Sci. Program., vol. 2020, p. e3967847, Mar. 2020, doi: 10.1155/2020/3967847.
83 Zheng, T., Wan, J., Zhang, J. et al. Deep Reinforcement Learning-Based Workload Scheduling for Edge
Computing. J Cloud Comp 11, 3 (2022).

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 34/149

cases lead to a very large solution space. Several related surveys are available in this area.

Asuncao et al. 84 studied resource management challenges regarding hybrid deployments

including IoT and Edge. They consider that managing task scheduling and allocation of

heterogeneous resources along with adapting an application to current resource and network

conditions will require the development of new schedulers and that allocations must be

dynamic enough to support migration.

3.1.2.1.1 Typical Methodologies

The most prevalent methods to tackle the resource scheduling problem have been

categorized as static approaches, including heuristics, mathematical models (Euclidean

formulation), mathematical optimization-based methods such as Integer Linear Programming

(ILP), Mixed Linear Programming (MLP), etc. Although exact techniques such as Branch and

Bound can obtain the optimal solutions to ILP and MILP formulated problems, they are not

well-suited for the extensive search space of large-scale edge-cloud infrastructures and heavy

IoT workloads. Hence, heuristic algorithms perform comparatively better at finding near-

optimal solutions in minimal time.

The authors in 85 aim to maximize the energy efficiency of IoT devices, by offloading

computations to the edge-cloud hierarchy. Utilizing a simple yet effective multi-criteria

decision-making technique named TOPSIS (Technique for Order of Preference by Similarity to

Ideal Solution), they aim to maximize a weighted combination of the energy and time savings

offered by task-offloading. At each step, the mechanism selects the computing node which is

the closest to the positive ideal solution and furthest from the negative ideal solution,

according to the specified weighted objective. In 86, a QoE-aware placement policy for IoT

applications in fog environments is proposed. Employing two fuzzy logic models, the authors

evaluate application expectations and fog node performance and feed a linear optimization

mechanism to perform the placement.

Authors in 87 delves into the problem of microservice placement in the edge-cloud continuum,

utilizing network devices along with standard computing nodes for task processing, in a

concept known as “in-network computing”. The objective is the minimization of the total cost,

encompassing communication, operational and deployment expenses. The study also

considers potential node-failures within the infrastructure. An ILP is presented and

subsequently proven NP-hard by reduction to the Generalized Assignment Problem (GAP). A

best-fit heuristic is developed to tackle the prolonged execution times for more complex

84 M. D. de Assuncao, A. da Silva Veith, and R. Buyya, “Distributed data stream processing and edge computing:
A survey on resource elasticity and future directions,” J. Netw. Comput. Appl., vol. 103, pp. 1–17, 2018.
85 G. Castellano, F. Esposito, and F. Risso, “A Service-Defined Approach for Orchestration of Heterogeneous
Applications in Cloud/Edge Platforms,” IEEE Transactions on Network and Service Management, vol. 16, no. 4,
pp. 1404–1418, Dec. 2019, doi: 10.1109/TNSM.2019.2941639.
86 A. Pires, J. Simão, and L. Veiga, “Distributed and Decentralized Orchestration of Containers on Edge Clouds,” J
Grid Comput, vol. 19, no. 3, p. 36, Sep. 2021, doi: 10.1007/s10723-021-09575-x.
87 M. S. de Brito et al., “A service orchestration architecture for Fog-enabled infrastructures,” in 2017 Second
International Conference on Fog and Mobile Edge Computing (FMEC), IEEE, May 2017, pp. 127–132. doi:
10.1109/FMEC.2017.7946419.

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 35/149

configurations. Li et al. 88 proposed a hybrid computing system for smart factories and Industry

4.0 by proposing a four-level architecture that integrates the historical heritage of

computational resources. Furthermore, a two-phase resource scheduling strategy is

introduced; the selection of edge computing servers is done by taking into consideration

different factors corresponding to low real-time constraints in phase 1, whereas phase 2

manages cooperation amongst multiple edge servers in order to construct an Edge Server

Cluster (ESC). To tackle the excessive network traffic generated by IoT ecosystems, the work

in 89 proposes a dynamic master-slave SDN controller scheme, with a load-balancing approach

to intelligently allocate network resources and mitigate congestions and failures. A

sophisticated mechanism ranks the slave controllers based on a weighted combination of key

metrics such as their current CPU and memory utilization. Based on the mechanism’s

decisions, the switches from the IoT network are dynamically assigned to the selected slave

controllers. The migration of the switches between controllers is modelled as a binary

knapsack problem, where slave controllers represent containers, while switches in local IoT

networks are regarded as the objects.

3.1.2.1.2 AI-based solutions

ML-based techniques utilized in the context of optimizing resource allocation include k-means

clustering, Decision Tree Regression (DTR), Multiple Linear Regression and Naïve Bayes.

However, the latest works are using Reinforcement Learning (RL)-based techniques due to the

need to dynamically adapt to the ever-changing IoT-based scenarios. The main benefit lies in

the fact that RL-based techniques such as Q-Learning and State-Action-Reward-State Action

(SARSA) do not require any dataset for training the model. Furthermore, such techniques

operate iteratively with the goal of maximizing rewards for the agent, which takes actions

based on the environmental state. The drawbacks such as the inability to handle high-

dimensional state information regarding incoming IoT tasks, can be resolved by utilizing

techniques that include Deep Reinforcement Learning (DRL), Deep Q-Learning (DQN) and

Deep Neural Network (DNN).

Αuthors in 90 examine the problem of edge-cloud cooperative content-delivery in

asymmetrical Internet of Vehicles (IoV) environments, with the aim of minimizing total

network delay by providing optimal computing, caching and communication resource

allocation. To fetch a targeted file, the autonomous vehicle first communicates its request

with the access Base Station (BS). If the content is cached in the BS, it immediately replies,

otherwise the request is forwarded to adjacent BSs and the cloud. The delay that includes

waiting and serving latencies at a node, is modeled based on queueing theory, and specifically

88 E. Al-Masri et al., “Energy-Efficient Cooperative Resource Allocation and Task Scheduling for Internet of Things
Environments”, Internet of Things, vol. 23, pp. 100832–100832, 2023, doi:
https://doi.org/10.1016/j.iot.2023.100832.
89 R. Mahmud, S. N. Srirama, K. Ramamohanarao, R. Buyya, “Quality of experience (qoe)-aware placement of
applications in fog computing environments”, Journal of Parallel and Distributed Computing, vol. 132, pp 190–
203, 2019, doi: https://doi.org/10.1016/j.jpdc.2018.03.00
90 Ali, S.O. et al., “CaMP-Inc: Components-aware microservices placement for in-network computing cloud-edge
continuum”, IEEE Global Communications Conference (GLOBECOM), 2022,
doi:10.1109/globecom48099.2022.10000936.

https://doi.org/10.1016/j.iot.2023.100832
https://doi.org/10.1016/j.jpdc.2018.03.00

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 36/149

the M/M/k queuing system. Finally, a DQN-enabled cross-layer collaborative caching and

routing scheme is developed to tackle the optimization problem. The reinforcement learning

mechanism makes collaborative routing and caching decisions by predicting content

popularity, based on the request’s history information and current network status.

Authors in 91 examine the dynamic task offloading from IoT devices to edge-cloud continuum,

aiming to minimize a weighted combination of delay and energy consumption. QoS

constraints include the successful decoding probability from the end-devices. A hybrid DRL-

based framework is proposed based on centralized training- decentralized execution. Each IoT

device simulates an actor while all devices share a common critic. A double DQN network is

introduced to address the over-estimation problem of standard DQN, while accelerating

training convergence. 92 investigates the problem of ML task offloading (particularly

Convolutional Neural Network - CNNs) from IoT devices to nearby cloudlets in order to

minimize a weighted combination of system delay and energy consumption of the end-

devices. The problem is decomposed into two separate sub-problems, namely the offloading

decision problem, and the resource allocation problem. The first one is tackled utilizing an

enhanced DRL algorithm, where the neural network is pre-trained, utilizing the results of an

exact Mixed Integer Non-Linear Programming (MINLP) solver. The resource allocation

problem is addressed by a Salp Swarm metaheuristic algorithm. Notably, the second algorithm

is also used to evaluate the offloading decisions of the DRL agents, in order to improve their

policy.

3.1.2.1.3 Federated Learning

AI and ML techniques consolidate the results for better predictions and enhance the user

experience. Nevertheless, data is stored at a centralized location, and the models rely on this

data for the training. As a result, these methods encounters various challenges including

privacy concerns, data security and regulatory compliance. The solution to this problem lies in

training the model on the device itself instead of in a centralized server. This is where

Federated Learning (FL) comes into play, providing hyper-personalized space, low cloud

infrastructure overhead, and prominent privacy preservation while minimizing latency. FL can

be treated as a decentralized form of machine learning, which creates a shared model in place

of a central data model. The new models are being trained collaboratively on the edge, where

the data never leaves the personalized device. Although the devices and machines train

several models at distributed locations in parallel and send their collaborative results to a

centralized server to create a machine learning model. Therefore, FL leverages both the

distribution of data and computational resources while safeguarding data privacy and

integrity.

91 H. Hu, D. Wu, F. Zhou, X. Zhu, Rose Qingyang Hu, and H. Zhu, “Intelligent Resource Allocation for Edge-Cloud
Collaborative Networks: A Hybrid DDPG-D3QN Approach”, IEEE Transactions on Vehicular Technology, vol. 72,
no. 8, pp. 10696–10709, Aug. 2023, doi: https://doi.org/10.1109/tvt.2023.3253905.
92 Z. Aghapour, S. Sharifian, and H. Taheri, “Task offloading and resource allocation algorithm based on deep
reinforcement learning for distributed AI execution tasks in IoT edge computing environments”, Computer
Networks, vol. 223, p. 109577, Mar. 2023, doi: https://doi.org/10.1016/j.comnet.2023.109577.

https://doi.org/10.1109/tvt.2023.3253905
https://doi.org/10.1016/j.comnet.2023.109577

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 37/149

Authors in 93 discuss emerging challenges for supporting intelligent applications in 6G

networks. First, key aspects of the upcoming 6G era are presented, such as the inclusion of

multi-dimensional resources, including Unmanned Aerial Vehicles (UAVs) and hardware

accelerators. Federated learning is introduced as the primary solution to deal with end-user

data privacy. A Policy Network Reinforcement Learning (PNRL) algorithm is developed to

tackle the multi-dimensional resource allocation problem, aiming to maximize the

operator's/provider's revenue. Finally, the authors present existing and imminent challenges

for future investigation from the perspectives of model architecture design, model training

and inference. Techniques such as network pruning and transfer learning can reduce the

execution delay, while model partitioning can distribute the model's execution across the

network. Finally, collaborative model training, such as FL, can provide a valuable solution in

decentralized environments; however, users should be incentivized to contribute to the

model's training, highlighting an important open research area. A virtual network embedding

strategy based on horizontal federated learning (HFL) is presented in 94. The ISP requests a

virtual network with given computing/networking characteristics, which are mapped to the

underlying physical networks. Federated learning is utilized to ensure data privacy over multi-

domain physical networks. The authors examine the dynamic problem, where the

characteristics of the underlying physical network vary with time, both resource and topology-

wise.

3.1.2.1.4 Swarm intelligence and genetic algorithms

Often inspired by the complex mechanisms of certain animal or flora species found in nature,

metaheuristics including swarm intelligence and evolutionary algorithms are preferred in

place of traditional heuristics due to their capability to thoroughly explore a vast solution

space, effectively avoiding local optima. Yuan in 95 does a thorough study of task scheduling in

hybrid edge-cloud environments and proposes various algorithms optimizing energy,

performance and cost while considering various constraints such deadlines and QoS.

Maia et al. in 96 considered the offline placement problem of IoT services supporting horizontal

and vertical scaling in a hybrid edge-cloud environment. They tried to solve the joint problem

of service placement and load distribution to minimize the delay in execution (QoS). They

formulated the problem with Mixed-Integer Linear Programming (MILP) method which has

high computational complexity, so they considered solutions either through MILP approaches

for optimal solution or greedy and genetic methods which provide good placement with less

93 X. Zhang, P. Han, C. Feng, T. Ma, and L. Guo, “Multi-dimensional Resource Orchestration Toward Edge
Intelligence in 6G Networks”, IEEE Communications Magazine, vol. 61, no. 12, pp. 46–52, Dec. 2023, doi:
https://doi.org/10.1109/mcom.005.2200905.
94 P. Zhang, et al., “Multi-Domain Virtual Network Embedding Algorithm based on Horizontal Federated
Learning”, IEEE Transactions on Information Forensics and Security, 2023 , doi:
https://doi.org/10.48550/arxiv.2205.14665.
95 H. Yuan, “Energy and performance-optimized scheduling of tasks in distributed cloud and edge computing
systems,” 2020.
96 A. M. Maia, Y. Ghamri-Doudane, D. Vieira, and M. F. de Castro, “Optimized placement of scalable iot services
in edge computing,” in 2019 IFIP/IEEE Symposium on Integrated Network and Service Management (IM), 2019,
pp. 189–197.

https://doi.org/10.48550/arxiv.2205.14665

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 38/149

computational complexity and faster results. In our case we would like to consider both offline

and online placement optimizations.

Wang et al. 97 in proposed another genetic-based scheduling algorithm under a deadline

constraint to enable the execution of tasks upon edge or cloud resources with a goal to

minimize the execution time of all tasks. They have enhanced the genetic algorithm with a

catastrophic variant to increase the mutation probability to stay away from the current

optimal, which may not be the ideal optimal solution, and allow a re-optimization in a later

stage. They have provided experimentations and performance evaluations of their algorithms

upon the CloudSim simulator.

The authors in 98 investigate the problem of placing multi-service applications to computing

nodes, subject to capacity and QoS constraints, such as deadline times of the applications’

services. The authors provide a concise yet informative introduction to quantum computing

and then proceed to detail their quantum-inspired particle swarm optimization algorithm.

Similarly to the standard Particle Swarm Optimization (PSO), the qubits change their quantum

state (described by their 𝛼 and 𝛽 parameters) based on their personal best and the global best

particle. A new solution can be generated by observing the state of the qubits. The

effectiveness of the technique lies on the exponential representative power of the qubits,

where only a small swarm of 𝛮 qubits can represent 2𝑁 possible solutions. Guerrero et al. 99

studied and compared three evolutionary algorithms namely, Weighted Sum GA (WSGA),

multi-objective evolutionary algorithm based on decomposition (MOEA/D), and NSGA-II to

address the problem of service placement in a fog environment. The algorithms were

evaluated on the basis of resource usage, service spread, network latency, and execution time.

Djemai et al. 100 proposed a hierarchical three-layered fog infrastructure. An energy-efficient

IoT service placement strategy, using Discrete PSO (DPSO) is employed to address the service

placement problem. The DPSO strategy was evaluated on the basis of energy consumption

and delay. The DPSO was compared to other strategies such as Binary PSO (BPSO), and Cloud-

Only, and with different layer-interplay combination approaches. The DPSO shows a better

trade-off between cloud, IoT, and fog layer usage. A novel metaheuristic algorithm, termed

the “whale optimization algorithm” (WOA), is presented in 101. The problem under

consideration is the assignment of edge gateways to end-devices, with a dual objective of

97 S. Wang, Y. Li, S. Pang, Q. Lu, S. Wang, and J. Zhao, “A Task Scheduling Strategy in Edge-Cloud Collaborative
Scenario Based on Deadline,” Sci. Program., vol. 2020, p. e3967847, Mar. 2020, doi: 10.1155/2020/3967847.
98 M. Bey, P. Kuila, B. B. Naik, and S. Ghosh, “Quantum-inspired particle swarm optimization for efficient IoT
service placement in edge computing systems”, Expert Systems with Applications, vol. 236, p. 121270, Feb. 2024,
doi: https://doi.org/10.1016/j.eswa.2023.121270.
99 C. Guerrero, I. Lera, and C. Juiz, “Evaluation and efficiency comparison of evolutionary algorithms for service
placement optimization in fog architectures”, Future Generation Computer Systems, vol. 97, pp. 131–144, Aug.
2019, doi: https://doi.org/10.1016/j.future.2019.02.056.
100 Tanissia Djemai, P. Stolf, T. Monteil, and J.-M. Pierson, “A Discrete Particle Swarm Optimization Approach for
Energy-Efficient IoT Services Placement Over Fog Infrastructures”, IEEE International Symposium on Parallel and
Distributed Computing (ISPDC), 2019, doi: https://doi.org/10.1109/ispdc.2019.00020.
101 A. K. Sangaiah, A. A. R. Hosseinabadi, M. B. Shareh, S. Y. Bozorgi Rad, A. Zolfagharian, and N. Chilamkurti, “IoT
Resource Allocation and Optimization Based on Heuristic Algorithm”, Sensors, vol. 20, no. 2, p. 539, 2020, doi:
https://doi.org/10.3390/s20020539.

https://doi.org/10.1016/j.eswa.2023.121270
https://doi.org/10.1016/j.future.2019.02.056
https://doi.org/10.1109/ispdc.2019.00020
https://doi.org/10.3390/s20020539

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 39/149

minimizing the total communication cost while securing a predetermined load balancing level.

Initial solutions (whales) can be produced by any heuristic algorithm. Then, based on an

exploration/exploitation trade-off, each whale undertakes an action (e.g., directly moves or

spirals towards the best whale, performs random movement etc.) in order to effectively

inspect the solution space.

3.1.2.1.5 Game theoretic approaches

Game theory is a formal framework that includes a set of mathematical tools for studying

complex interactions between interdependent, rational and self-interested players. Strategic

games have a variety of applications in economics, politics, sociology, and other fields. Over

the last decade, there has been an increase in studies using game theory to model and

evaluate modern communication networks, as well as emerging technologies such as edge-

cloud computing and other internet computation platforms.

Authors in 102 provide a game-theoretic approach for resource sharing between coalition

partners (e.g., ISPs) for serving edge computing demands. When a server becomes

overloaded, it can use the resources of nearby servers to execute its incoming traffic. The

optimization objective is to maximize the ISPs’ objectives (utility functions), which can vary

resulting in a multi-objective optimization problem. A Nash Bargaining Solution (NBS)

approach is presented, followed by an iterative distributed algorithm to reach the equilibrium.

Furthermore, the fairness of the proposed solution is proven experimentally by calculating the

Jain's index. Jiao et al. 103 propose an auction-based resource allocation scheme for edge

service providers that provide resources for blockchains. The proposed mechanism maximizes

social welfare and guarantees truthfulness, computational efficiency and individual

rationality. In a study by Munir et al. 104, a hierarchical game theory algorithm has been

proposed for optimal resource allocation in the process of a heterogeneous network with

femtocell movements in the edge. The first game of the algorithm consists of Femtocell Access

Points (FAPs), which play a non-cooperative game to select between open and closed access

policies to increase their home subscriber rates. In the second game, Macrocell User

Equipment (MUE) is provided to decide on the connection between the FAPs and the

Macrocell Base Station (MBS) to maximize their rates and total network performance. Chen

et al. 105 have proposed a framework based on the game theory, named a multi-leader multi-

follower Stackelberg game, where End Users (EUs) and Mobile Edge Clouds (MECs) or mobile

edge computing nodes perform as followers and leaders, respectively. The proposed

framework is a solution for computing a Stackelberg equilibrium, where each MEC reaches a

maximum revenue, and each end user attains maximum efficiency with resource budget

102 Faheem Zafari, P. Basu, K. K. Leung, J. Li, A. Swami, and D. Towsley, “Resource Sharing in the Edge: A
Distributed Bargaining-Theoretic Approach”, IEEE Transactions on network and service management, vol. 20, no.
4, pp. 4369–4382, 2023, doi: https://doi.org/10.1109/tnsm.2023.3265813.
103 Y. Jiao, P. Wang, D. Niyato, and Z. Xiong, “Social Welfare Maximization Auction in Edge Computing Resource
Allocation for Mobile Blockchain”, IEEE International Conference on Communications (ICC), 2018.
104 H. Munir, S. A. Hassan, H. Pervaiz, Q. Ni, “A game theoretical network-assisted user-centric design for resource
allocation in 5G heterogeneous networks”, IEEE 83rd vehicular technology conference (VTC Spring), 2016.
105 Y. Chen, Z. Li, B. Yang, K. Nai, K. Li, “A Stackelberg game approach to multiple resources allocation and pricing
in mobile edge computing”, Future Generation Computing Systems, vol. 108, pp. 273–287, 2020.

https://doi.org/10.1109/tnsm.2023.3265813

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 40/149

limitations. 106 profiles users and edge servers as tuples encompassing location, resources, and

bandwidth. The edge server first allocates resources in four distinct areas where users are

clustered, proportional to the users demands in each location. Then, a Dutch auction is

performed to deduce the actual resources and bandwidth to be allocated for each end-user.

Finally, the work in 107 targets the dynamic resource sharing in edge clouds, proposing an

online incentive mechanism. An estimation mechanism was used to remove the uncertainty

of resource requirements by microservices and then an online action framework was utilized

to achieve microservice cooperation. In this framework, the proposed winner selection

algorithm was proven to guarantee truthful bidding and individual rationality.

3.1.2.1.6 Beyond state of the art

The existing literature primarily focuses on the performance of the developed heuristics,

highlighting their sophisticated abilities to handle complex optimization functions and achieve

quality system-wide solutions. However, the necessity of a central entity to handle the

involved computations is paramount, and little effort has been devoted into distributing the

resource allocation process. In a decentralized, dynamic, and highly heterogeneous

ecosystem, EMPYREAN will strive not only to globally optimize the infrastructure’s

performance, but also to detail a completely decentralized execution framework, effectively

addressing processing, communication, privacy and conflicting interests between the involved

participants.

Also, EMPYREAN will push the state of the art in IoT-edge-cloud infrastructure resource

orchestration by developing advanced multi-agent optimization algorithms that leverage

game theory with auction-based mechanisms, multi-agent Deep Reinforcement Learning, and

swarm intelligence. Through these approaches, we aim to create highly effective mechanisms

for speculative resource allocation, allowing for the timely operation in high complexity multi-

technology and multi-domain infrastructures. To better address the multiple and conflicting

objectives within and among different associations, EMPYREAN will support multiple levels of

co-operation (partial/no co-operation). However, as uncertainties are introduced and the

number of agents may change (depending on the number of Associations, their objectives,

etc.), EMPYREAN will expand machine reasoning and game theoretical foundations of

synthesis to design a high-level orchestrator that fulfills the application requirements and

guarantees its correct behavior according to the specifications. Also, EMPYREAM, will focus

on scalability and design algorithms able to handle multiple autonomous large-scale

environments, using distributed and parallel computing techniques for adaptive and robust

resource management.

106 S. Ju, J. Qiu, and W. Song, “Dynamic Resource Allocation Strategy Based on Dutch Auction”, IEEE Asia-Pacific
Conference on Image Processing, Electronics and Computers (IPEC), 2022, doi:
https://doi.org/10.1109/ipec54454.2022.9777410.
107 A. Samanta, L. Jiao, M. Muhlhauser, and L. Wang, “Incentivizing Microservices for Online Resource Sharing in
Edge Clouds”, International Conference on Distributed Computing Systems (ICDCS), 2019, doi:
https://doi.org/10.1109/icdcs.2019.00049.

https://doi.org/10.1109/ipec54454.2022.9777410
https://doi.org/10.1109/icdcs.2019.00049

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 41/149

3.1.2.2 AI-based Workload Autoscaling

AI-based workload autoscaling has attracted a lot of interest by the community since it is an

area that can enable important optimizations. These are the main approaches followed in the

different research articles.

3.1.2.2.1 Proactive forecast and adjustment

This approach contains two steps: forecasting future resource usage using ML algorithm, and

adjusting the container limit based on the forecasted usage. A small number of articles use

this approach.

Jeong B et al108 proposed a technique, which used Long short-term memory (LSTM) network

as the resource predictor. The heuristic rule is an algorithm taking the previous request and

the predicted resource usage (by LSTM) as input, and output the next container limit.

Luong et al109 used Linear Regression and Auto Regressive Integrated Moving Average

algorithm to predict the resource usage in the near future, and uses FFT integrated Welch

filter and periodograms techniques to forecast the long-term future. These predictions are

used to scale resources using a threshold comparison method.

General advantages of this category:

● Uncoupled models (ML, Rule part), facilitate development and maintenance.

● Offline training, avoids poor performance during the startup phase.

General drawbacks of this category:

● Weak adaptability to different/dynamic cloud environments.

● Partly existing heuristic rules, need expertise to customize.

3.1.2.2.2 Reinforcement learning

A reinforcement learning algorithm can be used to directly forecast the next container limit.

In RL algorithm, the autoscaler acts as RL agent, to detect environment (historical usage) and

make decisions (container limit). A large number of articles using this approach, with different

RL technologies. Most of them use deep reinforcement learning models because of the large

continuous state space in scaling problems. The model can be pre-trained offline or be trained

online.

This article110 raises a deep Q learning model with autoencoder and weight sharing structure

to dynamically allocate VM resources to the cloud server, aiming at reducing energy

108 Jeong, B. et al. (2023) ‘Stable and efficient resource management using deep neural network on cloud
computing’.
109 Luong, D.-H. et al. (2018) ‘Predictive Autoscaling Orchestration for Cloud-native Telecom Microservices’.
110 Liu, N. et al. (2017) ‘A Hierarchical Framework of Cloud Resource Allocation and Power Management Using
Deep Reinforcement Learning’.

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 42/149

consumption. Offline data is used to pre-train this model to derive a first version of the

correlation between Q values and state-action pairs.

This publication111 performs vertical scaling on CPU, memory, I/O and network for each

component in microservices using a novel RL algorithm called Deep Deterministic Policy

Gradient, based on their historical usage and the critical paths extracted from the

microservices relation graph. No offline pre-training is applied in this model.

General advantages of this category:

● Strong adaptability to different/dynamic cloud environment.

● Highly transparent automatic policy, independent on human intervention.

General drawbacks of this category:

● Long online training time at the beginning, with poor performance. Can be partially

mitigated but will reduce adaptability.

● Hard to develop for stable best performance: coupled complex interactive system,

hyperparameters and randomness greatly matters.

3.1.2.2.3 Hierarchical models

In this approach, different sub-models exist in the autoscaler to read the historical usage and

give predictions on container limit. A global chooser algorithm is responsible for dynamically

picking the best sub-model based on the sub-models’ performance. The representative work

is Google Autopilot112. This publication uses simple “argmin” functions as sub-models. These

sub-models take CPU and memory usage histograms as input, and output corresponding limit

prediction every 5 minutes. A loss function considering overrun and underrun costs, and

model-switching costs is used as the global chooser, to pick the best sub-model dynamically.

The advantages of this work is its good interpretability and simple implementation.

Toka et al.113 use different machine-learning algorithms as submodels to predict future limit

(e.g. LSTM, AR, HTM and RL). A global evaluator calculates the recent accuracy of their

predictions, and chooses the best machine-learning algorithm dynamically.

General drawbacks of this category:

● Both are reactive approaches, not proactive.

● Changing the sub-models dynamically may cause more SLOs.

3.1.2.2.4 Beyond state of the art

111 Qiu, H. et al. (2020) ‘FIRM: An Intelligent Fine-Grained Resource Management Framework for SLO-Oriented

Microservices’.
112 Rzadca, K. et al. (2020) ‘Autopilot: workload autoscaling at Google’.
113 Toka, L. et al. (2021) ‘Machine Learning-Based Scaling Management for Kubernetes Edge Clusters’.

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 43/149

In the context of EMPYREAN, we will study, implement and execute representative algorithms

from each category, and compare them with continuum-native representative workloads. The

goal is to find a generally dominating performance on resource utilization and different

metrics, compared to the rule-based approaches. In particular, we will adopt the work on

Autopilot considering CPU and RAM limits adjustment and we will consider in particular

techniques to minimize the Out-Of-Memory errors while improving bin-packing in the context

of workload autoscaling. Possible variations and enhancements of the ML-algorithms will be

also considered by sufficiently adapting the hyper-parameters of the ML techniques to better

fit the needs of our context and workloads.

3.1.2.3 Workflow-based Continuum-native Application Design

The Workflow Management system is responsible for the automation of orchestration and

execution of task collections upon computational resources. A common pattern in scientific

and cloud computing involves the execution of many computational and data manipulation

tasks which are usually coupled i.e., output of one task used as input on another. Hence

coordination is required to satisfy data dependencies. The workload of task execution is

divided among the available distributed computational resources. Consequently, this

introduces further complexity related to processes such as load balancing, data storage, data

transfer, tasks monitoring and fault-tolerance. Automation of the aforementioned aspects of

the orchestration process has led the creation of workflow management systems.

A study by Deelman et al. 114 related to scientific workflow management analyzes the current

state of the art on these systems and provides future research challenges. On the HPC side

there are some particular tools such as Taverna115, Pegasus116 and Makeflow117 that have been

used in production since years with different maturity levels. Those systems generally share

many similarities in their concepts. They all have one or more principal languages to program

workflows and they provide connections towards specific resource management systems for

the deployment part. They have been designed with scalability and fault tolerance in mind

and their multiple years in production has allowed them to make a lot of progress on the

interoperability part. Nevertheless their main focus is basically on the HPC and scientific

workflows with none or minimum support of dynamic data analytics. On the other side

114 Ewa Deelman, Tom Peterka, Ilkay Altintas, Christopher D. Carothers, Kerstin Kleesevan Dam, Kenneth
Moreland, Manish Parashar, Lavanya Ramakrishnan, Michela Taufer, Jef frey S. Vetter: The future of
scientific workflows. IJHPCA 32(1): 159-175 (2018)
115 Duncan Hull, Katy Wolstencroft, Robert Stevens, Carole A. Goble, Matthew R. Pocock, Peter Li, Tom
Oinn: Taverna: a tool for building and running workflows of services. Nucleic Acids Research 34(Web-Server-
Issue): 729-732 (2006)
116 Ewa Deelman, Karan Vahi, Gideon Juve, Mats Rynge, Scott Callaghan, Philip Maechling, Rajiv Mayani,
Weiwei Chen, Rafael Ferreira da Silva, Miron Livny, R. Kent Wenger:
 Pegasus, a workflow management system for science automation. Future Generation Comp. Syst.
46: 17-35 (2015)
117 Casey Robinson, Douglas Thain: Automated packaging of bioinformatics workflows for portability
and durability using makeflow. WORKS@SC 2013: 98-105

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 44/149

systems such as Airflow118, Luigi119 and Argo120 have been designed for Cloud applications and

allow the usage of more flexible abstractions such as containerization and microservices which

makes them more flexible and more adapted for data analytics. Nevertheless those systems

can principally address batch processing operations with no facilitations for streaming

operations.

Dealing with Streaming data is a need of new applications and use cases requiring reactivity

and flexibility. Systems using IoT and Edge Computing will need to support stream processing

to better cope with the challenges of new technologies and applications. Software solutions

such as Beam121 and Google Cloud Dataflow122 have been designed to provide a unified model

for batch and stream data processing with facilitation in the expression of Big Data workflows

using higher level abstraction. They integrate seamlessly with specialized data processing

frameworks such as Spark123, Flink124 and others on which they delegate the difficult task of

runtime.

Those systems are ideal for Cloud Computing infrastructures with powerful computing
characteristics but their design choices such as the choice of programming language does not
make them adaptable for use cases implicating Edge Computing and IoT. Indeed, their choice
of Java and Scala as base language makes them heavyweight for constrained computing power
infrastructures.

3.1.2.3.1 Beyond state of the art

In the context of EMPYREAN, we will enhance RYAX’s open-source workflow management

system to support execution on multiple sites (Edge or Cloud) mainly supporting Kubernetes

clusters, or different distributions of it (such as K3s). Furthermore RYAX will be integrated to

support the open-source Zenoh-flow dataflow programming enabling users to define the

internal dataflow of applications while supporting in a fine-grained manner real-time

streaming executions. Finally the workflow-based application design will support the

EMPYREAN concepts of Associations and Aggregators.

3.1.2.4 Cyber Threat Intelligence

Recent years have witnessed a dramatic growth in the amount of Cyber Threat Intelligence

(CTI) available to the general public and to companies. This surge is driven by the increasing

frequency and sophistication of cyber threats, necessitating robust and dynamic responses

118 "Apache Airflow: Programmatically Author, Schedule, and Monitor Workflows." Available:
https://airflow.apache.org
119 "Luigi: A Python Module for Building Complex Pipelines of Batch Jobs." Available:
https://github.com/spotify/luigi
120 "Argo: Workflow Engine for Kubernetes." Available: https://github.com/argoproj/argo
121 "Apache Beam: An Advanced Unified Programming Model." Available: https://beam.apache.org/
122 "Google Cloud Dataflow: Fully Managed Stream and Batch Data Processing." Available:
https://cloud.google.com/dataflow
123 "Apache Spark: Unified Analytics Engine for Big Data Processing." Available: https://spark.apache.org/
124 "Apache Flink: Stateful Computations Over Data Streams." Available: https://flink.apache.org/

https://airflow.apache.org/
https://github.com/spotify/luigi
https://github.com/argoproj/argo
https://beam.apache.org/
https://cloud.google.com/dataflow
https://spark.apache.org/
https://flink.apache.org/
https://flink.apache.org/

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 45/149

from the cybersecurity community. Platforms such as AlienVault OTX125 and VirusTotal126 play

pivotal roles in this ecosystem by providing an ever-growing number of Indicators of

Compromise (IoC) to the cybersecurity community.

Platforms for CTI: AlienVault OTX (Open Threat Exchange) and VirusTotal are among the most

prominent platforms in the CTI landscape. AlienVault OTX enables users to collaborate and

share threat data, enhancing collective cybersecurity awareness and defenses. Similarly,

VirusTotal aggregates and analyzes files and URLs to identify viruses, worms, trojans, and

other kinds of malicious content. These platforms are invaluable resources for security

professionals who need to keep abreast of the latest threats and vulnerabilities.

Challenges in CTI Analysis: Despite the abundance of data provided by these platforms, the

sheer volume and diversity of information make comprehensive analysis a daunting task. The

data includes various types of IoCs, such as malicious IP addresses, domain names, file hashes,

and URLs, which need to be continuously monitored and analyzed127. This task is further

complicated by the heterogeneity of the data, as different sources may use different naming

conventions, formats, and levels of detail.

Research Solutions: To address these challenges, the research community has developed

various tools and methodologies. One significant focus has been on the distribution of

malware and the usage of botnets. For instance, the study of malware distribution patterns

helps in understanding how malicious software spreads across networks and infects systems.

Research in botnet analysis128 has provided insights into their structure, behavior, and the

mechanisms used for command and control, which are crucial for developing effective

mitigation strategies.

Heterogeneous Information Handling: The diverse nature of CTI data requires sophisticated

tools to normalize and classify the information. AVClass129 is one such tool that aims to assist

security experts by providing automated malware labeling. By standardizing the labels used

for different malware samples, AVClass helps in reducing the confusion and inconsistency that

can arise from heterogeneous data sources. This standardization is critical for accurate threat

analysis and response.

Knowledge Extraction from Unstructured Sources: Another significant area of research is the

extraction of knowledge from unstructured data sources. Cybersecurity reports, threat

intelligence blogs, and social media posts often contain valuable information but are not

125 https://otx.alienvault.com/
126 https://www.virustotal.com/
127 Allegretta, M., Siracusano, G., Gonzalez, R., & Gramaglia, M. (2023). Are crowd-sourced CTI datasets ready for
supporting anti-cybercrime intelligence?. Computer Networks, 234, 109920.
128 Massi, J., Panda, S., Rajappa, G., Selvaraj, S., & Revankar, S. (2010). Botnet detection and mitigation. Student-
Faculty Research Day, CSIS, Pace University, White Plains, NY (May 2010).
129 Silvia Sebastián, Juan Caballero. AVClass2: Massive Malware Tag Extraction from AV Labels.
In proceedings of the Annual Computer Security Applications Conference, December 2020.

https://otx.alienvault.com/
https://www.virustotal.com/

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 46/149

structured in a way that can be easily analyzed by automated systems. Tools like Ladder130

have been developed to address this issue by automatically labeling and organizing content

from these unstructured sources. Ladder and similar tools leverage natural language

processing (NLP) techniques to identify and categorize relevant information, making it more

accessible for further analysis.

The ultimate goal of these efforts is to integrate structured and unstructured data to provide

a comprehensive view of the cybersecurity landscape. By combining data from platforms like

AlienVault OTX and VirusTotal with insights extracted from unstructured sources, security

professionals can gain a more nuanced and complete understanding of emerging threats. This

integrated approach allows for the creation of advanced analytical models and knowledge

graphs that represent the current cybersecurity context in a more holistic manner.

3.1.2.4.1 Beyond state of the art

During the EMPYREAN project, we aim to significantly enhance the capabilities of

cybersecurity professionals by collecting Cyber Threat Intelligence (CTI) from a variety of

sources, including the Cyber Threat Alliance (CTA). The CTA, known for its high-quality threat

intelligence sharing among industry leaders, will be a cornerstone of our data acquisition

efforts. By integrating data from the CTA and other prominent sources, we will compile a

comprehensive repository of Indicators of Compromise (IoCs), malicious IP addresses, domain

names, file hashes, URLs, and more. This extensive dataset will provide a rich foundation for

thorough threat analysis and proactive defence strategies.

A key component of the EMPYREAN project is the development of a user-friendly interface

designed to streamline the information retrieval process for security experts. Recognizing the

challenges posed by the sheer volume and diversity of CTI data, our interface will prioritize

ease of use and efficiency. Security professionals will be able to quickly search, filter, and

visualize relevant threat information, allowing them to stay ahead of emerging threats and

vulnerabilities. The intuitive design will ensure that even those with varying levels of technical

expertise can navigate the platform effectively, making critical threat intelligence accessible

to a broader audience.

In addition to the user interface, the EMPYREAN project will focus on the development of

advanced algorithms to identify trends and patterns within the CTI data. These algorithms will

leverage machine learning and data mining techniques to analyze the vast amounts of

collected data, uncovering insights that might otherwise go unnoticed. By identifying

emerging threats and trends, our system will enable proactive measures and informed

decision-making. This analytical capability will be crucial in understanding the evolving tactics,

techniques, and procedures of cyber adversaries, thereby enhancing the overall cybersecurity

posture of organizations.

130 Alam, M. T., Bhusal, D., Park, Y., & Rastogi, N. (2023, October). Looking beyond IoCs: Automatically extracting
attack patterns from external CTI. In Proceedings of the 26th International Symposium on Research in Attacks,
Intrusions and Defenses (pp. 92-108).

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 47/149

3.1.2.5 Analytics-friendly IoT Erasure Coded Data Query

Erasure coding offers a highly cost-efficient way to improve availability and reliability in

distributed storage, especially when compared to the industry-standard 3-way replication131.

Maximum Distance Separable (MDS) codes in particular, provide redundancy at an optimal

cost in terms of additional storage. Unfortunately, erasure coding introduces some encoding

and decoding overhead, making data access slightly slower. Furthermore, in its conventional

application, byte-level access to the original data is infeasible. Thus, to access even a small

part of the original data, the entire erasure coded fragments must be retrieved and decoded.

Given these limitations, erasure coding has traditionally been used mainly for long-term, large

volume object/file/blob storage.

Internet of Things (IoT) devices produce large amounts of data. Sensors on devices such as

robots, smart home appliances, cars or even agricultural machinery constantly monitor their

surroundings and record this information, usually in a centralized system. Given the vast

quantities of data, distributed cloud storage is a natural choice. Much of the data must be kept

for long durations, making erasure coding a prime candidate for ensuring high availability and

reliability at a low storage cost. Sensor readings in time series data are usually highly

correlated, and thus a prime candidate for compression.

However, IoT data storage has an additional requirement that has traditionally been at odds

with erasure coding and compression: it must be efficiently queryable. To extract value from

IoT data, analytics workloads must be able to address individual parts (sometimes as small as

a few bytes) with as little overhead as possible in terms of network transfers. This is especially

true when using cloud storage, where data egress is prohibitively expensive.

3.1.2.5.1 Beyond state of the art

Thus, operators of state of the art IoT storage systems must make a choice between costly

storage with efficient queries (replication) or cost-effective storage with highly inefficient

queries (erasure coding). EMPYREAN will advance the state of the art by improving the

efficiency of erasure coded queries through a novel set of data alignment, storage and

retrieval techniques. We will devise, refine and implement a special storage schema,

specifically designed for time series IoT data, with the goal of making byte-level access to

erasure coded data traffic-efficient. This will greatly benefit scenarios where large volumes of

data must be stored over a long period of time, combined with the need to run analytics

workloads that only access a small portion of the entire volume.

Beyond erasure coding, compression is also widely used to reduce storage costs. It can be

particularly effective when storing highly-correlated data, which is often the case with

measurements coming from IoT sensors. Unfortunately, most state of the art compression

schemes make queries unfeasible, in much the same way as erasure coding, by restricting

byte-level access. EMPYREAN sets out to solve this problem and perform queries directly on

131 K. Shvachko, H. Kuang, S. Radia and R. Chansler, "The Hadoop Distributed File System," 2010 IEEE 26th
Symposium on Mass Storage Systems and Technologies (MSST), Incline Village, NV, USA, 2010, pp. 1-10, doi:
10.1109/MSST.2010.5496972.

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 48/149

compressed time-series data. We plan to investigate the applicability of a novel family of

compression schemes called Generalized Deduplication132, some of which are specifically

tailored to IoT data.

If done efficiently, running queries directly on erasure coded and compressed data would be

a significant scientific achievement with tangible real-world benefits.

3.1.2.6 Application Deployment Based on Unikernels

Containers have become the cornerstone of modern application deployment, significantly

influencing the cloud-native landscape. They encapsulate applications along with their

dependencies, ensuring consistent environments across various stages of development and

deployment. The popularity of containers is primarily due to their lightweight nature, efficient

resource utilization, and rapid deployment capabilities. Key technologies like Docker and

Kubernetes (K8s) have cemented containers as the go-to solution for scalable, flexible, and

portable application management.

However, the security isolation provided by containers has its limitations. Containers share

the same host operating system kernel, which makes them vulnerable to kernel-level attacks.

Numerous Common Vulnerabilities and Exposures (CVEs) related to privilege escalation,

where a malicious user can break out of the isolation boundaries of a container, appear

frequently in security advisory bulletins133. This security concern necessitates additional

measures to enhance isolation and security within containerized environments.

To mitigate the inherent security risks of containerization, container sandboxing mechanisms

have been developed. Sandboxing enhances the isolation of containers by providing an

additional layer of security, preventing malicious code within a container from affecting the

host system or other containers. This is particularly crucial in multi-tenant environments

where untrusted workloads run side by side129.

In multi-tenant environments, where multiple users or services share the same infrastructure,

the risk of security breaches increases. This lack of strong isolation necessitates the use of

additional sandboxing mechanisms to ensure that each container operates in a securely

isolated environment, thereby protecting against potential attacks134.

Technologies like gVisor and Kata Containers provide such sandboxing mechanisms. gVisor,

for instance, implements a user-space kernel that intercepts and processes system calls made

by the container, thereby isolating it from the host operating system. Kata Containers, on the

other hand, encapsulate containers within lightweight virtual machines, leveraging the strong

isolation properties of VMs while maintaining the efficiency of containers129. These solutions

132 Prasad Talasila and Daniel E. Lucani. 2019. Generalized Deduplication: Lossless Compression by Clustering
Similar Data. In 2019 IEEE 8th International Conference on Cloud Networking (CloudNet). 1–4.
https://doi.org/10.1109/CloudNet47604.2019.9064140
133 Mainas, C., Plakas, I., Ntoutsos, G., & Nanos, A. (2024). Sandboxing Functions for Efficient and Secure Multi-
tenant Serverless Deployments. In SESAME ’24 Proceedings. ACM.
134 Nanos, A., Plakas, I., Ntoutsos, G., & Mainas, C. (2024). Enabling Cloud-native IoT Device Management. In
MECC’24 Proceedings. ACM.

https://doi.org/10.1109/CloudNet47604.2019.9064140

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 49/149

aim to strike a balance between performance and security, offering enhanced protection

without significantly sacrificing the agility and resource efficiency that containers offer.

Despite these improvements, the additional layers for isolation in sandboxing mechanisms

lead to higher resource overheads compared to traditional containers129. Encapsulating an

entire operating system within each microVM contributes to increased memory and storage

consumption, and the startup times of microVMs can no longer compare to the rapid

instantiation of containers.

Unikernels represent a significant advancement in the domain of lightweight, secure, and

performant application deployment. Unlike traditional operating systems, unikernels compile

applications with only the necessary OS components into a single binary, resulting in a

minimalistic and highly optimized runtime environment. This approach reduces the attack

surface, enhances security, and improves performance due to the absence of unnecessary

components.

Recent projects like Rumprun135, Unikraft136, OSv137, and IncludeOS138 have made significant

strides in improving the usability and maturity of unikernels. These projects offer frameworks

and tools that simplify the building and deployment of unikernels, making them more

accessible for mainstream adoption. Unikernels' ability to start almost instantaneously and

their minimal resource consumption make them ideal for cloud-native and edge computing

scenarios130.

3.1.2.6.1 Beyond the state of art

EMPYREAN envisions extending the unikernel concept with the development of Cloudkernels,

a comprehensive set of systems software components designed for the deployment of

applications as unikernels in cloud-native environments. Cloudkernels aim to overcome two

primary challenges associated with unikernels: the complexity of the build and deployment

process, and the overhead imposed by traditional virtualization mechanisms.

By integrating advanced orchestration frameworks and tools, Cloudkernels will streamline the

process of converting applications into unikernels, managing their lifecycle, and orchestrating

their deployment across diverse cloud environments. This approach promises to significantly

reduce the resource footprint and enhance the performance and security of deployed

applications, especially in resource-constrained edge environments.

The move towards unikernels and Cloudkernels in application deployment offers a

transformative shift in how applications are developed, deployed, and managed. The primary

benefits include enhanced security through reduced attack surfaces, improved performance

135 "Rumprun: A lightweight unikernel for running applications." Available:
https://github.com/rumpkernel/rumprun
136 "Unikraft: Lightweight Unikernels for Fast and Secure Application Deployment." Available: https://unikraft.org
137 "OSv: The Operating System Designed for the Cloud." Available: https://osv.io
138 "IncludeOS: Minimal, Resource-efficient Unikernel for Cloud and IoT Applications." Available:
https://www.includeos.org

https://github.com/rumpkernel/rumprun
https://unikraft.org/
https://osv.io/
https://www.includeos.org/

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 50/149

due to minimalistic runtime environments, and efficient resource utilization suitable for both

cloud and edge computing.

Future research and development efforts should focus on further simplifying the build and

deployment processes of unikernels, enhancing their integration with existing cloud-native

tools, and expanding their applicability across a broader range of use cases. Additionally,

addressing the interoperability and standardization challenges will be crucial to fostering

wider adoption and ensuring seamless operation across diverse environments.

3.2 EMPYREAN Enablers

The EMPYREAN Enablers section highlights the key components and technologies crucial for

building the EMPYREAN platform. These enablers provide secure identity management, real-

time monitoring, efficient data transport, and intelligent workload management. By

incorporating advanced technologies like decentralized identifiers, attribute-based

encryption, blockchain, and trusted execution environments, these enablers ensure a secure,

scalable, and efficient IoT-edge-cloud ecosystem. They address platform challenges, enabling

seamless orchestration, robust security, and optimal resource utilization across various

applications and use cases.

1. Secure Identity and Access Management and Attribute-Based Credential Management (EN_1)

● Description: Ensures secure and private identity management, data verification, and robust

cryptographic foundation for managing privacy-preserving attribute-based credentials across

the platform.

● Components:

○ Privacy and Security Manager (UMU): Manages cybersecurity, privacy-preserving

techniques, and identity management using decentralized identifiers (DIDs) and

verifiable credentials (VCs).

○ P-ABC (UMU): Provides a distributed privacy-preserving attribute-based credential

system based on PS multisignatures.

2. Real-Time Monitoring, Observability, and Service Assurance (EN_2)

● Description: Enables real-time visibility into system performance and security, allowing for

prompt response to anomalies and efficient resource utilization. Ensures that applications

perform as intended by dynamically adjusting deployments based on real-time analytics and

telemetry data.

● Components:

○ Telemetry Service (UMU): Handles observability and telemetry, allowing system

administrators to understand system behavior and monitor performance metrics in

real-time.

○ Telemetry Engine (ICCS, UMU, NEC, RYAX, NUBIS, CC): Maintains a global view of

infrastructure resources and deployed applications, coordinating monitoring probes

and providing historical telemetry data.

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 51/149

○ Analytics Engine (ICCS, RYAX, UMU, ZSCALE): Implements service assurance

mechanisms to detect infrastructure issues and deployed application performance,

triggering dynamic adjustments.

3. High-Performance Data Transport Service (EN_3)

● Description: Facilitates reliable and efficient data transport using RDMA-based technologies,

optimizing network I/O and computation overlap.

● Components:

○ Software-defined RDMA-based Unified Transport Service (NVIDIA, NUBIS): Provides a

reliable RDMA-based transport service with ring-buffer lock-free structures and

integration with large computational pipelines.

4. Decentralized Data Communication and Storage (EN_4)

● Description: Provides decentralized and distributed communication mechanisms with efficient

pub/sub and data querying capabilities.

● Components:

○ Decentralised and Distributed Communication Layer (ZSCALE): Offers data dispatcher

functionalities with efficient pub/sub and distributed queries, integrated into the

Eclipse Zenoh open-source project.

5. Hybrid Cloud-Edge Storage and Efficient Time-Series Data Storage Management (EN_5)

● Description: Manages storage resources across cloud and edge environments, supporting

hybrid policies for data distribution, redundancy, and security. Enhances the storage and

retrieval of IoT time-series data using erasure coding for reliable data management.

● Components:

○ Edge Storage Gateway (Chocolate Cloud): Provides an access point to the EMPYREAN

storage service through an industry-standard S3 interface, supporting hybrid storage

policies.

○ Edge Storage (Chocolate Cloud): Provides a common abstraction of storage resources

located at the edge, using a containerized version of MinIO.

○ IoT Query Engine (Chocolate Cloud): Stores and accesses IoT time series data using

erasure coding for efficient data management.

6. Workflow Design and Management (EN_6)

● Description: Enables the design, deployment, and monitoring of data analytics workflows

across heterogeneous computing environments.

● Components:

○ Ryax Workflow Engine (RYAX): Open-source workflow engine for designing, deploying,

and monitoring data analytics workflows on cloud, edge, and HPC infrastructures.

7. Intelligent Workload Autoscaling (EN_7)

● Description: Utilizes AI/ML techniques to optimize workload autoscaling, ensuring efficient

resource allocation and utilization.

● Components:

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 52/149

○ AI-enabled Workload Autoscaling (RYAX): Enhances Kubernetes orchestrator with

AI/ML techniques for intelligent resource requests and dynamic adaptation based on

historical data.

8. Cyber Threat Intelligence (EN_8)

● Description: Provides insights into past cyber threat events to quantify and mitigate risks,

enhancing overall platform security.

● Components:

○ CTI Analysis Module (NEC): Provides information about past Cyber Threat Intelligence

events observed around the world, serving as an external source to quantify system

risks.

9. Service Orchestration and Resource Management (EN_9)

● Description: Manages the orchestration and resource allocation for efficient service

deployment and operation across the EMPYREAN infrastructure.

● Components:

○ EMPYREAN Orchestrator and Controller (ICCS, RYAX, NUBIS): Ensures efficient service

orchestration and resource management, initiating application deployment and

coordinating necessary actions.

○ Decision Engine (ICCS, RYAX): Implements multi-objective optimization and

orchestration algorithms, interacting with the Service Orchestrator and Telemetry

Service.

10. Resource Registration and Management (EN_10)

● Description: Manages the registration and tracking of IoT devices, edge, and cloud resources,

facilitating seamless application deployment.

● Components:

○ EMPYREAN Registry (ICCS, RYAX, NUBIS, UMU): Manages the registration of IoT

devices, edge, and cloud resources in Associations, tracking available services and

resources.

11. Association Management and Coordination (EN_11)

● Description: Manages and coordinates the operation of EMPYREAN Associations, ensuring

efficient workload deployment and resource management.

● Components:

○ EMPYREAN Aggregator (ICCS, UMU, CC, ZSCALE, RYAX, NUBIS): Manages and

coordinates the operation of an EMPYREAN Association, including core services for

orchestration and resource management.

12. Hardware Acceleration and Security (EN_12)

● Description: Enables the use of hardware accelerators for compute-intensive tasks while

ensuring data security and integrity.

● Components:

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 53/149

○ vAccel (NUBIS): An open-source framework for mapping hardware-accelerate-able

workloads to relevant hardware functions, enhancing security and performance.

13. Unikernel Application Development (EN_13)

● Description: Simplifies the development and deployment of unikernel-based applications,

reducing engineering overhead and ensuring efficient execution.

● Components:

○ Application Builder for Unikernels (NUBIS): Addresses the deployment of applications

in cloud-native environments using unikernels, simplifying the building and

deployment process.

14. Multi-Environment and Multi-Architecture Application Packaging (EN_14)

● Description: Streamlines the packaging process for applications, creating OCI-compatible

container images and supporting multiple architectures and programming languages for

deployment across various execution environments.

● Components:

○ Application Packaging (NUBIS): Tool for bundling binary artifacts into OCI container

images for deployment across EMPYREAN's supported execution modes.

○ NIX Based Environment Packaging (RYAX): Tool for performing multi-arch and polyglot

environment packaging to build components for workflows.

15. Versatile Container Runtime Integration (EN_15)

● Description: Facilitates the deployment of applications in various execution environments,

integrating unikernels with container runtimes.

● Components:

○ Container Runtime (NUBIS): Runtime capable of spawning unikernels and integrating

them with generic container runtimes compatible with Kubernetes and serverless

architectures.

16. Secure and Trusted Execution (EN_16)

● Description: Establishes a secure execution environment with measured boot mechanisms,

supporting scalable and trusted operations across the IoT-edge-cloud continuum.

● Components:

○ Secure Execution Environment (NUBIS): Focuses on secure and trusted execution

across the IoT-edge-cloud continuum, supporting secure and measured boot

mechanisms.

17. Optimized Task Scheduling (EN_17)

● Description: Implements scheduling algorithms to minimize cold start delays and optimize the

placement of tasks based on container layer locality.

● Components:

○ Layers Locality Scheduler (RYAX): K8S scheduling algorithm to minimize cold start

delays and optimize task placement based on container layers.

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 54/149

3.3 EMPYREAN relation with ongoing relevant EU projects

Next, we describe the relationship between EMPYREAN and ongoing EU projects in similar

topics.

3.3.1 HORIZON EUROPE MLSYSOPS (2023-2025)

Common Partners: CC, NVIDIA, NUBIS

MLSYSOPS will build an AI-based framework for autonomous E2E system management across

the edge-cloud continuum. Some of the orchestration and adaptation features developed in

MLSYSOPS could be reused and extended in EMPYREAN. For example, CC is developing a

mechanism to migrate data between different storage policies.

3.3.2 HORIZON EUROPE RESCALE (2024-2026)

Common Partners: CC

The overarching goal of RESCALE is to systematically analyze and extend, as necessary, every

hardware and software layer in a computing system and apply novel tools and methodologies

at every step of the entire supply chain. Any security improvements to CC’s code base will be

carried over to EMPYREAN. Some of the DevOps tools created as part of RESCALE will also be

employed to aid in implementing a novel storage solution for EMPYREAN.

3.3.3 IPCEI EUROPE E2CC (2024-2027)

Common Partners: RYAX

The E2CC project intends to deliver an end-to-end standardized integration layer enabling

interoperability and creating a continuum from the Edge to the Cloud. It will provide the core

technological referential for interconnecting with Cloud providers, including Cybersecurity,

Decarbonization, Orchestration and Platform functions. Among others the project will deal

with Edge to Cloud orchestration (to ensure energy efficiency, security, interoperability) along

with middleware & system SW optimization related to Federation and multi-cloud meta-

orchestration. Furthermore, the project will work on Advanced Smart Data Processing through

end-to-end security solutions for edge to cloud and the development of MLOps and AI services

adapted to the Edge to Cloud. EMPYREAN will relate to this IPCEI project as it has been

specifically mentioned in the DoA and RYAX who participates in both projects will enable the

exchanges and knowledge transfer between the projects especially in the areas around

orchestration upon which RYAX will be contributing in.

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 55/149

3.3.4 HORIZON EUROPE FLUIDOS (2024-2026)

Common Partners: UMU

FLUIDOS aims to create a flexible, scalable, and secure decentralized operating system for the

edge-cloud continuum. This project will integrate advanced edge computing capabilities to

optimize resource utilization and improve data processing efficiency across distributed

networks. One of the key innovations of FLUIDOS is the REAR protocol (REsource

Advertisement and Reservation), designed for dynamic resource discovery and reservation in

IoT environments.

The REAR protocol will enable EMPYREAN to dynamically acquire resources between

associations of IoT devices, enhancing its ability to manage and utilize distributed computing

resources effectively. The protocol supports automatic and autonomous resource discovery

and integration, ensuring seamless operations across various domains.

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 56/149

4 Use Cases Analysis

4.1 Anomaly Detection in Robotic Machining Cells (UC1)

4.1.1 Overview

The objective of this use case is to develop a system able to perform real-time process

monitoring in robotic machining cells performing composite manufacturing operations using

high-frequency data. These operations include turning, milling, and drilling. Process

monitoring involves real-time signal monitoring and alerting of abnormal machining

operations.

The goal is to create an application that enables quick identification and response to any

deviations in the machining process by timely processing real-time data from high-frequency

sensors to improve production efficiency and minimize losses.

4.1.2 Detailed Description

In the manufacturing landscape, the adoption of robots for machining tasks significantly

boosts flexibility and reduces costs compared to traditional machine tools. The usage of robots

allows for rapid adjustments to production processes and product designs. This adaptability is

especially beneficial in dynamic markets, where manufacturers need to quickly respond to

changing consumer demands and technological advancements, while maintaining high

precision and efficiency. However, introducing robots in machining requires rigorous process

monitoring to manage issues like precision loss or tool breakage among common process-

related defects when machining composite materials. Addressing these challenges is essential

for improving efficiency and maintaining quality standards in the manufacturing industry.

The use case "Process Monitoring and Anomaly Detection in Robotic Machining Cells" focuses

on developing a system capable of real-time monitoring of machining operations in robotic

cells machining composite materials. Using high-precision sensors, critical variables are

measured to create process fingerprints and detect anomalies in real-time.

For signal monitoring and analysis, IDEKO has a robot equipped with a Smart Box, an industry-

ready IoT edge device developed by IDEKO to collect data from machines/robots. Additionally,

the robot used for this use case will include high-frequency data acquisition equipment such

as the INGETEAM IC2/IC3 models, for a more thorough analysis of the machining processes

performed by the robots.

The use case proposes a scenario with the following key points:

● Simulate a scenario with a client with three machining cells being monitored at the

same time.

● Use data for the existing robot at IDEKO facilities.

● Simulate data for additional robots based on real data from the existing robot.

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 57/149

● Each robot will be attached to a Smart Box IoT Data Gateway.

● Client may have edge devices (will be adapted on-demand for the project).

● Machining data will be simulated using real data generated at some IDEKO’s robotic

machining cell.

● An application will be deployed into the available infrastructure for real-time process

monitoring.

● The scenario will simulate different workloads, hence demands variable computing

power requirements.

● The application will use AI techniques for anomaly detection:

o Techniques are currently being tested at IDEKO and several approaches are

currently being analyzed)

o Techniques may not be only based on ML algorithms

● The available platform must respond to application variable workloads to achieve

application KPIs and requirements.

● UC will allow the application to move from current offline analysis to online analysis.

● UC will allow to process data in high frequency vs the current approach that uses low

frequency data.

The use case full scenario is depicted in the image below.

Figure 6: This use case proposes a scenario of a client with 3 robots

Collaboration with EMPYREAN will leverage platform-based associations, providing a secure

environment for interaction between robots and peripheral resources, as well as

orchestration and automatic scaling mechanisms to manage processing and storage demands.

Data to be used

IDEKO has a robotic machining cell operated by a single robot. Machining tests will be carried

out in the cell and data retrieved from those operations will be used to simulate the described

scenario. Figure 7 illustrates the different external sensors attached to this robot.

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 58/149

Figure 7: Different external sensors attached to a robot

Each robot will have:

● A force measuring sensor

● A triaxial vibration sensor

● A microphone

● Temperature sensors on every joint

Based on this setup, the following table describes the tentative setup data to be used by the

application for process monitoring.

Table 1: Data sources and data acquisition frequency

DATA SOURCE COMMUNICATION PROTOCOL DATA ACQUISITION FREQUENCY

CNC Internal variables S7 (SIEMENS CNC) 1Hz

Vibration ModBus TCP 51200 Hz

Force ModBus TCP 1000 Hz

Sound ModBus TCP 51200 Hz

Temperature ModBus TCP 1000 Hz

4.1.3 Current State - Future State with EMPYREAN

In the current state, manufacturing orders are initially planned and divided into operations to

be executed by the robot. Once the robot completes the machining part, data from selected

operations undergo offline analysis through the workflow application developed by IDEKO for

anomaly detection in machining processes. If the analysis detects an anomaly the operator is

notified (Figure 8).

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 59/149

Figure 8: The high-level description of the offline analysis

The workflow application for offline process monitoring relies on low-frequency data. These

applications enable the analysis of individual operations by creating a unique fingerprint for

each operation using statistical methods based on low-frequency data. The system notifies

the operator after the manufacturing operation has been already finished (offline operation).

In these applications, manufacturing processes are segmented into individual operations in

order to analyze similar operations collectively. To efficiently handle the data, data processing

pipelines are implemented using a microservices architecture, allowing for modular and

scalable processing of the collected data.

Figure 9 presents the workflow of the current application implementation for anomaly

detection, including also the queues used for intercommunication between processes.

Figure 9: The workflow application for offline process monitoring

The role of each component is described below:

● The DRS component is responsible for monitoring the execution of operations and

recording the associated data. This data is sent to the machine-data queue.

● The FCS component listens to the machine-data queue and, if there is a pattern for

that piece model, it executes the comparison of the piece data against the pattern and

stores the results in the database.

● The user interface consumes the API to present everything necessary in the interface.

● From the User interface, the user can generate patterns. In that case, a generation task

is queued in the pattern-generation queue.

● The FGS consumes the pattern-generation queue and for each message found, it

generates a pattern with the data of the selected pieces.

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 60/149

The current state provides a basis for monitoring and analyzing manufacturing processes, but

it could be improved in several ways:

● Integrating real-time monitoring (online process) capabilities.

● Leveraging high-frequency data for more precise analysis and decision-making.

● Sharing the available infrastructure among the assets being monitored.

This use case concentrates on tackling the previously mentioned concerns via the EMPYREAN

Associations-based continuum. An Association will provide a secure and trusted execution

environment for the interactions between robots and edge resources. Additionally, resource

orchestration and autoscaling mechanisms will efficiently and dynamically handle the

increased demands within or across multiple Associations for processing and storage in a

multi-agent manner.

Our future state objective is threefold:

- Firstly, to transition to an online monitoring system;

- Secondly, to detect anomalies before the completion of each operation;

- And thirdly, to leverage mid to high-frequency data for analysis.

The application workflow will remain the same, but the way the services are managed,

offloaded and orchestrated will be delegated to the EMPYREAN framework. The IDEKO use

case will utilize mechanisms and tools developed in WP3 and WP4, which will be exposed

through the EMPYREAN SDK to address the identified challenges, as described in the following

section.

4.1.4 Challenges to be Addressed

The implementation of real-time monitoring systems faces various technical challenges,

particularly the need to process large amounts of data within relatively short timeframes,

given the limited computing power of with edge devices. The edge-cloud continuum, which

integrates cloud computing with multi-layered edge processing resources, emerges as a

promising solution by offloading, orchestrating, and balancing computing tasks among the

available resources. Consequently, the main challenges to be addressed include:

● Lack of real-time capability to identify optimal variables amidst the diverse operations,

such as drilling and milling, throughout the machining process.

● Potential insufficient computing power to handle the extensive list of operations,

hinders the generation of normality patterns and timely comparisons.

● Variety of data sources (e.g., robots with sensors) with high frequency need to be

efficiently transferred, stored and processed timely.

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 61/149

4.1.5 Deployment Environment

The proposed architecture to support the use case is based on the typical architecture found

in a machine tool client. It is composed of two layers: the on-device edge resources associated

with the robots and the on-premise edge resources set up by the client to host more

demanding workloads.

This use case proposes a scenario where a client with 3 robots that aims to deploy the process

monitoring solution. Each robot is equipped with edge devices, providing varying CPU, RAM,

and storage (HD) models, offering diverse range of computational capabilities, as illustrated

in the table below. It is worth noting that none of these devices are GPU-powered. They

support container-based application deployment, which facilitates efficient and flexible

deployment of software components. Additionally, the client has additional and more

powerful edge resources in its facilities.

Table 2: Characteristics of the deployment environment resources

DEVICE CPU RAM HD

Edge Smart Box Intel Celeron 1.83GHz 4GB 120GB

Edge Smart Box Intel Celeron 1.83GHz 8GB 480GB

Edge Smart Box Intel Celeron 1.83GHz 2GB 32GB

On premises edge

devices
Number of resources and characteristics to be defined during the project

4.1.6 KPIs

The success of the anomaly detection use case in robotic machining cells will be assessed using

several Key Performance Indicators (KPIs). These KPIs are designed to evaluate the

effectiveness of the deployed system in meeting its objectives and to provide actionable

insights for continuous improvement. They focus on enhancing operational efficiency and

responsiveness within our manufacturing processes. The KPIs for this use case are as follows:

No Indicator Success Criteria

1 Transition from offline operation analysis to real-time
operation fingerprint analysis

-

2 Ability to process real-time data 3 robots / 200 operations

3 Ability to alert an abnormal operation máx. 2 sec after it occurs

To accurately assess these KPIs, some initial evaluation metrics have been established.

1. Transition from offline operation analysis to real-time operation fingerprint analysis:

Currently, anomaly detection is performed offline, after operations have been completed. The

goal is to transition to a system capable of analysing operation fingerprints in real time, while

operations are still running. This will enable earlier detection of deviations and support more

responsive decision-making.

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 62/149

2. Ability to process real-time data:

This KPI will be assessed based on the system’s ability to handle continuous data streams from

multiple robotic machining cells. The initial target is to support 3 robots and 200 operations,

ensuring low latency and high data integrity throughout the data workflows.

3. Ability to alert an abnormal operation:

The system must be capable of issuing an alert within a maximum of 2 seconds after an

anomaly is detected. This requires fast detection algorithms, optimized data handling, and

reliable notification mechanisms that enable timely intervention before part quality is

affected.

4.1.7 Validation and Testing

The proposed deployment environment includes evaluation scenarios where edge devices

lack the necessary computing power to meet computational demands, thus necessitating the

orchestrated execution and offloading of workflows across the available resources. Anomalies

will be forced based on real machining data, such as unexpected changes in vibration patterns

or abnormal temperature fluctuations.

During the validation and testing phase, we will use the three key performance indicators.

Firstly, we will evaluate the transition from offline operation analysis to real-time operation

fingerprint analysis. Then, we will measure the system's ability to process real-time data from

three robots and a defined number of operations. Lastly, we will verify the system's ability to

alert about an abnormal operation within a maximum of 2 seconds after it occurs.

4.2 Proximal Sensing in Agriculture Fields (UC2)

4.2.1 Overview

This use case focuses on the dynamic assessment of Soil Organic Carbon (SOC) to evaluate soil

conditions in agricultural fields. By leveraging proximal sensing technology coupled with edge

computing, this system enables real-time analysis and efficient SOC assessment without the

need for centralized data processing. This approach fosters integrative farm management and

supports sustainable agricultural practices.

4.2.2 Detailed Description

Traditional methods for assessing soil properties, such as laboratory analysis face numerous

challenges in terms of efficiency, timeliness, and accuracy. These methods often involve time-

consuming processes that can delay critical decisions and actions in farm management.

Additionally, the results from different laboratories may not be harmonized, leading to

inconsistencies and difficulties in comparing data from various sources.

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 63/149

The EMPYREAN Associations-enhanced continuum addresses these challenges by integrating

proximal sensing technology with edge computing to enable dynamic and efficient SOC

assessment. Proximal sensing involves using sensors placed close to the soil to measure

various properties, such as moisture, temperature, and organic carbon content. These sensors

can be mounted on various platforms, including Unmanned Aerial Vehicles (UAVs), robots,

and tractors, allowing for flexible and comprehensive soil monitoring across large agricultural

fields. Edge computing plays a critical role in this system by processing data locally at the edge

of the network, near the data source, rather than relying on a centralized server. This reduces

latency and enables real-time data analysis, which is crucial for making timely decisions in farm

management. By analyzing data from sensors and other information sources in near real-time,

the system provides a continuous and up-to-date soil health assessment.

The EMPYREAN platform enhances this process by supporting distributed AI mechanisms,

allowing machine learning (ML) models to be trained on data collected from various sensors

directly in the field. Although initial training of these models requires soil samples and

laboratory analysis to establish baseline data, once trained, the models can use real-time

sensor data to provide accurate SOC predictions on-site. This approach ensures data privacy,

reduces the need for large data transfers, and maintains high accuracy in soil assessments.

Integrating these technologies through the EMPYREAN platform can revolutionize soil health

monitoring and management. By enabling real-time, accurate, and efficient SOC assessment,

the system supports sustainable agricultural practices, such as optimized fertilization and

irrigation, which can lead to increased crop yields and reduced environmental impact.

Monitoring soil health continuously and dynamically allows farmers to respond quickly to

changes in soil conditions, ensuring that crops receive the right nutrients at the right time.

Furthermore, the platform's capability to handle large volumes of data and perform complex

processing tasks at the edge addresses one of the significant challenges in proximal sensing.

Traditional methods struggle with the sheer amount of data generated by high-resolution

sensors, but the combined use of edge computing and distributed AI ensures that this data

can be processed efficiently and effectively. This approach not only enhances the accuracy of

soil assessments but also makes the system scalable and adaptable to different agricultural

environments.

In summary, the EMPYREAN Associations-enhanced continuum leverages advanced

technologies to overcome the limitations of traditional soil assessment methods. By

combining proximal sensing with edge computing and distributed AI, the platform will provide

a robust and efficient solution for dynamic SOC assessment, paving the way for more

sustainable and productive agricultural practices.

4.2.3 Current State - Future State with EMPYREAN

Currently, the assessment of soil health and fertility conditions involves several methods.

Traditional methods primarily include soil samples and laboratory analysis. Soil samples are

collected from various locations within a field and sent to laboratories where they are

analyzed for SOC and other properties. This process, while accurate, is labor-intensive, time-

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 64/149

consuming, and often costly. In addition to traditional laboratory analysis, other modern

techniques are also used. Spectral proximal sensing involves using reflectance spectroscopy in

the visible and near-infrared spectrum (Vis-NIR) to assess soil properties (Figure 10)139. This

method provides rapid and non-destructive analysis but requires sophisticated equipment

and expertise to interpret the data accurately. Remote sensing and the analysis of Earth

Observation data represent another modern approach. 140Satellite imagery and aerial

photography are used to monitor large-scale agricultural fields. This method can cover

extensive areas and provide valuable insights into crop health and soil conditions. However,

the spatial resolution of satellite data can be limited, and cloud cover can obstruct visibility,

making it less reliable for frequent monitoring. Despite the advancements these modern

techniques offer, they still face challenges related to data harmonization and consistency.

Results from different methods and sources may vary, making it difficult to create a unified

and accurate soil health assessment. Additionally, these methods often rely on centralized

data processing, which can introduce delays and reduce the timeliness of the information

provided to farmers.

Figure 10: PSR+ field spectrometer

With the implementation of the EMPYREAN platform, the future state of soil health

assessment will see a significant transformation in workflows. Integrating various sensors and

data types, combined with edge computing, will enable dynamic and efficient SOC

assessment, allowing for near real-time analysis of soil conditions. This will create a more

responsive and adaptive agricultural management system. In the future state envisioned with

EMPYREAN, UAVs equipped with advanced sensors will play a crucial role. Sensors mounted

139 Angelopoulou, T., Balafoutis, A., Zalidis, G., & Bochtis, D. (2020). From laboratory to proximal sensing

spectroscopy for soil organic carbon estimation—A review. Sustainability, 12(2), 443.

140 Castaldi, F., Hueni, A., Chabrillat, S., Ward, K., Buttafuoco, G., Bomans, B., ... & van Wesemael, B. (2019).

Evaluating the capability of the Sentinel 2 data for soil organic carbon prediction in croplands. ISPRS Journal of
Photogrammetry and Remote Sensing, 147, 267-282.

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 65/149

on these UAV will estimate crop biomass141, create management zones, and support crop

protection activities, such as weed control. This aerial perspective allows for comprehensive

coverage of agricultural fields, providing detailed data on crop health and soil conditions.

Robotic sensors will further enhance soil assessment by performing detailed analyses in the

identified management zones. The robot, equipped with visible and near-infrared (Vis-NIR)

spectrometers, RTK GPS, and soil moisture sensors, will conduct dynamic and efficient SOC

assessments directly in the field. The data collected will be processed on-site using edge

computing, ensuring timely and accurate results. The integration of these advanced

technologies will also support the creation and utilization of prescription maps. These maps

will guide variable rate fertilization, ensuring that nutrients are applied precisely where

needed, based on real-time soil health data. This targeted approach to fertilization will

enhance crop yields, reduce waste, and minimize environmental impact.

The initial workflow conceptualized within EMPYREAN includes several key steps (Figure 11).

First, UAVs with multispectral or hyperspectral cameras will be used to estimate cover crop

biomass and identify management zones. These UAVs will also assist in crop protection

management activities, such as weed control. Next, robots equipped with Vis-NIR

spectrometers and other sensors will perform detailed soil assessments in the identified

zones. The data collected will be processed using edge computing, enabling real-time SOC

assessment. Once the soil assessments are completed, prescription maps will be generated

using a Geographic Information System (GIS) platform. These maps will guide farmers in

applying fertilizers precisely where needed, optimizing nutrient use, and enhancing crop

health. The prescription maps will be transferred to fertilization equipment, ensuring accurate

and efficient application. The EMPYREAN platform will support the orchestration of all these

activities, managing the data flow and ensuring scalability and seamless integration between

different components. By combining cloud computing for large-scale data processing and

edge computing for real-time analysis, the platform will provide a robust and efficient solution

for dynamic SOC assessment.

141 Steenwerth, K., & Belina, K. M. (2008). Cover crops enhance soil organic matter, carbon dynamics and

microbiological function in a vineyard agroecosystem. Applied soil ecology, 40(2), 359-369.

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 66/149

Figure 11: High-level description of possible concept architecture for the UC

It is important to note that these processes are envisioned as part of the initial project scope

and may evolve as the project progresses. Continuous improvements and adjustments will be

made based on ongoing research, technological advancements, and practical field

experiences. This flexibility ensures that the EMPYREAN platform remains adaptable and

effective in addressing the dynamic needs of modern agriculture.

In conclusion, the UC’s future state with EMPYREAN represents a significant advancement in

soil health monitoring and management. By leveraging proximal sensing technology, edge

computing, and advanced AI mechanisms, the platform will enable real-time, accurate, and

efficient SOC assessment. This will support sustainable agricultural practices, optimize

resource use, and enhance crop yields, paving the way for a more productive and

environmentally friendly agricultural system.

4.2.4 Challenges to be Addressed

Implementing proximal sensing for dynamic SOC assessment in agriculture fields introduces

several challenges that must be addressed to ensure the system's effectiveness and efficiency.

Data Volume and Management: One of the primary challenges is the large volume of data

generated by high-resolution sensors. Each sensor can continuously produce substantial

amounts of data, leading to significant storage and processing requirements. Efficiently

managing and analyzing this data in real-time is crucial for making timely and accurate

decisions.

Networking Connectivity: Rural areas, where most agricultural fields are located, often suffer

from poor networking connectivity. This makes it challenging to rely on cloud-based solutions

that require constant and fast internet access. Edge computing helps mitigate this issue by

processing data locally, but the initial setup and occasional synchronization with central

servers still depend on network availability.

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 67/149

Integration of Multiple Data Sources: The system must integrate data from various sensors,

including UAV-mounted cameras, soil moisture sensors, spectrometers, and more. Each type

of sensor produces data in different formats and resolutions, necessitating sophisticated data

fusion techniques to combine and interpret this information effectively.

Energy Consumption: Operating multiple sensors and processing units, especially in remote

areas, requires a reliable power source. Monitoring and managing the energy consumption of

these devices is essential to ensure continuous operation. Battery life, energy efficiency, and

the ability to harvest energy from renewable sources are critical factors to consider.

Security and Data Privacy: With the use of distributed and edge computing, ensuring the

security and privacy of the data becomes paramount. Measures must be in place to protect

sensitive data from unauthorized access and cyber threats. Implementing robust encryption,

secure communication protocols, and regular security updates are essential components of

the system's design.

Scalability and Adaptability: The system must be scalable to handle varying field sizes and

adaptable to different crops and soil types. Developing flexible and modular solutions that can

be easily expanded or adjusted based on specific agricultural needs will ensure the system's

long-term viability and effectiveness.

By addressing these challenges, the EMPYREAN platform aims to provide a robust and efficient

solution for dynamic SOC assessment, ultimately leading to more sustainable and productive

agricultural practices. Continuous research, development, and field testing will be necessary

to refine the system and ensure it meets the diverse needs of modern agriculture.

4.2.5 Deployment Environment

The deployment environment for the proximal sensing use case in agriculture fields involves

a sophisticated setup of devices, equipment, and technologies to enable dynamic and efficient

SOC assessment. The exact deployment environment may evolve during the project's

development, but the initial indicative setup includes a range of advanced tools and systems

to support the use case. This use case will be validated within part of the EV ILVO field

infrastructures, utilizing five indicative fields with various crops: Potatoes (4 ha), Winter rye (3

ha), Agroforestry (1 ha), Beets (3 ha), and Maize (5 ha). These diverse field conditions provide

an ideal testing ground for deploying and validating the EMPYREAN platform's capabilities.

Possible Devices and Equipment: The deployment will utilize Raspberry Pi 4 or NVIDIA edge

devices for processing data collected by drones and sprayers. For aerial data collection, two

types of UAVs will be considered: the DJI Matrice 600 Pro and the DJI Matrice 350 RTK. These

UAVs will be equipped with RGP, or multispectral and/or hyperspectral cameras, as well as

external RTK GPS units, to capture high-resolution images and precise positioning data.

Additionally, a visible and near-infrared (Vis-NIR) spectrometer will be used to measure soil

reflectance properties. A EV ILVO robot equipped with a soil moisture measurement sensor

and the spectrometer will be utilized to assess soil moisture content and reflectance

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 68/149

properties directly in the field. A tractor will be used for fertilization, guided by the

prescription maps generated from the SOC assessments and other collected data.

Communications: The communication setup involves several technologies to ensure seamless

data transfer and device coordination. WiFi will be used for communication between the UAV,

robot, and the on-premises data center or the edge device. A 4G connection will be utilized

for broader connectivity needs, especially in remote areas.

Power Sources: Power management is crucial for the deployment environment. The UAVs will

be powered by drone batteries, which also supply power to the GPS and cameras during flight

operations. Laptops used for data analysis and monitoring will rely on their internal batteries.

The energy consumption of these devices will be closely monitored using battery monitoring

systems that track voltage, current, and temperature, allowing for accurate estimation of

energy usage. Possible power meters, such as Shelly Energy meters for laptops and shunt

energy meters for external drone batteries, will measure energy consumption in watt-hours

(Wh).

Energy Consumption: Comparing the energy consumption during the UC is essential to

determine the most efficient deployment strategy. By monitoring battery levels and utilizing

manufacturer specifications for each device, the deployment environment aims to optimize

energy use and ensure sustained operations in the field.

Data Types: Various data types will be collected and processed in this deployment

environment. Image analytics will involve images captured by UAVs equipped with RGB,

multispectral and/or hyperspectral cameras, stored in JPEG, PNG, and RAW formats.

Positioning data from RTK GPS units will be formatted as ASCII and follow the NMEA message

structure standard. Soil reflectance data collected by spectrometers will also be in ASCII

format. Additionally, environmental data, including moisture, temperature, and weather

information from a weather station at ILVO, will be gathered in numerical data formats and

stored in CSV files.

This deployment environment represents a comprehensive and technologically advanced

approach to SOC assessment in agriculture fields. While the setup described is indicative and

subject to change, it provides a robust framework for integrating proximal sensing, edge

computing, and AI technologies to enhance soil health monitoring and management.

Continuous refinement and adaptation of the deployment environment will be essential to

address emerging challenges and leverage new technological advancements throughout the

project's lifecycle.

4.2.6 KPIs

The success of the proximal sensing use case in agriculture fields will be measured through

several Key Performance Indicators (KPIs). These KPIs will help evaluate the effectiveness of

the deployed system in achieving its objectives and provide insights for continuous

improvement. The primary KPIs for this use case are:

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 69/149

No Indicator Success Criteria

1
Development of processes that support the transition from
subjective to objective, accurate and harmonised soil health
data sets

2 SOC developed for
different sensing

technologies

2
Transition to a real- or near real-time assessment of soil,
and water parameters, allowing cooperated integrated
farm management;

1 SOC model should be able
to run on edge hardware in

near-real time

3
Reduce the time and effort needed to develop soil data-
driven models, compared to training models with data from
manual soil sampling campaigns.

by 25%

To accurately assess these KPIs, some initial evaluation metrics have been established.

1. Development of Processes that Support the Transition from Subjective to Objective,

Accurate, and Harmonized Soil Health Data Sets:

To achieve this KPI, two Soil Organic Carbon (SOC) models will be developed using different

sensing technologies, ensuring data harmonisation and comparability. The first SOC model will

be based on UAV-acquired multispectral imagery, processed through cloud infrastructure. The

UAV imagery will be stitched into orthomosaics, which will then serve as input for an AI model

trained to estimate SOC levels across agricultural fields.

The second SOC model will operate using proximal sensing data captured by a spectrometer

mounted on ILVO’s autonomous field robot. This model will run on edge hardware, allowing

immediate data analysis in the field. By integrating both approaches, the process moves from

subjective, manually sampled measurements toward objective, sensor-based and harmonised

datasets. This dual-model approach also enables cross-validation between aerial and proximal

data sources, ensuring higher accuracy and robustness in SOC estimation.

2. Transition to Near Real-Time Assessment of Soil Health

This KPI will be achieved by deploying and optimising the edge AI model (based on

spectrometer data) to operate in near-real time on the ILVO robot. During robot operation,

the spectrometer continuously captures reflectance data from the soil surface. The on-board

AI model processes this data locally, generating near-instant SOC assessments without

requiring cloud connectivity.

The computational pipeline will be designed for efficiency, making use of lightweight model

architectures, hardware acceleration, and optimised data transfer between sensors and

processing units. The real-time insights produced by the robot can then be integrated into

farm management systems to support adaptive decision-making, thus enabling coordinated

and data-driven farm operations.

3. Reduce the Time and Effort Needed to Develop Soil Data-Driven Models

Traditionally, SOC models are trained using large datasets derived from manual soil sampling

and laboratory analysis, which are time-consuming and expensive. This KPI aims to reduce this

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 70/149

effort by at least 25% through an iterative AI-based approach that leverages the synergy

between the UAV and spectrometer-based models.

Specifically, the SOC assessment model running on the spectrometer will be used to (re-)train

and refine the UAV-based model. Field data collected autonomously by the robot will provide

continuous updates and ground-truth estimates that improve the UAV model’s predictive

performance. This creates a semi-automated feedback loop, where UAV imagery offers spatial

coverage and the proximal spectrometer provides calibration and validation data. The result

is a faster, less labour-intensive model development cycle that maintains high accuracy

without the need for extensive manual sampling campaigns.

4.2.7 Validation and Testing

The current phase of the use case involves developing a high-level demonstration architecture

and conceptualizing various key processes within the use case. These processes will leverage

advanced technologies and EMPYREAN platform components to ensure seamless integration,

efficient data processing, and effective soil health management. It is important to note that

these are not final but represent an initial conceptualization that may evolve as the project

progresses.

UAV and creation of management zones: In this process, a UAV equipped with an RGB

multispectral or hyperspectral camera and RTK GPS will be used for several purposes. The

primary tasks include estimating cover crop biomass, creating management zones, and

managing crop protection activities such as weed control. The UAV will utilize pre-trained ML

models to classify cover crop biomass based on the collected images. Additionally, the

integration of Earth Observation (EO) data is under consideration, which could further

enhance the accuracy and comprehensiveness of the assessments.

Robot, spectrometer and SOC assessment: This process involves a robot equipped with a

visible and near-infrared (Vis-NIR) spectrometer, RTK GPS, and soil moisture sensor. The robot

will perform dynamic and efficient SOC assessments on the spot within the management

zones identified by the UAV. Using the data collected, prescription maps will be created

through a GIS platform, guiding the application of necessary soil treatments.

VRA spraying/Fertilization: In this process, prescription maps generated from the SOC

assessments will be sent to farmers. The farmers will then provide detailed guidance on the

required fertilizer volume per area. Variable Rate Application (VRA) equipment will be used to

apply fertilizers accurately based on the prescription maps.

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 71/149

Figure 12: Indicative high-level architecture for the use case demonstration

4.3 5G-Enabled Vehicle-Assisted Services (UC3)

4.3.1 Overview

This use case aims to explore vehicle-assisted services in dynamic, latency-sensitive

environments where computational tasks—such as real-time video, LIDAR, or telemetry

processing must be offloaded to nearby edge infrastructure. The scenario focuses on how

EMPYREAN’s orchestration, telemetry, and security mechanisms can support mobility-aware

service deployment and ensure continuous, trustworthy operation as vehicles move across

5G-connected domains.

Figure 13: GAIA Lab testbed at the University of Murcia

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 72/149

The experimentation will be carried out at the GAIA Lab testbed at the University of Murcia

(UMU), which provides a 5G and edge computing environment suitable for testing

orchestration and service continuity under vehicular mobility conditions.

4.3.2 Detailed Description

Modern connected and autonomous vehicles generate large volumes of data that require low-

latency processing and adaptive orchestration to maintain performance and safety. Current

cloud-centric approaches introduce delays and lack flexibility when vehicles change zones or

network conditions vary.

This use case envisions a 5G-enabled orchestration ecosystem capable of deploying and

migrating workloads dynamically between edge nodes based on vehicle location, resource

availability, and network metrics. The EMPYREAN platform will provide the enabling

technologies to achieve this vision, including:

• A Decision Engine for latency-aware workload placement and migration.

• A Telemetry Service for continuous monitoring of network and system parameters.

• A Cyber Threat Intelligence (CTI) Engine to anticipate and correlate security events.

• Edge-to-cloud storage (via Skyfolk’s Edge Storage Gateway by Chocolate Cloud) for

policy-based, distributed data management.

The Workflow Manager (RYAX) will serve as the coordination layer between these

components, ensuring that deployment, telemetry, and data flows are handled autonomously

and securely.

4.3.3 Current State - Future State with EMPYREAN

Current State:

Existing vehicular systems depend heavily on centralized cloud infrastructures. They typically

lack mobility awareness and real-time orchestration, leading to performance degradation

during handovers or connectivity fluctuations. Security mechanisms are often reactive rather

than integrated into the orchestration process.

Future State with EMPYREAN:

 Through EMPYREAN, this use case will evolve toward a fully integrated, cognitive

orchestration framework capable of proactive decision-making and adaptive service

migration.

 Planned EMPYREAN contributions include:

● Dynamic Mobility-Aware Orchestration using the Decision Engine to select optimal

edge nodes.

● Telemetry-Driven Anomaly Detection to identify performance or security anomalies in

real time.

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 73/149

● Autonomous Security Mitigation deploying VNFs (e.g., filters or isolators)

automatically upon detection of threats.

● Threat Intelligence Correlation integrating CTI data to improve detection accuracy.

● Integrated Edge-to-Cloud Storage enabling secure, policy-driven data management

across the continuum.

At this stage, the infrastructure and architectural design are established, and the integration

and implementation of EMPYREAN components within the GAIA Lab environment are planned

for subsequent phases.

4.3.4 Challenges to be Addressed

● Low-latency orchestration: Achieving sub-second decision times for workload

migration.

● Service continuity: Ensuring uninterrupted performance during 5G handovers.

● Cybersecurity integration: Embedding real-time detection and mitigation within the

orchestration pipeline.

● Data privacy and resilience: Managing vehicular data securely across distributed edge-

cloud environments.

● Dynamic resource optimization: Adapting to mobility, workload variations, and

fluctuating network conditions.

4.3.5 Deployment Environment

The use case will be developed and validated in the GAIA Lab testbed at the University of

Murcia, a controlled environment that supports advanced research in 5G networks, SDN/NFV,

and edge computing.

GAIA Lab currently provides:

● A private 5G backbone connecting several campus sites (Luis Vives, ATICA, Bellas Artes,

GAIA).

● Multiple distributed edge clusters based on OpenStack and Kubernetes.

● SDN-enabled networking for programmable routing and QoS control.

● NFV capabilities to deploy VNFs and CNFs dynamically.

● Integration points for EMPYREAN components such as the Orchestrator, Telemetry

Service, Workflow Manager, and CTI Engine.

During the next phases, the EMPYREAN components will be deployed and tested in this

environment, enabling real-world experimentation of service migration, telemetry analytics,

and anomaly detection in mobility scenarios.

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 74/149

4.3.6 KPIs

The success of the 5G-Enabled Vehicle-Assisted Services use case will be evaluated using

several Key Performance Indicators (KPIs) that measure the platform’s ability to deliver low-

latency orchestration, reliable service continuity, and security responsiveness in mobile 5G

environments.

These KPIs are designed to assess the effectiveness of EMPYREAN’s orchestration, telemetry,

and CTI mechanisms when applied to vehicular mobility scenarios. They will be refined and

validated during later project stages, once the components are integrated into the GAIA Lab

testbed.

No Indicator Success Criteria

1 Service offloading and orchestration decision latency < 20 seconds

2 Security alert generation and mitigation initiation < 2 seconds

3 False positive reduction using CTI-enhanced detection
≥ 30% improvement vs.
telemetry-only baseline

1. Service offloading and orchestration decision latency:

This KPI will measure the responsiveness of the orchestration layer in dynamically

deploying or migrating vehicular services (e.g., virtual RSUs or inference engines)

across edge nodes. The target is to achieve service redeployment within 20 seconds,

maintaining operational continuity as vehicles move between 5G coverage zones.

2. Security alert generation and mitigation initiation:

This KPI focuses on the system’s ability to identify anomalies or security threats in near

real-time and initiate automatic mitigation (e.g., deploying traffic filters or isolation

VNFs). The expected response time for threat detection and mitigation initiation is

below 2 seconds, ensuring timely protection of active services.

3. False positive reduction using CTI-enhanced detection:

By combining telemetry data with contextual Cyber Threat Intelligence (CTI),

EMPYREAN aims to improve detection precision. The goal is to achieve at least a 30%

reduction in false positives compared to telemetry-only anomaly detection,

demonstrating the added value of CTI correlation within the orchestration workflow.

4.3.7 Validation and testing

Validation activities will take place once the EMPYREAN components are deployed within

GAIA Lab. The experiments will focus on:

● Evaluating orchestration and migration performance under mobility conditions.

● Testing telemetry-driven and CTI-assisted anomaly detection workflows.

● Assessing end-to-end latency, service continuity, and resource utilization.

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 75/149

● Validating security mechanisms such as DICE-based Secure Boot and DID/VC identity

verification during virtual RSU (vRSU) migration.

● Collaborating with Kookmin University (South Korea) to replicate security scenarios

and explore cross-continental applicability of EMPYREAN’s orchestration and threat

management solutions.

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 76/149

5 EMPYREAN Platform Components Definitions

5.1 EMPYREAN Ecosystem

The conventional way of dealing with (big) data generated and exchanged by IoT devices and

robots is to continuously push them to centralized cloud computing infrastructures or utilize

jointly on-device and on-premise/micro edge resources, deep and far edge computing nodes,

along with the traditional federated cloud resources, thus forming an IoT-edge-cloud

continuum. This approach can increase manifold the applications' performance and the

efficiency of the infrastructures142,143, overcoming the centralized systems' critical data

collection, transmission, and processing bottlenecks.

However, most related works and projects treat this continuum as a monolithic pipeline where

any resource can be accessed by anyone. While this is a scientifically viable assumption for

research papers and a valid setup for developing higher-layer functionalities (e.g.,

orchestration, application deployment), it cannot realistically be applied in real-world

scenarios. In reality, multiple organizations or individuals own and use IoT devices or robots

with on-device local computing and storage resources and cloud computing infrastructures.

As a result, edge resources (on-device, on-premise, near-edge, far-edge, fog, etc.) are

fragmented, often underutilized, and generally disconnected from cloud resources and any

market.

Figure 14: EMPYREAN overall concept and vision

EMPYREAN envisions a new paradigm for the continuum, introducing the concept of

collaborative collectives of IoT devices, robots, and resources spanning from the edge to the

cloud. EMPYREAN calls this the Association-based continuum (Figure 21), in the sense that

multiple Associations (collaborative collectives of IoT devices, robots, and resources) operate

in parallel in space and time and constitute the IoT-edge-cloud continuum. Each Association

is composed of shared and aggregated edge computing and storage resources of various sizes

and characteristics, encompassing both general-purpose and specialized units. These

142 aioti.eu/wp-content/uploads/2020/10/IoT-and-Edge-Computing-Published.pdf
143 atos.net/wp-content/uploads/2021/08/atos-2021-perspective-on-edge-computing-white-paper.pdf

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 77/149

Associations are dynamically formed and updated based on the resource owners'

participation, while central cloud resources can be utilized when and if needed. This approach

promises to enhance the flexibility, efficiency, and collaboration within the IoT-edge-cloud

ecosystem.

In particular, EMPYREAN’s Associations notion:

● Supports Collaborative Continuum: Empower organizations to build a collaborative

IoT-edge-cloud continuum utilizing self-owned resources.

● Enables Scalability: Allows an Association to scale by involving multiple

users/organizations and facilitating resources sharing between them.

● Abstracts Complexity: Simplifies the complexity and dynamicity of the underlying

infrastructures that usually belong to different administrative domains.

● Maximizes Resource Utilization: Overcomes the isolation and underutilization of edge

resources.

● Promotes Self-Sufficiency: Advocates for a self-sufficient IoT-edge continuum,

acknowledging that the cloud may not always be available or its use may be prohibited

for various reasons.

● Facilitates Inter-Association Cooperation: Supports cooperation between different

Associations, enabling the use of resources under stricter access and security rules

compared to resources belonging to an Association.

The core idea of Associations, those collaborative collectives, is not entirely new and finds

parallels in various domains and society in general. For instance, energy collectives have been

proposed and investigated within energy grids. In related work144, the concept of energy

collectives is introduced as a community-based electricity market structure. Moreover,

resource aggregation has been proposed for energy grids under the vision of micro-grids, as

demonstrated in the VIMSEN project145. Micro-grids, composed of distributed small energy

producers, aggregate their resources into larger associations (often called Virtual Power

Plants) to optimize collective benefits. In this case, small energy producers resemble

distributed edge resources, while large energy producers are akin to cloud providers.

Additionally, associations are prevalent in the farming and agricultural domain, where groups

of farmers collaborate on activities related to the marketing or selling of agricultural products,

as well as the growing, harvesting, processing, and packing of these products, and sharing

equipment, fertilizers, and other resources.

EMPYREAN’s Association does not propose a greenfield-like change in the domain but rather

a new and viable way to organize existing and future resources in a brownfield manner. This

144Moret, F., & Pinson, P. (2019). Energy Collectives: a Community and Fairness based Approach to Future
Electricity Markets. IEEE Transactions on Power Systems, 34(5), 3994-4004.
https://doi.org/10.1109/TPWRS.2018.2808961
145 D. J. Vergados, I. Mamounakis, P. Makris, E. Varvarigos, “Prosumer Clustering into Virtual Microgrids for Cost
Reduction in Renewable Energy Trading Markets”, Elsevier Sustainable Energy, Grids and Networks (SEGAN), Vol.
7, pp. 90-103, September 2016, https://www.sciencedirect.com/science/article/pii/S2352467716300297.

https://doi.org/10.1109/TPWRS.2018.2808961

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 78/149

approach constructs the IoT-edge-cloud continuum as an Association-based continuum. To

this end, EMPYREAN’s software components, platform mechanisms, and decision-making

algorithms will be fully reusable and adaptable, enhancing the flexibility and scalability of the

EMPYREAN platform.

Figure 22 illustrates the EMPYREAN ecosystem, highlighting the main stakeholders, their roles,

and interactions. The envisioned ecosystem promotes the composability of infrastructures

and services across the IoT-edge-cloud continuum. Within this framework, Associations

facilitate the collaborative operation and management of virtual executing environments by

pooling computational, storage, networking, and other infrastructure and service resources.

The key stakeholders are: (i) infrastructure providers, (ii) service providers, (iii) application

developers, (iv) EMPYREAN customers, and (iv) end users.

Figure 15: EMPYREAN ecosystem, key stakeholders and interactions

The infrastructure providers include:

● IoT providers that offer IoT infrastructures across the continuum, where data is

produced and service requests are generated, with IoT and Industry IoT (IIoT) devices

and on-premise low-capacity edge resources. Through the EMPYREAN platform, these

providers can offer their infrastructure to multiple vertical applications.

● Edge providers that offer deep and far edge computing and storage resources, close

and further from the end users/devices. These resources, coupled with hardware

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 79/149

acceleration capabilities suitable for AI/ML workloads, will be utilized for time-critical

and resource-demanding workloads.

● Cloud providers with centralized computational and storage resources whose

seamless inclusion in the Association-based continuum can increase robustness and

reduce cost. These resources will be used for computationally-intensive and latency-

tolerant workloads, as well as long-term data storage and replication.

The service providers include domain-specific and generic platforms built upon the

Association-based continuum. These platforms will enable optimal deployment and

autonomous adaptations of continuum-native applications and extreme-scale distributed

AI/ML workflows over heterogeneous and trusted resources. Both infrastructure and service

providers will leverage EMPYREAN’s AI-enabled management mechanisms and trustworthy

techniques to automate and optimize internal operations. This will facilitate collaboration for

seamless deployment and distributed data processing across the entire continuum.

The application developer creates hyper-distributed continuum-native applications. This

involves developing new functionalities or enhancing existing ones to fully leverage

EMPYREAN’s cutting-edge technological advancements. Depending on the application’s

complexity, the developer may also serve as the integrator. This stakeholder utilizes

EMPYREAN’s workflow-based design, lightweight environment packaging, and low-code

description to design the application, package its logic, and define deployment objectives in a

generic, infrastructure-agnostic manner.

An EMPYREAN customer utilizes the platform to deploy these applications across the

Association-based continuum, benefiting from trustworthy, autonomous, scalable, and

collaborative data processing capabilities. Finally, the end-users are those who interact with

and use the hyper-distributed applications deployed by EMPYREAN customers on the

platform.

The EMPYREAN ecosystem is designed for flexibility, allowing stakeholders to take on multiple

roles. For example, an organization can act as both an infrastructure provider and an

EMPYREAN customer. In this dual role, it can contribute a portion of its infrastructure

resources to the EMPYREAN platform via an Association, making them available to other

EMPYREAN customers. At the same time, as an EMPYREAN customer, the organization can

utilize the platform's decentralized intelligence and application development and deployment

solutions to enhance its own application performance.

EMPYREAN serves as a bridge between infrastructure and service providers (the supply side)

and application developers and end users (the demand side) who require high-performing,

low-latency, hyper-distributed applications. EMPYREAN aims to achieve optimal balance

between maximizing resource utilization and collaboration, thereby generating revenue for

the supply side, while ensuring the highest quality of service and experience for the demand

side.

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 80/149

5.2 Components Description

This section provides a high-level overview of the key components of the EMPYREAN platform,

showcasing innovative developments that facilitate a collaborative cognitive continuum. By

integrating intelligence and automation, these components enhance data processing

efficiency. We provide a high-level description and categorization of each component, along

with a brief overview of their dependencies, interfaces, involved partners, and relation to the

project use cases. These preliminary definitions aim to elicit functional and non-functional

requirements (Section 6). A more detailed technical presentation, including the components’

interactions and interfaces, will be available in deliverable D2.2 “Initial release of EMPYREAN

architecture” (M7).

5.2.1 Privacy and Security Manager

● Stakeholders: End Users, Application Developers, Infrastructure Owners

● High-level category: Security and Privacy Management

● High-level description: This component focuses on cybersecurity, privacy-preserving

techniques, and identity management using decentralized identifiers (DIDs). It handles

authorization with verifiable credentials (VC) and includes verifiable presentations

with zero-knowledge proofs (ZKPs) and selective disclosure. The verification is

performed through Distributed Ledger Technologies (DLTs), and smart contracts are

used to retrieve and store DIDs.

● Dependencies: p-ABC Library, Hyperledger Fabric

● Interfaces:

○ Interfaces with DLTs for verification

○ Interfaces with smart contract systems for storage and retrieval of DIDs

● Relation with use case:

○ Ensures secure and private identity management and data verification within

the EMPYREAN platform.

● Involved Partner: UMU

● Enabler: EN_1

● Priority: High

● KPIs:

○ T3.1

○ T3.2

○ T3.3

● Related Requirements:

○ F_ST.1, F_ST.2

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 81/149

5.2.2 P-ABC

● Stakeholders: Application Developers, Security Experts

● High-level category: Security and Cryptography Library

● High-level description: This component provides a distributed privacy-preserving

attribute-based credential system based on PSMS (Pointcheval–Sanders Multi-

Signatures). It uses a wrapper library for elliptic curve (EC) arithmetic to support these

functionalities.

● Dependencies: self-contained library.

● Interfaces: C Library compiled as a dependency, Provides APIs for cryptographic

operations related to attribute-based credentials.

● Relation with use case: Supports the privacy and security requirements of the

EMPYREAN platform by enabling attribute-based credential management.

● Involved Partner: UMU

● Enabler: EN_1

● Priority: Medium

● KPIs:

○ T3.1

○ T3.2

○ T3.3

● Related Requirements

○ F_ST.1

5.2.3 Telemetry Service

● Stakeholders: System Administrators, Infrastructure Owners, Security Analysts

● High-level category: Monitoring and Observability

● High-level description: The Telemetry Service handles observability and telemetry for

the infrastructure, allowing system administrators to understand system behavior,

troubleshoot problems, and monitor performance metrics like CPU, memory, storage,

and network traffic in real-time. It includes alerting, dashboarding, and data

transformation capabilities to optimize resource utilization and enhance security.

● Dependencies: -

● Interfaces:

○ Provides APIs for data collection and telemetry

○ Integrates with monitoring tools and dashboards

● Relation with use case: Provides real-time monitoring and telemetry data to support

the secure and efficient operation of the EMPYREAN platform.

● Involved Partner: UMU

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 82/149

● Enabler: EN_2

● Priority: High

● KPIs:

○ T2.1

○ T1.4

● Related Requirements:

○ F_GR.6

5.2.4 Software-defined RDMA-based Unified Transport Service based

on FlexDriver

● Stakeholders: Application Developers, Infrastructure Providers

● High-level category: Transport Service/Interconnect

● High-level description: It provides reliable RDMA-based transport service that

leverages ring-buffer lock free structures as I/O interfaces to materialize the Proactor

software design pattern that decouples requests from completion events. The

approach offers the ability to integrate remote I/O operations into large computational

pipelines (e.g. like AI training) and optimally overlap computation with network I/O.

● Dependencies: Requires the hardware platforms to feature RDMA-capable Network

Interface Cards (NICs) and in case of hardware accelerators, specific FPGA integrated

with RDMA NIC on the PCI-e bus.

● Interfaces:

o Custom pub/sub interface for software applications. Stream interface for H/w

accelerators with separate H/w pipelines for sending and receiving data.

● Relation with use case: Not directly related to a specific use case, primarily will be

integrated into NUBIS containers as a general I/O service that any use case can take

advantage of.

● Involved Partner: NVIDIA, NUBIS

● Enabler: EN_3

● Priority: High

● KPIs:

o T4.1

o T4.2

● Related Requirements:

o F_ASSOC.5, F_ASSOC.6

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 83/149

5.2.5 Decentralized and Distributed Communication Layer

● Stakeholders: Infrastructure owners, Network administrators, Application Developers.

● High-level category: (i.e. Orchestration, Storage, App development, etc): real-time

communication middleware, decentralized and distributed storage support, pub/sub

mechanisms, distributed queries support.

● High Level description: The decentralized and distributed communication layer offers

functionalities such as data dispatcher, which implements a networking layer capable

of running above a Data Link, Network or Transport Layer. This provides primitives for

efficient pub/sub and distributed queries. It supports fragmentation and ordered

reliable delivery of messages. The initial design of the communication layer has been

contributed and integrated into the Eclipse Zenoh146 open source project. The

EMPYREAN platform decentralized and distributed data communication component

and Eclipse Zenoh are therefore used interchangeably on this deliverable since Zenoh

is an actual implementation of it.

● Dependencies: This component has been developed in RUST, the exhaustive list of

dependencies can be found at the cargo.lock file which is located at the root of the of

the Eclipse zenoh source code.

● Interfaces: Custom pub/sub interface for software applications. Additionally, it

supports distributed queries based on data named networking, thus it is location

transparent, and supports geo-distributed storages. Data is organized as a set of

Resources, where a resource is made up of a key and a value. Other important concept

are key expressions, such as robot/sensor/temp, robot/sensor/*, robot/**, etc. The

above key expression denotes set of keys, while the * and ** are wildcards

representing respectively (1) an arbitrary string of characters, with the exclusion of the

/ separator, and (2) an arbitrary sequence of characters including separators.

● Relation with use case: Used in the tooling robotics use case lead by Tractonomy for

robot to everything (R2X) communication.

● Involved Partner: ZSCALE

● Enabler: EN_4

● Priority: High

● KPIs:

Real-time data exchange and retrieval is complex and requires high performance both in terms

of latency and throughput. High-performance needs first and foremost be provided by the

underlying infrastructure (e.g. 4G/5G) and ultimately by the application. While the

infrastructure oversees distributing the data, applications are in charge of processing the data,

which may significantly impact the end-to-end performance of the different EMPYREAN use

case.

146 https://github.com/eclipse-zenoh/zenoh

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 84/149

● Throughput­­: the application should be able to exploit no less than 80% of the

available throughput provided by the 4G/5G link, e.g. in the order of hundreds of

Mbps/tens of Gbps. To measure the throughput we expect to benchmark Zenoh

throughput against standard throughput testing suites like iperf.

● Latency: the application should not perceive an increment in latency greater than 20%

compared to what is provided by the infrastructure. To measure the latency we expect

to benchmark Zenoh latency against standard latency testing suits like ping.

Related Requirements:

● In the context of mobile robots or vehicles, the devices should be able to change the point of

attachment for their communication as fast as possible to minimize communication disruption.

5.2.6 Edge Storage Gateway

● Stakeholders: Application developers, Infrastructure owners

● High-level category: Storage

● High-level description: This component provides an access point to the EMPYREAN

storage service through an industry-standard S3 interface. By defining a storage policy,

users can precisely define the storage locations where their data should be distributed,

the level of required redundancy, encryption, and compression scheme. Hybrid

policies that use both cloud and edge locations are supported. Internally, it

communicates with cloud storage locations, Edge Storage resources and the

SkyFlok.com backend.

● Dependencies:

o Edge Storage Gateway

● Interfaces:

o S3 interface for data access

o Storage policy API for defining where and how files are stored

o REST API for listing available storage locations (cloud and edge)

● Relation with use case: the component can be utilized by any and all use cases that

require object storage at the edge or in the cloud.

● Involved Partner: Chocolate Cloud

● Enabler: EN_5

● Priority: High

● KPIs:

o T3.4

o T3.5

● Related Requirements:

o F_ASSOC.1,F_ASSOC.4, F_ASSOC.5

o F_DI.4

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 85/149

o F_ST.1

o F_DCM.1

o NF_GR.1, NF_GR.4, NF_GR.5, NF_GR.6

5.2.7 Edge Storage

● Stakeholders: Application developers, Infrastructure owners

● High-level category: Storage

● High-level description: This component provides a common abstraction of storage

resources located at the edge. Under the hood, a containerized version of Min.io is

deployed. Any storage resource (e.g. local file system, NFS, etc.) that can be attached

to the container as a volume can thus be exposed through a standard S3 interface,

making it accessible for use by the Edge Storage Gateway.

● Dependencies:

o Edge Storage Gateway

● Interfaces:

o S3 interface for data access

o Prometheus-compatible monitoring interface

● Relation with use case: the component can be utilized by any and all use cases that

require storage at the edge.

● Involved Partner: Chocolate Cloud

● Enabler: EN_5

● Priority: High

● KPIs:

o T3.4

o T3.5

● Related Requirements:

o Edge Storage Gateway requirements

o F_GR.5, F_GR.6

5.2.8 IoT Query Engine

● Stakeholders: Application developers, Infrastructure owners

● High-level category: Storage

● High-level description: This component allows users to store and access IoT time series

data. The novelty of the approach lies in the use of erasure coding. When accessing

data during a query, only parts of the stored coded fragments are retrieved (compared

to the entire fragment in a naive conventional solution). Depending on the

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 86/149

requirements of the use cases, it might be developed as a stand-alone component or

be an integrated subcomponent of the Edge Storage Gateway.

● Dependencies:

o Edge Storage Gateway

● Interfaces:

o S3 interface for data access

o Prometheus-compatible monitoring interface

● Relation with use case: The component can be utilized by any and all use cases that

store and later run analytics workloads on time-series data. The benefits of the

solutions will be most apparent in scenarios with large data volumes with many

dimensions and queries that only need to evaluate a small subset of the dimensions.

● Involved Partner: Chocolate Cloud

● Enabler: EN_5

● Priority: High

● KPIs:

o T4.4

o T4.5

● Related Requirements:

o Most of the requirements described for the Edge Storage Gateway

o F_DCM.2

5.2.9 RYAX Workflow Engine

● Stakeholders: End Users, Application Developers, Infrastructure owners

● High-level category: Orchestration, Application development

● High-level description: This component involves the workflow management brought

by RYAX engine. RYAX open-source workflow engine enables the design, deployment

and monitoring of workflows of data analytics upon Cloud, Edge, HPC infrastructures.

It makes use of Kubernetes orchestration and it provides a custom hybrid serverless

based runtime environment for the deployment of components upon the related

hybrid infrastructure. In the context of EMYREAN, RYAX workflow engine will be

enhanced to support multi-site deployments the support of Zenoflow dataflow

programming framework and the concepts of associations and aggregators.

● Dependencies: Service Orchestrator, Telemetry Service, AI-enabled workload

autoscaling, Decisions Engine, Registry, Aggregator, NIX-based environment

packaging.

● Interfaces: API, Web and CLI

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 87/149

● Relation with use case: It will enable users to design the applications in all use cases

through workflows along with the deployment and monitoring of their executions

upon the related computing continuum.

● Involved Partner: RYAX

● Enabler: EN_6

● Priority: High

● Related Requirements:

o F_GR_1, F_ASSOC_1

o F_DI(1-9), F_SO.15, F_SO.14, F_SO.10, F_SO.9, F_SO.8, F_SO.7, F_SO.6, F_SO.5,

F_SO.4, F_SO.3, F_SO.2, F_SO.1

o F_IPDR.3, F_IPDR.2

o NF_GR.1, NF_GR.2, NF_GR.3, NF_GR.4, NF_GR.5, NF_GR.8

5.2.10 AI-enabled Workload Autoscaling

● Stakeholders: End Users, Infrastructure owners

● High-level category: Orchestration

● High-level description: This component will provide an AI-enabled workload

autoscaling mechanism, which will be based upon Kubernetes orchestrator enhanced

with AI/ML techniques for intelligent resource requests and limits allocation.

Specifically, we will use AI/ML to perform optimal workload autoscaling by setting the

most adequate resource limits configuration and performing dynamic adaptation

based on historical data of previous executions. Hence, the component will provide

enhancements on available Kubernetes autoscaling mechanisms.

● Dependencies: Telemetry Service, Service Orchestration

● Interfaces: Kubernetes API

● Relation with use case: It will enable infrastructure owners and platform service

provides to improve the system utilization through a better utilization of available

resources.

● Involved Partner: RYAX

● Enabler: EN_7

● Priority: High

● Related Requirements:

o F_GR.3, F_GR.7

o F_DI.7, F_DI.8, F_DI.9

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 88/149

5.2.11 CTI Analysis Module

● Stakeholders: Infrastructure owners, Security Experts

● High-level category: Security, Orchestration

● High-level description: A module that provides information about past Cyber Threat

Intelligence (CTI) events observed around the world. It may serve as an external source

to quantify the risk of different systems.

● Dependencies:

o External access to CTI sources

● Interfaces:

o GUI for security experts

o API

● Relation with use case: It will enable access to external CTI data and provide critical

feedback to EMPYREAN orchestration and service assurance mechanisms to trigger

updates in Associations and migrate deployed workloads

● Involved Partner: NEC

● Enabler: EN_8

● Priority: Medium

● Related Requirements:

o F_ASSOC.4

o F_ST.4

5.2.12 Decision Engine

● Stakeholders: Infrastructure Owners, End Users

● High-level category: Orchestration

● High-level description: It provides the implementation of the developed multi-

objective optimization and orchestration algorithms. Specific task placement policies

involving energy consumption and others related to cold-start delays optimizations are

also included. It receives execution requests from the Service Orchestrator and also

interacts with the Telemetry Service to retrieve the required information.

● Dependencies: Service Orchestrator, Telemetry Service

● Interfaces:

○ REST

○ Asynchronous message-based

● Relation with use case: It will provide the required orchestration decisions to

EMPYREAN Service Orchestrator to assign and re-optimize the UC applications’

workloads.

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 89/149

● Involved Partner: ICCS, RYAX

● Enabler: EN_9, EN_17

● Priority: High

● Related Requirements:

○ F_GR.6

○ F_DI.1, F_DI.2, F_DI.4, F_DI.5, F_DI.6

○ F_SO.9

5.2.13 Analytics Engine

● Stakeholders: Infrastructure Owners, Application Developers, End Users

● High-level category: Service Assurance

● High-level description: It implements the service assurance mechanisms within the

EMPYREAN platform to detect issues with the operation of the infrastructure

resources and Associations along with the performance of the deployed applications.

It will analyze the collected telemetry data in order to trigger pro-actively and re-

actively dynamic adjustments.

● Dependencies: Service Orchestrator, Telemetry Service, Data Distributor

● Interfaces:

○ REST

○ Asynchronous message-based

● Relation with use case: It will ensure that the applications perform as intended, while

it will dynamically trigger the necessary adjustments if the current deployments do not

comply with the requested SLA guarantees.

● Involved Partner: ICCS, RYAX, UMU, ZSCALE

● Enabler: EN_2

● Priority: High

● Related Requirements:

○ F_GR.6

○ F_ASSOC.9

○ F_DI.6, F_DI.7, F_DI.8

○ F_SO.5

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 90/149

5.2.14 EMPYREAN Orchestrator and Controller

● Stakeholders: Infrastructure Owners, Service Providers, End Users

● High-level category: Orchestration and Deployment

● High-level description: The EMPYREAN Orchestrator ensures efficient service

orchestration and resource management in the disaggregated and heterogeneous

EMPYREAN infrastructure. It initiates the application deployment and automatically

coordinates the necessary supplemental actions (e.g., transfer of required data). The

EMPYREAN Controller abstracts the interaction with the specific edge and cloud

orchestration mechanisms at each EMPYREAN Association.

● Dependencies: Decision Engine, Telemetry Service, Analytics Engine, Secure Storage

Service

● Interfaces: REST interface

● Relation with use case: They will prepare, coordinate, and manage the application

deployment at the selected individual edge and cloud platforms.

● Involved Partner: ICCS, RYAX, NUBIS

● Enabler: EN_9

● Priority: High

● Related Requirements:

○ F_GR.1, F_GR.3, F_GR.4

○ F_ASSOC.4, F_ASSOC.7

○ F_DI.3, F_DI.4, F_DI.5

○ F_SO.3, F_SO.4, F_SO.7

5.2.15 Telemetry Engine

● Stakeholders: Infrastructure Owners, Application Developers, End Users

● High-level category: Infrastructure and Application Monitoring

● High-level description: The main component in EMPYREAN distributed telemetry

infrastructure. It maintains a global view of the state of the infrastructure resources

and the deployed applications. It coordinates the operation of a specific set of

Monitoring Probes that are responsible for monitoring the resources and the deployed

applications. Moreover, it provides historical telemetry data to enable their cognitive

orchestration and re-optimization.

● Dependencies: Telemetry Service, Service Orchestrator, Decision Engine, Analytics

Engine, Monitoring Probes

● Interfaces: REST interface, Python API

● Relation with use case: It will provide the required information for the EMPYREAN

orchestration and decision-making mechanisms. Thus, it will contribute to UC

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 91/149

applications’ cognitive orchestration and deployment in the EMPYREAN platform.

● Involved Partner: ICCS, UMU, NEC, RYAX, NUBIS, CC

● Enabler: EN_2

● Priority: High

● Related Requirements:

○ F_GR.3, F_GR.6

○ F_ASSOC.8, F_ASSOC.9, F_ASSOC.10

○ F_DI.6

5.2.16 EMPYREAN Registry

● Stakeholders: Infrastructure owners, Application Developers, End Users

● High-level category: Infrastructure Management

● High-level description: It manages the registration of IoT devices, edge, and cloud

resources in Associations. It also abstracts to the Workflow Manager the interaction

with the available Associations. The EMPYREAN registry will keep track of the available

Associations, services, and container images, the mapping of the infrastructure

resources to Associations, and the relation between users and Associations.

● Dependencies: EMPYREAN Aggregator, Workflow Manager, Lightweight Application

Packaging, API Gateway

● Interfaces:

○ REST interface

○ Asynchronous interface for notifications

● Relation with use case: It will facilitate the seamless deployment of EMPYREAN use

case applications across an Association-based IoT-edge-cloud continuum. It will handle

along with the Workflow Manager the initial steps of the applications’ lifecycle

workflow within the EMPYREAN platform.

● Involved Partner: ICCS, RYAX, NUBIS, UMU

● Enabler: EN_10

● Priority: High

● Related Requirements:

○ F_GR.1

○ F_ASSOC.8

○ F_SO.5

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 92/149

5.2.17 EMPYREAN Aggregator

● Stakeholders: End Users, Application Developers, Infrastructure owners

● High-level category: Orchestration and Deployment

● High-level description: The EMPYREAN Aggregator manages and coordinates the

operation of an EMPYREAN Association. Each Aggregator includes several core services

that provide the required intelligence and orchestration logic to operate an

Association, deploy workloads, and manage data access and storage. An Aggregator

orchestrates its own Associations that include separate or shared computational and

storage resources.

● Dependencies: EMPYREAN Registry, Service Orchestrator, Security and Trust Manager,

Data Distributor, Decision Engine, Telemetry Service, Edge Storage Gateway

● Interfaces: REST interface, Asynchronous interface for notifications

● Relation with use case: It will provide and manage the Association-based IoT-edge-

cloud continuum to ensure the performance, security and energy efficiency for the use

cases workloads. Additionally, it will abstract the inter-Association interactions and

facilitate their collaborative operation.

● Involved Partner: ICCS, UMU, CC, ZSCALE, RYAX, NUBIS

● Enabler: EN_11

● Priority: High

● Related Requirements:

○ F_GR.2

○ F_ASSOC.1, F_ASSOC.4, F_ASSOC.7, F_ASSOC.8, F_ASSOC.9, F_ASSOC.10

5.2.18 vAccel

● Stakeholders: Application Developers, Infrastructure owners

● High-level category: Orchestration and Deployment

● High-level description: vAccel is an open-source framework designed to enable

flexible execution by mapping hardware-accelerate-able workloads to relevant

hardware functions, thus decoupling applications from hardware-specific code. It aims

at enhancing security by ensuring that consecutive executions on a hardware-

accelerated platform do not leak sensitive data. This framework is part of the

EMPYREAN project's initiative to facilitate the development and deployment of

compute-intensive functions across IoT devices and edge nodes, leveraging the

concept of remote hardware accelerators. IoT devices can use the vAccel API to

request compute-intensive tasks to be executed by an available neighboring node

within the Association, integrating with established open-source solutions at the

systems level (e.g., Kubernetes, K3s, OpenFaaS) and including their high-level APIs in

the EMPYREAN SDK to simplify application development and deployment.

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 93/149

● Dependencies: EMPYREAN SDK, Open-source solutions (e.g., Kubernetes, K3s,

OpenFaaS), Flexible Hardware-Accelerated Execution, Offload Acceleration to Nearby

Devices

● Interfaces: API for triggering vAccel functions from the user.

● Relation with use case: UC1, UC3

● Involved Partner: NUBIS

● Enabler: EN_12

● Priority: High

● Related Requirements:

○ F_GR.5

○ F_SO.11

5.2.19 Application Builder for Unikernels

● Stakeholders: Application Developers, Infrastructure owners

● High-level category: Orchestration and Deployment

● High-level description: This component is designed to address the deployment of

applications in cloud-native environments using unikernels. It aims to tackle two major

challenges associated with unikernels: (i) simplifying the building and deployment

process, and (ii) minimizing the engineering overhead to resolve external software

dependencies.

● Dependencies: Simplification of the building and deployment process for unikernels,

Minimization of engineering overhead to resolve external software dependencies.

● Interfaces:

○ inputs: Application description & source/binary repository of the application

○ outputs: binary artifact (unikernel, bootable using a hypervisor, or on bare

metal)

● Relation with use case: UC2, UC3

● Involved Partner: NUBIS

● Enabler: EN_13

● Priority: High

● KPIs:

○ T5.1

● Related Requirements:

○ F_SO.14

5.2.20 Application Packaging

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 94/149

● Stakeholders: Application Developers, Service Providers

● High-level category: Orchestration and Deployment

● High level description: This component is designed to streamline the application

packaging process across diverse computing environments, focusing on creating OCI-

compatible container images. This tool aims to bundle binary artifacts along with their

descriptors into OCI container images, facilitating deployment across EMPYREAN's

supported execution modes, including containers, sandboxed containers,

WebAssembly (WASM), unikernels, and binary blobs for IoT devices. This development

is crucial for EMPYREAN’s overarching goal of enabling seamless application

deployment and execution across heterogeneous hardware architectures and

environments, enhancing interoperability, and ensuring efficient, cloud-native

deployment methodologies

● Dependencies: Automation and orchestration tools. Common schemas for describing

deployment objectives and end user preferences.

● Interfaces:

○ inputs:

■ Application description (Dockerfile-like)

■ source/binary repository of the application (combined with

Application Builder component), or

■ unikernel binary

○ outputs: OCI artifact bootable using component WP4.Task3.[3]

● Relation with use case: All

● Involved Partner: NUBIS

● Enabler: EN_14

● Priority:

● KPIs:

○ T5.2

○ T5.3

● Related Requirements:

○ F_SO.6, F_SO.15

5.2.21 Container Runtime

● Stakeholders: Infrastructure Owners

● High-level category: Orchestration and Deployment

● High-level description: The component within the EMPYREAN project aims at

facilitating the deployment of applications across various execution environments,

including unikernels and IoT devices. This component is based on urunc, a runtime

capable of spawning unikernels and seamlessly integrating them with generic

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 95/149

container runtimes compatible with Kubernetes and serverless architectures.

This component allows for the execution of applications built with the "Application

builder" component within the existing container orchestration ecosystems, providing

the benefits of diverse building systems (e.g., unikernels for improved security and

performance) while maintaining compatibility with widespread deployment models.

● Dependencies: Common schemas for describing deployment objectives and end user

preferences. Comprehensive monitoring and analytics mechanisms. Automated and

data-driven orchestration tools. Interoperable description of deployment policies.

● Interfaces:

○ inputs: OCI artifact, metadata

○ outputs: successful execution of the binary artifact

● Relation with use case: All

● Involved Partner: NUBIS

● Enabler: EN_15

● Related Requirements:

○ F_SO.3, F_SO.4, F_SO.13, F_SO.15

5.2.22 Secure execution environment

● Stakeholders: Infrastructure Owners

● High-level category: Orchestration and Deployment

● High-level description: This component is focused on establishing a secure and trusted

execution environment across the IoT-edge-cloud continuum. This environment based

on unikernels will support secure and measured boot mechanisms that are tightly

coupled with the systems layer. This approach will ensure that applications can be

deployed with varying levels of security and trustworthiness across different

hardware, enabling scalable and transparent operation from the micro deep edge to

far edge and to cloud environments without altering the deployment descriptor or

application logic. Furthermore, it will address the trade-off between flexible workload

deployment and the single-tenant use of computing resources, particularly in energy

and resource-constrained edge platforms.

● Dependencies: Secure and measured boot mechanism, Systems layer integration,

Support for varying levels of security and trustworthiness, Deployment across IoT-

edge-cloud continuum, Use of unikernels for security, Consistent deployment without

altering logic, Balance flexible deployment with single-tenant use, Energy and resource

constraints consideration.

● Relation with use case: UC2, UC3

● Involved Partner: NUBIS

● Enabler: EN_16

● Priority: High

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 96/149

● Related Requirements:

○ F_ASSOC.3

○ F_SO.7, F_SO.14

○ F_ST.6

5.2.23 NIX-based Environment Packaging

● Stakeholders: Application Developers

● High level category: Application development

● High level description: This is a tool used in the context of Ryax workflow management

and it involves the mechanism of performing multi-arch and polyglot environment

packaging to build the components to be used within the workflows. This mechanism

will be enhanced to support Web Assembly and unikernels.

● Dependencies: RYAX workflow engine, Application Packaging, Application Builder for

unikernels

● Interfaces: Ryax workflow engine APIs, WebUI, CLI along with NIX related CLI

● Relation with use case: All use cases

● Involved Partner: RYAX

● Enabler: EN_14

● Priority: High

● Related Requirements:

○ F_SO.13, F_SO.14, F_SO.15

○ F_IPDR.4

5.3 Technical KPIs

The following table provides a regrouping of the different KPIs defined in the DoA of

EMPYREAN upon which the different components described in the previous section are

aligned. Besides the number and the name of the KPI it also provides a success criteria which

will allow us to track its usage through the project.

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 97/149

Table 3: EMPYREAN Technical KPIs

ID Summary Description Success Criteria Baseline
Objec
tive

T1.1

Reduce cloud and increase
edge utilization via
workload balancing
optimization.

The use of Associations will enable
increased utilization of edge resources
compared to scenarios where limited-

capacity edge nodes operate and cloud
resources are required to handle

workload-intensive tasks.

50% reduction in core
cloud

Traditional centralized cloud
related services

Obj.1

T1.2
Increase reliability in the
edge.

Edge resources within an Association will
collaboratively execute workloads,

achieving higher reliability compared to
scenarios where edge nodes operate

independently.

>50% increase compared
to SotA

Non-federated computing
envrironments

Obj.1

T1.3
Increase statistical
multiplexing gains through
associations.

By dynamically pooling and sharing
resources across multiple edge nodes

within an Association, workload
fluctuations can be balanced more

efficiently, leading to higher statistical
multiplexing gains compared to isolated

edge or cloud deployments.

x2 compared to standard
execution

Non-federated computing
envrironments

Obj.1

T1.4

Provide low and
predictable latency for
hyper-distributed
applications.

Through intelligent workload placement
and coordination within Associations,

applications spanning multiple edge and
cloud layers will experience consistently
low and stable latency, outperforming
conventional, cloud-centric execution

models.

<1 ms for delay-sensitive
apps

Traditional centralized cloud
related services

Obj.1

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 98/149

T2.1
Improve overall
performance compared to
SotA.

EMPYREAN will outperform centralized
and static orchestration mechanisms

through AI-driven adaptive orchestration
across the Association-based continuum.

by 40%
Centralized and static

orchestration mechanisms
Obj.2

T2.2

Reduce energy
consumption on
Associations compared to
standard execution.

EMPYREAN will reduce energy
consumption within Associations

compared to static and non-coordinated
execution by leveraging AI-driven adaptive
and cooperative orchestration across the

Association-based continuum.

>25%
Static and non-coordinated

execution
Obj.2

T2.3

React fast to rapid changes
in computational and data
demands so as to
maximize the number of
demands served.

React rapidly to dynamic computational
and data demands within Associations,

where cooperative edge resources enable
intelligent autoscaling and adaptive task

redistribution, outperforming non-
federated solutions in maximizing the

number of served demands.

between x2 and x10
increase

 Non-federated computing
envrironments

Obj.2

T2.4
Boost AI-driven decision-
making accuracy.

EMPYREAN will boost AI-driven decision-
making accuracy by leveraging

decentralized learning, multi-agent
coordination, and continuous telemetry-
driven reasoning, surpassing centralized

and static orchestration approaches

>25% compared to SotA
Centralized and static

orchestration mechanisms
Obj.2

T2.5

Increase the robustness of
the algorithms, ensuring
consistent performance
even under uncertain or
noisy conditions.

Improve robustness over centralized or
non-coordinated approaches by using

decentralized AI and multi-agent
strategies, ensuring consistent

performance under uncertain and noisy
conditions.

>25% compared to SotA
Centralized or non-

coordinated approaches
Obj.2

T3.1 Number of trustworthy Enable trustworthy identity and trust >=3 - Obj.3

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 99/149

identity and trust
management processes
enabled by smart
contracts.

management processes using smart
contracts, protecting against unauthorized

access and malicious behavior.

T3.2
Accuracy of user and
device verification and
authentication.

EMPYREAN will improve the accuracy of
user and device verification and

authentication compared to traditional
identity and access management, reducing

risks of unauthorized access.

> 99%;
Traditional identity and

access management
mechanisms

Obj.3

T3.3
Reduction of privacy
violation incidents in data
sharing.

Reduce privacy violation incidents in data
sharing compared to conventional
centralized or ad-hoc mechanisms,

protecting sensitive information from
exposure.

> 50%;
Conventional centralized or

ad-hoc mechanisms
Obj.3

T3.4

Time reduction to
read/write data when
storing data purely on the
edge compared to storage
on the cloud.

EMPYREAN will decrease read/write
latency for data stored on the edge

compared to standard cloud storage,
mitigating delays associated with cloud

dependency.

by 40% Storage on the cloud Obj.3

T3.5

Ability to access data
stored on the edge when
the link to the cloud is
severed.

Enable access to data stored on the edge
even if the cloud link is lost, unlike typical

cloud-dependent storage, ensuring
uninterrupted service and data availability.

- Storage on the cloud Obj.3

T4.1

Increase small-message
transfer performance
measured at the
application level.

Increase small-message transfer
performance at the application level

compared to conventional CPU-managed
data transfers

by 3x
CPU-managed data transfers

Obj.4

T4.2
Improve the RDMA
programming efficiency of
edge applications.

EMPYREAN will improve RDMA
programming efficiency for edge

applications compared to traditional

-

Typical RDMA usage
paradigm

Obj.4

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 100/149

RDMA usage

T4.3

Decrease the wired
overhead over today’s
protocols like MQTT and
Kafka.

Decrease wired communication overhead
compared to current protocols like MQTT
and Kafka, optimizing network utilization

for IoT and edge workloads.

by 50%
Protocols like MQTT and

Kafka
Obj.4

T4.4

Ensure that the amount of
erasure coded data
retrieved for a query
scales linearly.

EMPYREAN will ensure that the amount of
erasure-coded data retrieved scales

linearly with query size.
- - Obj.4

T4.5
Limit on the overhead
incurred by erasure coded
techniques

Provide an upper limit on the overhead
incurred by erasure coded techniques, that

is either constant or a linear function.
- - Obj.4

T5.1
Reduce the development
time of continuum-native
applications

Total engineering hours to deliver a
continuum-native application from
concept to deployment. Compares
efficiency against the current SoTa tools
and workflows.

>20% decrease compared
to SotA

Traditional Cloud related
tools such as AWS

Obj.5

T5.2

Number of supported
hardware architectures for
seamless deployment of
an application.

Evaluates portability and adaptability
across heterogeneous environments (e.g.,
CPU, GPU, FPGA, edge devices).

>3

Support for 3 hardware
architectures (e.g., x86 CPU,
NVIDIA GPU, ARM-based
edge device)

Obj.5

T5.3

Reduce memory and space
required for deploying
application in resource-
constrained IoT/Edge
devices.

Evaluates optimization efficiency through
lightweight frameworks, or deployment
pipeline improvements.

>70% decrease of
footprint

Traditional deployment
tools such as Docker

Obj.5

T5.4
Offload acceleration
functionality to nearby
devices.

Evaluates improvements in distributed
processing efficiency and workload
balancing across the continuum.

>1 ΙοΤ device, >3 Edge
devices

 Obj.5

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 101/149

6 Requirements Analysis

This section presents the EMPYREAN requirements derived from a comprehensive analysis of

the project Use Cases (UCs) and platform components. The following principles were applied

to ensure optimal definition and clarity of the requirements:

● Traceability: Each requirement must be traceable to an operational need. Once

defined, it receives a unique identifier that allows the software design, code, and test

procedures to be precisely traced back to the requirement.

● Clarity: Requirements should be unambiguous. Vague and general statements must

be avoided. Descriptions need to be clear, specific and singular.

● Measurability: Requirements should be measurable, either quantitatively or

qualitatively.

● Uniqueness and Consistency: Requirements must be uniquely identified, consistent,

and compatible with each other.

● Feasibility: Requirements should be feasible and design-free, reflecting what the

system needs to accomplish rather than how it should be designed.

EMPYREAN requirements are organized systematically to facilitate efficient processing and

transformation into architectural decisions. All partners used a template to maintain

consistency and uniformity across all requirements. The template includes the following fields:

● Requirement ID: Each requirement is assigned a unique ID that encapsulates its type

(i.e., Functional (F) or Non-Functional (NF)), key area it belongs to, and numbering

sequence.

● Priority: Requirements are prioritized to indicate their importance and order of

implementation. Priority levels: Must-have: mandatory, Should-have: desirable,

Could-have: optional, Will-not-have: possible future enhancement.

● Title: A short but descriptive title for the requirement.

● Stakeholders and Actors: Stakeholders or systems interacting with the requirements

as well as the actors within the consortium that are involved in the requirement.

● Description: Provides a detailed explanation of the requirement.

● Rationale/Goal: Explains the reason for the requirement and its intended outcome.

● Relation to UCs: Describes the EMPYREAN use cases whose operation is related to the

specific functionality.

● Acceptance Measures: Defines criteria to evaluate the successful implementation and

performance of the requirement.

● Dependencies: Lists other requirements or components that are related or necessary

for the fulfilment of the requirement.

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 102/149

Based on the EMPYREAN goals and technical objectives, the requirements are grouped into 7

(seven) categories, encompassing both the project use cases requirements and the innovative

technologies envisioned to enable a cognitive continuum, integrating intelligence and

automation to achieve more efficient data processing.

These categories include general requirements, EMPYREAN Associations requirements,

security and trust requirements, data and computing management requirements,

decentralized intelligence requirements, service orchestration, distributed application

development and deployment requirements, and integration and platform development

requirements.

A total of 63 requirements have been defined, representing what the EMPYREAN platform

components should address to support an Association-based continuum and the project use

cases. This continuum aims to facilitate trustworthy, cognitive, and AI-driven associations of

IoT devices and edge resources for efficient data processing. By systematically organizing and

prioritizing these requirements, EMPYREAN ensures a clear and actionable roadmap for

developing a robust, secure, and intelligent platform. Moreover, the requirements will

constitute the basis of the initial architecture of the EMPYREAN project, detailed in deliverable

D2.2 “Initial Release of EMPYREAN Architecture” (M7).

6.1 Functional Requirements

6.1.1 General Requirements

This section presents the general functional requirements for the EMPYREAN platform, which

are indispensable parts of the designed solution. They describe the desired functionality the

designed platform, and its integrated software mechanisms must offer to the end users. In

addition, there are requirements to ensure the future exploitation of the EMPYREAN

developments, their ability to support cognitive and edge intelligence beyond current data

infrastructure, and enabling international collaboration with trusted partner regions to

showcase the project advancements.

Table 4: Analysis of general requirements

Requirement ID F_GR.1 Priority Must-have

Requirement Title Federate heterogeneous and distributed IoT, edge and cloud resources.

Stakeholders Infrastructure Owners, Service Providers Actors All

Description

The EMPYREAN platform should seamlessly, autonomously, and efficiently

integrate heterogeneous resources from various administrative (e.g.,

private, public, self-hosted) and technological domains. These resources

include IoT devices, on-premise systems, deep and far edge resources, and

multiple cloud platforms. The platform must intelligently leverage this

diverse array of resources to execute dynamic and highly demanding cloud-

native applications.

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 103/149

Rationale/Goal

By unifying IoT, edge, and cloud computational and storage resources

through an automated and self-managed approach, EMPYREAN will ensure

that data and processing for extremely low-latency services remain close to

their source. Meanwhile, computationally and data-intensive applications

will be intelligently distributed across a diverse set of edge and cloud

platforms.

Relation to UCs All EMPYREAN use cases.

Acceptance

Measures

EMPYREAN orchestration and deployment mechanisms are aware of the

available resources across the continuum.

Cloud-native application deployment across IoT-edge-cloud continuum.

EMPYREAN platform must respect data sovereignty and privacy

requirements.

Dependencies

EMPYREAN decentralized intelligence and AI-enabled application

development and deployment mechanisms.

Availability of telemetry information.

Abstraction models for cloud-native applications and infrastructure

resources.

Requirement ID F_GR.2 Priority Must-have

Requirement Title Enable collaborative autonomy in the IoT-edge-cloud continuum.

Stakeholders
Infrastructure Owners, Service Providers,

Application Developers
Actors All

Description

The EMPYREAN platform must deliver a collaborative autonomous

computing ecosystem through the EMPYREAN Associations, leveraging

heterogeneous resources, various providers, and diverse connectivity types

across the IoT-edge-cloud continuum. An Association comprises IoT devices,

multilayer edge resources, and federated clouds, forming a trusted,

autonomous, and dynamic entity. Utilizing AI algorithms, each Association

should elastically and flexibly allocate resources, manage workload, and

handle data. Furthermore, the Associations must enable the seamless

deployment of hyper-distributed applications within the continuum,

supporting their autonomous and self-driven adaptations.

Rationale/Goal

EMPYREAN envisions transforming the highly heterogeneous and

distributed IoT-edge-cloud continuum into a cohesive, borderless

infrastructure through multiple collaborative Associations. This Association-

based continuum will provide applications and IoT devices with a unified,

adaptable, efficient, reliable, and trustworthy virtual execution

environment.

Relation to UCs All EMPYREAN use cases.

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 104/149

Acceptance

Measures

Efficient usage of computational, storage, and network resources across the

continuum.

Enhanced scalability, reliability, and responsiveness to application and

infrastructure changes.

Dependencies

Autonomous distributed decision-making and collaborative intelligence.

Decentralized security and privacy mechanisms for verifying identities and

controlling access to resources.

Well-defined and documented APIs for seamless interaction between IoT

devices, edge nodes, and cloud services.

Requirement ID F_GR.3 Priority Must-have

Requirement Title Encompass autonomous and continuous control loops.

Stakeholders Service Providers, End Users Actors All

Description

Several key operations of the EMPYREAN AI-enabled distributed control and

management plane, which support the Association-based operations,

should employ autonomous and semi-autonomous approaches for self-

adaptation and self-healing. The platform must include multiple distributed

control loops operating at the Association level. These loops will utilize

data-driven mechanisms to sense (detect what is happening), discern

(interpret senses), infer (understand implications), decide (choose actions),

and act (execute actions), over an infinite time horizon.

Rationale/Goal

These mechanisms will drive the automated and cognitive operation of

Associations, as well as the orchestration of workloads and data

management across and within the EMPYREAN Associations. The

distributed control loops will underpin collaborative autonomy in the IoT-

edge-cloud continuum by abstracting the underlying complexity and

heterogeneity of resources, while co-optimizing resource utilization and

simultaneously enhancing scalability and resiliency.

Relation to UCs All EMPYREAN use cases.

Acceptance

Measures

Automatically and intelligently balance workload across the Association-

based decentralized computing environments.

Detect critical situations and reactively/proactively trigger re-optimization

actions.

Support self-adaptation of Associations and deployed workloads to

automate and optimize the Association-based continuum operation.

Dependencies
Cognitive orchestration and service assurance mechanisms.

Availability of telemetry data and historical monitoring information.

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 105/149

Requirement ID F_GR.4 Priority Must-have

Requirement

Title

Provide seamless deployment of hyper-distributed cloud-native applications

across a collaborative IoT-edge-cloud continuum.

Stakeholders Service Providers, End Users Actors All

Description

The platform should provide an abstraction layer that ensures seamless

workload portability across the different platforms within the EMPYREAN-

based continuum. EMPYREAN should facilitate resource interoperability and

transparent deployment of applications’ workload and data across the entire

IoT-edge-cloud continuum.

Rationale/Goal

The seamless deployment will enable EMPYREAN orchestration mechanisms

to cater for application constraints, while calibrating the configuration of

available resources. It will also guarantee a level of interoperability and

portability, increasing the potential impact of the developed mechanisms.

Moreover, developers will be able to focus solely on business logic for their

applications.

Relation to UCs All EMPYREAN use cases.

Acceptance

Measures

Seamless deployment of workload across the EMPYREAN continuum by

supporting variety of process architectures and environments (e.g.,

containers, microVMs, WebAssembly).

Provide abstractions for cloud-native application deployment over

seamlessly integrated heterogeneous computing resources.

Support develop once, deploy everywhere paradigm for micro-services and

serverless based cloud-native applications.

Dependencies
EMPYREAN workflow-based application design and packaging mechanisms.

EMPYREAN low-level application deployment mechanisms.

Requirement ID F_GR.5 Priority Must-have

Requirement Title
Support hyper-distributed, highly-demanding, and dynamic applications

from diverse domains.

Stakeholders
Application Developers, Service Providers,

End Users
Actors All

Description

The EMPYREAN platform must provide a novel ecosystem of cloud-based

technologies to support future hyper-distributed applications. It must

deliver intelligence on demand along with dynamic scalability (when/where

needed) and automatic data interconnection.

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 106/149

Rationale/Goal

Demonstrate the innovative capabilities of the EMPYREAN platform in

supporting the three diverse, hyper-distributed, dynamic, and high-

performance demanding project use cases. These UCs need more

computational power and intelligence on the edge while operating in

various environments (e.g., industry, warehouse, field) and including

robots, drones, and other sensors.

Relation to UCs All EMPYREAN use cases.

Acceptance

Measures

Successful demonstration of improved operation for three UCs by

leveraging EMPYREAN innovations.

Provide seamless deployment, cognitive orchestration, service assurance,

enhanced security, and intelligent management to the three UCs.

Dependencies

EMPYREAN SDK.

EMPYREAN security, trust, and data and computing management

mechanisms.

EMPYREAN decentralized intelligence and AI-enabled application

development and deployment.

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 107/149

Requirement ID F_GR.7 Priority Must-have

Requirement Title
Energy and power aware operation for optimal power management, energy

efficiency and ecological sustainability.

Stakeholders Infrastructure Owners, Service Providers Actors All

Description

EMPYREAN platform should provide power consumption - aware operation

of applications considering the battery-based function of devices in the

automation process. Furthermore, it should enable intelligent green

application management to promote optimal energy use and ecological

sustainability across the IoT-edge-cloud continuum. EMPYREAN decision-

making mechanisms should jointly consider performance and energy

efficiency for the workload placement and management of the

Associations. They should also account for the energy sources powering the

devices and the resources (e.g., battery or through renewable energy

sources), their charge states and their overall “greenness”, prioritizing

green resources.

Requirement ID F_GR.6 Priority Must-have

Requirement Title
Provide monitoring for cloud-native applications and heterogeneous

infrastructure resources.

Stakeholders
Application Developers, Service Providers,

End Users
Actors All

Description

The EMPYREAN platform must integrate advanced telemetry mechanisms

to automatically discover and monitor the available heterogeneous

resources automatically. In addition, it should dynamically and

transparently monitor all deployed cloud-native applications and serverless

workloads across the Association-based continuum.

Rationale/Goal

Orchestration, autoscaling, and service assurance mechanisms must have

access to detailed infrastructure resource information (e.g., type, quantity,

capabilities) and comprehensive monitoring data to provide informed

decision-making processes.

Relation to UCs All EMPYREAN use cases.

Acceptance

Measures

Collect detailed telemetry data from heterogeneous infrastructure

resources across the IoT-edge-cloud continuum.

Collect performance metrics for the deployed cloud-native applications.

Provide historical telemetry data.

Dependencies
Capabilities and exposed APIs of individual IoT, edge, and cloud platforms.

Availability of telemetry probes.

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 108/149

Rationale/Goal

EMPYREAN aims to contribute to Europe's edge-to-cloud decarbonization

through energy-aware workload and data balancing to reduce

environmental footprint by intelligently leveraging edge resources and

integrating environmental considerations into the cognitive orchestration

mechanisms.

Relation to UCs All EMPYREAN use cases.

Acceptance

Measures

Reduce energy consumption on Associations compared to standard

execution.

Orchestrate applications’ workload and data based on energy-aware

algorithms.

Dependencies

Energy-aware resource orchestration algorithms.

Ability to measure and/or estimate the energy consumption for key

infrastructure resources.

Availability of data (e.g., capabilities, prices) for the available renewable and

non-renewable energy sources.

6.1.2 Associations Requirements

This section focuses on the requirements for the EMPYREAN IoT-Edge Associations, or simply

Associations, which are the fundamental building blocks of the envisioned collaborative IoT-

edge-cloud continuum. These requirements are elicited to ensure the autonomous and

seamless management and operation of the Associations by leveraging an AI-enabled

management scheme. Additionally, they outline the core functionalities that need to be

implemented by the EMPYREAN Aggregator. The Aggregator plays a crucial role in supporting

the formation, coordination, and collaboration of Associations, utilizing the advanced

technologies developed by EMPYREAN.

Table 5: Analysis of EMPYREAN IoT-Edge Associations requirements

Requirement ID F_ASSOC.1 Priority Must-have

Requirement

Title

Combine heterogeneous computational and storage resources and different

connectivity resources.

Stakeholders Infrastructure Owners, Service Providers Actors All

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 109/149

Description

EMPYREAN Associations must operate over a federation of heterogeneous

IoT, edge, and cloud resources and services that may belong to several users

or organizations. These infrastructure resources are interconnected utilizing

different connectivity means/types. Through an Association, resources with

different capabilities and/or roles are shared between the participant users

and seamlessly and cognitively combined to create a unified virtual execution

environment. In this way, EMPYREAN Associations should transform the IoT-

edge-cloud continuum into a set of autonomous, self-organized, and

collaborative continuums, namely the Associations continuum. The

Association-based continuum should be able to cognitively orchestrate

resources and efficiently distribute and balance data and workload within an

Association and/or across multiple Associations.

Rationale/Goal

A hyper-distributed cloud-native application will be able to seamlessly

leverage infrastructure resources with varying capabilities and availability.

The resources of an Association will be shared between the participant users.

The collaboration of Associations will enable the intelligent and adaptive

distribution of applications’ workloads to optimize overall performance and

resource utilization. The Associations will be also empowered by automated

tools and mechanisms for seamless interconnection, efficient data processing

of ML-workloads, and secure distributed data storage.

Relation to UCs All EMPYREAN use cases.

Acceptance

Measures

Increase statistical multiplexing in resource usage through Associations.

Energy-aware utilization of infrastructure resources.

Limit data transfer to centralized cloud platforms.

Dependencies

IoT and edge resources integration mechanisms.

Coordination and management mechanisms for hybrid edge and cloud

environments.

Data exchange and storage across IoT devices and multiple edge and cloud

layers.

Requirement ID F_ASSOC.2 Priority Must-have

Requirement

Title

Facilitate secure onboarding of new IoT devices, robots and edge/cloud

resources within the EMPYREAN control and management plane.

Stakeholders Infrastructure Owners Actors All

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 110/149

Description

The Associations must automate the addition and removal of multiple IoT

devices, robots, and edge/cloud nodes, leveraging the EMPYREAN AI-enabled

control and management plane for seamless integration. New nodes should

be able to automatically communicate with existing nodes both within their

own Association and across other Associations, fostering a cohesive and

interoperable execution environment. Newly added nodes should become

instantly available to the orchestration mechanisms for workload placement

and data storage. IoT devices and robots will also become available as data

sources that will feed ML mechanisms served by an Association. This

immediate availability is crucial for maintaining optimal performance and

resource utilization across the continuum. An EMPYREAN Association should

expose the appropriate APIs for registering and removing resources and

other nodes. By linking IoT devices, robots and edge/cloud nodes to a specific

Association, the EMPYREAN platform will enhance their discoverability,

making them securely identifiable and manageable within the continuum.

Rationale/Goal

By automatically addressing these aspects, EMPYREAN platform will facilitate

the seamless and secure onboarding and offboarding of IoT devices, robots

and edge/cloud resources within the Associations. Moreover, it will support

the dynamic modification of the resources that compose a certain Association

based on various operational criteria. Thereby, the implementation of this

requirement will ensure a robust, trustworthy, scalable, and cognitive IoT-

edge-cloud continuum. This will not only streamline operations but also

facilitate the continuous evolution and scaling of the EMPYREAN platform to

meet future and operational challenges.

Relation to UCs All EMPYREAN use cases.

Acceptance

Measures

Automate onboarding and offboarding processes, minimizing human

intervention.

Provide resource classification based on reliability, trustworthiness,

availability, and connectivity.

Facilitate the up-to-date IoT-edge-cloud continuum topology provision to the

cognitive orchestration and service assurance mechanisms.

Allow to specify the necessary configuration to ensure the appropriate

onboarding of new nodes (e.g., IoT devices and robots) in the overall

EMPYREAN platform.

Dependencies

Security, trust, and privacy preserving mechanisms.

Dynamic connectivity between heterogeneous edge-cloud resources.

Automated configuration management and monitoring

Requirement ID F_ASSOC.3 Priority Must-have

Requirement Title Constitute a secure and trustworthy execution environment.

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 111/149

Stakeholders
Infrastructure Owners, Service Providers, End

Users
Actors NUBIS

Description

EMPYREAN will implement a secure and trustworthy execution

environment leveraging several key technologies and approaches. This will

include designing and implementing a distributed trust management

framework, trust propagation, and verification, combining trusted

computing & storage, smart contracts, and distributed ledger technologies

(DLTs). The platform will ensure secure boot and trusted execution,

providing robust and flexible ecosystems capable of maintaining high levels

of performance and security across various IoT-edge-cloud infrastructures.

Additionally, EMPYREAN will use policy-based encryption techniques and

identity management mechanisms to assure controlled access and data

confidentiality.

Rationale/Goal

EMPYREAN will provide a secure execution environment for dynamic,

heterogeneous, and interconnected IoT devices and edge resources across

the EMPYREAN platform, ensuring data and workload security, integrity,

and confidentiality.

Relation to UCs All EMPYREAN use cases.

Implement a trust management and verification service using trusted

resources, smart contracts, and DLTs.

Deploy and operate secure boot and trusted execution across multiple IoT-

edge-cloud environments.

Use policy-based encryption and identity management to control access

and maintain data confidentiality.

Achieve security performance metrics as defined in project’s technical KPIs.

Dependencies

Orchestration and management system.

Secure storage services.

Privacy-preserving mechanisms.

Requirement ID F_ASSOC.4 Priority Must-have

Requirement Title Support autonomous operation and enhance resiliency across the continuum.

Stakeholders Service Providers, Application Developers,

End Users
Actors All

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 112/149

Description

The Associations must implement self-configuration and self-optimization

mechanisms to support the autonomous management of the distributed IoT,

edge, and cloud resources across the continuum. Each Association should

include its own data-driven optimization and configuration mechanisms to

provide closer control over the specific part of the overall infrastructure it

oversees. Moreover, an Association should adapt to abrupt resource

availability and connectivity changes, with the respective orchestration

mechanisms to automatically reallocate affected workloads within an

Association and/or across Associations. In case, cloud resources are not

available due to connectivity or other reasons an Association or the

Associations-continuum should support the efficient processing and storage

of data generated by IoT devices and robots.

Rationale/Goal

Associations should be able to operate independently and maintain

functionality under various conditions (e.g., lost connection with central cloud

platforms, limited connectivity within IoT devices and deep edge nodes). This

requirement is essential for ensuring that systems can continue functioning

effectively despite disruptions, varying workloads, or changing environments.

Additionally, Associations should include multi-agent and multi-objective

optimization mechanisms to continuously optimize performance metrics such

as latency, energy consumption, and resource utilization through AI-driven

analysis and decision-making.

Relation to UCs All EMPYREAN use cases.

Acceptance

Measures

Support autonomous adaptations to continuum dynamicity.

Increase reliability in the edge and support for self-healing functionality.

Implement AI-enabled management schemes based on adaptive learning and

predictive analytics.

Provide fault tolerance and recovery.

Dependencies

Dynamic application deployment, support for application-level adaptations.

Adaptive resource management and self-configuration capabilities.

Advanced analytics and AI, decentralized decision-making.

Requirement ID F_ASSOC.5 Priority Should-have

Requirement Title Provide low and predictable latency for hyper-distributed applications.

Stakeholders
Service Providers, Application Developers, End

Users
Actors All

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 113/149

Description

Providing low and predictable latency for hyper-distributed applications is

essential for optimizing performance, ensuring operational efficiency, and

gaining a competitive advantage. By integrating edge computing, employing

intelligent workload placement, implementing decentralized and message-

centric data communication, providing efficient distributed edge storage,

monitoring latency, and software-defined edge interconnection for

distributed computations, this requirement can be effectively achieved. These

strategies collectively contribute to a robust infrastructure capable of

supporting the demanding requirements of modern hyper-distributed

applications.

Rationale/Goal

The integration of the above strategies with automated service assurance

mechanisms will empower the EMPYREAN platform to self-adjust, providing a

robust framework for efficient orchestration and deployment of latency-

sensitive and safety-critical applications in the complex and dynamic

environment of the IoT-edge-cloud continuum.

Relation to UCs All EMPYREAN use cases.

Acceptance

Measures

Facilitate network- and latency-aware scheduling policies.

Leverage data locality by distributing processing closer to where data is

generated.

Reduce the amount of data sent across the network by processing as much as

possible locally and exploiting caching techniques.

Dependencies

Availability of historical network telemetry data.

Configuration capabilities and monitoring data from the underline network

infrastructure.

Optimized network protocols for low latency and reduced payload size.

Requirement ID F_ASSOC.6 Priority Must-have

Requirement Title Provide inter-Association communication and exchange of events.

Stakeholders Service Providers, Application Developers Actors All

Description

The EMPYREAN should enable the communication of multiple EMPYREAN

Associations to exchange information, data, policies, workloads, events, and

local views about the available resources and deployed applications. An

Association should act as a gateway for information, data, and events to

resources that form the Association and to inter-Association communication.

This requirement is critical to the overall collaborative operation of the

distributed and cognitive orchestration and service assurance mechanisms of

the EMPYREAN platform.

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 114/149

Rationale/Goal

The platform’s collaborative orchestration, deployment, and control

management functionalities are distributed across the IoT-edge-cloud

continuum, ensuring both cooperative operation and scalability. To achieve

this, mechanisms within each Association must effectively exchange

information, data, and workloads with their counterparts in other

Associations. This interconnectivity is vital for maintaining the robust and

efficient operation of the EMPYREAN platform.

Relation to UCs All EMPYREAN use cases.

Acceptance

Measures

Ability to deliver events to multiple endpoints.

Seamless exchange of data and requests among the EMPYREAN Associations.

Response time should be acceptable from the other services.

Dependencies

Availability of telemetry mechanisms for information collection.

Service assurance mechanisms for information correlation, analysis, and

event identification.

Support for asynchronous communication and data transfer across the

EMPYREAN platform.

Requirement ID F_ASSOC.7 Priority Must-have

Requirement Title Data-driven seamless workload and data migration across the Associations.

Stakeholders
Service Providers, Application Developers, End

Users
Actors All

Description

The Associations must provide a collaborative environment for deploying

hyper-distributed applications and ML-based workloads efficiently over the

continuum, along with the necessary data placement. Moreover, an

Association must support the autonomous and data-driven workload and

data migration across its resources as well as between other Associations.

Rationale/Goal

An Association should provide the appropriate mechanisms to

automatically migrate part of the overall application workload within its

resources and/or across multiple Associations. Additionally, they should

automatically and transparently (for the end users) migrate data within the

distributed infrastructure to ensure that the required data are always

available to workloads. These mechanisms will facilitate the EMPYREAN

distributed and AI-enabled control and management plane to maintain the

actual operation state close to the desired state.

Relation to UCs All EMPYREAN use cases.

Acceptance

Measures

Reduce reliance on cloud and increase edge utilization.

Provide intelligent placement and workload balancing optimization.

Workload resumes its operation without user intervention.

Dependencies Resource orchestration and data placement algorithms.

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 115/149

 Interoperable container runtimes.

Cloud-native application deployment mechanisms over heterogeneous

edge/cloud platforms.

Requirement ID F_ASSOC.8 Priority Must-have

Requirement Title Aggregators must maintain a catalogue of the Association resources.

Stakeholders
Infrastructure Owners, Service Providers,

Application Developers, End Users
Actors All

Description

The Aggregator should implement a digital catalogue to persist information

about an Association's available resources, services and data. This catalogue

should provide a registry to publish available resources, platform services

and data in order to facilitate the management of Association resources,

the deployment of application workloads, and other inter-Association

operations. Furthermore, it should provide resource classification, enabling

the EMPYREAN platform to catalogue the characteristics, reliability, and

trustworthiness of system resources and services in order to take them into

consideration during the orchestration operations.

Rationale/Goal

These functionalities are critical for realizing the Association-based

continuum as they will provide topology awareness within the EMPYREAN

platform. Moreover, they will facilitate the onboarding of new

infrastructure resources and the deployment of new hyper-distributed

services by enabling their registration and discovery via the appropriate

APIs.

Relation to UCs All EMPYREAN use cases.

Acceptance

Measures

Facilitate the Associations’ management and collaboration across the IoT-

edge-cloud continuum.

Implement API to manage catalogue entries.

Support filtering stored information based on various criteria such as

specific characteristics, latency, ownership, energy consumption, and cost.

Dependencies

Availability of persistent data model for provider resources and services.

Service discovery and monitoring capabilities of IoT devices, edge and cloud

resources and services.

Requirement ID F_ASSOC.9 Priority Must-have

Requirement Title
Aggregators must dynamically discover resources within the registered

infrastructures and detect events.

Stakeholders
Infrastructure Owners, Service Providers, End

Users
Actors All

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 116/149

Description

The EMPYREAN platform should include methods to automatically and

dynamically discover the registered infrastructures. The Aggregator must

provide decentralized autonomous discovery mechanisms for infrastructure

description meta data such as the available IoT/edge/cloud devices, meta-

data information, and their capabilities.

Rationale/Goal

The orchestration, deployment, and service assurance mechanisms will

always retrieve an up-to-date list of available infrastructure resources to

effectively perform their operations. Furthermore, the service assurance

mechanisms will leverage the provided information to initiate necessary re-

optimization procedures in response to any changes in resource availability.

Relation to UCs All EMPYREAN use cases.

Acceptance

Measures

Provision of detailed inventory parameters (e.g., amount, type, capabilities,

operation state) of available computational and storage resources within an

Association.

Dynamic detection of changes in resources that constitute an Association

over time.

Dependencies

Capabilities and exposed APIs for the individual IoT devices, edge, and cloud

platforms.

Adoption of a common resource description schema.

Requirement ID F_ASSOC.10 Priority Must-have

Requirement

Title
Aggregators must maintain the state of the Association.

Stakeholders
Infrastructure Owners, Service Providers, End

Users
Actors All

Description

Each Aggregator must maintain the detailed state of the resources and

deployed workload for the Association it manages. For example, IoT devices

and edge resources are part of the Association. This information is critical for

the efficient management of the Associations, the cognitive and speculative

orchestration of resources, as well as the AI-driven adaptability within the

EMPYREAN platform.

Rationale/Goal

This requirement ensures that orchestration, deployment, and service

assurance mechanisms always have the most current information regarding

the Association's capacity, performance, and status. By consistently updating

their knowledge base of available resources, the above mechanisms can

proactively adjust to varying conditions, thus ensuring continuous and reliable

service delivery. This dynamic adaptability not only helps in maintaining

service levels but also enhances the efficiency and resilience of the overall

Association-based continuum.

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 117/149

Relation to UCs All EMPYREAN use cases.

Acceptance

Measures

Collect performance metrics for deployed application and utilization for

infrastructure resources.

Response time and monitoring granularity should be acceptable for the

appropriate operation of the orchestration and service assurance

mechanisms.

Ability to provide historical monitoring data to EMPYREAN AI-enabled

mechanisms.

Dependencies

Capabilities and exposed APIs for the individual IoT devices, edge, and cloud

platforms.

Long-term storage of collected monitoring data.

6.1.3 Security and Trust Requirements

This section outlines the initial functional requirements for EMPYREAN’s security and trust

mechanisms. These requirements aim to ensure that EMPYREAN Associations operate as

secure and trusted execution environments. Trust between data generating and data

processing entities will be continuously validated using distributed trust services, identity and

access management mechanisms, and trusted boot and execution technologies.

Table 6: Analysis of security and trust requirements

Requirement ID F_ST.1 Priority Must-have

Requirement Title Decentralized Identity Management

Stakeholders
Infrastructure Owners, Service Providers,

End Users
Actors UMU, All

Description

EMPYREAN will implement decentralized identity management

mechanisms utilizing Decentralized Identifiers (DIDs) and Distributed

Ledger Technologies (DLTs). This will ensure self-sovereign identity for users

and devices, giving them more control over their data and reducing the risk

of unauthorized access.

Rationale/Goal

Decentralized identity management is a key component of the EMPYREAN

vision for a collaborative and autonomous computing ecosystem. By using

DIDs and DLTs, the project aims to create a more secure, private, and user-

centric approach to identity management, aligning with the principles of

self-sovereignty and data protection.

Relation to UCs
The implementation of decentralized identity management will enhance

security and privacy in all use cases within the EMPYREAN platform. It will

be particularly beneficial in scenarios requiring secure authentication and

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 118/149

authorization, ensuring that only authorized entities can access sensitive

resources and data.

Acceptance

Measures

Successful implementation of DIDs and their integration with DLTs for

secure and transparent identity management. Demonstration of self-

sovereign identity capabilities for users and devices within the EMPYREAN

ecosystem.

Achieving a user satisfaction rate of over 90% regarding the ease and

security of the identity management process.

Dependencies

Integration with Privacy and Security Manager (UMU) for identity

management functions.

Compatibility with existing Distributed Ledger Technologies (DLTs).

Utilization of the P-ABC library (UMU) for cryptographic operations related

to attribute-based credentials.

Requirement ID F_ST.2 Priority Must-have

Requirement Title Privacy-Preserving Authentication and Authorization

Stakeholders
Infrastructure Owners, Service Providers,

End Users
Actors UMU, All

Description

EMPYREAN will implement a privacy-preserving authentication and

authorization system based on attribute-based verifiable credentials (VCs). It

will allow users and devices to authenticate themselves and authorize access

to resources based on their attributes, without revealing unnecessary

personal information. The system will utilize cryptographic techniques such

as Zero-Knowledge Proofs (ZKPs) to ensure that only the necessary attributes

are disclosed during authentication and authorization processes.

Rationale/Goal

The goal of this requirement is to enhance privacy and security in the

authentication and authorization processes within the EMPYREAN ecosystem.

By using attribute-based VCs and ZKPs, the project aims to minimize the

disclosure of personal information while still allowing for secure and

verifiable access control. This is crucial for building trust and ensuring data

protection in the decentralized environment of EMPYREAN.

Relation to UCs

This requirement is essential for use cases involving sensitive data and

resources, where privacy-preserving authentication and authorization are

critical. It will support scenarios where users and devices need to

authenticate and authorize actions without compromising their privacy,

ensuring secure access control in various applications within the EMPYREAN

platform.

Acceptance

Measures
Successful implementation of attribute-based VCs and ZKPs for

authentication and authorization. Demonstration of privacy-preserving

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 119/149

authentication and authorization processes within the EMPYREAN ecosystem.

Verification that only necessary attributes are disclosed during these

processes.

Dependencies

Integration with the Privacy and Security Manager (UMU) for managing

verifiable credentials and zero-knowledge proofs.

Utilization of the P-ABC library (UMU) for cryptographic operations related to

attribute-based credentials.

Requirement ID F_ST.3 Priority Must-have

Requirement Title Policy-Based Encryption

Stakeholders
Infrastructure Owners, Service Providers,

End Users
Actors UMU

Description

EMPYREAN must implement policy-based encryption techniques, such as

Ciphertext-Policy Attribute-Based Encryption (CP-ABE), to ensure controlled

access and confidentiality of data. This involves delegating decryption rights

to specific users, devices, or resources based on their attributes, enabling

fine-grained access control.

Rationale/Goal

Policy-based encryption is essential for protecting sensitive data and

ensuring that it is only accessible to authorized entities based on their

attributes. CP-ABE provides a flexible and scalable way to manage access

control policies in the EMPYREAN ecosystem.

Relation to UCs

UC1: Ensures encrypted data exchange between robotic cells and control

systems, protecting sensitive operational data. UC2: Protects

environmental data collected from sensors by encrypting it based on

specific attributes. UC3: Encrypts logistics data to ensure it is only

accessible by authorized entities.

Acceptance

Measures

Successful implementation of CP-ABE and other policy-based encryption

techniques.

Demonstration of fine-grained access control based on attributes.

Integration of these mechanisms with the distributed trust management

framework.

Dependencies
CP-ABE Library: Used for implementing policy-based encryption.

Distributed Trust Management Framework.

Requirement ID F_ST.4 Priority Must-have

Requirement Title Automated Cyber Threat Analysis

Stakeholders
Infrastructure Owners, Service Providers,

Security experts
Actors NEC

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 120/149

Description

This requirement entails developing advanced mechanisms for automated

analysis of Cyber Threat Intelligence (CTI) sourced from various data

channels. The project will encompass the entire lifecycle of CTI

management, including the collection, storage, and curation of intelligence

data from the Cyber Threat Alliance (CTA). A critical component of this

initiative will be the creation and implementation of sophisticated

algorithms designed to identify and track current global trends in exploited

vulnerabilities and malware usage. These algorithms will enhance the

ability to predict and respond to emerging cyber threats. The ultimate goal

is to create a robust framework that supports continuous monitoring and

analysis, thereby strengthening the overall defence against cyber threats.

Rationale/Goal

The objective is to enhance the platform's security by enhancing the

security experts’ knowledge of cyber threats in real-time. This requirement

is crucial for maintaining the platform's integrity and protecting it against

potential attacks. Robust threat detection and response mechanisms

ensure continuous security and minimize the risk of breaches.

Relation to UCs The GUI will be used to show security risks to the security experts.

Acceptance

Measures

Integration with the CTA and MISP147 platform.

Presentation of an easy to use user GUI that can be used by security

experts.

Dependencies
CTA platform.

MISP platform.

Requirement ID F_ST.5 Priority Must-Have

Requirement Title ML for Anomaly Detection and Cybersecurity

Stakeholders
Infrastructure Owners, Service Providers,

End Users
Actors

ICCS, NEC,

RYAX, UMU

Description

EMPYREAN must incorporate ML mechanisms to detect risks or attacks on

resources. This includes the development of a privacy-preserving Federated

Learning (PPFL) system for anomaly detection and the analysis of multiple-

source information to automatically learn the cybersecurity context and

defend the Associations-based continuum.

Rationale/Goal

Anomaly detection and cybersecurity measures are essential to protect the

EMPYREAN ecosystem from threats and ensure its resilience. By leveraging

ML and PPFL, EMPYREAN can proactively identify and respond to potential

security risks.

Relation to UCs Directly related to UC1 and UC4, as both involve the use of machine

learning for anomaly detection and cybersecurity measures, ensuring the

147 https://www.misp-project.org

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 121/149

security and resilience of the EMPYREAN ecosystem. Additionally, UC3

benefits from ML mechanisms to ensure secure and reliable operations of

autonomous robotic systems.

Acceptance

Measures

Successful implementation of ML-based anomaly detection mechanisms.

Development of a PPFL system for federated anomaly detection.

Demonstration of the ability to learn the cybersecurity context and defend

the continuum.

Dependencies
Monitoring services and telemetry data.

Automation and resource management mechanisms.

Requirement ID F_ST.6 Priority Must-have

Requirement Title Secure and Trusted Execution

Stakeholders
Infrastructure Owners, Application

Developers
Actors NUBIS

Description

Establish a secure and trusted execution environment for data collection

and processing across robotic machining cells (UC1), agricultural fields

(UC2), and logistics operations (UC3). This involves using secure boot

mechanisms, encryption, and other security measures to protect data and

ensure the integrity of applications. For instance, ensuring secure execution

environments in robotic machining cells can prevent unauthorized access

and tampering with critical manufacturing data, while in agriculture, it can

protect sensitive environmental data from being compromised.

Rationale/Goal

To ensure the secure and reliable operation of applications, protecting

sensitive data. Establishing a trusted execution environment is essential for

maintaining data integrity and system reliability.

Relation to UCs All EMPYREAN use cases.

Acceptance

Measures

Boots and onboards correctly when firmware/application blob are signed.

Not continue the execution if the application running on the IoT device is

not attested.

6.1.4 Seamless Data and Computing Management Requirements

The efficient handling of ML workloads and hyper-distributed applications relies heavily on
the interconnection and communication of the IoT devices with the computing and storage
entities. Below, we present the initial functional requirements for seamless data and
computing management within the EMPYREAN platform.

Table 7: Analysis of seamless data and computing management requirements

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 122/149

Requirement ID F_DCM.1 Priority Must-have

Requirement Title
Provide an S3-compatible storage service that encompasses the edge-cloud

continuum.

Stakeholders Application Developers, End Users Actors CC, ICCS

Description

Applications running inside associations will need access to a simple to use

storage service that abstracts away the complexities of managing storage

resources across the edge-cloud continuum. Edge and cloud storage

resources are typically highly heterogeneous and present a wide range of

characteristics. System operators may create manual storage policies that

account for this and try to balance user requirements such as availability,

reliability, performance, and cost efficiency. However, given the complexity

of matching individual user requirements to the available storage

resources, an automated data distribution and storage policy creation

mechanism is preferred. The service should also be prepared to run

autonomously whenever the link to the cloud is severed. This requirement

can only be met if sufficient storage resources exist in the association and

an appropriate storage policy is utilized.

Rationale/Goal

By hiding away and automating the complexities of managing the storage

resources, application owners will benefit from a storage service that

closely matches their requirements. The use of an S3-compatible API will

make adoption significantly easier thanks to S3s widespread adoption and

the wide range of tools available for it. By maintaining some level of

autonomy, applications running at the edge, in an association, will still be

able to utilize the storage service in case of network outages.

Relation to UCs

This requirement captures the general need of the project’s use cases to

store data at the edge and in the cloud. It provides additional technical

details and describes some of the requirements towards the underlying

infrastructure.

Acceptance

Measures

Good coverage and compliance with Amazon S3’s API.

Support for a wide range of cloud locations and edge storage resources.

Performance improvements when using edge compared to cloud storage

locations.

Option to perform encryption and store associated keys solely on the edge,

on privately managed infrastructure.

Maintain some level of functionality when the link to the cloud is severed.

Dependencies

Telemetry service needs to capture state of storage resources.

Automated storage policy creation algorithms implemented by the

orchestration service.

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 123/149

Requirement ID F_DCM.2 Priority Must-have

Requirement Title Provide an analytics-friendly erasure-coded IoT storage platform

Stakeholders Application Developers, End Users Actors
CC, UC

providers

Description

Storing large volumes of time series IoT data across the edge-cloud

continuum presents several challenges. However, each has well-known

solutions. Firstly, distributing the data to multiple cloud and/or edge

locations is key to achieving good availability and reliability. Secondly,

erasure coding offers much lower storage costs, compared to replication.

Thirdly, to be able to support analytics workloads, data queries must be

efficient in the amount of data that is retrieved from storage locations. This

is especially important for cloud locations, which carry a significant data

egress cost. Fourthly, large volumes of correlated data are good candidates

for compression, widely used to decrease storage costs. The challenge is to

offer all of these, sometimes incompatible, features as part of a single

service.

Rationale/Goal

All of the objectives highlighted above are desirable for a storage system

designed for IoT time series data. Achieving them is technically difficult,

especially in the case of a large volume of data with many dimensions,

where the queries typically affect a small portion of the dimensions and

stored records. This is a common scenario, especially when data is

accumulated over a long period of time and must be analyzed to detect

anomalies, short-time trends and so on. It is also applicable to cases when

an ML model needs to be trained from a specific subset of a large dataset

(e.g. after running PCA to determine the most important dimensions).

Relation to UCs The requirement captures the need of the use cases related to storing and
later running analytics workloads on time-series data.

Acceptance

Measures

Store time-series data in a distributed fashion across edge and cloud

locations.

Evaluate the possibility to use compression.

Low overhead of data that needs to be transferred to evaluate a query,

compared to a traditional replicated approach

Good scaling (ideally linear) of the data transferred w.r.t. the retrieved

dimensions for queries.

Dependencies
One or more use cases that require a large volume of multi-dimensional

time series data to be stored and queried.

6.1.5 Decentralized Intelligence Requirements

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 124/149

To achieve EMPYREAN’s ambition for an Association-based, cognitive and AI-driven

continuum, an intelligent orchestration and management layer is essential. This layer must

operate continuously and autonomously, optimizing and refining key application and system

metrics such as quality of service, efficiency, scalability, and resiliency. Bellow, we outline the

initial functional requirements for EMPYREAN’s decentralized intelligence mechanisms. These

requirements ensure that computational tasks and data are dynamically and efficiently

assigned based on current operational needs while the Associations operate as intended.

Table 8: Analysis of decentralized intelligence requirements

Requirement ID F_DI.1 Priority Must-have

Requirement

Title

Decentralized decision-making, speculative and multi-objective resource

orchestration.

Stakeholders Infrastructure Owners, Service Providers Actors ICCS, RYAX

Description

EMPYREAN should develop decentralized decision-making mechanisms to

enable (a) the placement of applications’ workload in the Associations and (b)

the load balancing of processing and data among Associations. Speculative

resource orchestration algorithms are required to balance between

centralized and decentralized solutions for the efficient and autonomous

operations of the Association-based continuum.

Rationale/Goal

EMPYREAN’s vision for an autonomous and collaborative operation within the

IoT-edge-cloud continuum requires more local decisions and a collective logic

to lead to system-wide welfare optimality.

Relation to UCs All EMPYREAN use cases.

Acceptance

Measures

Novel multi-agent and multi-objective resource allocation and service

orchestration optimization algorithms.

Improve overall performance, enhance scalability and reliability.

Reduce bottlenecks.

Dependencies

Multi-criteria deployment of hyper-distributed applications.

Intelligent and autonomous decision-making agents.

Dynamic discovery and orchestration of edge-cloud resources.

Requirement ID F_DI.2 Priority Must-have

Requirement

Title

Multi-agent speculative intelligent resource orchestration across EMPYREAN

Associations.

Stakeholders Infrastructure Owners, Service Providers Actors ICCS

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 125/149

Description

EMPYREAN must follow a distributed approach for resource orchestration

between Associations. To better address the multiple and conflicting

objectives among Associations, EMPYREAN should also support multiple levels

of co-operation (partial/no co-operation). The orchestration layer should

include multi-agent algorithmic solutions that address the inherent

uncertainty by exploiting the speculative dimension while considering critical

constraints such as the estimations in spatial (processing requirements) and

temporal (estimated processing time) dimensions and the heterogeneity and

usage of resources.

Rationale/Goal

The orchestration layer must account for the diverse characteristics and

constraints of each computing environment along with the emerging hyper-

distributed applications that embrace dynamic and multi-phase workflows.

Thus, the placement of the tasks must be considered jointly, while respecting

their dependencies.

Relation to UCs All EMPYREAN use cases.

Acceptance

Measures

Ensure scalability for designed algorithms.

Improve data-driven decision-making accuracy.

Support multiple autonomous large-scale IoT-edge-cloud platforms.

Dependencies

Coordination, collaboration, and conflict resolution among the agents.

Monitoring service and feedback loops to adjust and optimize performance

continually.

Requirement ID F_DI.3 Priority Must-have

Requirement

Title

Hierarchical orchestration and multi-objective optimization for cognitive

resource orchestration within Associations.

Stakeholders
Infrastructure Owners, Service Providers,

Application Developers
Actors ICCS, RYAX

Description

Within an Association, EMPYREAN should implement a hierarchical

orchestration approach, where the Association layer makes high-level

allocation decisions, and the local orchestrator at each platform provides the

final decisions. This will be achieved through multi-agent and multi-objective

optimization, leveraging game theory and auction-based mechanisms

enhanced by swarm intelligence. These techniques will ensure that workload

requirements are met while effectively abstracting the underlying complexity.

Rationale/Goal
By employing these approaches, EMPYREAN aims to create highly effective

resource allocation mechanisms, enabling timely operations in complex,

multi-technology, and multi-domain infrastructures.

Relation to UCs All EMPYREAN use cases.

Ensure real-time processing at the edge with minimal latency.

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 126/149

Acceptance

Measures

Support scalability of hyper-distributed applications

Multi-criteria deployment of hyper-distributed applications.

Dependencies
Automation and resource management mechanisms.

Monitoring services and telemetry data.

Requirement ID F_DI.4 Priority Must-have

Requirement

Title

AI-enhanced data orchestration and storage resource management within and

across Associations.

Stakeholders
Infrastructure Owners, Service Providers,

Application Developers
Actors

ICCS, CC,

ZSCALE

Description

EMPYREAN integrates diverse IoT, edge, and cloud storage resources to create

a secure, distributed storage infrastructure within the platform. Deployed

workloads bring their requisite data and frequently generate additional data

that needs to be stored within the system. EMPYREAN’s decentralized

intelligent mechanisms should automate the data management by load-

balancing data fragments at multiple locations, based on resource availability

and the locality of the created or consumed IoT data.

Rationale/Goal

EMPYREAN cognitive and distributed decision-making mechanisms should

facilitate the efficient and transparent allocation and movement of data

segments over the distributed edge and cloud storage resources when

workloads are deployed or adapted due to re-optimizations.

Relation to UCs All EMPYREAN use cases.

Acceptance

Measures

Provide optimized data placement over multiple edge and cloud resources.

Select storage locations (edge, cloud) based on user preferences and current

status of platform resources.

Implement dynamic allocation strategies to balance load and prevent

overutilization or underutilization of storage resources.

Exploit data locality to prioritize edge nodes where required data is already

stored.

Dependencies

APIs for integration with the secure storage services across the continuum.

Decentralized and autonomous interconnection and data distribution.

Access to telemetry data for storage utilization and performance metrics such

as latency, throughput, cost, etc.

Requirement ID F_DI.5 Priority Must-have

Requirement

Title
Energy-aware workload and data distribution mechanisms.

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 127/149

Stakeholders Infrastructure Owners, Service Providers Actors ICCS

Description

Energy-aware algorithms should be developed based on sophisticated AI/ML

methods that consider multiple parameters (e.g., energy prices and storage,

on-site availability of renewable energy sources) to enable predictable

resource configuration, support workload placement in an energy-efficient

manner, and automate load distribution and migration within the association-

based continuum.

Rationale/Goal

Energy-aware decision-making will dynamically assess the energy profiles of

different nodes and strategically distribute workloads and data to achieve

energy efficiency without compromising performance. It will enable more

battery-powered IoT devices and energy-constrained edge nodes to join

Associations and collaborate while integrating environmental considerations

into the operation of the Association-based continuum.

Relation to UCs All EMPYREAN use cases.

Acceptance

Measures

Energy-specific algorithms for energy-efficient orchestration and load

distribution.

Reduce energy consumption on Associations compared to standard execution.

Promote computing and storage resources that use green energy.

Dependencies
Availability of energy consumption and resource utilization data.

Multi-criteria deployment of hyper-distributed applications.

Requirement ID F_DI.6 Priority Must-have

Requirement

Title
Monitoring and managing power and energy consumption in IoT devices and

edge nodes.

Stakeholders
Infrastructure Owners, Service Providers,

Application Developers
Actors

ICCS, RYAX,

UMU

Description

Decentralized intelligence mechanisms should have access to comprehensive

energy profiles and real-time energy consumption measurements for

resources across the IoT-edge-cloud continuum. A distributed system should

be implemented to collect the necessary metrics from various devices and

nodes. These metrics should be stored in time-stamped solutions, ensuring

data integrity and enabling historical analysis.

Rationale/Goal

Operating multiple sensors and processing units, especially in remote areas,

requires a reliable and sustainable power source. Thus, monitoring and

managing the power and energy consumption of these devices is crucial to

ensure their continuous and efficient operation. Battery life, energy efficiency,

and the ability to harvest energy from renewable sources are critical factors to

consider.

Relation to UCs All EMPYREAN use cases.

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 128/149

Acceptance

Measures

Access to energy consumption measurements for IoT and edge resources.

Short- and long-term preservation of energy-related collected telemetry data.

Dependencies
Availability of energy consumption and resource utilization data.

Ability to monitor service level objectives of deployed applications.

Requirement ID F_DI.7 Priority Must-have

Requirement Title Decentralized and AI-enabled service assurance mechanisms.

Stakeholders Infrastructure Owners, Service Providers Actors
ICCS, NEC,

RYAX, UMU

Description

EMPYREAN should provide autonomous adaptations for deployed applications

and Associations through AI-enabled distributed service assurance

mechanisms. These mechanisms should (i) adapt the resources within the

Associations, (ii) provide dynamic load balancing of processing workload and

data within and across Associations, and (iii) perform federated anomaly

detection based on privacy-preserving federated learning.

Rationale/Goal

Depending on the available telemetry information, these mechanisms will

operate at different timescales. They will autonomously and continuously

drive the orchestration mechanisms in re-optimizations and adaptations

inside an Association using swarm intelligence and between federated

Associations in a decentralized and multi-agent manner.

Relation to UCs All EMPYREAN use cases.

Acceptance

Measures

React fast to rapid changes in computational and data demands to maximize

the number of served demands.

Increase robustness, ensuring consistent performance even under uncertain

or noisy conditions.

Protect the system from malicious activities that could exploit anomalies.

Dependencies
Available monitoring data from the EMPYREAN telemetry mechanisms.

Dynamic application deployment and application-level adaptation.

Requirement ID F_DI.8 Priority Must-have

Requirement Title
AI-enhanced self-healing for enhanced resiliency, adaptability, and

autonomous operation.

Stakeholders Infrastructure Owners, Service Providers Actors ICCS, RYAX, NEC

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 129/149

Description

EMPYREAN should address unexpected behaviours or failures within the

Association-based continuum. Data-driven continuous analysis mechanisms

based on swarm intelligence and machine reasoning should: (i) detect and

categorize abnormal situations in applications/resources, (ii) mitigate

resource fragmentation and connectivity issues, (iii) ensure continuous and

reliable operation, and (iv) provide dynamic load balancing of processing

workload and data within and across Associations.

Rationale/Goal

By implementing these data-driven mechanisms, the EMPYREAN platform can

achieve robust anomaly mitigation, adaptability, and self-driven recovery,

ensuring resilient and efficient operations in the face of unforeseen issues

across the infrastructure. For example, if a node within an Association fails or

leaves during the execution of an application, the platform must, if possible,

maintain performance and minimize downtime with an automated recovery

process.

Relation to UCs All EMPYREAN use cases.

Acceptance

Measures

React fast to rapid changes in computational and data demands to maximize

the number of served demands.

Maintain optimal performance by quickly identifying and resolving anomalies.

Learn from past anomalies and recovery actions to improve future responses.

Dependencies
Autonomous decision-making and predictive maintenance models.

Monitoring service and telemetry data.

Requirement ID F_DI.9 Priority Must-have

Requirement

Title
Autonomous and adaptive workload autoscaling.

Stakeholders Infrastructure Owners, Service Providers Actors RYAX, ICCS

Description

EMPYREAN should be able to enable the dynamic and intelligent adjustment

of computational resource boundaries to maximize task execution efficiency.

Leveraging AI-enabled decision making, this requirement should ensure that

resource allocation is continuously optimized responding to fluctuating

workloads and varying performance demands. The system has to

autonomously adjust the computational resources limits (i.e CPU, RAM) in

such a way to cover the real needs of the executing tasks while fitting as many

tasks as possible to the available resources.

Rationale/Goal

The main idea for the adaptive workload autoscaling is to enable optimal bin-

packing of tasks upon the resources by rightly setting the limits of the needed

computational resources. This will eventually lead to the allocation and

provisioning of less computing nodes to fit the executing workload. Based on

that we can decrease the amount of used computing resources which will

result in optimizing costs and energy consumption.

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 130/149

Relation to UCs All EMPYREAN use cases.

Acceptance

Measures

Rightly adjusting the limits of tasks for efficient executions avoiding Out-Of-

Memory errors and CPU throttling.

Provide improvements in bin-packing of tasks minimizing the amount of

needed resources for the execution of a workload.

Dependencies
Collecting resource usage (CPU, RAM) from executing tasks.

 AI-enabled mechanisms and autonomous decision-making.

6.1.6 Service Orchestration Requirements

The IoT-edge-cloud continuum is a complex and dynamic environment requiring robust,

scalable, adaptable, and efficient service orchestration mechanisms. EMPYREAN will provide

novel mechanisms for end-to-end cognitive orchestration and self-driven adaptability,

streamlining the process of resource management in heterogeneous and federated IoT-edge-

cloud infrastructures. Next, we present the initial functional requirements for the service

orchestration mechanisms that aim to provide the envisioned cognitive, distributed, and

autonomous orchestration functionality of the EMPYREAN platform.

Table 9: Analysis of service orchestration requirements

Requirement ID F_SO.1 Priority Must-have

Requirement Title
Continuum-native workflow-based application design considering dataflow

programming and low-code techniques.

Stakeholders Application Developers, End Users Actors RYAX, ZSCALE

Description

EMPYREAN should be able to provide the tools to enable developers to build

their applications destined to be executed on the continuum using intuitive,

simple to use techniques. Continuum-native applications are expected to

bring more complexities than Cloud applications mainly because of the usage

of different infrastructures (IoT-Edge-Cloud) and their highly distributed

nature. The specific requirement demands a certain abstraction and ease of

use for the design of continuum-native applications. This should be enabled

by proposing an application design based upon workflows and low-code

techniques, which will allow a modular development of applications following

a microservice/serverless approach to be adapted to EMPYREAN associations

and aggregators concepts. Furthermore, the internal representation and

communication of components in a workflow should be based upon a

dataflow programming framework to better capture the distributed nature of

continuum-native applications. Best practices and optimal configuration of

applications should be considered. EMPYREAN should provide both Web and

Command-line Interfaces for the application design techniques.

Rationale/Goal The main idea is to empower application developers with the right tools to

design optimal continuum-native applications while reducing the time-to-

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 131/149

market. The tools need to be adapted to function according to the EMPYREAN

associations and aggregators concepts. The techniques aim to minimize the

needs for expert users to develop boilerplate code and for non-distributed

systems experts to design continuum-native applications which can be

executed efficiently.

Relation to UCs All EMPYREAN use cases.

Acceptance

Measures

Efficient design and deployment of Continuum-native applications upon

EMPYREAN associations

Minimize time-to-market for the development of optimal continuum-native

applications.

Enable workflow-based application design enhanced with lower-level

dataflow programming.

Requirement ID F_SO.2 Priority Must-have

Requirement Title Deployment objectives (SLOs) definition for continuum-native applications

Stakeholders
Infrastructure Owners, Service Providers,

Application Developers, End Users
Actors RYAX, ICCS

Description

EMPYREAN should be able to establish precise and measurable performance
metrics that guide the deployment and operation of continuum-native
applications across the continuum. This involves setting specific SLOs related
to latency, throughput, availability, reliability, and energy efficiency for each
application workflow, ensuring that every segment of the deployment upon
the continuum meets the designated performance standards.

Rationale/Goal

Given the diverse and distributed nature of resources and applications within

the continuum, establishing clear and measurable SLOs is crucial for aligning

resource management strategies with application performance needs. This

requirement aims to provide a robust framework that can accommodate the

unique constraints and demands of hyper-distributed applications, enabling

precise control over latency, throughput, reliability, and energy consumption.

Relation to UCs All EMPYREAN use cases.

Acceptance

Measures

Establish measurable SLOs for latency, throughput, availability, reliability, and

energy efficiency, with performance testing, continuous monitoring, and

stakeholder validation ensuring compliance.

Dependencies Monitoring service and telemetry data.

Requirement ID F_SO.3 Priority Must-have

Requirement

Title

Seamless and declarative orchestration of self-organized distributed

orchestration systems.

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 132/149

Stakeholders Infrastructure Owners, Service Providers. Actors
ICCS, RYAX,

NUBIS

Description

The orchestration system should support distributed control and

management, divided into multiple local control loops operating at the

Association level while dynamically collaborating. Low-level orchestrators will

be responsible for the detailed orchestration of the resources under their

control. The high-level orchestrator should follow a declarative approach to

describing the deployment objectives at local orchestration mechanisms.

Rationale/Goal

EMPYREAN distributed and hierarchical orchestration mechanisms should

efficiently and autonomously orchestrate services and place data in the

heterogeneous and collaborative continuum. Multiple orchestration agents

will cooperate and coordinate their operation across Associations to provide

the required end-to-end cognitive orchestration, collaborative operation, and

self-driven adaptability within the EMPYREAN platform.

Relation to UCs All EMPYREAN use cases.

Acceptance

Measures

Ability to coordinate different orchestration platforms.

Seamless deployment in heterogeneous and federated IoT, edge, and cloud

resources.

Services are efficiently orchestrated in a collaborative continuum of

heterogeneous resources.

Dependencies
Common schemas for describing deployment objectives and end user

preferences.

Requirement ID F_SO.4 Priority Must-have

Requirement Title Policy-based orchestration and efficient resource allocation.

Stakeholders
Infrastructure Owners, Service Providers,

Application Developers
Actors

ICCS, RYAX,

NUBIS

Description

EMPYREAN should allow the definition of policies for application deployment

and data storage that govern the decisions of orchestration mechanisms and

the behaviour of deployment mechanisms at each level. EMPYREAN should

ensure that these policies are enforced consistently to maintain system

objectives such as performance, security, and energy efficiency. This policy-

based orchestration will facilitate efficient resource allocation based on

current demands and constraints.

Rationale/Goal

By adopting a policy-based orchestration approach and focusing on efficient

resource allocation, EMPYREAN will effectively manage the Association-based

IoT-edge-cloud continuum, achieving scalability, high performance, cost

efficiency, and robust operational capabilities.

Relation to UCs All EMPYREAN use cases.

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 133/149

Acceptance

Measures

Provide flexibility to changing workloads and infrastructure conditions

through dynamic policy adjustments.

Enforce security policies to protect data and assure controlled access.

Ensure that applications and services can operate seamlessly across

Associations.

Dependencies

Comprehensive monitoring and analytics mechanisms.

Automated and data-driven orchestration tools.

Interoperable description of deployment policies.

Requirement ID F_SO.5 Priority Must-have

Requirement Title Context awareness and autonomous adaptive response.

Stakeholders Service Providers, Application Developers Actors
ICCS, RYAX,

NEC, UMU

Description

Service orchestration mechanisms should leverage contextual information to

make informed and adaptive decisions. This will ensure that resources are

utilized optimally, aligning with current conditions and stakeholders’

preferences and needs. Moreover, context awareness will enable the

orchestration layer to understand and respond to changes in the continuum’s

highly dynamic environment, optimizing performance and resource usage

both within and across Associations.

Rationale/Goal

By implementing these functionalities, the EMPYREAN orchestration

mechanisms will be able to apply recovery actions provided by the service

assurance mechanisms as well as adaptations generated by the decision-

making mechanisms to optimize the deployed workloads, available data, and

operation of Associations.

Relation to UCs All EMPYREAN use cases.

Acceptance

Measures

React to rapid changes in computational and data demands.

Maximize the number of served demands considering their deployment

objectives and available infrastructure resources.

Apply suggested deployment optimization and recovery actions.

Dependencies

Support for application-level adaptations.

Mechanisms to collect context data from various IoT devices, sensors, and

edge nodes.

Requirement ID F_SO.6 Priority Must-have

Requirement

Title

Transparent lifecycle management of hyper-distributed application

components.

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 134/149

Stakeholders Service Providers, Application Developers Actors
ICCS, RYAX,

NUBIS

Description

The EMPYREAN platform orchestration mechanisms must facilitate the

complete lifecycle management for all microservices and application

components, regardless of the underlying infrastructure resources (e.g, IoT

devices, edge, cloud). The platform should offer infrastructure-agnostic

interfaces to support the deployment, update, migration, and termination of

any hyper-distributed application that complies with the deployment

procedures of the EMPYREAN platform.

Rationale/Goal

This design requirement guarantees seamless and efficient management of

applications across diverse environments. It will facilitate the deployment and

management of novel hyper-distributed applications across an Association-

based continuum. Additionally, it will allow end uses to review the status of all

the application components.

Relation to UCs All EMPYREAN use cases.

Acceptance

Measures

Infrastructure-agnostic deployment for cloud-native applications.

Autonomous and continuous monitoring of application components.

Minimize manual interventions for application updates and redeployments.

Dependencies

Automation and orchestration tools.

Common schemas for describing deployment objectives and end user

preferences.

Requirement ID F_SO.7 Priority Must-have

Requirement Title Coordinate workload migration within and across Associations.

Stakeholders
Infrastructure Owners, Service Providers,

Application Developers
Actors ICCS, NUBIS

Description

The EMPYREAN orchestration mechanisms must be able to either pause,

move, and restart an ongoing workload, or should be able to re-deploy the

same workload in another resource in the same or other Association. These

capabilities are essential to provide collaborative operation and self-driven

adaptability.

Rationale/Goal

The EMPYREAN service assurance mechanisms based on machine reasoning

techniques will automatically trigger the adaptation of the deployed

applications to ensure that applications’ operational requirements are always

satisfied and to provide self-driven adaptability for enhanced fault tolerance

and load balancing.

Relation to UCs All EMPYREAN use cases.

Acceptance

Measures

Workload resumes its operation without user intervention.

Imposed delay and downtime are acceptable.

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 135/149

Dependencies

Service assurance and resource orchestration mechanisms.

Capabilities of underlying IoT-edge-cloud platforms.

Cross-platform container-based deployment mechanisms.

Requirement ID F_SO.8 Priority Must-have

Requirement Title Support automatic data migration operations within and across Associations.

Stakeholders
Infrastructure Owners, Service Providers,

Application Developers
Actors

ICCS, CC,

ZSCALE

Description

The EMPYREAN service orchestration mechanisms must support the definition

of data placement constraints, which should be considered in decision-making

processes for application deployment. The platform should ensure the

required data is always available to the deployed hyper-distributed workloads.

Additionally, orchestration mechanisms across various Associations should

collaborate and coordinate the required operations.

Rationale/Goal

Orchestration mechanisms should automatically and seamlessly migrate data
within and across Associations. These data movements will be initiated by the
EMPYREAN platform's decentralized intelligence mechanisms to balance the
workload, adapt to changes in available resources, and mitigate any issues
that hinder overall performance.

Relation to UCs All EMPYREAN use cases.

Acceptance

Measures

Applications’ high-level requirements and operation constraints are met.

All required data are automatically transferred to the new locations.

Dependencies

Secure storage service.

Data distributor.

Network and storage resources telemetry information.

Requirement ID F_SO.9 Priority Must-have

Requirement Title Implementation and integration of custom scheduling policies.

Stakeholders Infrastructure Owners, Service Providers Actors ICCS, RYAX

Description

EMPYREAN orchestration mechanisms must leverage cognitive orchestration

and multi-agent speculative policies for managing Associations and assigning

application workloads and data. Novel resource allocations algorithms will be

developed and integrated incrementally across the orchestration mechanisms

at various layers (i.e., Decision Engine, Local Schedulers). Thus, the

orchestration components should be designed for extensibility, allowing for

the seamless integration of new policies based on a well-defined procedure

without hidden interfaces.

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 136/149

Rationale/Goal

The EMPYREAN orchestration mechanisms at both the Aggregator level (e.g.,

EMPYREAN Orchestrator) and the platform level (e.g., K8s, K3s) will be

designed to support the seamless integration of new and advanced scheduling

algorithms. This extensibility will ensure that modifications and enhancements

can be made without impacting other platform components. This approach

ensures transparency and facilitates continuous enhancement, enabling the

platform to adapt to evolving requirements and leverage advanced

orchestration capabilities.

Relation to UCs All EMPYREAN use cases.

Acceptance

Measures

Well-defined interfaces to describe scheduling policies, input parameters and

results.

Extend the library of scheduling policies without breaking the implementation

and functionality of other orchestration components.

Dependencies
Orchestration platforms at the individual edge and cloud infrastructures.

Application and resource description schemas.

Requirement ID F_SO.10 Priority Must-have

Requirement

Title
Seamless orchestration and management of both container-based and

serverless workloads.

Stakeholders Infrastructure Owners, Service Providers,

Application Developers
Actors

ICCS, RYAX,

NUBIS

Description

EMPYREAN platform should handle the deployment and operation of these

different types of workloads by providing an abstraction layer for managing

both containers and serverless functions. These mechanisms aim to improve

operational efficiency, enhance developer productivity, and improve flexibility

and agility of hyper-distributed applications. This approach will support

application-level adaptations without changing the deployment descriptor or

the application logic while maintaining the benefits of the cloud-native

ecosystem.

Rationale/Goal

EMPYREAN aims to unify the management processes for these two main

deployment modes, ensuring that applications’ workloads are deployed

optimally regardless of their underlying architecture. Implementing this

seamless functionality can facilitate a robust, flexible, and cost-efficient

operational framework that can support modern hyper-distributed application

requirements.

Relation to UCs All EMPYREAN use cases.

Acceptance

Measures

Support elasticity and scalability of hyper-distributed applications.

Successful deployment of workloads in both deployment modes.

Application packaging for seamless deployment of functions.

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 137/149

Dependencies Open Container Initiative (OCI) compatible container runtime environment.

Requirement ID F_SO.11 Priority Must-have

Requirement Title Flexible Hardware-Accelerated Execution

Stakeholders
Infrastructure Owners, Service Providers,

Application Developers
Actors NUBIS

Description

Enable flexible execution by mapping hardware-accelerate-able workloads

to relevant hardware functions, decoupling applications from hardware-

specific code. This is crucial for real-time, high-frequency data processing in

robotic machining cells (UC1) and compute-intensive tasks in logistics

operations (UC3). For example, real-time anomaly detection in machining

requires processing high-frequency data streams, and leveraging hardware

acceleration can significantly enhance performance and reduce latency. In

logistics, robots performing order-picking can benefit from offloading

intensive computations to nearby devices, improving operational efficiency

and response times.

Rationale/Goal To ensure applications can leverage hardware acceleration without being

tied to specific hardware, enhancing portability and efficiency.

Relation to UCs UC1, UC3

Acceptance

Measures

Successful execution of hardware-accelerate-able workloads on at least 3

different types of hardware in real-time anomaly detection and logistics

operations.

Requirement ID F_SO.12 Priority Must-have

Requirement Title Offload Acceleration to Nearby Devices

Stakeholders
Infrastructure Owners, Service Providers,

Application Developers
Actors NUBIS

Description

Allow IoT devices to request compute-intensive tasks to be executed by an

available neighboring node. This will enhance performance and efficiency in

IoT networks used in logistics operations (UC3). For example, logistics

robots can offload heavy computational tasks such as path planning or

object recognition to nearby more powerful devices, thus conserving their

own processing power for real-time operations and improving overall

system efficiency.

Rationale/Goal

To utilize remote hardware accelerators, enhancing performance and

efficiency in IoT networks. Offloading tasks to nearby devices reduces

latency and improves the responsiveness of IoT applications.

Relation to UCs UC3

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 138/149

Acceptance

Measures

Successful offloading of tasks from at least 2 types of IoT devices to more

than 3 types of edge devices.

Requirement ID F_SO.13 Priority Must-have

Requirement Title OCI-Compatible Container Images

Stakeholders
Infrastructure Owners, Service Providers,

Application Developers
Actors NUBIS

Description

Bundle binary artifacts along with their descriptors into OCI-compatible

container images to facilitate deployment of sensing applications in

agricultural fields (UC2) and robotic machining cells (UC1). Using OCI-

compatible containers ensures that applications are portable and can run

consistently across various environments, which is crucial for maintaining

operational consistency in dynamic and heterogeneous settings such as

fields and manufacturing plants.

Rationale/Goal

To ensure applications can be easily deployed across various computing

environments, enhancing interoperability. Standardizing on OCI-compatible

containers facilitates seamless application deployment and management.

Relation to UCs UC1, UC2, UC3

Acceptance

Measures

Creation of OCI artifacts bootable on at least 3 different hardware

architectures used in respective environments.

Requirement ID F_SO.14 Priority Must-have

Requirement Title Support Diverse Execution Environments

Stakeholders
Infrastructure Owners, Service Providers,

Application Developers
Actors NUBIS

Description

Facilitate the deployment of applications across various execution

environments including unikernels and IoT devices. This is crucial for

agricultural sensing applications (UC2) and logistics operations (UC3). For

example, deploying applications on lightweight unikernels can significantly

improve performance and reduce overhead, which is essential for resource-

constrained IoT devices in agricultural fields or logistics robots.

Rationale/Goal
To provide flexibility and compatibility with existing container orchestration

ecosystems. Supporting diverse execution environments ensures that

applications can be optimized for performance and resource efficiency.

Relation to UCs UC2, UC3

Acceptance

Measures

Successful deployment of applications in at least 3 different execution

environments (containers, sandbox containers and unikernels) in respective

settings.

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 139/149

Requirement ID F_SO.15 Priority Must-have

Requirement Title Reproducible Environment Packaging

Stakeholders
Infrastructure Owners, Service Providers,

Application Developers
Actors RYAX, NUBIS

Description

EMPYREAN should provide ways to perform reproducible environment

packaging for different types of environments containers or unikernels and

specifically build different flavours of the environments depending of the

usage context. Furthermore, the packaging needs to be reproducible,

lightweight and efficient in order to take into account the possible

deployment of environments in different computation demanding contexts.

Rationale/Goal

The motivation of this requirement is to provide common, reproducible

techniques to build different types of standardized environments

containers or unikernels.

Relation to UCs All

Acceptance

Measures

Ensure successful, reproducible deployment of applications across at least 3

standardized environments, with performance, consistency, and

stakeholder satisfaction validated through automated processes,

comprehensive documentation, and compliance with security standards.

6.1.7 Integration and Platform Development Requirements

This section outlines the requirements for Platform Integration and Testing, which are

essential for unifying the outcomes of the developed components and services into the

integrated EMPYREAN platform. These requirements will support the development activities

of EMPYREAN components and enhance the overall integrated performance. Specifically, they

will provide guidelines for the technological developments in WP3 and WP4, and support each

UC through adaptation, customization, and further development of UC leaders’ existing

services and applications. Additionally, these requirements ensure the adoption of the

DevSecOps application development approach, promoting flexible collaboration between

development teams. This approach facilitates the frequent release of integrated versions of

the EMPYREAN platform, ensuring continuous improvement and responsiveness to evolving

needs.

Table 10: Analysis of integration and platform development requirements

Requirement ID F_IPDR.1 Priority Must-have

Requirement Title Expose well-defined APIs through EMPYREAN SDK.

Stakeholders Application Developers Actors All

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 140/149

Description

The EMPYREAN platform must provide a comprehensive Service

Development Kit (SDK) that includes a set of well-defined APIs. This SDK will

enable seamless interaction with the platform’s components. In addition, it

will facilitate the robust reporting and monitoring of deployed applications

and workloads. By abstracting the complexities involved in creating and

deploying hyper-distributed cloud-native applications, the EMPYREAN SDK

will simplify user operations, eliminating the need for low-level direct

interaction with the individual services and resources across the IoT-edge-

cloud continuum.

Rationale/Goal

The EMPYREAN SDK should streamline the development of use cases for

the final demonstrations and the integration of platform components. It

will assist developers in building, deploying, and managing hyper-

distributed applications within the EMPYREAN platform. Additionally, it will

support the implementation of future extensions and the deployment of

diverse cloud-native applications.

Relation to UCs
EMPYREAN use cases will be built upon the robust foundation provided by

the EMPYREAN SDK and its exposed APIs, ensuring easy and seamless

integration with the platform's technological solutions.

Acceptance

Measures

No hidden internal APIs.

Provide high-level methods to interact with the core platform components

(e.g., Service Orchestrator, Decision Engine, Aggregator, Data Distributor,

Storage Service, Telemetry Service)

Dependencies
Exposed APIs by the integrated platforms and services.

Abstraction models for applications and resources.

Requirement ID F_IPDR.2 Priority Must-have

Requirement Title
Build upon well-established open-source platforms and consortium existing

solutions.

Stakeholders Infrastructure Owners, Service Providers Actors All

Description

The EMPYREAN platform must not be built from scratch but should extend

and integrate existing open-source technologies, solutions from the project

consortium, and potential synergies with other relevant initiatives. It must

follow a modular architecture and adopt standardized and open interfaces.

Rationale/Goal

Preference should be given to expanding existing frameworks, tools, and

open standards to enhance openness in the evolving continuum landscape.

This way, EMPYREAN will also contribute to the provision of an open edge

ecosystem, fostering innovation of the whole European ecosystem.

Relation to UCs
All EMPYREAN use cases will utilize the provided novel services and

mechanisms that will be built upon this strategic approach.

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 141/149

Acceptance

Measures

Maximize the use of EMPYREAN enablers belonging to consortium

portfolio.

Maximize the use of European open-source technologies and frameworks.

Dependencies

Availability and portability of available solutions regarding the target

system architectures and programming languages.

Detailed workflows and interface documentation for the EMPYREAN-

developed components.

Requirement ID F_IPDR.3 Priority Must-have

Requirement Title Documentation of all integration points.

Stakeholders Application Developers, Service Providers Actors All

Description

All the integration points should be well documented. Integration points

refer to components or modules that will be part of or use the EMPYREAN

platform. The documentation should cover cases of successful and

unsuccessful communication.

Rationale/Goal

Documentation will facilitate discovery of EMPYREAN components’

features by third-parties, guaranteeing a minimum level of interoperability

and portability.

Relation to UCs

By documenting the integration points, the EMPYREAN platform can

ensure smooth, efficient, and reliable CI/CD processes that support the

successful implementation of project use cases.

Acceptance

Measures

Documentation should cover all relevant endpoints adhering to well-

known specification (e.g., OpenAPI v3.0).

Correctly implemented integration points that work as described in the

documentation.

Documented integration points should be known and agreed with involved

members that use it.

Dependencies

EMPYREAN architecture describing all integration points of the system, as

will be provided by D2.2 (M7) and D2.3 deliverables (M12) and the

components implementation within WP3 and WP4 that will be delivered in

two versions (M15 and M30).

Requirement ID F_IPDR.4 Priority Must-have

Requirement Title Docker image of developed components for creating running containers.

Stakeholders Application Developers, Service Providers Actors All

Description For every platform component, there should be at least one Docker image

to be used for deploying this component in a container that will integrate

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 142/149

with other components. In case multiple containers are required, there

should be a docker-compose file.

Rationale/Goal
Components running in containers greatly simplify the integration process.

This methodology allows the CI/CD process to deploy more than one

component on the same machine without unexpected conflicts.

Relation to UCs
Implementing robust CI/CD pipelines ensures rapid, reliable, and

repeatable software delivery, which is essential for the success of

EMPYREAN use cases.

Acceptance

Measures

One Dockerfile or one image per component is provided.

The container can run without issues. No errors should exist in the

container logs, warnings can be present when not affecting the execution.

Provision of required configuration parameters (e.g, ports, environment

variables).

Dependencies A functional component already developed and documented.

Requirement ID F_IPDR.5 Priority Should-have

Requirement Title EMPYREAN Git-based code repository.

Stakeholders Application Developers Actors All

Description

A Git-based code repository (e.g., GitHub, GitLab) will be used in

EMPYREAN for all developed EMPYREAN components. The code should be

placed in the corresponding work package and partner folder.

Rationale/Goal

CI/CD pipelines should be able to retrieve available code from a shared

location. The most popular Git-based online repositories also integrate with

CI/CD components (e.g., Jenkins) that will build the components.

Relation to UCs

Implementing robust CI/CD pipelines ensures rapid, reliable, and

repeatable software delivery of, which is essential for the success of

EMPYREAN UCs.

Acceptance

Measures

Component code placed into the corresponding Gitlab folder.

Readme file or script that uses this code to build the component.

Dependencies Repository account for every user.

Requirement ID F_IPDR.6 Priority Should-have

Requirement Title CI/CD guidelines.

Stakeholders Application Developers, Service Providers Actors All

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 143/149

Description

All partners should follow the provided CI/CD guidelines. Code

development must follow the guidelines and methodology imposed by the

CI/CD pipeline and DevSecOps approach.

Rationale/Goal

EMPYREAN will adopt a DevSecOps approach to continuously integrate the

developed mechanisms and frameworks. As part of the CI/CD process, code

development should follow good practices, as described in the DevSecOps

approach.

Relation to UCs

Implementing robust CI/CD pipelines ensures rapid, reliable, and

repeatable software delivery, which is essential for the success of

EMPYREAN use cases.

Acceptance

Measures

Steps of CI/CD pipeline should be defined in a Jenkins file.

Automated development, testing, and deployment of the EMPYREAN

platform core components.

Dependencies
Well defined system platform architecture.

Collaboration tools to ensure smooth CI/CD processes.

 Non-functional Requirements

The non-functional requirements express quality requirements that the components of the

implemented platform should satisfy. For the non-functional requirements, EMPYREAN

adopts the widely accepted ISO/IEC 25010148 standard model of quality characteristics, which

determines the quality characteristics that must be considered when evaluating the

properties of a software product. A system’s quality is the degree to which it satisfies its

various stakeholders stated and implied needs and thus provides value. The

ISO/IEC25010quality model classifies software quality in a structured set of characteristics and

sub-characteristics. Next, we briefly describe the EMPYREAN platform ecosystem’s relevant

characteristics for each non-functional requirement.

Table 11: Analysis of overall non-functional requirements

Requirement ID: NF_GR.1 Priority: Core

Requirement Title: Performance Efficiency
Stakeholders

Involved:
All

148 ISO/IEC, "ISO/IEC 25010: 2011 Systems and software engineering--Systems and software Quality

Requirements and Evaluation (SQuaRE)--System and software quality models, (2011).

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 144/149

Description:

This characteristic represents the performance relative to the number of

resources used under stated conditions. This characteristic is composed of

the following sub-characteristics:

● Time behaviour - Degree to which the response, processing times

and throughput rates of a product or system, when performing its

functions, meet the requirements.

● Resource utilization - Degree to which the amounts and types of

resources used by a product or system, when performing its

functions, meet the requirements.

● Capacity - Degree to which the maximum limits of a product or

system parameter meet requirements.

Rationale / Goal:

The EMPYREAN platform integrates the project’s developed technologies

related to trust, security, and seamless data, computing and application

management, coupling them with intelligent mechanisms to optimize

resource utilization. EMPYREAN will be able to dynamically cater to

application and user constraints while calibrating the configuration of the

available resources.

Requirement ID: NF_GR.2 Priority: Core

Requirement Title: Functional Suitability
Stakeholders

Involved:
All

Description:

This characteristic represents the degree to which a product or system

provides functions that meet stated and implied needs when used under

specified conditions. This characteristic is composed of the following sub-

characteristics:

● Functional completeness - Degree to which the set of functions

covers all the specified tasks and user objectives.

● Functional correctness - Degree to which a product or system

provides the correct results with the needed degree of precision.

● Functional appropriateness - Degree to which the functions

facilitate the accomplishment of specified tasks and objectives.

Rationale / Goal:

The EMPYREAN platform will provide an abstraction layer that automates

the application deployment by continuously optimizing the allocation and

configuration of the available heterogeneous resources. Moreover, it will

support the autonomous adaptation and management of the deployed

services and resources to ensure that applications perform as intended.

Requirement ID: NF_GR.3 Priority: Core

Requirement Title: Compatibility
Stakeholders

Involved:
All

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 145/149

Description:

Degree to which a product, system or component can exchange information

with other products, systems or components, and/or perform its required

functions while sharing the same hardware or software environment. This

characteristic is composed of the following sub-characteristics:

● Co-existence - Degree to which a product can perform its required

functions efficiently while sharing a common environment and

resources with other products, without detrimental impact on any

other product.

● Interoperability - Degree to which two or more systems, products or

components can exchange information and use the information that

has been exchanged.

Rationale / Goal:

The EMPYREAN platform integrates decentralized and heterogeneous IoT,

edge, and cloud resources through an Association-based paradigm.

EMPYREAN will build the appropriate abstractions and system-level

mechanisms to promote resource interoperability and seamless application

deployment. The platform will not be built from scratch but as an integration

of available well-known solutions by implementing all the required

extensions and improvements.

Requirement ID: NF_GR.4 Priority: Core

Requirement Title: Usability
Stakeholders

Involved:
All

Description:

Degree to which a product or system can be used by specified users to

achieve specific goals with effectiveness and efficiency in a specified context

of use. This characteristic is composed of the following sub-characteristics:

● Appropriateness recognizability - Degree to which users can

recognize whether a product or system is appropriate to their needs.

● Learnability - Degree to which a product or system can be used by

specified users to achieve specific goals of learning to use the

product or system with effectiveness, efficiency, freedom from risk

and satisfaction in a specified context of use.

● Operability - Degree to which a product or system has attributes that

make it easy to operate and control.

● User error protection - Degree to which a system protects users

against making errors.

Rationale / Goal:

EMPYREAN will support dynamic application deployment and adaptation, as

well as elasticity and scalability of hyper-distributed applications, by adopting

a develop once, deploy everywhere approach. Users will develop their

applications and express their high-level deployment requirements in an

infrastructure-agnostic manner. EMPYREAN will provide the appropriate

technological solutions to facilitate developing, packaging, deploying, and

monitoring hyper-distributed applications.

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 146/149

Requirement ID: NF_GR.5 Priority: Core

Requirement Title: Reliability
Stakeholders

Involved:
All

Description:

Degree to which a system, product or component performs specified

functions under specified conditions for a specified period of time. This

characteristic is composed of the following sub-characteristics:

● Maturity - Degree to which a system, product or component meets

needs for reliability under normal operation.

● Availability - Degree to which a system, product or component is

operational and accessible when required for use.

● Fault tolerance - Degree to which a system, product or component

operates as intended despite the presence of hardware or software

faults.

● Recoverability - Degree to which, in the event of an interruption or a

failure, a product or system can recover the data directly affected and

re-establish the desired state of the system.

Rationale / Goal:

EMPYREAN will enable application-level adaptation and scalability for hyper-

distributed applications through AI-driven service assurance and autoscaling

mechanisms. These advancements will ensure the availability, reliability, and

efficiency of deployed applications by continuously monitoring them and

initiating necessary self-optimization procedures automatically.

Requirement ID: NF_GR.6 Priority: Core

Requirement Title: Security
Stakeholders

Involved:
All

Description:

Degree to which a product or system protects information and data so that

persons or other products or systems have the degree of data access

appropriate to their types and levels of authorization. This characteristic is

composed of the following sub-characteristics:

● Confidentiality - Degree to which a product or system ensures that data

are accessible only to those authorized to have access.

● Integrity - Degree to which a system, product or component prevents

unauthorized access to, or modification of, computer programs or data.

● Non-repudiation - Degree to which actions or events can be proven to

have taken place so that events or actions cannot be repudiated later.

● Accountability - Degree to which the actions of an entity can be traced

uniquely to the entity.

● Authenticity - Degree to which the identity of a subject or resource can

be proved to be the one claimed.

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 147/149

Rationale / Goal:

The EMPYREAN platform will encompass several security, trustworthiness,

and cyber threat intelligence mechanisms, operating in multiple layers, to

provide by design, privacy and resiliency against security threats.

Requirement ID: NF_GR.7 Priority: Core

Requirement Title: Maintainability
Stakeholders

Involved:
All

Description:

This characteristic represents the degree of effectiveness and efficiency with

which a product or system can be modified to improve it, correct it or adapt

it to changes in environment, and in requirements. This characteristic is

composed of the following sub-characteristics:

● Modularity - Degree to which a system or computer program is

composed of discrete components, such that a change to one

component has minimal impact on other components.

● Reusability - Degree to which an asset can be used in more than one

system, or in building other assets.

● Analysability - Degree of effectiveness and efficiency with which it is

possible to assess the impact on a product or system of an intended

change to one or more of its parts, or to diagnose a product for

deficiencies or causes of failures, or to identify parts to be modified.

● Modifiability - Degree to which a product or system can be effectively

and efficiently modified without introducing defects or degrading

existing product quality.

● Testability - Degree of effectiveness and efficiency with which test

criteria can be established for a system, product or component and

tests can be performed to determine whether those criteria have been

met.

Rationale / Goal:

The integration of the EMPYREAN platform will adhere to DevSecOps best

practices. This process will be conducted incrementally according to a

structured plan, with local interoperability tests performed after each phase.

This meticulous procedure will validate the platform’s technical conformity

and efficiency. Furthermore, the chosen modular architecture, along with

well-defined and open interfaces, will facilitate the seamless addition of

future extensions for individual components.

Requirement ID: NF_GR.8 Priority: Core

Requirement Title: Portability
Stakeholders

Involved:
All

Description:

Degree of effectiveness and efficiency with which a system, product or

component can be transferred from one hardware, software or other

operational or usage environment to another. This characteristic is

composed of the following sub-characteristics:

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 148/149

● Adaptability - Degree to which a product or system can effectively and

efficiently be adapted for different or evolving hardware, software or

other operational or usage environments.

● Installability - Degree of effectiveness and efficiency with which a

product or system can be successfully installed and/or uninstalled in a

specified environment.

● Replaceability - Degree to which a product can replace another

specified software product for the same purpose in the same

environment.

Rationale / Goal:

The EMPYREAN platform aims to provide the necessary mechanisms to

enable dynamic application deployment and autonomous adaptation over

heterogeneous infrastructures. The platform will leverage available open-

source technologies and state-of-the-art platforms. Components will interact

through well-defined interfaces to ensure future extensions and portability

to new hardware and software platforms.

D2.1 – State of the art, use case analysis, platform requirements and KPIs

empyrean-horizon.eu 149/149

7 Conclusions

The EMPYREAN project sets a new benchmark in the IoT-edge-cloud continuum by addressing

critical challenges in distributed trust, secure data management, and AI-driven resource

optimization. By integrating advanced technologies such as blockchain, AI, and unikernels,

EMPYREAN aims to create a resilient, scalable, and secure infrastructure. Based on this

innovative approach, EMPYREAN envisions a new paradigm for the continuum, introducing

the concept of collaborative collectives of IoT devices, robots, and resources spanning from

the edge to the cloud.

The project's innovative solutions, including a distributed trust management framework and

enhanced AI-based workload autoscaling, will significantly enhance the performance and

reliability of hyper-distributed applications. Through its comprehensive and forward-thinking

approach, EMPYREAN is poised to lead the next generation of IoT-edge-cloud ecosystems,

providing substantial benefits across multiple industrial domains.

This deliverable encapsulates the project's thorough analysis of the current state of

technologies, an extensive use case analysis, and the subsequent identification of platform

requirements and associated KPIs. It includes EMPYREAN's comprehensive evaluation of

cutting-edge and beyond state-of-the-art technologies that the project aims to advance. This

deliverable also details the EMPYREAN use cases and provides an initial analysis of the

functional and non-functional requirements for EMPYREAN components and their associated

KPIs.

EMPYREAN requirements are systematically organized to facilitate efficient processing and

transformation into architectural decisions. Based on EMPYREAN's goals and technical

objectives, the requirements are grouped into seven categories, encompassing both the

project use case requirements and the innovative technologies envisioned to enable a

cognitive continuum. This continuum integrates intelligence and automation to achieve more

efficient data processing.

Finally, the deliverable describes the project's relation to ongoing relevant EU projects in

similar areas.

